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Abstract

The energy transition requires substantial amounts of metals, including copper,

nickel, cobalt, and lithium. Are these metals a key bottleneck? We identify metal-

specific demand shocks with an “anchor” variable, estimate supply elasticities, and

pin down the price impact of the energy transition in a structural scenario analysis.

Metal prices would reach historical peaks for an unprecedented, sustained period in

a net-zero emissions scenario. The total production value of these four metals alone

would rise more than four-fold to USD 13 trillion for the period 2021 to 2040, rivaling

the estimated total value of crude oil production. These metals could potentially

become as important to the global economy as crude oil.
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1 Introduction

This paper quantifies the impact of the energy transition on metals markets. To limit

climate change, countries and firms are increasingly pledging to reduce carbon dioxide

emissions. Reaching this goal could substantially boost the demand for metals like copper,

nickel, cobalt, and lithium, which are key building blocks for the energy transition (World

Bank, 2020; IEA, 2021b). For example, an electric car requires five times more of these

metals than a conventional car. However, a more metals intense global economy raises

concerns that supply might not catch up with soaring demand. This could induce increases

in the cost of metals as inputs, thus, potentially delaying the energy transition.

We model the impact of the energy transition on metals prices as a sequence of metals-

specific demand shocks in separate structural VAR models for copper, nickel, cobalt and

lithium. To avoid any ex-ante assumptions about the effects of the energy transition

on the economy, we distinguish metal-specific from aggregate demand shocks. While

a metal-specific demand shock, like the energy transition, leaves the demand for other

commodities unaffected, an aggregate demand shock affects demand for all commodities

due to, for example, higher than expected global growth. To disentangle these two types

of shocks, we propose a novel identification strategy: We augment the standard three-

variables commodity market model (e.g., Kilian, 2009, Baumeister and Peersman, 2013,

Jacks and Stuermer, 2020, and others) with an “anchor” variable.

More precisely, each structural VAR model includes four endogenous variables, namely
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a measure of global economic activity, the global production of the respective metal, its real

price, and the anchor variable. In our case, the anchor variable is an additional commodity

price (e.g., for cotton), which we assume to be affected by the aggregate commodity

demand shock but not by the metal-specific demand shock on impact. For example, an

unexpected increase in aggregate commodity demand due to a booming global economy

would raise prices for both lithium and cotton. In contrast, an unexpected increase in

lithium demand for batteries (a positive lithium-specific demand shock), drives up the

lithium price but not the price for cotton on impact.

This identification relies on the assumption that the anchor variable is not a substitute

for the analyzed metal.1 Finally, the exclusion restrictions imposed on the anchor variable

are complemented by traditional and narrative sign restrictions (Antoĺın-Dı́az and Rubio-

Ramı́rez, 2018).

In modelling the energy transition, we take metal consumption scenarios from the IEA

(2021a,b) as given, assuming that global consumption equals production over the long-

term. We conduct a structural scenario analysis following Antoĺın-Dı́az et al. (2021) to

derive a sequence of exogenous metal-specific demand shocks that match the global metal

consumption scenarios from 2021 to 2040. In other words, the algorithm finds a series of

these shocks that incentivizes the metal output path needed for the energy transition. We

then derive the implied price and revenue paths.

The structural scenario analysis allows us to deal with the limits of reduced-form condi-

1Using a commodity price index as an anchor variable would not constitute a sensible choice if it
includes commodities that are substitutes for energy transition metals (e.g. biofuels, steel, or aluminum).

3



tional forecasts from VAR models, namely that a missing causal mechanism confounds the

interpretation. The methodology has the advantage that it can distinguish among struc-

tural shocks (such as aggregate demand, commodity-specific demand, and supply shocks),

which may have substantially different implications for the price. Modelling the energy

transition as a series of metals-specific demand shocks is also in line with the iterative and

highly uncertain nature of policy making and technological change.

Results show that the supply of all metals, except lithium, is quite inelastic over the

short term, but is more elastic over the long term. A metal-specific positive demand shock

to price of 10 percent increases the same-year output of copper by 3.5 percent, nickel by

7.1 percent, cobalt by 3.2 percent, and lithium by 16.9 percent. After 20 years, the same

price shock raises output of copper by 7.5 percent, nickel by 13.0 percent, cobalt by 8.6

percent, and lithium by 25.5 percent. This evidence is in the range of other studies in

the cases of copper and nickel, but the long-run estimate for cobalt is substantially higher

than in the literature (see the reviews in Dahl, 2020 and Fally and Sayre, 2018). We are

the first to estimate supply elasticities for lithium.

We find that the four metals are potential bottlenecks for the energy transition. Infla-

tion adjusted metal prices would reach peaks similar to historical ones but for an unprece-

dented, sustained period of roughly a decade in the IEA’s net-zero emissions scenario.

This would imply that real prices of nickel, cobalt and lithium would rise several hundred

percent from 2020 levels, while the copper price would increase more than 60 percent. In

the IEA’s stated policy scenario, which is based on current national policies, real prices
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for all four metals would broadly stay in the range of the 2020 average.

We estimate that the four metals could become as important to the macro-economy as

crude oil. In the net-zero emissions scenario, the demand boom could lead to a more than

fourfold increase in the value of metals production—totaling US$ 13 trillion accumulated

over the next two decades for the four “energy transition” metals alone. This could rival

the roughly estimated value of oil production in the net-zero emissions scenario from 2020-

2040. This implies that the markets of these four metals alone may become more important

for inflation, trade, and output globally. Metals producing countries could benefit from

significant windfalls due to the energy transition.

There is high uncertainty around the underlying metals consumption scenarios. De-

mand will depend, first, on technological change that is hard to predict, but which may

allow for more possibilities to substitute certain metals. Note that innovation cycles are

quite long. For example, the development and commercialization of lithium-ion batteries

took 30 years. The IEA already assumes rapid technological innovation in its scenarios,

faster than historical benchmarks. Second, the speed and direction of the energy transition

depends on heterogeneous policy decisions, which are equally difficult to forecast. Finally,

we take the consumption scenarios as exogenously given and do not model how they would

endogenously react to higher prices.

Our findings have important implications for integrated assessment models that intro-

duce climate change and the energy transition into dynamic stochastic general equilibrium

models (e.g., Nordhaus and Boyer, 2000, Hassler and Krusell, 2012, Golosov et al., 2014).
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These models do not include the critical role of metals as inputs and the potential rise

in costs due to the energy transition. Including metals as an input into the production

of renewable energies and batteries may capture these additional costs and help us better

understand the impact of the energy transition on inflation.

