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Abstract

In this paper we consider two kinds of generalizations of Lancaster’s (Review of Eco-
nomic Studies, 2002) Modified ML estimator (MMLE) for the panel AR(1) model with
fixed effects and arbitrary initial conditions and possibly covariates when the time di-
mension, T , is fixed. When the autoregressive parameter ρ = 1, the limiting modified
profile log-likelihood function for this model has a stationary point of inflection and ρ
is first-order underidentified but second-order identified. We show that the generalized
MMLEs exist w.p.a.1 and are uniquely defined w.p.1. and consistent for any value of
|ρ| ≤ 1. When ρ = 1, the rate of convergence of the MMLEs is N1/4, where N is the
cross-sectional dimension of the panel. We then develop an asymptotic theory for GMM
estimators when one of the parameters is only second-order identified and use this to de-
rive the limiting distributions of the MMLEs. They are generally asymmetric when ρ = 1.
We also show that Quasi LM tests that are based on the modified profile log-likelihood
and use its expected rather than observed Hessian, with an additional modification for
ρ = 1, and confidence regions that are based on inverting these tests have correct as-
ymptotic size in a uniform sense when |ρ| ≤ 1. Finally, we investigate the finite sample
properties of the MMLEs and the QLM test in a Monte Carlo study.
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1 Introduction

In this paper we reconsider Modified ML estimation (cf. Neyman and Scott, 1948) of the

panel AR(1) model with fixed effects (FE) and arbitrary initial conditions and possibly

strictly exogenous covariates, when the time dimension of the panel, T , is fixed.

It is well known that the FE ML estimator for the autoregressive parameter ρ that is

equal to the LSDV estimator is inconsistent when T is fixed, cf. Nickell (1981).1 To obtain

a consistent FE estimator for ρ (or for θ0 = (ρ σ
2 β′)′ where σ2 is the error variance and β is

the vector of coefficients of the covariates) based on the likelihood function for the model,

Lancaster (2002) proposed a Bayesian approach that involves using a reparametrization

of the fixed effects, which aims to achieve information orthogonality (but fails to do so

when covariates are present), and integrating the new effects from the likelihood function

using a uniform prior density. He defined his estimator for ρ (or for θ0) as a local rather

than a global maximizer of the resulting marginal (or joint) posterior density because this

posterior density is improper and has a global maximum at r = ∞ for any sample size,

cf. Dhaene and Jochmans (2016).2 Bun and Carree (2005) took a different route and

proposed a bias-corrected LSDV estimator for θ0 with the correction based on formulae

for the asymptotic biases of the LSDV estimators for ρ and β. However, a version of

their estimator is equal to Lancaster’s estimator for θ0, cf. Dhaene and Jochmans (2016),

and both of them can be viewed as a Modified ML estimator (MMLE), cf. Alvarez and

Arellano (2004). Bun and Carree (2005) also investigated the finite sample properties of

their estimator using various Monte Carlo experiments. They reported non-convergence

of their estimator in about 40% of the replications in some experiments where N = 100,

T = 6 and ρ = 0.8. The possible non-existence of the MMLE is also related to the fact

that the underlying density function is improper. Specifically, when ρ = 1, the limiting

modified profile log-likelihood function of r has a stationary point of inflection at r = 1,

cf. Ahn and Thomas (2004), so that the modified profile log-likelihood function may fail

to have a local maximum even asymptotically.

In this paper we discuss two kinds of generalizations of Lancaster’s MMLEs that exist

as N increases with probability approaching one (w.p.a.1) for any |ρ| ≤ 1.3 The first

type of generalized MMLE minimizes a quadratic form in the modified profile score vector

subject to a second-order condition for a maximum of the modified profile likelihood while

1FE estimators only use data in differences and are consistent under minimal assumptions.
2Lancaster discards the global maxima at r = ±∞ and only considers local maxima that are

stationary points.
3Note that w.p.a.1. means with probability approaching one, i.e., w.p.1 asymptotically.
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the second type minimizes the norm of the modified profile score for ρ only, subject to a

second-order condition for a maximum. The former MMLE depends on a weight matrix.

While Lancaster has only argued that one of the local maxima of the posterior density

is consistent (if one exists at all), we show that when |ρ| ≤ 1 the generalized MMLEs are
uniquely defined w.p.1. and consistent.

Both types of generalized MMLEs will select a local maximum if one exists. In

this case the estimators are equivalent irrespective of the choice of the weight matrix.

However, if the modified profile likelihood function of r has no local maximum on the

interval [−1,∞), then these estimators are still consistent but different and the first type
of generalized MMLE depends on the choice of the weight matrix.

Dhaene and Jochmans (2016) have shown that their Adjusted Likelihood estimator

for the nonstationary panel AR(1) model, which is a constrained version of our second

MMLE, is uniquely defined asymptotically. However, they have not demonstrated that

their constraints, which depend on the LSDV estimator, guarantee uniqueness of their

estimator in finite samples.

We also derive the limiting distributions of the generalized MMLEs. Similar to the

cases of the FEMLE of Hsiao et al. (2002) and the REMLE of Chamberlain (1980) and

Anderson and Hsiao (1982), if ρ = 1, ρ is only second-order identified by their objective

functions and as a result the rate of convergence of the MMLEs for ρ is N1/4, cf. Ahn

and Thomas (2004) and Kruiniger (2013). Our analysis for ρ = 1 is closely related to

Sargan (1983) for instrumental variable and ML estimators and also to Rotnitzky et al.

(2000) for MLEs when a parameter is only second-order identified, although there are

some important differences. We view the MMLEs as GMM estimators in order to derive

their limiting distributions when ρ = 1.4 Using an appropriate reparametrization of the

modified profile likelihood, we find that if ρ = 1 and the data are i.i.d. and normal, then

the limiting distributions of the MMLEs are generally asymmetric unlike those of the

RE- and FEMLE and other MLEs for parameters that are only second-order identified.

Finally, we discuss inference methods related to the modified profile likelihood. Wald

tests, some versions of (Quasi) LM tests, and (Quasi) LR tests that are used for testing

hypotheses involving ρ and are based on the reparametrized modified profile likelihood do

4Madsen (2009) considers the limiting distribution of another GMM estimator for a panel
AR(1) model when ρ = 1 but, as she points out, her analysis is incomplete. Dovonon and Hall
(2018) present a generic version of the limiting distribution theory for GMM estimators when
first-order identification fails but second-order identification holds. Unfortunately, their theory
is incomplete for the exactly identified case and therefore cannot be used to derive my results,
see section 3.2 below.
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not uniformly converge to their fixed parameter first-order limiting distributions when ρ

is close or equal to one, cf. Rotnitzky et al. (2000) and Bottai (2003). As a consequence

these tests do not asymptotically have correct size in a uniform sense when |ρ| ≤ 1.

Similarly to Kruiniger (2016) in the case of (Quasi) LM tests related to the RE- and

the FE(Q)MLE, we show that (Q)LM test-statistics that are based on the modified

profile log-likelihood and use its expected rather than observed Hessian, with an additional

modification for ρ = 1, and confidence regions that are based on inverting these tests have

correct asymptotic size in a uniform sense when |ρ| ≤ 1.
Monte Carlo results show that the QLM tests have correct size and that when the

data are i.i.d. and normal and |ρ| < 1, the MMLEs for ρ can have a significantly smaller
RMSE than the asymptotically efficient REMLE in panels as large as T = 9 andN = 500.

When the data are not i.i.d. and normal, it is generally not possible to rank the Quasi

MMLEs, the RE- and the FEQMLE in terms of asymptotic efficiency.

Both types of generalized MMLEs are also useful for estimating other models with

parameters that may correspond to stationary points of inflection of the profile likelihood

function. Examples of such models are the sample selection model and the stochastic

production frontier model for a cross-section of units that are discussed in Lee and Chesher

(1986) and models with skew-normal distributions, see e.g. Hallin and Ley (2014).

Dhaene and Jochmans (2016) discuss several alternative approaches to constructing

modified (profile) objective functions for the nonstationary panel AR(1) model that yield

estimators similar to Lancaster’s MMLE. Hahn and Kuersteiner (2002) modified the

LSDV estimator to remove bias up to order O(T−1). Other FE estimators for dynamic

panel models include the first-difference (FD) instrumental variable estimator of Anderson

and Hsiao (1981), the FE GMM estimators of Kruiniger (2001), the Maximum Invariant

Likelihood estimator of Moreira (2009), the FDMLE of Kruiniger (2008) and the Panel

Fully Aggregated Estimator of Han et al. (2015), which is based on X-differencing. The

latter two estimators rely on covariance stationarity of the data when |ρ| < 1.
The paper is organised as follows. Section 2 presents the panel AR(1) model and the

assumptions. Section 3 discusses existence, uniqueness and consistency of the generalized

MMLEs as well as their asymptotic distributions. Section 4 discusses inference methods

that have correct asymptotic size in a uniform sense. Section 5 studies the finite sample

properties of the MMLEs and a (Q)LM test. Finally, section 6 offers some concluding

remarks. Derivations and proofs can be found in the appendix.
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2 The panel AR(1) model

We consider ML-type estimators for the panel AR(1) model with K strictly exogenous

covariates xi,t,k, k = 1, ..., K :

yi,t = ρyi,t−1 + x
′
i,tβ + αi + εi,t with β = (1− ρ)β̌ and αi = (1− ρ)µi, (1)

for i = 1, ..., N and t = 1, ..., T, where x′i,t is the t− th row of the T ×K matrix Xi, αi is

a fixed effect and εi,t is an error term. We can also allow for time effects in the model.