We also contribute to the literature by computing supply elasticities at long horizons

that account for the lagged nature of the opening up of mines. This addresses a major

drawback of the existing literature (see Dahl, 2020). We exploit a long historical data-

set, which partly starts in 1879 and captures a long series of commodity boom and bust

periods. We assume that supply elasticities remain constant over time, as technological

change offsets the depletion of high quality mineral deposits in line with Stuermer and

Schwerhoff (2015).

The remainder of the paper is structured as follows. Section 2 provides a short de-

scription of the metals used in the analysis and introduces the data. Section 3 lays out

the econometric model including the identification strategy and the setup of the structural

scenario. Section 4 discusses the results and Section 5 documents sensitivity analyses.

Finally, Section 6 concludes.

2 Metals Selection and Data

Our in-depth analysis focuses on four metals: copper, nickel, cobalt, and lithium. These

four metals are considered as the most important metals that are highly impacted by

the energy transition (see World Bank, 2020; IEA, 2021b). Copper and nickel are well-
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established metals that have been traded for more than a century on metal exchanges.

They are broadly used across the economy and across low carbon technologies. Cobalt

and lithium, instead, are minor but rising metals. They started being traded on metal

exchanges in the 2010s and have gained in popularity because they are used in batteries

for electric vehicles.2

2.1 Historical Data Set

We use historical annual data for the real economic activity measure, i.e., a dry bulk cargo

freight rate index, the global production and real prices of the respective four metals, as

well as the real prices for cotton, barley, and coffee. We use the U.S. all urban consumers

price index to adjust prices and the freight rate index for inflation. Data descriptions and

sources are in the online-appendix.

Employing long sample periods, partly going back to 1879 for copper (the freight rates

index is only available since 1879), 1900 for nickel, 1925 for cobalt, and 1955 for lithium,

allows us to estimate the long-run relationships between the variables. This is important

due to the long investment cycles in the industry. However, historical data can come with

measurement problems. This is particularly a concern for the cobalt and lithium markets.

These commodities were not traded on public exchanges for a long time. Their value chain

2We do not consider graphite or vanadium as one of the four metals, because their consumption is
expected to increase significantly, albeit from a much lower base than the one for lithium and cobalt. For
aluminum, while important, there are no comparable estimates available from the IEA for its usage in the
energy transition. Rare earth elements (REE) and platinum group metals (PGM) are beyond the scope
of our present analysis. These metals are quite heterogeneous. REE refer to 17 metals and PGM to 6
metals. Some REE are important for wind turbines and electric vehicles, while some PGM are relevant
for hydrogen. The energy transition is expected to have a modest contribution to their demand growth,
especially for REE.
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and pricing are more complex than for copper and nickel. We have ensured that the data

is as consistent as possible over time. We have also checked the history of these markets

for signs of structural changes, which may be a moderate issue for the cobalt, lithium, and

nickel markets. We attribute some of the relatively broad sets of admissible draws to some

remaining measurement errors.

Moreover, we use historical data on cotton prices since 1879. Cotton is a major non-

metal input for industrial production. Its market is liquid and well documented. At

the same time, its production and consumption should be uncorrelated to the ones of

the selected metals, except for movements due to aggregate demand shocks, hitting all

commodities at the same time. This is an important assumption for our identification

scheme. See the online-appendix for plots of the time series.

2.2 Metals Consumption Scenarios

The IEA (2021b) provides metals consumption forecasts for the stated policy scenario that

is based on the status quo in early 2021 and IEA (2021a) the net-zero emissions (NZE)

scenario. Figure 1 shows historical production levels for copper, nickel, cobalt and lithium

along with future consumption paths in the two scenarios.

The NZE scenario is based on the premise that global temperature increases can be

limited to 1.5°C in 2050. It assumes that there are net-zero CO2 emissions in 2050,

including the energy sector. It implies that renewable energies become the leading source

of electricity worldwide before 2030. In the transportation sector, the scenario assumes
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that electricity will cover 60 percent of energy consumption in addition to the broad use

of hydrogen for trucks and shipping. Battery demand is expected to increase from 0.16

TWh in 2020 to 14 TWh in 2050, with 86 percent of the stock of cars being powered by

electricity. We concentrate on this scenario which is the most ambitious with the highest

chance of limiting global warming to 1.5°C (IPPC 2021).

The total consumption of lithium and cobalt would rise more than twentyfold and

sixfold, respectively, driven by clean energy demand in the NZE scenario. Copper and

nickel would see twofold and fourfold increases of total consumption, respectively. The

NZE scenario of the IEA also implies that the consumption of the respective metal grows

at a high rate between now and 2030, as the switch from fossil fuels to renewable energies

requires large initial investments, but slows slightly in the later part of the scenario horizon.

Metals consumption in the stated-policy scenario follows more or less an extended

historical trend.

3 Econometric Model

We set up separate VAR models for each metal. Each reduced-form model includes four

endogenous variables yt = (REAt,∆Qt,Pt,P
C
t )

′, namely the log of a global real economic

activity index (a global dry bulk cargo freight rate index) REAt, the percentage change of

global production of the respective metal ∆Qt, the log of the real price of the respective

metal Pt, and the log of the real price of cotton PC
t . We estimate
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Figure 1: Metals consumption in the IEA’s net-zero emissions scenario and the stated
policy scenario.

yt = A1yt−1 + ...+Apyt−p +ΠDt + ut , (1)

with a lag length of p = 4, where Ai are the reduced-form VAR coefficients and ut the

reduced-form forecast errors. These errors have no economic interpretation. The matrix

of deterministic terms Dt consists of a constant and dummies for the years during each of

the two world wars and the three consecutive years. For copper and nickel, we add a linear

trend to the regression as we can employ reasonably long samples for these two metals in

contrast to cobalt and lithium. The analysis is performed at an annual frequency. The

reduced-form VAR in (1) can be expressed in a structural form given by
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B0yt = B1yt−1 + ...+Bpyt−p + ΓDt + εt. (2)

In equation (2), εt are independent structural shocks with an economic interpretation.

These are related to the reduced-form errors via the linear transformation ut = B−1

0 εt.

Thus, B−1

0 contains the impact effects of the structural shocks on the four endogenous

variables in yt. By assuming a unit variance for the uncorrelated structural shocks, i.e.,

E(εtε
′

t) = In (an identity matrix), the reduced-form covariance matrix Σu is related to the

structural impact multiplier matrix as Σu = E(utu
′

t) = B−1

0 E(εtε
′

t)B
−1

0

′

= B−1

0 B−1

0

′

.

3.1 Identification

Without further information it is not possible to identify B−1

0 and thereby the structural

form in (2). The literature has come up with different restrictions, for instance placed

directly onB−1

0 to solve this identification problem. We apply conventional sign restrictions

(e.g., Faust, 1998, Canova and Nicolo, 2002, and Uhlig, 2005) and zero impact restrictions

on the elements in B−1

0 , i.e., we assume that the structural shocks have either a positive,

negative or no instantaneous effect on the endogenous variables on impact. We base these

impact restrictions on economic intuition as specified in Table 1. We also impose narrative

sign restrictions, which we explain further below.
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Table 1: Sign and zero restrictions on impact effects

Global economic
activity

Global metal
production

Real metal
price

Real cotton
price

Aggregate commodity
demand shock

+ + + +

Metal supply
shock

+ + - 0

Metal-specific
demand shock

+ + 0

We interpret the first shock as an aggregate commodity demand shock that is related

to the global business cycle and affects demand for all commodities simultaneously. A

positive shock increases global economic activity, the global production of the respective

metal, and the prices of both the respective metal and cotton on impact.3

We label the second shock as a metal supply shock, capturing, for example, strikes,

other production outages, or the earlier than expected opening up of a major mine. A

positive shock that increases global metal production is assumed to drive up global eco-

nomic activity, but to decrease the real metal price on impact. As it is specific to metal

supply, it should have no effect on the price of cotton on impact.

We interpret the third shock as a metal-specific demand shock. A positive shock

increases the production and price of the respective metal, but unlike the aggregate com-

modity demand shock we assume that the metal-specific demand shock has zero effect

on the cotton price on impact. We do not make an a-priori assumption on its effect on

global economic activity, as the direction could go either way: The energy transition could

3In this paragraph and in the following, we describe the assumptions about the sign restrictions normal-
izing such that the underlying shock increases the metal price. We assume that the shocks are symmetric,
and hence, the reverse effects hold.
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increase energy costs, thus dampening growth. However, it could also foster economic

growth by lowering energy costs in the long-term depending on technological change and

policies.

Using the price of cotton as an ”anchor” variable allows an agnostic approach on the

metal-specific demand shock’s effect on economic activity and provides a clear distinction

between the aggregate commodity demand and the metal-specific demand shock. Com-

pared to the aggregate demand shock, the metal-specific demand shocks is “anchored” on

this variable, the cotton price, via the zero (or exclusion) restrictions displayed in Table 1.

This method can be applied more generally to disentangle aggregate (demand, supply,

or financial) from sectoral (demand, supply, or financial) shocks. For example, it could

be used to identify demand shocks that are only specific to one industry or an economic

sector with the “anchor” variable chosen appropriately to react to the aggregate shock but

not the sector-specific shock.

It might be helpful to describe the “anchor” variable in contrast to a proxy variable,

i.e., an instrumental variable in VAR studies, usually employed to identify one of the

structural shocks (Stock and Watson, 2012; Mertens and Ravn, 2013). The proxy variable

needs to be sufficiently correlated with the shock of interest - the relevance condition - and

uncorrelated with all other shocks - the exogeneity condition. While the proxy identifies a

specific shock, the “anchor” variable assists in differentiating between different shocks. In

the case of the “anchor” variable the focus is on the exogeneity condition that must hold

for the metal-specific demand shocks on impact, while the relevance condition must hold
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for the aggregate demand shock.

We assume that the metal specific demand shock characterizes most closely the energy

transition in our structural scenario analysis. It raises the demand for specific metals but

not for other commodities. Note that this shock may also include anticipation shocks

due to changes in expectations about metal-specific future demand and supply.4 This

is important, because the energy transition may also affect metal markets through this

anticipation channel.

It is important for the scenario analysis that the metal-specific demand shock resembles

the energy transition as closely as possible. Narrative sign restrictions (Antoĺın-Dı́az and

Rubio-Ramı́rez, 2018) help us to sharpen the identification of the different structural

shocks, and thus, the distinction between them. These restrictions are imposed on the

importance of specific shocks during specific historical episodes (see Table 2). We source

the events of the narrative sign restriction shocks displayed in Table 2 from historical

market accounts from USGS (2013).

Examples include the Great Depression and the Great Recession, for which we specify

aggregate commodity demand shocks as the most important drivers of economic activity

as well as of copper and nickel prices. These crisis episodes hit commodity markets broadly

and should not be mistaken as shocks specific to the energy transition metals.

4For our historical sample period there is no data on global metal inventories available. Thus, we
cannot follow studies like Kilian and Murphy (2014), which include inventories as a fourth variable to
identify flow demand, storage demand and other oil demand shocks.
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Metal Year Shock Variable Sign Contribution Narrative

Cobalt 1930 AD REA - largest Great Depression

1994 MS Price -
Zaire declares
autonomy

2009 AD REA - largest Great Recession

2009 AD Price - largest Great Recession

2017 MD Price + largest
EV batteries
demand

Copper 1930 AD REA - largest Great Depression

1930 AD Price - largest Great Depression

1966 MD Price + largest Vietnam War

1967 MS Production - Strike

2009 AD REA - largest Great Recession

2009 AD Price - largest Great Recession

Lithium 2009 AD REA - largest Great Recession

2017 MD Price + largest
EV batteries
demand

Nickel 1930/31 AD REA - largest Great Depression

1969 MS Price - largest Strike

1988 MD Price + largest
Stainless steel
demand

2009 AD REA - largest Great Recession

2009 AD Price - largest Great Recession

Table 2: Narrative sign restrictions

Note: AD = Aggregate commodity demand shock, MS = Metal supply shock, MD = Metal-
specific demand shock, REA = Real Economic Activity Index, largest = the contribution of
the shock to the fluctuation of the respective variable in the specified year is larger than the
contribution of any other type of shock.
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Historical episodes that come potentially closer to resembling the metal-specific demand

shock of the energy transition are the unexpected increase in stainless steel demand in 1988

that pushed up nickel prices, and the unexpected rise in electric vehicle batteries demand

in 2017, driving up lithium and cobalt prices. In 2017 lithium prices more than doubled

and cobalt prices increased by 70%. These price increases might have represented first

expectations of a nascent energy transition. It is noteworthy that 2017 lithium production

adjusted quite strongly to demand and increased by over 80% in the same year.