Let yi = (yi,1 ... yi,T )
′, yi,−1 = (yi,0 ... yi,T−1)

′, εi = (εi,1 ... εi,T )
′ and x′i = T−1ι′Xi,

with ι equal to a T−vector of ones. If we let vi = (ρ− 1)yi,0 + αi + x′iβ for i = 1, ..., N,
then the model in (1) can also be written as yi − yi,0ι = ρ(yi,−1 − yi,0ι) +QXiβ + viι+ εi
for i = 1, ..., N , where Q = IT − T−1ιι′ and IT is an identity matrix with dimension T,
cf. Lancaster (2002). We make the following assumption:

Assumption 1 The variable yi,t is generated by (1) with (i) T ≥ 2; (ii) −1 ≤ ρ ≤ 1;
(iii) {(ε′i, vi, (vech(QXi))′)′}Ni=1 is a sequence of i.i.d. random vectors with E(vi) = 0,

V ar(vi) = σ
2
v <∞ and E(X ′

iQXi) is a finite and positive definite matrix; and

(iv) εi ⊥ (vi, (vech(QXi))′)′, E(εi) = 0 and V ar(εi) = σ2IT <∞, i = 1, ..., N .

Thus we assume cross-sectional independence, strict exogeneity of the regressors in

first-differences, homoskedasticity and no multicollinearity. On the other hand, we allow

for ARCH and non-normality of the error terms, the εi,t.

We require that T ≥ 2 and ρ ≥ −1 for identification. In economics the assumption
ρ ≥ −1 can reasonably be expected to hold when the covariates are strictly exogenous.
The restrictive parametrization αi = (1−ρ)µi and β = (1−ρ)β̌ prevents the fixed effects
and the means of the individual regressors from turning into trends at ρ = 1 and thereby

avoids a discontinuity in the data generating process at ρ = 1. These restrictions and the

restriction ρ ≤ 1 are only imposed on the DGP but not in estimation.
We are interested in consistent estimation of the common parameters ρ, σ2 and β

under large N , fixed T asymptotics. We will treat the individual effects as nuisance

parameters. We will work with a Gaussian homoskedastic (quasi-)likelihood but we note

that consistency of the MMLEs (for ρ and β) does not depend on normality or cross-

sectional homoskedasticity of the errors.
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3 Modified ML estimation of the panel AR(1) model

Conditional on yi,0 and Xi, i = 1, ..., N and normalized by N , the Gaussian FE log-

likelihood function for the model in (1) is, up to an additive constant, given by:

−T
2
log s2 − 1

2s2
1

N

N∑

i=1

(yi − ryi,−1 −Xib− aiι)′(yi − ryi,−1 −Xib− aiι). (2)

To obtain a consistent FE estimator for θ0 based on (2), Lancaster (2002) proposed a

Bayesian approach that involves using a reparametrization of the fixed effects, which aims

to achieve information orthogonality (but fails to do so when covariates are present), and

integrating the new effects from the likelihood function using a uniform prior density. He

defines his estimator for θ0 as a local maximum of the joint posterior density. Letting

θ = (r s2 b)′, his joint posterior log-density for the model in (1), normalized by N , which

can be interpreted as a (normalized) modified profile log-likelihood function, is given by:

l̃N(θ) = l̃N(r, s
2, b) = (T − 1)ξ(r)− T − 1

2
log s2 (3)

− 1

2s2
1

N

N∑

i=1

(yi − ryi,−1 −Xib)
′Q(yi − ryi,−1 −Xib),

where ξ(r) =
1

T (T − 1)

T−1∑

t=1

(T − t)
t

rt, (4)

and the corresponding modified profile likelihood equations are given by:

Ψρ(θ) = (T − 1)ξ′(r) + 1

s2
1

N

N∑

i=1

(yi − ryi,−1 −Xib)
′Qyi,−1 = 0, (5)

Ψσ2(θ) = −T − 1
2s2

+
1

2s4
1

N

N∑

i=1

(yi − ryi,−1 −Xib)
′Q(yi − ryi,−1 −Xib) = 0,

Ψβ(θ) =
1

s2
1

N

N∑

i=1

X ′
iQ(yi − ryi,−1 −Xib) = 0.

Note that the joint posterior density is not proper.

Let θ̂LAN denote Lancaster’s estimator for θ0 and let ΘN be the set of roots of
∂l̃N
∂θ
= 0

corresponding to local maxima of l̃N on Ω which is an open subset of R×R+×RK . Thus
θ̂LAN ∈ ΘN unless ΘN is empty, in which case (we will say that) θ̂LAN does not exist.

In that case Lancaster effectively puts θ̂LAN = 0, see his consistency proof. This ‘trick’
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ensures that θ̂LAN always exists so that one can consider whether θ̂LAN is a consistent

estimator for θ0. Note that none of the roots of
∂l̃N
∂θ
= 0 correspond to the global maxima

that can occur at r =∞ and, if T is odd, at r = −∞.
Lancaster showed that l̃N(θ) converges uniformly in probability to a nonstochastic

differentiable function of θ, say l̃(θ), and that ∂l̃(θ)
∂θ
|θ0 = 0. Next we derive necessary and

sufficient conditions for negative definiteness of the Hessian of l̃(θ) at θ0, viz.:

MH =



(T − 1)ξ′′(ρ)− tr(Φ′QΦ)− Σzqz

σ2
(T−1)ξ′(ρ)

σ2
−Σ′xqz

σ2
(T−1)ξ′(ρ)

σ2
−T−1

2σ4
0

−Σxqz
σ2

0 −Σxqx
σ2


 , (6)

where Σzqz = plimN→∞N
−1
∑N

i=1 Z̃iQZ̃i, Σxqx = plimN→∞N
−1
∑N

i=1X
′
iQXi and Σxqz =

plimN→∞N
−1
∑N

i=1X
′
iQZ̃i with Z̃i = ϕvi + ΦQXiβ,

Φ = Φ(ρ) =




0 . . 0 0 0
1 0 0 0
ρ 1 0 0
. ρ 1 0 .
. ρ 1 0 .

ρT−2 . . ρ 1 0



and ϕ = ϕ(ρ) =




1
ρ
ρ2

...
ρT−2

ρT−1




. (7)

It follows from lemma 4.1 in Dhaene and Jochmans (2016) that if T = 2 and Σzqz > 0

(so that ρ 6= 1) or if T > 2 and ρ 6= 1, then MH is negative definite so that l̃(θ) has a

local maximum at θ0.
5 Kruiniger (2001) had already shown that if ρ = 1 and T ≥ 2, then

MH is singular. Moreover, Ahn and Thomas (2004) have shown that l̃(θ) actually has

a stationary point of inflection when ρ = 1 rather than a local maximum. This property

is related to the fact that the posterior density is not proper. Later on, in the context

of Theorem 1 below, we will show that if ρ = 1, l̃N may not have any local maximum

on Ω̃ = [−1,∞) × (0,∞) × RK asymptotically, so that θ̂LAN is inconsistent.6 θ̂LAN has
two more drawbacks. Firstly, l̃N(θ) may not have any local maximum in small samples,

in which case θ̂LAN does not exist. This may happen when ρ is close or equal to unity.

Secondly, Lancaster did not rule out that l̃N(θ) and l̃(θ) have multiple local maxima on

Ω and he did not explain how to find the consistent estimator if that were the case.

5Their lemma 4.1 implies that ξ′′(ρ) − (T − 1)−1tr(Φ′QΦ) + 2(ξ′(ρ))2 ≤ 0 with equality if
and only if T = 2 or ρ = 1.

6Lancaster’s model is yi = ρyi,−1 +Xiβ + αiι+ εi without the restrictions β = (1− ρ)β̌ and
αi = (1 − ρ)µi. Therefore, if ρ = 1 and β 6= 0, then the probability limit of the Hessian of his
modified log-likelihood function at θ0 is still negative definite and his estimator is consistent.
However, if ρ = 1, β = 0 and αi = 0 for i = 1, ..., N, then his estimator is inconsistent.
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3.1 Generalized Modified ML estimators

We will now introduce two generalizations of θ̂LAN . We have assumed that |ρ| ≤ 1. Under
this assumption we will be able to show below that l̃N(θ) can have one local maximum

on Ω̃ at most. To ensure that the MMLE for θ0 is also defined in most cases where

ΘN ∩ Ω̃ = ∅, we will generalize its definition as follows:

θ̂W = argmin
θ∈Ω̃

(
∂l̃N(θ)

∂θ

)′
WN

(
∂l̃N(θ)

∂θ

)
s.t. x′

(
∂2l̃N(θ)

∂θ∂θ′

)
x ≤ 0 ∀x ∈ R2+K , (8)

where WN is a positive definite (PD) symmetric weight matrix and plimN→∞WN = W

where W is PD. Thus our MMLE is defined as the minimizer of a quadratic form in

the modified profile score vector, ∂l̃N
∂θ
, subject to the Hessian of l̃N being negative semi-

definite. If l̃N(θ) has a local maximum, then our MMLE for θ0 does not depend on WN

and is equal to θ̂LAN . Theorem 1 below asserts that θ̂W exists w.p.a.1, is uniquely defined

(given WN) w.p.1 and is consistent for any θ0 ∈ Ω̃.
Note that among the likelihood equations in (5) only the one for r is modified. Hence,

when solving Ψβ(θ) = 0 for b we obtain the unique solution β̂(r) = (
∑N

i=1X
′
iQXi)

−1×
∑N

i=1X
′
iQ(yi − ryi,−1) and when solving Ψσ2(θ) = 0 for s2 we obtain the unique solu-

tion σ̂2(r, b) = (T − 1)−1N−1
∑N

i=1(yi − ryi,−1 − Xib)
′Q(yi − ryi,−1 − Xib). Let θ̂(r) =

(r, σ̂2(r, β̂(r)), β̂(r))′, then the (normalized) modified profile log-likelihood function of r,

l̃cN(r), is defined by the equality l̃
c
N(r) = l̃N(θ̂(r)), i.e. l̃

c
N(r) = l̃N(r, σ̂

2(r, β̂(r)), β̂(r)).

An alternative MMLE for θ0, which is based on l̃
c
N(r), is given by θ̂C with

7

ρ̂C = arg min
r∈[−1,∞)

(
∂l̃cN(r)

∂r

)2
s.t.

∂2l̃cN(r)

∂r2
≤ 0, (9)

σ̂2C = σ̂
2(ρ̂C , β̂(ρ̂C)) and β̂C = β̂(ρ̂C).

The Adjusted Likelihood estimator of Dhaene and Jochmans (2016), viz. θ̂ADJ , is a

constrained version of θ̂C .
8 However, using their constraint is not required for uniqueness

of this MMLE and would also not guarantee its uniqueness in finite samples if the modified

profile likelihood would have multiple local maxima. Theorem 1 below asserts that θ̂C

exists w.p.a.1, is uniquely defined w.p.1 and is consistent for any θ0 ∈ Ω̃.
7One can also define a class of MMLEs where only s2 is profiled out but not b.

8ρ̂ADJ = argminr∈E

(
∂l̃cN (r)
∂r

)2
s.t

∂2 l̃cN (r)

∂r2
≤ 0, where E is a certain interval centered at the

LSDV estimator ρ̂ML. σ̂
2
ADJ = σ̂

2(ρ̂ADJ , β̂(ρ̂ADJ)) and β̂ADJ = β̂(ρ̂ADJ).
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There is no WN such that the θ̂W estimator equals the θ̂C estimator: if
∂l̃cN (r)

∂r
|ρ̂C = 0,

then ∂l̃N (θ)
∂θ

|θ̂W = 0 and both estimates of θ are equal but if
∂l̃cN (r)

∂r
|ρ̂C 6= 0, then

∂l̃N (θ)
∂θ

|θ̂W 6= 0
and the two estimates of θ are unequal although the value of θ̂W will be close to that of

θ̂C for WN that give relatively little weight to
∂l̃N (θ)
∂r

.

We can also consider a variation on θ̂W that is given by (8) with the first element of
∂l̃N (θ)
∂θ

replaced by
∂l̃cN (r)

∂r
. We call this MMLE θ̂F .

In the appendix we show that l̃cN(r) converges uniformly in probability to a nonsto-

chastic differentiable function of r, say l̃c(r), that ∂l̃
c(r)
∂r
|ρ = 0 and that ∂2 l̃c(r)

∂r2
|ρ ≤ 0, with

equality holding if ρ = 1 or if T = 2 and σ2v = β = 0 (i.e., Σzqz = 0). Thus, similar to

l̃(θ), l̃c(r) has a local maximum at ρ when ρ 6= 1 and, in case T = 2, Σzqz > 0. In the
appendix we also show that l̃c(r) has a stationary point of inflection at ρ when ρ = 1.

To simplify the exposition we assume in the remainder of this paper that if T = 2 and

ρ 6= 1, then either σ2v > 0 or β 6= 0 so that Σzqz > 0.
Note that θ̂C would only fail to exist in the extremely unlikely case that

∂2 l̃cN (r)

∂r2
>

0 on the entire interval [−1,∞). Similarly, θ̂W and θ̂F would only fail to exist in the

extremely unlikely case that for no θ ∈ Ω̃, x′
(
∂2 l̃N (θ)
∂θ∂θ′

)
x ≤ 0 ∀x ∈ R2+K . 9 The second-

order conditions
∂2 l̃cN (r)

∂r2
≤ 0 and x′

(
∂2 l̃N (θ)
∂θ∂θ′

)
x ≤ 0 ∀x ∈ R2+K are a crucial part of the

definitions of θ̂C , θ̂W and θ̂F because l̃
c
N(r) and l̃N(r) may attain a minimum on [−1,∞)

and Ω̃, respectively, see lemma 1 in the appendix.

The next theorem asserts uniqueness and consistency of θ̂W , θ̂F and θ̂C :

Theorem 1 Let Assumption 1 hold. Then the Modified MLEs θ̂W , θ̂F and θ̂C for θ0 are

uniquely defined w.p.1 when they exist, exist w.p.a.1 and are consistent.

If −1 ≤ ρ < 1, limN→∞ Pr(ΘN ∩ Ω̃ = ∅) = 0, i.e., θ̂LAN exists w.p.a.1. In this case
θ̂LAN is also unique w.p.1. (if it exists) and consistent. However, if ρ = 1, limN→∞ Pr(ΘN∩
Ω̃ = ∅) > 0 by lemma 4 in the appendix (and θ0 6= 0), i.e., θ̂LAN may not exist even

asymptotically, which implies that θ̂LAN is inconsistent.

When −1 ≤ ρ < 1, the first-order, fixed parameter asymptotic distributions of θ̂W ,

θ̂F , θ̂C and θ̂LAN are the same and given by (cf. Kruiniger, 2001):

√
N
(
θ̂ − θ0

)
d→ N

(
0, (MH)−1MIM (MH)−1

)
, (10)

9One could ensure that θ̂W , θ̂F and θ̂C are always defined by replacing them by θ̂(ρ̂ML+
3

T+1)

in these improbable cases, where − 3
T+1 is the asymptotic bias of ρ̂ML when ρ = 1. The rationale

for this proposed solution is that the non-existence problem most likely only occurs (if ever)
when the sample size is very small and ρ is close or equal to unity.
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whereMH is given in (6) and under normality of the εi MIM (Modified Information Ma-

trix) equals:10

MIM =



tr(QΦQΦ) + σ2tr(Φ′QΦ)+Σzqz

σ2
− (T−1)ξ′(ρ)

σ2
Σ′xqz
σ2

− (T−1)ξ′(ρ)
σ2

T−1
2σ4

0
Σxqz
σ2

0 Σxqx
σ2


 . (11)

It can easily be checked that tr(QΦQΦ) 6= −(T − 1)ξ′′(ρ) and hence MH 6= −MIM .
If T = 2, ρ̂LAN is equal to the FEMLE for ρ that has been proposed by Hsiao et al.

(2002), henceforth ρ̂FEML, but if T > 2, the data are i.i.d. and normal and |ρ| < 1, ρ̂LAN
is asymptotically less efficient than ρ̂FEML, see Ahn and Thomas (2004); when the data

are not i.i.d and normal, ρ̂LAN may be asymptotically more efficient than ρ̂FEML.

If ρ = 1, det(MIM) 6= 0 but ∂2 l̃c(r)
∂r2

|ρ = 0 and det(MH) = 0. Thus ρ and θ are first-
order underidentified when ρ = 1. Although we cannot directly apply the results of Rot-

nitzky et al. (2000), who developed an asymptotic theory for MLEs when the infor-

mation matrix is singular, to θ̂W , θ̂F and θ̂C when ρ = 1, because they are Modified

MLEs and det(MIM) 6= 0, arguments similar to theirs suggest that these MMLEs have
a slower than

√
N rate of convergence and that their limiting distributions are non-

standard. When deriving their limiting distributions for ρ = 1 below, we will view the

MMLEs as GMM estimators. If ρ is close to 1, det(MH) and ∂2 l̃c(r)
∂r2

|ρ are close to zero
and the MMLEs will have a "weak moment conditions" problem, cf. Kruiniger (2013).

3.2 The limiting distributions of θ̂C and θ̂F when ρ = 1

W.p.a.1 ρ̂C is a solution of the first-order condition (f.o.c.) G
c
N(r) ≡

∂2 l̃cN (r)

∂r2
∂l̃cN (r)

∂r
= 0.

Using a Taylor expansion of GcN(ρ̂C) around r = 1, we show in the appendix that when

ρ = 1, N1/4(ρ̂C − 1) = Op(1), i.e., the rate of convergence of ρ̂C is at least N
1/4. This

quartic root rate of convergence reflects the fact that ∂
2 l̃c(1)
∂r2

= 0 and ∂3 l̃c(1)
∂r3

= T (T−1)(T+1)
12

6=
0, which means that ρ is second-order identified when ρ = 1, and is in line with results

in Sargan (1983), Rotnitzky et al. (2000), Ahn and Thomas (2004), Madsen (2009),

Dovonon and Renault (2013) and Kruiniger (2013) who also study estimation when a

parameter is only second-order identified. Note that this rate is faster than the N1/6 -rate

of the MLEs of the parameters that correspond to the inflection point of the likelihood

functions of the sample selection model and the stochastic production frontier model

for a cross-section that are discussed in Lee and Chesher (1986) and the models with

skew-normal distributions that are discussed in Hallin and Ley (2014).

10To derive (11) we have used that if εi|(vi, QXi) ∼ N(0, σ2IT ), then for any constant T × T
matrices M1 and M2, E(ε

′
iM1εiε

′
iM2εi) = σ

4(tr(M1)tr(M2) + tr(M1M2 +M
′
1M2)).
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Next we discuss the derivation of the limiting distribution of θ̂C when ρ = 1. Let

M c
N(r) = N

(
∂l̃cN (r)

∂r

)2
. Analogously to Sargan (1983) and Rotnitzky et al. (2000) consider

the following Taylor expansion of M c
N(r) around r = 1 :

M c
N(r) =M

c
N(1) +

4∑

j=1

1

j!

∂jM c
N(1)

∂rj
(r − 1)j + P3,N(N1/4(r − 1)), (12)

where P3,N(N
1/4(r − 1)) is a polynomial in N1/4(r − 1) with coefficients that are op(1).

Let ρ̂ = ρ̂C . Substituting ρ̂ for r in (12) we obtain

M c
N(ρ̂) = N

(
∂l̃cN(1)

∂r

)2
+
∂3l̃cN(1)

∂r3
N1/2∂l̃

c
N(1)

∂r
N1/2(ρ̂− 1)2 + (13)

1

4

(
∂3l̃cN(1)

∂r3

)2
N(ρ̂− 1)4 +Rc1,N(N1/4(ρ̂− 1)),

where Rc1,N(N
1/4(ρ̂− 1)) = op(1).