3.2 Computation of Supply Elasticities

We obtain supply elasticities using the estimated B−1

0 matrix of structural impact effects

and the reduced-form parameters Ai. The responses of the n = 4 variables in yt to the

structural shocks εt can be traced over time via Θh = φhB
−1

0 for h = 1, 2, . . . where Θh is

an (n x n) matrix of structural impulse responses for the horizon h and φh =
∑h

j=1
φh−jAj

and φ0 = In (Lütkepohl, 2005).

The impact supply elasticity ηS is calculated as the ratio of the metal production

response to a metal-specific demand shock (MD) relative to the price response to the same

shock written as ηS = (Θ0)MD,Prod/(Θ0)MD,Price.
5

Demand shocks shift the metal demand curve along the metal supply curve, thereby

5This elasticity concept follows Kilian and Murphy (2014) and is broadly used in the literature, see,
e.g., Ludvigson et al. (2017), Antoĺın-Dı́az and Rubio-Ramı́rez (2018), Basher et al. (2018), or Herrera
and Rangaraju (2020). Baumeister and Hamilton (2021) propose an alternative approach and obtain the
impact elasticity directly from the structural B0 matrix. The relevant element of this matrix indicates the
simultaneous response of metal output to a change in the metal price holding all other variables constant.
We also report results based on this alternative concept.
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tracing out its shape, which gives the supply elasticity. Elasticities over longer horizons

are based on the cumulative output response and the cumulative price change response

and are calculated as

ηS,h =
h∑

i=1

(Θi)MD,Prod/

h∑

i=1

(Θi)MD,Price. (3)

3.3 Structural scenario analysis

We conduct structural scenario analysis for the price of each metal following the framework

of Antoĺın-Dı́az et al. (2021). Our object of interest is a conditional forecast yT+1,T+h over

the next h = 20 years for the endogenous variables, where T denotes the year 2020. The

conditional forecast restricts some of the variables in yT+1,T+h and a subset of the future

shocks εT+1,T+h, thereby linking the path of future variables directly to certain shocks. We

briefly lay out the underlying intuition tailored to the metal consumption scenarios from

the IEA (2021b).

We take the consumption scenarios for each metal as given, thus pre-specifying the

future metal consumption in the conditional forecasts yT+1,T+h. We set global consumption

equal to global metal production in the IEA scenarios, assuming that there are no short-

term changes in inventories. The future paths of global economic activity, the metal

price and the cotton price are left unspecified. Concerning the paths of future shocks,

we constrain the aggregate commodity demand shock, the metal supply shock and the

residual shock to their unconditional distributions. The algorithm then finds a series of
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metal-specific demand shocks that incentivizes the metal production path needed for the

energy transition. We derive the implied price and revenue paths from these shocks.

Compared to traditional conditional forecasts, this methodology has the advantage

that it can attribute the future path of endogenous variables to the path of a specific

structural shock. As we deem the energy transition as a scenario resulting from a series

of metal-specific demand shocks, it is important to specify this directly and not attribute

the energy transition to exogenous increases in metal supply or some combination of other

shocks.

For example, in our case the classical reduced-form conditional forecasting question is

“What is the likely path of the metal price, given that metal production has to increase

by a certain amount due to the energy transition?” The answer is confounded by a lack

of causal structure. Metals prices could be high, boosting supply to reach the scenario

output. However, it could also be the opposite: supply shocks could drive supplies upward,

thus driving prices down.

Due to the structural scenario framework, we can handle this reverse causality in the

scenario. We can ask the more precise question “What is the likely price path if metal-

specific demand shocks due to the energy transition increase metal production as needed?”

Hence, the structural scenario is a conditional forecast of the variables in our model that

generates the scenario metal output path with the restriction that only the commodity-

market specific demand shock series can deviate from its unconditional distribution. The

metal production and consumption path of the respective metal is exogenously given.
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In the case of no restrictions, the endogenous variables’ unconditional forecast for

periods T + 1 to T + h is given by

yT+1,T+h = bT+1,T+h +M′εT+1,T+h , (4)

where yT+1,T+h = (yT+1...yT+h) and bT+1,T+h represent the deterministic part of the

forecast, which depends on past observables, the reduced-form VAR parameters Ai for

i = 1, .., p and the deterministic part Dt. The matrix M represents the effects of the struc-

tural shocks on future values of the endogenous variables as a function of the structural

parameters in Bi and the reduced-form parameters in Ai (see Antoĺın-Dı́az et al., 2021 or

Waggoner and Zha, 1999 for further details). The unconditional forecast is independent of

the structural parameters. It is distributed according to yT+1,T+h ∼ N (bT+1,T+h,M
′M),

where M′M depends only on the reduced-form parameters.

To answer the question of how the prices of energy transition metals fare in a net-zero

emission scenario, we perform a restricted forecast of the endogenous variables ỹT+1,T+h,

for which we place restrictions both on parts of the future observable variables and future

shocks. Hence, the future observables are restricted as

CỹT+1,T+h = CbT+1,T+h +CM′ε̃T+1,T+h ∼ N (fT+1,T+h,Ωf ) (5)

where C is a (k0 x nh) pre-specified selection matrix, including k0 restrictions. The (k0

x 1) vector fT+1,T+h denotes the mean of the constrained endogenous variables and the
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(k0 x k0) matrix Ωf denotes the covariance restrictions, i.e., the uncertainty around the

restrictions on the observables. In our baseline case, we restrict the path for metal output

according to the IEA scenarios and set Ωf = 0k0 , thus assuming no uncertainty around

the scenarios.