Let Z1,N =
(
−1
2

∂3 l̃cN (1)

∂r3

)−1
N1/2

(
∂l̃cN (1)

∂r

)
. In the proof of Theorem 2 we show that

Z1,N = Op(1) and that there exists a sequence {UN} with UN = Op(N
−1/2) such that

if Z1,N + UN > 0, then M c
N(r) has two local minima attained at values ρ̃ such that

N1/2(ρ̃−1)2 = Z1,N+op(1), whereas if Z1,N+UN < 0, thenM c
N(r) has one local minimum

attained at r = ρ̂ with N1/2(ρ̂− 1)2 = op(1). Furthermore, when Z1,N +UN > 0, the sign
of N1/4(ρ̂− 1) is determined by the remainder Rc1,N(N1/4(ρ̂− 1)).
To obtain the limiting distribution of θ̂C when ρ = 1 we use the following new para-

metrization (indicated by the subscript n), cf. Kruiniger (2013): θn = (rn, s
2
n, b

′
n)
′

where rn = r, s2n = s2/r and bn = b. Noting that we can express the elements of

θ as functions of the elements of θn, viz. θ = θ(θn) = (rn, s
2
nrn, b

′
n)
′, the reparame-

terized modified log-likelihood function is given by l̃N,n(θn) = l̃N(θ(θn)). Similarly to

Lancaster (2002), it can be shown that l̃N,n(θn) converges uniformly in probability to a

nonstochastic continuous function of θn, i.e. l̃n(θn) = l̃(θ(θn)). The reparametrization

is such that the elements of the first row and the first column of the Hessian of l̃n(θn)

at θ0,n = (ρn, σ
2
n, β

′
n)
′ = θ∗ ≡ (1, σ2, 0′)′ are equal to zero. Note that if ρ = 1, then

θ0 = θ0,n = θ∗ for some σ
2.

We also need to introduce some additional notation. Let θ̂ = θ̂C and θ̂n = θ̂n,C =

(ρ̂C , σ̂
2
n,C , β̂

′

C)
′ with σ̂2n,C = σ̂2C/ρ̂C . Furthermore, let Z2,N = N1/2(σ̂2(1, β̂(1)) − σ2),

Z3,N = N
1/2(β̂ − β) and ZN = (Z1,N , Z2,N , Z ′3,N)′. Then we have the following results:

10



Theorem 2 Let Assumption 1 hold, εi ∼ N(0, σ2I), i = 1, ..., N, and ρ = 1. Then

(i) ZN
d→ Z = (Z1, Z2, Z

′
3)
′ ∼ N(0,ΣZ), where E(Z1Z2) = 0, E(Z1Z3) = 0, E(Z2Z3) = 0,

V ar(Z1) = 48T
−2((T−1)(T+1))−1, V ar(Z2) = 2σ4(T−1)−1 and V ar(Z3) = σ2(Σxqx)−1;

(ii) letting K+ = σ
2(T + 1)/6 and Bc = 1(Rc > 0) with the r.v. Rc defined in (31),




N1/4(ρ̂C − 1)
N1/2(σ̂2n,C − σ2)
N1/2(β̂C − β)




d→




(−1)BcZ1/21

Z2 +K+Z1

Z3


1{Z1 > 0}+




0

Z2

Z3


1{Z1 ≤ 0}.

Comments: In the proof of Theorem 2 we show that the sign of N1/4(ρ̂C − 1) depends
on

∂5 l̃cN (1)

∂r5
, whereas it follows from Kruiniger (2013) and corollary 1 in Rotnitzky et al.

(2000) that the sign of N1/4(ρ̂FEML−1) only depends on the second and third derivatives
of the FE log-likelihood. The latter is generally true for MLEs of parameters that are

only second-order identified, cf. Rotnitzky et al. (2000);

Relaxing the assumption of normality of the εi affects ΣZ and the conditional distri-

bution of Bc given Z but otherwise does not change Theorem 2;

The limiting distribution of ρ̂C is asymmetric unlike that of ρ̂FEML and other MLEs

of parameters that are only second-order identified, cf. Rotnitzky et al. (2000);

From θ̂C = θ(θ̂n,C) we have σ̂
2
C = σ̂

2
n,C ρ̂C . Hence the rate of convergence of σ̂

2
C is also

N1/4 and N1/4(σ̂2C − σ2) = N1/4(ρ̂C − 1)σ2 + op(1);
Finally, the following result implies the sign of the asymptotic bias of ρ̂C and σ̂

2
C :

Corollary 1 Let Assumption 1 hold, εi ∼ N(0, σ2I), i = 1, ..., N, and ρ = 1. Then if

T ≥ 4, E((−1)BcZ1/21 |Z1 > 0) > 0 whereas if T = 2 or T = 3, E((−1)BcZ1/21 |Z1 > 0) < 0.

We now consider the minimum rate of convergence of ρ̂ = ρ̂F and the limiting distri-

bution of θ̂F when ρ = 1. Details of the derivations of these properties of ρ̂F and θ̂F are

given in the appendix. There we show that N1/4(ρ̂− 1) = Op(1), cf. Lemma 5.
Let ΨN,n(θn) = (

∂l̃cN (r)

∂r
, s2nr

∂l̃N,n(θn)

∂s2n
, s2nr

∂l̃N,n(θn)

∂b′
)′, ω̂n = ((σ̂2n,F − σ2), β̂

′

F )
′ and wn =

(s2n, b
′)′. Then we have the following results:

Theorem 3 Let Assumption 1 hold, εi ∼ N(0, σ2I), i = 1, ..., N, ρ = 1, and let WN be

a PD matrix. Then

 N

1/4(ρ̂F − 1)
N1/2ω̂n


 d→


 (−1)

BZ
1/2
1

ω+


1{Z1 > 0}+


 0

ω+ +K−Z1


1{Z1 ≤ 0},
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where (Z1, ω
′
+)
′ ∼ N(0,Σω), B = 1(R > 0) and the r.v. R, the matrix Σω and the

constant vector K− are implicitly defined in the proof.

Comments: In the proof of Theorem 3 we see that the sign of N1/4(ρ̂F − 1) depends
on

∂5 l̃cN (1)

∂r5
in line with the results in Kruiniger (2013) for Quasi MLEs of second-order

identified parameters but in contrast to the results for MLEs in Rotnitzky et al. (2000);

Relaxing the assumption of normality of the εi affects Σω and the conditional distri-

butions of B and R given (Z1, ω
′
+)
′ but otherwise does not fundamentally change the

results in Theorem 3;

Like ρ̂C and σ̂
2
C , when ρ = 1, ρ̂F and σ̂

2
F converge at a rate of at least N

1/4 to ρ and

σ2, whereas β̂F converges at a rate of N
1/2 to β just like β̂C ;

For anyW, (ρ̂F−1)2 is first-order asymptotically equivalent to (ρ̂C−1)2 and hence the
RMSEs of ρ̂F and ρ̂C are asymptotically the same. However, the limiting distribution of B

and hence that ofN1/4(ρ̂F−1) depends onW. The limiting distributions of σ̂2F and β̂F also
depend onW and are different from those of σ̂2C and β̂C unlessWN = diag(WN,1,1,WN,2,2)

where WN,1,1 is a scalar. In the latter case ω+ +K−Z1 = (Z2, Z
′
3)
′ and K− = (−K+, 0)

′.

If in addition WN,1,1 = ∞ while the elements of WN,2,2 are finite, then the limiting

distributions of N1/4(ρ̂F − 1) and N1/4(ρ̂C − 1) are also the same;
The results in Theorem 3 can easily be reinterpreted to obtain a version for the

generic possibly overidentified case. Treating ΨN,n(θn) as generic moment functions

and ρ and ωn as generic parameters, with ωn a vector and ρ a scalar that is only

second-order identified, by following the logic of the proofs of Lemma 5 and Theo-

rem 3 we would still obtain Theorem 3 but with Z1 = −2(Ψ′n,ρρW 1/2MωW
1/2Ψn,ρρ)

−1×
(Ψ′n,ρρW

1/2MωW
1/2Ψn), ω+ = M(Ψn +

1
2
Ψn,ρρZ1) and K− = −1

2
MΨn,ρρ, where Mω =

I −W 1/2Ψn,ω(Ψ
′
n,ωWΨn,ω)

−1Ψ′n,ωW
1/2,M = −(Ψ′n,ωWΨn,ω)−1Ψ′n,ωW and Ψn, Ψn,ω and

Ψn,ρρ are defined in the proof of Theorem 3. In the exact identified case R would still be

defined similarly as in the proof of Theorem 3 and in particular the sign of N1/4(ρ̂ − 1)
would still depend on plimN→∞

∂4ΨN,n(θ∗)

∂r4
. In the overidentified case R would be defined as

a generic version of R2 in the proof of Theorem 3 and in particular the sign of N
1/4(ρ̂−1)

would depend on plimN→∞
∂3ΨN,n(θ∗)

∂r3
but not on plimN→∞

∂4ΨN,n(θ∗)

∂r4
. 11

11Dovonon and Hall (2018) have also derived the limiting distribution of the GMM estimator
of ρ and ωn with ρ a scalar that is only second-order identified, but unfortunately their dis-
tributional result for N1/4(ρ̂ − 1) in the exact identified case is incorrect because the order of
the expansion of the objective function that they used to study the distribution of B is too low
which resulted in an expression for R (their formula (18)) that is actually equal to zero, see the
proof of my Theorem 3.
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It can be expected that the MMLEs also have non-standard asymptotic properties

close to the singularity point, θ∗. Rotnitzky et al. (2000) informally discuss a richness

of possibilities for the MLEs close to the singularity point and one can expect several

possibilities for the MMLEs too. To save space we don’t explore them here. Nonetheless

they are a warning of the care needed in conducting inference close to θ∗. Finally, we note

that the local-to-unity asymptotic behaviour of various GMM estimators for the panel

AR(1) model discussed in Kruiniger (2009) is unrelated to second-order identification.