Secondly, we restrict ks elements of the future shocks via the (ks x nh) selection matrix

Ξ expressed as Ξε̃T+1,T+h ∼ N (gT+1,T+h,Ωg). The (ks x 1) vector gT+1,T+h denotes

the mean and Ωg the covariance restrictions on the shocks in the conditional forecast.6

Under invertibility of the VAR, the restricted shocks can be related to restrictions on the

observables starting from equation (4) for the restricted future observables ỹT+1,T+h via

M′−1ỹT+1,T+h = M′−1bT+1,T+h + ε̃T+1,T+h, (6)

ΞM′−1ỹT+1,T+h = ΞM′−1bT+1,T+h +Ξε̃T+1,T+h , (7)

yielding

CỹT+1,T+h = CbT+1,T+h +Ξε̃T+1,T+h ∼ N (fT+1,T+h,Ωf ) , (8)

where C = Ξ(M′)−1 and Ωf = Ωg. We would like to explain a pre-specified path in

metal output (one component of ỹT+1,T+h) via the metal-specific demand shock. The

other shocks should occur according to their unconditional distribution. In other words,

we would like to restrict these non-driving shocks, while leaving the metal-specific demand

6When implementing the algorithm in Matlab, we also impose an upper absolute bound of 5 standard
deviations on all future shocks.
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shock unspecified. Thus, we impose Ξε̃T+1,T+h ∼ N (0ks , Iks) such that equation (8)

becomes

CỹT+1,T+h ∼ N (CbT+1,T+h, Iks). (9)

The restrictions in equations (5) and (9) can then be stacked according to

ĈỹT+1,T+h ∼ N







fT+1,T+h

CbT+1,T+h




︸ ︷︷ ︸
f̂T+1,T+h

,




Ωf 0k0xks

0ksxk0 Iks




︸ ︷︷ ︸
Ω̂f




, (10)

where Ĉ′ = [C
′

,C′] such that the upper part relates to the conditions on observables and

the lower part to the conditions on the shocks.

Antoĺın-Dı́az et al. (2021) show how to solve for the restricted forecast of the observables

ỹT+1,T+h such that the restrictions in equation (10) hold. In our baseline application we

place k0 = 20 restrictions on the observables, i.e., future metal output is constrained to

the IEA’s scenario output in each of the forecasted h = 20 periods. Moreover, we place

ks = 3 · 20 = 60 restrictions on the non-driving shocks, i.e., all shocks, except the metal-

specific demand shock, are restricted to their unconditional distributions for the forecast

horizon. Thus, the total number of restrictions k is equal to nh, the length of ỹT+1,T+h. For

the case k = nh, there exists a unique solution of the restricted forecast (see Antoĺın-Dı́az

et al., 2021).
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3.4 Estimation and Inference

Estimation and inference are based on standard Bayesian techniques laid out in Waggoner

and Zha (1999), Rubio-Ramirez et al. (2010), and Antoĺın-Dı́az et al. (2021). The aim

is to draw from a joint posterior distribution of both the structural parameters and the

conditional forecast

p(ỹT+1,T+h,B0,B+|y
T , IR(B0,B+),R(ỹT+1,T+h,B0,B+)) , (11)

where yT is the historical sample, B′

+ = [B′

1 ...B
′

p Γ] collects the structural VAR lag

coefficients including the exogenous parts, IR(B0,B+) are the identification restrictions

and R(ỹT+1,T+h,B0,B+) the structural scenario restrictions. Note that the structural

scenario restrictions depend on the structural VAR parameters via equation (10).

To draw from this distribution, we use the algorithm from Antoĺın-Dı́az et al. (2021)

that builds on Waggoner and Zha (1999). The algorithm uses a Gibbs sampler procedure

that iterates between draws from the conditional distributions of the structural parameters

and the conditional forecast.7

Hence, we pick a random draw of structural parameters out of 25,000 potential draws

that relies both on the actual data and on a structural forecast. We use the structural

parameters from this randomly picked draw to then draw the scenario paths of the two price

7Each draw of structural parameters must consider the restrictions implied by the structural scenario,
i.e., the forecasted path of the variables and the restrictions on the non-driving shocks (in our case the
aggregate commodity demand shock, the metal supply shock and the residual shock).

22



series and the economic activity index for the structural scenario that fits the specified

metal production path. The next 25,000 draws for structural parameters rely on the

original data and the data from the just drawn structural scenario.

We use a Minnesota-type prior with standard shrinkage parameters (see Giannone

et al., 2015) in combination with a sum-of-coefficients prior (Doan et al., 1984) and a

dummy-initial-observation prior (Sims, 1993) to estimate equation (1) and the conditional

forecasts.8 Our prior specification assumes that metal production growth is independent

and identically distributed, while the log of the real activity index and the logs of the price

levels follow a random walk.

Identification via sign restrictions (with additional zero restrictions) does not yield

point estimates but instead sets of possible parameter intervals for the different elements

in B−1

0 . For each model we obtain a set of 1,000 admissible draws, where each draw

consists of a conditional forecast, future shocks, and an associatedB−1

0 matrix that satisfies

the identifying restrictions. These draws are also used for inference, i.e., they yield an

indication of the uncertainty around the pointwise median estimates. Following Antoĺın-

Dı́az and Rubio-Ramı́rez, 2018 and Antoĺın-Dı́az et al., 2021, we report pointwise median

and percentiles of impulse responses for set-identified structural VAR models, as it is

common in the literature.

8The variance for the priors on the reduced-form VAR coefficients is given by var
(
(Ai)j,j

)
=

λ2ψj

iα
,

where i denotes the lag and j the variable. The tightness parameter λ is set to 0.2, the decay parameter
is α = 2, and the scale parameters ψj are set to the OLS residual variance of an auto-regressive model
for each variable j. The variance for priors on the exogenous variables are set to 1,000. This should
shrink the reduced-form VAR towards a more parsimonious näıve benchmark and helps to maximize the
out-of-sample forecast, in which we are particularly interested.
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The literature has made substantial recent progress on inference in Bayesian models,

which is important to take into account when interpreting our results. First, Baumeister

and Hamilton (2015, 2020) and Watson (2019) remark that readers are used to associating

error bands with sampling uncertainty, but in large-sample sign-restricted SVARs these

error bands only result from the prior for the rotation matrix Q, not sampling uncertainty.

Inoue and Kilian (2020) point out that the share of uncertainty resulting from the prior

on Q tends to be rather small in most applications, in particular, when assuming several

sign restrictions.

We note that our results are not based on a large sample and we use a large number

of different sign restrictions. We still recognize that our inference summarizes both prior

uncertainty and sampling uncertainty to some extent. We therefore report the full set of

impulse responses to provide the reader with a better sense of the uncertainty around the

estimates.