4 Modified likelihood based inference

Wald tests, some versions of (Quasi) LM tests, and (Quasi) LR tests that are used for

testing hypotheses involving ρ and are based on the reparametrized modified likelihood

do not asymptotically have correct size in a uniform sense when |ρ| ≤ 1, cf. Rotnitzky et
al. (2000) and especially Bottai (2003), who discusses why these tests do not have correct

size in the single parameter case. Generalizing the testing approach proposed in Bottai

(2003) that has correct size to a multiple parameter setting, Kruiniger (2016) has shown

that (Quasi) LM tests that are related to the RE- and the FE(Q)MLE and standardised

by using (a sandwich formula involving) the expected rather than the observed Hessian do

asymptotically have correct size in a uniform sense when |ρ| ≤ 1. However, the situation
is somewhat special in the case of the QLM tests that are used for testing hypotheses

involving ρ and are based on the reparametrized modified likelihood. In this case the

singularity point, θ∗, corresponds to an inflection point rather than a maximum. As a

result in small samples the (normalized) reparametrized modified log-likelihood, l̃N,n(θn),

may not even have a local maximum when ρ is close to one. Nevertheless, the expected

Hessian of l̃N,n(θ0,n), viz. H(θ0,n), where θ0,n = (θ′0,n σ2v,n)′ with σ2v,n = σ2v/σ2 − (1 − ρ)
and σ2v = (1− ρ)2σ2v, is still negative definite close to the singularity point θ∗ = (θ′∗ 0)′.12
13 We will now introduce the QLM test-statistic QLM(θ0,n) for testing H0 : Aθ0,n = a,

where A is a J × dim(θ) constant matrix of rank J and J is the number of restrictions,
which include a restriction on ρ with −1 ≤ ρ < 1. Let Ji(θ0,n) = ∂l̃n,i(θ0,n)

∂θn

∂l̃n,i(θ0,n)

∂θ′n
and

J (θ0,n) = N−1
∑N

i=1 Ji(θ0,n), where l̃n,i(θn) is the contribution to the reparametrized
modified log-likelihood, N × l̃N,n(θn), by individual i. Then QLM(θ0,n) is given by
12Note that H(θ0,n) = Eθ0,n(∂2 l̃N,n(θ0,n)/∂θn∂θ

′
n) depends on θ0,n = (θ

′
0,n σ

2
v,n)

′, whereas the

observed Hessian ∂2 l̃N,n(θ0,n)/∂θn∂θ
′
n only depends on θ0,n.

13This reparametrization is the same as the one used in Kruiniger (2013) for the FE(Q)MLE.
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QLM(θ0,n) = N × ∂l̃
′
N,n(θ̃n)

∂θn
H−1(θ̃n)A

′ × (14)

(AH−1(θ̃n)J (θ̃n)H−1(θ̃n)A
′)−1AH−1(θ̃n)

∂l̃N,n(θ̃n)

∂θn
,

where θ̃n is a restricted estimate of θ0,n. σ
2
v,n can be estimated by the restricted FE(Q)MLE.

Under H0, QLM(θ0,n) ∼ χ2(J). When using QLM(θ0,n) to test H0 : −1 ≤ ρ = a < 1,

A = (1 0 0′) and
∂l̃N,n(θ̃n)

∂θn
= A′

∂l̃N,n(θ̃n)

∂ρ
. To test hypotheses that include the restriction

ρ = 1, one should use a different Quasi LM test, cf. Bottai (2003). In this case one should

replace QLM(θ0,n) given in (14) by

QLM(θ0,n) = N × S̃ ′(θ̃n)H̃−1(θ̃n)A
′ × (15)

(AH̃−1(θ̃n)J̃ (θ̃n)H̃−1(θ̃n)A
′)−1AH̃−1(θ̃n)S̃(θ̃n),

with

S̃(θ̃n) = N−1
∑N

i=1
Si, J̃ (θ̃n) = N−1

∑N

i=1
(SiS

′
i),

Si = (Si,1, S
′
i,2)

′, Si,1 =
1

2

∂2l̃n,i
∂r2n

|θ̃n , Si,2 =
∂l̃n,i
∂dn

|θ̃n ,

H̃1,1 =
2

4!
Eθ̃n

(
∂4l̃N,n
∂r4n

|θ̃n), H̃′
1,2 = H̃2,1 =

1

2!
Eθ̃n

(
∂3l̃N,n
∂r2n∂dn

|θ̃n),

H̃2,2 =
2

2!
Eθ̃n

(
∂2l̃N,n
∂dn∂d′n

|θ̃n), H̃(θ̃n) =
[
H̃1,1 H̃1,2

H̃2,1 H̃2,2

]
,

where we have partitioned θn as θn = (rn, d
′
n)
′ and used l̃N,n and l̃n,i as short for l̃N,n(θn)

and l̃n,i(θn), respectively. When using QLM(θ0,n) to test H0 : ρ = 1, A = (1 0 0
′) and

S̃(θ̃n) = A
′(N−1

∑N
i=1 Si,1). It can be shown that QLM(θ0,n) given by (14) and (15) is

continuous at θ0,n = θ∗ for any σ
2 > 0 by using de l’Hôpital’s rule twice.

Theorem 4 The Quasi LM test based on (14) or (15) for testing H0 : Aθ0,n = a, which

includes a restriction on ρ with |ρ| ≤ 1, has correct asymptotic size in a uniform sense.

Confidence sets (CSs) that are obtained by inverting the tests based on (14) and

(15) have correct asymptotic size in a uniform sense. Other tests (and CSs) for ρ that

have correct asymptotic size include (CSs based on) the GMM LM test(-statistic)s of

Newey and West (1987) that exploit the moments conditions of the System GMM and

the nonlinear Ahn-Schmidt (AS) GMM estimator, respectively, see Kruiniger (2009) for

the System version and Bun and Kleibergen (2017) for the AS version of the test, and
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identication-robust test(-statistics)s such as the GMMAR test of Stock andWright (2000)

and the KLM and GMM-CLR tests of Kleibergen (2005) that exploit System and AS

moments conditions, cf. Bun and Kleibergen (2017). Kruiniger (2016) has shown that the

Quasi LM test for testing an hypothesis about ρ shares the optimal power properties of the

KLM test in a worst case scenario. To testH0 : ρ = 1 one could also use a Wald test based

on
√
N(ρ̂C − 1)2. Under H0

√
N(ρ̂C − 1)2

d→ Z11{Z1 > 0}, cf. Theorem 2. Recall that

Z1,N =
(
−1
2

∂3 l̃cN (1)

∂r3

)−1
N1/2

(
∂l̃cN (1)

∂r

)
d→ Z1, with plimN→∞

∂3 l̃cN (1)

∂r3
= ∂3 l̃c(1)

∂r3
= T (T−1)(T+1)

12

and
∂l̃cN (1)

∂r
given in (29). When the data are heterogeneous and/or non-normal, one can

bootstrap the distribution of N1/2
(
∂l̃cN (1)

∂r

)
or estimate the averages of the second and the

fourth moments of the εi,t by using that under H0 εi = yi − yi,−1 for i = 1, ..., N. To test
H0 : ρ = 1 one could also use any other panel unit root test, e.g. the test of Harris and

Tzavalis (1999) that is based on the bias-corrected LSDV estimator for ρ, i.e., ρ̂ML+
3

T+1
,

where − 3
T+1

is the asymptotic bias of ρ̂ML when ρ = 1. The rate of convergence of ρ̂ML

is N1/2 which is faster than N1/4, the rate of ρ̂C . Hence if N is large enough inference

based on ρ̂ML is better in terms of power and size. Finally, to test a hypothesis that only

involves β, one can use a Wald test based on β̂C .

5 The finite sample performance of the Modified ML

estimators and the Quasi LM test

In this section we compare through Monte Carlo simulations the finite sample properties

of three estimators in various panel AR(1) models without covariates: ρ̂C ; the REMLE for

ρ that has been proposed by both Chamberlain (1980) and Anderson and Hsiao (1982),

henceforth ρ̂REML; and the FEMLE for ρ (i.e., ρ̂FEML) that has been proposed by Hsiao

et al. (2002). We study how the properties of these estimators are affected if we change

(1) the distributions of the vi = yi,0 − µi or (2) the ratio of the variances of the error
components, i.e. σ2µ/σ

2. We conducted the simulation experiments for (T,N) = (4, 100),

(9, 100), (4, 500) or (9, 500) and ρ = 0.5, 0.8, 0.9, 0.95, 0.98 or 1.

In all simulation experiments the error components have been drawn from normal

distributions with zero means. We assumed that σ2µ = 0, 1 or 25. For the εi,t we assumed

homoskedasticity and no autocorrelation: E(εiε
′
i) = σ

2I with σ2 = 1.

In order to assess how the assumptions with respect to yi,0−µi, i = 1, ..., N, affect the
properties of the estimators, we conducted two different sets of experiments, which are
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identified by a capital: in one set, labeled NS, the initial observations are non-stationary,

i.e., yi,0− µi = 0, i = 1, ..., N, whereas in the other set, labeled S, the initial observations
are drawn from stationary distributions when |ρ| < 1, i.e., (yi,0−µi) ∼ N(0, σ2i,0/(1−ρ2))
with σ2i,0 = σ

2, although yi,0 − µi = 0, i = 1, ..., N, when ρ = 1.
Note that all four estimators suffer from a weak moment conditions problem when ρ

is close to one, cf. Kruiniger (2013).

In the cases of the RE- and FEMLE (1 − ρ)µi + εi is decomposed as (1 − ρ)πyi,0 −
(1 − ρ)vi + εi = (1 − ρ)πyi,0 + ui with π = 1 for the FE case. In the experiments we

imposed homoskedasticity on their likelihood functions and added the restrictions σ2 > 0

and (T − 1)(1− ρ)2σ2v + σ2 > 0 to ensure that the estimates of E(uiu′i) were PD.
We allowed for time effects by subtracting cross-sectional averages from the data.

We computed ρ̂C by maximizing l̃N(θ) subject to−1 ≤ r ≤ 1.4. (We also tried using
−1 ≤ r ≤ 2 but never found a maximum between 1.4 and 2.) If no local maximum was

found, we computed ρ̂C by solving (9) s.t.−1 ≤ r ≤ 1.4 using grid search.
Tables 1-6 report the simulation results in terms of the biases and root mean squared

errors (RMSEs) of the estimators and the relative frequencies that ρ̂LAN did not exist

(NM). The tables differ with respect to the dimensions of the panel and the assumptions

made about the yi,0 − µi, i = 1, ..., N . Inspection of the results leads to the following

conclusions: 14

1. In almost all experiments (the exception is design NS with N = 100 and ρ = .0.5)

ρ̂REML is superior in terms of RMSE for ‘smaller’ values of ρ (i.e., values closer to

0), ρ̂FEML is superior for ‘larger’ values of ρ (i.e., values closer to 1), while ρ̂C is

superior on an interval of ‘intermediate’ values of ρ, which includes ρ = 0.8 when

T = 4 and N = 100, and ρ = 0.9 when T = 4 and N = 500. In most experiments

ρ̂REML is superior when ρ = 0.5, while ρ̂FEML is superior when ρ is near/equals 1.

When ρ is near 1, the bias of ρ̂C is larger than the biases of ρ̂FEML and ρ̂REML.

2. When T or N increases, the values of the bounds of the interval for ρ on which ρ̂C

is superior increase. When T = 9 and N = 500, ρ̂C is superior around ρ = 0.95.

14Dhaene and Jochmans (2016) report simulations results on the finite sample properties of
their Adjusted Likelihood estimator (ρ̂ADJ), the bias corrected LSDV estimator of Hahn and
Kuersteiner (2002) (ρ̂HK) and the RE GMM estimator of Arellano and Bond (1991) (ρ̂AB).
Some of their simulation experiments are equal to some of our experiments. The results for
these experiments show that ρ̂ADJ and ρ̂C are very similar and that ρ̂HK has a large bias when
T is small. ρ̂AB has poor properties when ρ is close to 1 due to weak instruments.
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Furthermore, when ρ = 0.50 and T = 9 or N = 500, ρ̂FEML is often the most

efficient estimator after ρ̂REML.

3. When σ2µ/σ
2 increases, the RMSE of ρ̂REML increases and hence the value of the

lowerbound of the interval of values of ρ on which ρ̂C is superior decreases.

4. When V ar(yi,0− µi)/σ2 decreases, the bias and the RMSE of ρ̂C and the RMSE of
ρ̂REML increase and the value of the upperbound of the interval of values of ρ on

which ρ̂C is superior decreases.

5. The bias of ρ̂U is about the same as the bias of ρ̂C , also when ρ is (close to) one.

Moreover, the sign of the bias of ρ̂C is the opposite of the sign that is implied by

corollary 1. This suggests that the biases of ρ̂C and ρ̂U are mainly caused by other

factors than the random sign of N1/4(ρ̂− 1) when Z1 > 0.

6. When T = 4 and N = 100, NM > 0.35 for ρ ≥ 0.8; when T = 4 and N = 500,

NM > 0.29 for ρ ≥ 0.8; when T = 9 and N = 100, NM > 0.35 for ρ ≥ 0.9;

and when T = 9 and N = 500, NM > 0.25 for ρ ≥ 0.9. Generally, the higher the
value of ρ, the higher the value of NM . When ρ = 1, NM ≈ 0.50 for all panels

considered, which supports the idea that even asymptotically ρ̂LAN may not exist

when ρ = 1. If the value of V ar(yi,0−µi)/σ2 decreases, the value of NM increases.

Under design NS, when T = 4, N = 100 and ρ = 0.5, we still have NM > 0.3.

We have also investigated the size and power properties of the modified likelihood

based QLM-test for testing H0 : ρ = a, that is, QLM(ρ). To this end, we conducted three

types of Monte Carlo experiments. The designs of two of them, labelled S-Normal and NS-

Normal, were similar to designs S and NS described above. The designs of the third kind

of experiments, labelled S-ChiSq., were also similar to S with one difference: the εi,t were

i.i.d. (χ2(1)− 1)/
√
2 instead of i.i.d. N(0, 1) so that (yi,0−µi) ∼ (χ2(1)− 1)/

√
2(1− ρ2)

instead of N(0, 1/(1− ρ2)). In all experiments µi ∼ N(0, 1). We used various true values
for ρ including 0.5, 0.9, 0.95 and 0.99. The results for the power of QLM(ρ) were based

on testing H0 : ρ = 0.8. In all experiments T = 9 and N ∈ {100, 500}.
QLM(ρ) depends on H(θ̃n), i.e., an estimate of the expected Hessian that is based on

the restricted estimate θ̃n. One of the parameters in H(θ0,n) is σ2v,n. However, the latter
is not estimated by a MMLE. Instead we used the restricted FE(Q)MLE for σ2v,n.

Tables 7 and 8 report the simulation results for the size and the power of QLM(ρ),

respectively. Table 7 shows that the empirical size of the test is very close to the nominal
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size of 5% in all experiments, including those where ρ is close to one. Finally, table 8

shows that the power properties of QLM(ρ) do not change much across the three types

of experiments and also that its power is still high when (true) ρ = 0.99 despite weak

identification in that case.

6 Concluding remarks

Alvarez and Arellano (2004) and Juodis (2013) have extended the MMLE of Lancaster to

panel AR(1) models that allow for time-series heteroskedasticity. Their estimators suffer

from the same problems as Lancaster’s MMLE, namely a weak moment conditions prob-

lem if the parameter values are close to the unit root and time-series homoskedasticity,

cf. Alvarez and Arellano (2004) and Kruiniger (2013); the related problem of possible

non-existence; and the possibility of non-uniqueness of local maxima of the modified pro-

file likelihood function. The non-existence problem can be solved by generalizing their

estimators in a similar way as Lancaster’s estimator has been generalized to (8) or (9).

However, it is unclear whether the modified profile likelihood function has at most one lo-

cal maximum even when the parameter space for ρ is restricted to [−1, 1].15 If uniqueness
would not hold, then one could select a local maximum that is (plausible and) closest to

the value of ρ̂FEML (or ρ̂REML), which is a consistent estimator, as the MMLE.
16

Alvarez and Arellano (2004) and Dhaene and Jochmans (2016) have also extended

the MMLE of Lancaster to panel AR(p) models, while Juodis (2013) has also extended

the MMLE of Lancaster to panel VARX(1) models. Comments similar to those made in

the previous paragraph apply to these extensions. The MMLEs discussed in section 3 are

inconsistent for models with endogenous or predetermined covariates. However, in some

cases these models can be replaced by VAR models.

It seems reasonable to expect that the aforementioned extensions of the MMLEs to

more general models may also outperform the RE- and FEMLEs for those models in

panels of realistic dimensions for some parts of the parameter space. However, a compre-

hensive Monte Carlo study of their finite sample properties is left for future research.

Finally, we note that Bester and Hansen (2007) and Arellano and Bonhomme (2009)

have proposed priors that result in first-order unbiased Bayesian estimators for ρ in a

version of model (1) that does not include the K exogenous covariates.

15The modified profile likelihood equation for ρ is a polynomial in r. If the model has
no covariates, then the coefficients of this polynomial are functions of ρ, σ2v and T variance
parameters instead of one.
16Note that this method of selecting the MMLE is also “sensible” in finite samples.
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A Proofs and derivations

The asymptotic bias of the LSDV estimator for ρ, ρ̂ML:

The LSDV estimators for ρ and β, ρ̂ML and β̂ML, satisfy the profile likelihood equa-

tions for ρ and β :

N∑

i=1

y′i,−1Q(yi − ρ̂MLyi,−1 −Xiβ̂ML) = 0 and (16)

N∑

i=1

X ′
iQ(yi − ρ̂MLyi,−1 −Xiβ̂ML) = 0.

Let r2xy−1 = (
∑N

i=1 y
′
i−1Qyi,−1)

−1
∑N

i=1(y
′
i−1QXi)(

∑N
i=1X

′
iQXi)

−1
∑N

i=1(X
′
iQyi,−1), s

2
y =

(T − 1)−1N−1
∑N

i=1 y
′
i,−1Qyi,−1 and ρML = plimN→∞ ρ̂ML. Using that yi,−1−µiι− ιx′iβ̌ =

ϕvi +ΦQXiβ +Φεi = Z̃i +Φεi and Qι = 0, it can be shown that the asymptotic bias of

ρ̂ML is given by (cf. e.g. Bun and Carree, 2005):

ρML − ρ = −
σ2h(ρ)

(1− ρ2xy−1)σ2y
, (17)

where ρ2xy−1 = plimN→∞ r
2
xy−1

, σ2y = plimN→∞ s
2
y and h(ρ) = −(T − 1)−1tr(QΦ) =

1
T (T−1)

∑T−1
t=1 (T −t)ρt−1 = ξ′(ρ). Note that h(ρ) = T−1−Tρ+ρT

T (T−1)(1−ρ)2
, when ρ 6= 1, and h(1) = 1

2
.

Assumption 1 implies that σ2y =
σ2

T−1
tr(Φ′QΦ)+ 1

T−1
E(Z̃iQZ̃i) and

σ2

T−1
tr(Φ′QΦ) > 0 and

hence σ2y > 0. We also have ρ2xy−1 < 1. Furthermore, if |ρ| ≤ 1, h(ρ) > 0 and hence

ρML − ρ < 0 (cf. e.g. Bun and Carree, 2005).
It can also be shown that if ρ = 1, then ρML − ρ = − 3

T+1
. Note that E(Z̃iQZ̃i) =

σ2vϕ
′Qϕ+2E(viϕ

′QΦQXi)β+β
′E(X ′

iQΦQΦQXi)β. Let f(ρ) =
1

T−1
tr(Φ′QΦ) and g(ρ) =

1
T−1

ϕ′Qϕ. Below we show that f(1) = 1
6
(T + 1). Furthermore, g(1) = 0 and when ρ = 1,

we also have β = ρ2xy−1 = 0. We conclude that when ρ = 1, then E(Z̃iQZ̃i) = 0,

σ2y =
σ2

6
(T + 1) and ρML − ρ = − 3

T+1
(cf. Harris and Tzavalis, 1999).