Second, we note that the posterior median response function does not represent one

of the structural models. Thus, we also report the Bayes estimator under a quadratic

loss function following Inoue and Kilian (2021). The loss function ranks the admissible

models according to each model’s joint quadratic distance between its impulse responses

and the impulse responses of all the other admissible models. The Bayes estimator is the

model with the smallest joint quadratic distance, meaning that it is closest to the set of

all admissible models. The results are rather insensitive to the choice of the loss function.
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4 Empirical Results

4.1 Price Elasticity of Metals Supply

Supply elasticities summarize how quickly firms increase output in reaction to a price

increase. The model allows us to estimate these elasticities at different horizons for each

of the metals.

The elasticities are based on the impulse responses of metal production and prices to

a metal-specific demand shock, as shown in Figure 2.9 The impulse response functions

show a significant increase in the prices of the four metals as a response to the metal-

specific demand (MD) shock. The impact of that shock on production is quite persistent

but rather muted for all metals, except lithium. The impulse responses from the Bayes

estimator under quadratic loss are rather similar to the pointwise median impulse responses

and mostly lie within the 68% pointwise credible sets.

Figure 3 shows the estimates of the supply elasticities for copper, nickel, cobalt, and

lithium. Supply is quite inelastic over the short term, as it can only be expanded through

more recycling and higher utilization of existing mining capacity. A demand-induced

positive price shock of respectively 10 percent increases the same-year output of copper

by 3.5 percent, nickel by 7.1 percent, cobalt by 3.2 percent, and lithium by 16.9 percent.10

9The reader is referred to the online-appendix for the complete sets of impulse responses.
10Following the alternative concept by Baumeister and Hamilton (2021), we obtain the following impact

elasticities directly from the B0 matrix (with 68% pointwise): copper: 0.23 [0.18, 0.30]; nickel: 0.62 [0.49,
0.79]; cobalt: 0.28 [0.21, 0.37] and lithium: 1.51 [0.89, 2.37]. These are broadly in line with the elasticities
in Figure 3. The supply elasticities based on the Bayes estimator are also in line with the baseline results.

25



Figure 2: Impulse responses of metal production and price to a metal-specific demand
(MD) shock. The shock is normalized to increase the metal price by 10% on impact. The
responses are based on 1,000 draws showing the pointwise median (red solid line) with
68% pointwise credible sets (red dotted lines) and the Bayes estimator under quadratic loss
(green dashed line) among the 68% joint credible set under quadratic loss (blue lines). The
responses are derived from four different VAR models, one for each metal. The y-axes for
lithium differ from the others. The full set of impulse responses is in the online-appendix.
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In the long-term, however, supply is more elastic. Firms build new mines, innovate

in extraction technologies and conduct exploration. After 20 years, the same price shock

raises output of copper by 7.7 percent, nickel by 13.0 percent, cobalt by 8.6 percent and

lithium by 25.5 percent.

The supply elasticities for lithium are much larger than for the other three metals.

This is in line with the different ways of producing the four metals. Copper, nickel, and

cobalt are extracted in mines, which often require capital intensive investment and involve

long lead times of 16 years on average from exploration to construction (IEA, 2021b).

In contrast, lithium is often extracted from mineral springs and brine, where salty water

is pumped from the deep earth. Lead times to open new production facilities are much

shorter with up to 7 years. Other factors such as innovation in extraction technology,

market concentration and regulations also influence supply elasticities.
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Figure 3: Supply elasticities at annual horizons based on the metal-specific demand (MD)
shock. We calculate the elasticities via equation (3) for each of the 1,000 draws to construct
the median and the 68 % pointwise credible sets.

4.2 Price Forecasts

Results in Figure 4 show that the four metals are potential bottlenecks for the energy

transition.11 Prices of cobalt, lithium, and nickel would rise several hundred percent from

annual average levels in 2020 in the net-zero emissions scenario. The copper price would

be up by about 60%, as it would face more moderate consumption increases. Inflation

adjusted prices of the four metals would reach peaks roughly similar to previous historical

price peaks. However, prices would stay at these high levels for more than a decade, far

11We present the following results based on the pointwise median and credible sets for expository
purposes, as the impulse responses and the estimated supply elasticities based on the Bayes estimator
under quadratic loss are rather similar to the pointwise median impulse responses and mostly lie within
the 68% pointwise credible sets.
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longer than during previous peak periods. Real prices for all four metals would broadly

stay in the 2020 annual average range in the stated policy scenario.

Prices peak mostly around 2030 for two reasons: First, the steep rises in demand

are front-loaded in the net-zero emissions scenario. In contrast to fossil fuels-based energy

production, which needs a flow of fossil fuels, renewable energy production only uses metals

upfront for the construction of wind-turbines or batteries, for example. Second, the initial

price boom induces a supply reaction, which reduces market tightness after 2030.

The price forecasts are subject to high uncertainty, reflected in the large, implied

bounds. Large confidence bands (we represent 40% highest posterior density credible sets)

may originate from the uncertainty about the reduced-form VAR coefficients, measure-

ment errors in the historical data, uncertainty about other future shocks influencing the

price along the forecast horizon (we show the distributions of future shocks in the online-

appendix), and the uncertainty around the structural impact effects of the different shocks.

In general, confidence bands around structural scenario forecasts are rather large (compare

the applications on monetary policy and bank profitability stress-testing in Antoĺın-Dı́az

et al., 2021).

Another source of uncertainty, which we do not model directly, is the uncertainty

that surrounds the consumption scenarios. First, demand for each metal will depend on

technological change that is hard to predict. Second, the speed and direction of the energy

transition depend on policy decisions that can have a major impact on metals consumption.
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Figure 4: Price scenarios for the stated policy scenario and the net-zero emissions scenario
based on the median and 40% pointwise credible sets.

4.3 Revenue Forecasts

We estimate that the energy transition could provide significant windfalls to metals pro-

ducing firms’ and countries in the net-zero emissions scenario. The potential metal demand

boom could lead to a fourfold increase in the value of metals production, totaling US$ 13.0

trillion accumulated between 2021 and 2040 for the four energy transition metals alone,

providing potentially significant windfalls to commodity producers (see Table 3). Most of

it would come from copper and nickel, but the revenues from lithium and cobalt could
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also be substantial.