Proof of the claim that f(1) = 1
6
(T + 1) :

We have f(ρ) = (T − 1)−1tr(Φ′QΦ) = (T − 1)−1(trΦ′Φ − T−1ι′ΦΦ′ι) = (T − 1)−1 ×
(
∑T−2

t=0

∑t
s=0 ρ

2s−T−1∑T−2
t=0 (

∑t
s=0 ρ

s)2). It follows that f(1) = (T − 1)−1(∑T−2
t=0 (t+1)−

T−1
∑T−1

t=1 t
2) = (T − 1)−1(1

2
(T − 1)T − 1

6
(T − 1)(2T − 1)) = 1

6
(T + 1). �
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Some results related to l̃cN(r) and
∂l̃cN (r)

∂r
:

By the envelope theorem we have
∂l̃cN (r)

∂r
= Ψρ(r, σ̂

2(r, β̂(r)), β̂(r)), i.e.,

∂l̃cN(r)

∂r
= (T − 1)ξ′(r) + σ̂−2(r, β̂(r))N−1

N∑

i=1

(yi − ryi,−1 −Xiβ̂(r))
′Qyi,−1. (18)

Let σ̂2ML = (T − 1)−1N−1
∑N

i=1[(yi − ρ̂MLyi,−1 −Xiβ̂ML)
′Q(yi − ρ̂MLyi,−1 −Xiβ̂ML)].

Next we show that the first-order condition for a local maximum of l̃cN(r) can be written

as
∂l̃cN(r)

∂r
= (T − 1)ξ′(r)− (T − 1)(r − ρ̂ML)

σ̂2ML/(s
2
y(1− r2xy−1)) + (r − ρ̂ML)

2
= 0. (19)

Derivation of (19): Using
∑N

i=1X
′
iQ(yi − ρ̂MLyi,−1 − Xiβ̂ML) = 0 from (16) and

∑N
i=1X

′
iQ(yi − ryi,−1 −Xib) = 0 from (5), we obtain

β̂ML − b = (
N∑

i=1

X ′
iQXi)

−1
N∑

i=1

(X ′
iQyi,−1)(r − ρ̂ML). (20)

Next, using
∑N

i=1 y
′
i,−1Q(yi − ρ̂MLyi,−1 −Xiβ̂ML) = 0 from (16), we obtain

N∑

i=1

y′i,−1Q(yi − ryi,−1 −Xib) =
N∑

i=1

y′i,−1Q(yi,−1(ρ̂ML − r) +Xi(β̂ML − b)) =

(ρ̂ML − r)(
N∑

i=1

(y′i−1Qyi,−1)−
N∑

i=1

(y′i−1QXi)(
N∑

i=1

X ′
iQXi)

−1
N∑

i=1

(X ′
iQyi,−1)).

Hence

(T − 1)−1N−1
N∑

i=1

(yi − ryi,−1 −Xiβ̂(r))
′Qyi,−1 = (ρ̂ML − r)s2y(1− r2xy−1). (21)

Using
∑N

i=1 y
′
i,−1Q(yi− ρ̂MLyi,−1−Xiβ̂ML) = 0 and

∑N
i=1X

′
iQ(yi− ρ̂MLyi,−1−Xiβ̂ML) = 0

from (16), we obtain

N∑

i=1

[(yi − ryi,−1 −Xib)
′Q(yi − ryi,−1 −Xib)] =
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N∑

i=1

[(yi − ρ̂MLyi,−1 −Xiβ̂ML)
′Q(yi − ρ̂MLyi,−1 −Xiβ̂ML)+

((ρ̂ML − r)yi,−1 +Xi(β̂ML − b))′Q(yi,−1(ρ̂ML − r) +Xi(β̂ML − b))].

In addition, by using (20) once more, we obtain

N∑

i=1

[((ρ̂ML − r)yi,−1 +Xi(β̂ML − b))′Q(yi,−1(ρ̂ML − r) +Xi(β̂ML − b))] =

(ρ̂ML − r)2[
N∑

i=1

y′i,−1Qyi,−1 −
N∑

i=1

(y′i−1QXi)(
N∑

i=1

X ′
iQXi)

−1
N∑

i=1

(X ′
iQyi,−1)].

Hence

σ̂2(r, β̂(r)) = (T − 1)−1N−1
N∑

i=1

(yi − ryi,−1 −Xiβ̂(r))
′Q(yi − ryi,−1 −Xiβ̂(r)) =

σ̂2ML + (ρ̂ML − r)2s2y(1− r2xy−1). (22)

Finally, combining (18) with (21) and (22) yields (19).

Next we show that σ2ML = plimN→∞ σ̂
2
ML > 0.

Proof of the claim that σ2ML > 0 :

Using Q(yi− ρ̂MLyi,−1−Xiβ̂ML) = Q(εi+(ρ− ρ̂ML)yi,−1+Xi(β− β̂ML)) and Qyi,−1 =

Q(Z̃i + Φεi), where Z̃i = ϕvi + ΦQXiβ, we obtain σ̂
2
ML = (T − 1)−1N−1

∑N
i=1[(εi + (ρ−

ρ̂ML)(Z̃i + Φεi) +Xi(β − β̂ML))
′Q(εi + (ρ− ρ̂ML)(Z̃i + Φεi) +Xi(β − β̂ML))].

Assumption 1 implies that εi|(vi, QXi) ∼ i.i.d.N (0, σ2IT ), i = 1, ..., N, with σ2 > 0. It
follows that σ2ML = plimN→∞ σ̂

2
ML ≥ plimN→∞(T−1)−1N−1

∑N
i=1[(εi+(ρ− ρ̂ML)Φεi)

′Q×
(εi + (ρ− ρ̂ML)Φεi)] = σ

2(T − 1)−1tr((I + (ρ− ρML)Φ)
′Q(I + (ρ− ρML)Φ)) > 0. �

Proof of the claim that l̃cN(r) converges uniformly in probability to l̃
c(r) :

We have l̃cN(r) = l̃N(r, σ̂
2(r, β̂(r)), β̂(r)) = (T −1)ξ(r)− T−1

2
log(σ̂2(r, β̂(r)))− T−1

2
and

from (22), σ̂2(r, β̂(r)) = σ̂2ML + (ρ̂ML − r)2s2y(1− r2xy−1). Note that − log(σ̂
2(r, β̂(r))) is a

concave function of r. Then it follows from pointwise convergence of log(σ̂2(r, β̂(r))) to the

function log(σ2(r)) ≡ log(σ2ML+(ρML−r)2σ2y(1−ρ2xy−1)) that plimN→∞ supr∈[−1,∞)

∣∣∣l̃cN(r)−
l̃c(r)

∣∣∣ = 0, see e.g. Newey and McFadden (1994, section 2.6). �
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Some results related to l̃c(r), ∂l̃
c(r)
∂r
|ρ = 0 and ∂2 l̃c(r)

∂r2
|ρ :

The first-order condition for a local maximum of l̃c(r) can be written as:

∂l̃c(r)

∂r
= (T − 1)ξ′(r)− (T − 1)(r − ρML)

σ2ML/(σ
2
y(1− ρ2xy−1)) + (r − ρML)

2
= 0. (23)

The second-order condition for a local maximum of l̃c(r) is given by:

∂2l̃c(r)

∂r2
= (T − 1)ξ′′(r)−

(T − 1)(σ2ML/(σ
2
y(1− ρ2xy−1))− (r − ρML)

2)

(σ2ML/(σ
2
y(1− ρ2xy−1)) + (r − ρML)

2)2
< 0.

Below we show that

σ2ML/(σ
2
y(1− ρ2xy−1)) = −

(
σ2ξ′(ρ)

σ2y(1− ρ2xy−1)

)2
+ σ2/(σ2y(1− ρ2xy−1)). (24)

Then it is easily verified that ∂l̃
c(r)
∂r
|ρ = 0 and

∂2l̃c(r)

∂r2
|ρ = (T − 1)ξ′′(ρ) + (T − 1)(2 (ξ′(ρ))2 − σ2y(1− ρ2xy−1)/σ2).

Note that (T − 1)σ2y = σ2tr(Φ′QΦ) +E(Z̃iQZ̃i). Let σ2x = plimN→∞
1

(T−1)N

∑N
i=1X

′
iQXi

and σ2xy−1 = plimN→∞
1

(T−1)N

∑N
i=1X

′
iQyi,−1. Using Qyi,−1 = Q(Z̃i+Φεi) it is easily seen

that σ2y(1 − ρ2xy−1)/σ2 = (σ2y − σ′xy−1σ−2x σxy−1)/σ2 ≥ (T − 1)−1tr(Φ′QΦ), with equality
holding if ρ = 1 or σ2v = β = 0 (i.e. if Σzqz = 0). We also have ξ′′(ρ) − (T − 1)−1×
tr(Φ(ρ)′QΦ(ρ)) + 2(ξ′(ρ))2 ≤ 0, with equality holding if ρ = 1 or T = 2. It follows that
∂2 l̃c(r)
∂r2

|ρ ≤ 0, with equality holding if ρ = 1 or if T = 2 and σ2v = β = 0. Thus l̃c(r) has a
local maximum at ρ when ρ 6= 1 and, in case T = 2, Σzqz > 0. Below we show that l̃c(r)
has a stationary point of inflection at ρ when ρ = 1.

Derivation of (24): Given that the equality yi − ryi,−1 −Xib = (ρ− r)yi,−1 +Xi(β −
b) + αiι + εi holds for any r and b, including for r = ρ̂ML and b = β̂ML, we can rewrite

σ̂2ML as

σ̂2ML = (T − 1)−1N−1
N∑

i=1

[((ρ− ρ̂ML)yi,−1 +Xi(β − β̂ML) + εi)
′×

Q((ρ− ρ̂ML)yi,−1 +Xi(β − β̂ML) + εi)]. (25)
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Let βML = plimN→∞ β̂ML, σ
2
x = plimN→∞(T − 1)−1N−1

∑N
i=1X

′
iQXi, and σ

2
xy−1

=

plimN→∞(T − 1)−1N−1
∑N

i=1X
′
iQyi,−1. Then combining plimN→∞N

−1
∑N

i=1X
′
iQ(yi −

ρ̂MLyi,−1 − Xiβ̂ML) = 0 from (16) with plimN→∞N
−1
∑N

i=1X
′
iQ(yi − ρyi,−1 − Xiβ) =

p limN→∞N
−1
∑N

i=1X
′
iQεi = 0 gives

βML − β = σ−2x σxy−1(ρ− ρML). (26)

Using (25) and (26) and recalling that ξ′(ρ) = h(ρ) = −(T − 1)−1tr(QΦ), we obtain

σ2ML = p lim
N→∞

σ̂2ML = (ρ− ρML)
2σ2y + 2(β − βML)

′σxy−1(ρ− ρML)+

(β − βML)
′σ2x(β − βML) + 2(ρ− ρML)σ

2(T − 1)−1tr(QΦ) + σ2 =
(ρ− ρML)

2σ2y − σ′xy−1σ−2x σxy−1(ρ− ρML)
2 + 2(ρ− ρML)σ

2(T − 1)−1tr(QΦ) + σ2 =
(ρ− ρML)

2σ2y(1− ρ2xy−1)− 2(ρ− ρML)σ
2ξ′(ρ) + σ2.