Historical

(1999-2018)
Stated Policy Scenario

(2021-2040)
Net-Zero Scenario

(2021-2040)

Selected Metals 3,043 4,974 13,007

Copper 2,382 3,456 6,135
Nickel 563 1,225 4,147
Cobalt 80 152 1,556
Lithium 18 18 1,170

Fossil Fuels 70,090 19,101

Crude Oil 41,819 - 12,906
Natural Gas 17,587 - 3,297
Coal 10,684 - 2,898

Table 3: Estimated accumulated value of global metal production from 2021-2040. Notes:
Estimates are in billion 2020 USD and refer to the median. As a yardstick, we calculate
back-on-the envelope the value of fossil fuels production. In the IEA net-zero emissions
scenario, consumption of oil drops 54%, natural gas 45%, and coal 80%. We assume that
prices of crude oil average 30 USD/b, about half of the average real price from 1970 to
2020 and coal prices average 40 USD/mt, about half of the average real price from 1979
to 2020. Due to a likely further rise of LNG trade and the structural break of the shale
gas revolution, we assume natural gas prices to average 1.50 USD/mBtu, half of 2020.

The estimated value of production of these four energy transition metals alone would

rival the estimated value of crude oil production in the IEA’s net-zero emissions scenario

(see Table 3). It would still be substantially below the total value of all fossil fuel produc-

tion. It is also important to keep in mind that there are other metals that will be affected

by the energy transition.

More specifically, Figure 5 shows that the revenue would strongly increase during the

2020s but then either flatten out, or if not reverse, in the 2030s, as supply adjusts for all

metals except lithium. Annual copper revenues would more than double from around 150

USD billion in 2020 to more than 350 billion USD in 2030. The nickel market would reach
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a similar level in the late 2030s while being much smaller in 2020 with annual revenues of

34 billion USD.

Cobalt and lithium markets are, as of 2020, comparatively small with annual values of

4.9 billion USD and 2.3 billion USD, respectively. However, the relative increase would be

much larger for these two minor, but rising, energy transition metals. For cobalt, annual

revenues reach a peak of 129 billion USD in 2030 in the net-zero emissions scenario. Cobalt

production revenues could decline afterwards due to the decreasing scenario price from

2027 on-wards as supply re-adjusts. Annual lithium revenues would steadily increase by

a factor of 50, reaching 117 billion USD in 2040. In the stated policy scenario, estimated

revenues would increase moderately to historical highs.
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Figure 5: Annual revenues (in real US$) in the stated policy and the net-zero emissions
scenario with 40% pointwise credible sets.

5 Sensitivity Analysis

We perform several robustness checks of the results with respect to the estimated elas-

ticities, the maximum scenario prices, and the estimated total revenues. We lay out

the results for copper and lithium in Tables 4 and 5 and compare them to our baseline.

The online-appendix contains the analogous tables with sensitivity analyses for nickel and

cobalt.
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5.1 Alternative Anchor Variable

We replace the real cotton price with real prices for barley and coffee, respectively (both

sourced from Jacks and Stuermer, 2020), as well as historical US equity total return series

from Jordà et al. (2019). Results are robust, showing no large deviations, not for the

estimated elasticities, the maximum prices, or for the estimated revenues compared to our

baseline.

Elasticities Scenario Analysis

Impact 20 Years Max Price Total Revenue
USD per mt Tril. USD

Baseline 0.35 0.75 9,861 6.1

Altern. 4th variable

Barley 0.33 0.79 8,534 5.2
Coffee 0.33 0.75 8,760 5.5
Equity Index 0.27 0.66 9,545 5.7

Altern. Econ. Act. Var.

Global Real GDP 0.23 0.23 21,794 12.0

Altern. Sample & Trend

1880-2020, no trend 0.40 0.81 8,164 5.2
1955-2020, with trend 0.18 0.27 20,520 11.7
1955-2020, no trend 0.19 0.28 18,200 9.6

3 Variables Model 0.36 0.89 8,301 5.1

Table 4: Sensitivity: Copper model. Note: US Dollar (USD) refers to real 2020 prices,
adjusted for inflation based on the US-CPI.
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Elasticities Scenario Analysis

Impact 20 Years Max Price Total Revenue
USD per mt Tril. USD

Baseline 1.69 2.55 15,724 1.2

Altern. 4th variable

Barley 1.54 2.30 14,475 1.0
Coffee 1.57 2.53 14,930 1.0
Equity Index 1.46 2.32 15,629 1.1

Altern. Econ. Act. Var.

Global Real GDP 1.75 2.82 13,119 0.9

Altern. Sample & Trend

1955-2020, trend 1.69 2.59 19,227 1.5

3 Variables Model 1.57 2.41 15,030 1.1

Table 5: Sensitivity: Lithium model. Note: US Dollar (USD) refers to real 2020 prices,
adjusted for inflation based on the US-CPI.

5.2 Alternative Economic Activity Index

We use annual data on global real GDP instead of the freight rate index as a proxy for

global economic activity. We plot the two series in the online-appendix. The disadvantages

of using GDP over freight rates are that it also includes the service sector and that reliable

historical data is only available for a small subset of countries. Both factors may bias our

results. Unlike the freight rate index, it is also not a leading indicator of metals demand.

On the plus side, it seems to better represent movements in economic activity during the

Great Depression period than the freight rate index.

The results based on a model with global real GDP show lower estimated elasticities.

In particular, the estimated long run elasticity is not higher than the front year one in the

case of copper. As a result, maximum prices and revenues for copper, nickel, and cobalt

are substantially higher for the median compared to the baseline. The results are about
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the same for lithium. The online-appendix shows the impulse responses from the different

models using global real GDP.

We chose the results based on the freight rate index as our baseline due to its more

favorable characteristics, but also because results are more conservative in terms of price

and revenues scenarios. However, we note that the risk is to the upside based on the

results for this alternative variable for economic activity.

5.3 Alternative Trend Specification

We chose to include linear trends in the copper and nickel regressions due to their relatively

long sample periods. In contrast, we did not include linear trends into the specifications

for cobalt and lithium with its shorter sample periods.

The estimated supply elasticities are quite robust to the inclusion or non-inclusions of

these linear trends across all four metals. The estimated maximum prices and revenues

are also quite robust in the case of copper and lithium but show some sensitivity for nickel

and cobalt.

There are negative trends in output for both nickel and cobalt. While yearly production

growth averaged 7.1% for nickel since 1900 and 6.5% for cobalt since 1925, yearly average

growth rates decreased to 3.5% and 4.9% since 1990, respectively. This explains why the

estimated maximum price and revenues are lower when not including linear trends. The

models yield unconditional forecasts with higher production growth rates in this case. In

contrast, including a linear trend leads to lower production growth in the unconditional
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forecast, and therefore, to higher estimated maximum prices and revenues. Due to the

shorter sample for cobalt and the smaller change in average growth rates over the years,

we report the baseline cobalt model without a trend.

5.4 Alternative Sample Period

Using a long sample period allows us to cover multiple periods of booms and busts in the

metals markets and to obtain a more solid foundation for the scenario exercise. However,

we still check for the robustness of results based on a shorter period, starting in 1955, the

same year that the available data for lithium starts.

Sensitivity results show that based on the shorter sample period, elasticities are sub-

stantially lower, while prices and revenues are higher compared to the longer sample pe-

riods. One reason for this is that growth rates of output tend to be smaller in the later

parts of the sample. In the case of nickel, an upward trend in prices, driven by the 2010s,

may play an additional role. For cobalt the short sample seems to make results sensitive

to the inclusion of a trend. As the sample starts in 1955, it includes only 65 observations,

covering only a few periods of boom and bust in prices. Further, fewer degrees of freedom

make these estimates less reliable. Longer sample results are preferable for our twenty-year

scenario horizon. However, we note that the price risk is to the upside based on this set

of sensitivity results.
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5.5 The Three-Variables Model

Finally, we compare our baseline four-variables model to the standard three-variables

commodity-market model without the anchor-variable (e.g., Kilian, 2009, Kilian and Mur-

phy, 2012, Baumeister and Peersman, 2013, Jacks and Stuermer, 2020), using the same

narrative sign restrictions (as in Table 2). Results are very robust for the estimated supply

elasticities based on the metals-specific demand shock as well as maximum prices and total

revenues.

Table 3 in the online-appendix displays the sign restrictions used to identify an aggre-

gate metal demand shock, a metal supply shock, and a metal-specific demand shock. The

disadvantage of the three-variables model is that we need to assume that there is a negative

impact on global economic activity within the first year, which is not fully grounded in

economic theory of the energy transition. On the one hand, the energy transition might be

interpreted as a negative supply shock (cost-shock) that makes parts of the capital stock

obsolete and sees workers reallocate to renewable energy sectors. On the other hand, tech-

nological change makes renewable energies significantly cheaper (Acemoglu et al., 2012)

and in the long-term global economic activity may benefit. However, the identification

restriction of a negative effect of the metals-specific demand shock on economic activity is

necessary to differentiate between the aggregate and the metal-specific demand shock in

the three variable VAR.

The impulse responses are shown in the online-appendix. The effect of the metal-

specific demand shock on economic activity is slightly stronger and more persistent in
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the three variables model. Here, the shock significantly reduces economic activity, while

the shock is less persistent and, in most cases, only borderline statistically significant (for

nickel, cobalt, and lithium) in our baseline model.

6 Conclusion

We examine to what extent metals critical to the energy transition may become a bottle-

neck. We estimate that the elasticity of supply of key energy transition metals is low in

the short term but higher in the long term, especially for lithium. Based on metal-specific

demand shocks identified using an“anchor”variable we conduct a structural scenario anal-

ysis. We find that prices of copper, lithium, cobalt, and nickel could rise up to several

hundred percent compared to their average 2020 levels in a net-zero emissions scenario,

representing a major bottleneck. The four metals prices would roughly increase to histor-

ical peaks in real terms, remaining there for an extended period, longer than previously

seen. Over the next 20 years, these four metals markets alone could become as important

as the oil market to the global economy in a net-zero emissions scenario.

Our analysis offers a novel identification approach using an “anchor” variable to iden-

tify commodity-specific demand shocks that resemble the demand shock from the energy

transition. This “anchor” variable allows us to clearly differentiate aggregate commod-

ity demand from metal-specific demand shocks shocks. The “anchor” variable is assumed

to be highly correlated with the global business cycle but uncorrelated with the metal-

specific demand fluctuations. Such an “anchor” could also be used in other econometric
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applications and aid identification of specific shocks.

Our model assumes that supply elasticities stay constant in the future, incorporating

the average technological change in extraction technology over the long sample period.

These elasticities could be higher due to technological change or non-linear economies of

scale, as firms figure out faster ways to expand supplies through mining but also through

enhanced recycling. At the same time, the environmental and social costs of mining could

also decrease these elasticities in the future. Our robustness checks suggest that elasticities

are lower for most metals in the more recent part of the sample. Overall, we believe that

a constant elasticity is a balanced assumption for the scenarios.

We take the metals consumption scenarios from the IEA (2021a,b) as exogenously

given. We believe that this is a reasonable approach. First, demand elasticities for the

examined metals are relatively low (see Dahl, 2020). Second, innovation cycles of energy

technologies are quite long (see IEA, 2021a). For example, the development and com-

mercialization of lithium-ion batteries took 30 years. Finally, the IEA net-zero emissions

scenario already incorporates that innovations in clean energy technologies are much more

rapid than what has typically been achieved historically.

We provide a significant improvement over reduced form conditional models. We iden-

tify the underlying shock driving the energy transition. By this we avoid confounding

demand and supply shocks, which would lead to misleading price scenarios. For example,

higher metal consumption could also be driven by positive metal supply shocks, implying

a lower price scenario.
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We model the energy transition as a series of global metal-specific demand shocks over

a twenty year horizon. A more micro-founded model that specifies the underlying energy

transition process would be appealing, but we leave it to future research. It is, indeed,

possible that a shift in the distribution of metal-specific demand shocks could induce

agents to change their decision rules partly anticipating the increase in metals demand.

This, however, would most probably lead to an even stronger and front-loaded price effect

than in our scenarios. Moreover, we believe that the unpredictability of technological

change, the uncertain iterative process of policy making, and the heterogeneous speed

in the energy transition across countries, makes the anticipation of the metals demand

induced by the energy transition extremely unlikely.

A credible, globally coordinated climate policy with slow but predictably rising com-

mitments could lower uncertainty, increase investment and lower the price effect.

If metals demand increased according to the net-zero scenario and prices rose to his-

toric highs for an unprecedented long period, the energy transition would become more

expensive, metal producers would benefit, and global inflationary pressures could increase

for a sustained period of time.
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