Finally, using ρML − ρ = − σ2ξ′(ρ)
σ2y(1−ρ

2
xy−1

)
, we find that

σ2ML/(σ
2
y(1− ρ2xy−1)) = −

(
σ2ξ′(ρ)

σ2y(1− ρ2xy−1)

)2
+ σ2/(σ2y(1− ρ2xy−1)).

Proof of the claim that l̃c(r) has an inflection point at ρ when ρ = 1 :

We have already seen that ∂l̃
c(r)
∂r
|ρ=1 = ∂2 l̃c(r)

∂r2
|ρ=1 = 0. In addition, we have

∂3l̃c(r)

∂r3
= (T − 1)ξ′′′(r) +

6(T − 1)(r − ρML)(σ
2
ML/(σ

2
y(1− ρ2xy−1)))

(σ2ML/(σ
2
y(1− ρ2xy−1)) + (r − ρML)

2)3

− 2(T − 1)(r − ρML)
3

(σ2ML/(σ
2
y(1− ρ2xy−1)) + (r − ρML)

2)3
,

ξ′′′(1) = (T−2)(T−3)
12

, f(1) = T+1
6
, ξ′(1) = 1

2
, limρ→1 ρ

2
xy−1

= 0, limρ→1(ρML − ρ) = − ξ′(1)
f(1)

=

− 3
T+1

and limρ→1(σ
2
ML/(σ

2
y(1 − ρ2xy−1))) = −

(
ξ′(1)
f(1)

)2
+ 1

f(1)
= 3 (2T−1)

(T+1)2
. It follows that

∂3 l̃c(r)
∂r3

|ρ=1 = (T − 1)ξ′′′(1) + (T−1)2

2
6= 0 (in fact > 0) for T ≥ 2. �

We now present two lemmata that help to establish uniqueness and consistency of our

MMLEs:

Lemma 1 Let Assumption 1 hold. Then (i) l̃N(θ) has either no local optima or one local
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maximum, namely θ̂W = θ̂C, and one local minimum on the set Ω̃ w.p.1. (ii) l̃cN(r) has

either no local optima or one local maximum, namely ρ̂W = ρ̂C, and one local minimum

on the interval [−1,∞) w.p.1. (iii) The equation ∂l̃cN (r)

∂r
= 0 has either no solution on

[−1,∞) or two solutions on [−1,∞), namely ρ̂1 and ρ̂2 with ρ̂1 < ρ̂2 and ρ̂1 = ρ̂W = ρ̂C,

w.p.1.

Lemma 2 Let Assumption 1 hold. First let ρ 6= 1. Then (i) l̃(θ) has one local maximum
and one local minimum but no inflection point on the set Ω̃. The local maximum is

attained at θ0. (ii) l̃
c(r) has one local maximum and one local minimum but no inflection

point on the interval [−1,∞). The local maximum of l̃c(r) is attained at ρ. (iii) The

equation ∂l̃c(r)
∂r

= 0 has two solutions on [−1,∞): ρ1 and ρ2 with ρ1 < ρ2 and ρ1 = ρ.
Now let ρ = 1. Then (iv) l̃(θ) has one stationary point of inflection but no local optima

on Ω̃. The inflection point is attained at θ0. (v) l̃
c(r) has one stationary point of inflection

but no local optima on [−1,∞). The inflection point of l̃c(r) is attained at ρ = 1. (vi)
The equation ∂l̃c(r)

∂r
= 0 has only one solution on [−1,∞): ρ1 = 1.

We first prove the following lemma, which summarizes some useful properties of ξ′(ρ) :

Lemma 3 Let ρ ≥ −1. When T ≥ 2, ξ′(ρ) > 0, ξ′(1) = 1
2
;

When T = 2, ξ′(ρ) = 1
2
;

When T = 3, ξ′(−1) = 1
6
and ξ′′(ρ) = 1

6
;

When T ≥ 4 and T is even, ξ′(−1) = 1
2(T−1)

, ξ′′(−1) = 0, ξ′′(ρ) > 0 when ρ > −1,
and ξ′′′(ρ) > 0;

When T ≥ 5 and T is odd, ξ′(−1) = 1
2T
, ξ′′(ρ) > 0, ξ′′′(−1) = −T−3

4T
< 0, ξ′′′(−1/2) =

24−T (2T−3T+1)
27T (T−1)

> 0, and ∃ρ∗ with −1 < ρ∗ < −1/2 such that ξ′′′(ρ∗) = 0, ξ′′′(ρ) < 0 for

ρ < ρ∗ and ξ
′′′(ρ) > 0 for ρ > ρ∗.

Proof of lemma 3: for the proof of most properties see Dhaene and Jochmans

(2015). Their proof uses that ξ′(ρ) = [T (T − 1)]−1∑T−1
t=1 (T − t)ρt−1 = T−1−Tρ+ρT

T (T−1)(1−ρ)2
when

ρ 6= 1, and Descartes’ rule of signs. The remaining claims, i.e., ξ′(ρ) = 1
2
when ρ = 1 or

T = 2, ξ′′(ρ) = 1
6
when T = 3, ξ′(−1) = 1

2(T−1)
when T is even, and ξ′(−1) = 1

2T
when T

is odd, are easily verified. �

Thus when ρ ≥ −1, we have:
If T = 2, then ξ′(ρ) is strictly positive and constant;
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If T = 3, then ξ′(ρ) is strictly positive and increasing linearly;

If T ≥ 4 and T is even, then ξ′(ρ) is strictly positive, non-decreasing and strictly convex;
If T ≥ 5 and T is odd, then ξ′(ρ) is strictly positive, strictly increasing and first strictly
concave and then strictly convex.

Proof of lemma 1:

We can write (19) as

ξ′(r){σ̂2ML/(s
2
y(1− r2xy−1)) + (r − ρ̂ML)

2} = (r − ρ̂ML). (27)

Let ζN(r) = ξ
′(r){σ̂2ML/(s

2
y(1− r2xy−1)) + (r − ρ̂ML)

2}. Then ζ ′N(r) = ξ′′(r){σ̂2ML/(s
2
y(1−

r2xy−1)) + (r − ρ̂ML)
2} + 2(r − ρ̂ML)ξ

′(r) and ζ ′′N(r) = ξ
′′′(r){σ̂2ML/(s

2
y(1 − r2xy−1)) + (r −

ρ̂ML)
2}+ 4(r − ρ̂ML)ξ

′′(r) + 2ξ′(r).

By lemma 3 ζN(r) > 0 when r ≥ −1. Hence any solution r of (27) should satisfy
r > ρ̂ML. When r ≥ max(−1, ρ̂ML), we also have by lemma 3 that ζ

′
N(r) > 0 and if T is

even that ζ ′′N(r) > 0 while if T is odd we either have ζ
′′
N(r) > 0 for all r ≥ max(−1, ρ̂ML)

or ζ ′′N(r) < 0 for all r on [max(−1, ρ̂ML), ρ∗∗) and ζ
′′
N(r) > 0 for all r on (ρ∗∗,∞) with

ρ∗∗ > max(−1, ρML) and equal to the solution of ζ
′′
N(r) = 0. It follows that w.p.1. the

graph of ζN(r) either does not intersect the line r− ρ̂ML (this may well happen when ρ is

close or equal to unity, see Lancaster for an example) or intersects the line r− ρ̂ML twice,

say at r = ρ̂1 and r = ρ̂2 with max(−1, ρ̂ML) < ρ̂1 < ρ̂2. Both solutions of (27) would

correspond to local optima w.p.1. That is, the possibility that r − ρ̂ML is a tangent to

ζN(r) at ρ̂1 and/or ρ̂2 is an event with probability zero, so ρ̂1 and ρ̂2 would not correspond

to (an) inflection point(s) w.p.1. It is clear that when |ρ| ≤ 1, l̃cN(r) and l̃N(θ) attain at
most one local maximum on the interval [−1,∞) and the set Ω̃, respectively. Moreover,
if (27) has any solutions, then ρ̂C is one of them and ρ̂C = ρ̂W ≥ max(−1, ρ̂ML). Given

that l̃cN(r) has a global maximum at r = ∞ (because limr↑∞ l̃
c
N(r) = ∞), we conclude

that if (27) has any solutions, then it has two solutions ρ̂1 and ρ̂2 with ρ̂1 < ρ̂2, where

ρ̂1 = ρ̂C = ρ̂W corresponds to a local maximum of l̃cN(r) and ρ̂2 corresponds to a local

minimum of l̃cN(r), because l̃
c
N(r) cannot attain a local maximum at ρ̂2. Likewise, given

that limr↑∞ l̃N(θ̂(r)) = limr↑∞ l̃
c
N(r) = ∞, we conclude that if (27) has solutions ρ̂1 and

ρ̂2 with ρ̂1 < ρ̂2, then l̃N(θ) has two local optima on the set Ω̃, say θ̂1 and θ̂2, where

θ̂1 = θ̂(ρ̂1) = θ̂(ρ̂W ) = θ̂(ρ̂C) corresponds to a local maximum of l̃N(θ) and θ̂2 = θ̂(ρ̂2)

corresponds to a local minimum of l̃N(θ), because l̃N(θ) cannot attain a local maximum

at θ̂(ρ̂2). �
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Proof of lemma 2:

We can write (23) as

ξ′(r){σ2ML/(σ
2
y(1− ρ2xy−1)) + (r − ρML)

2} = (r − ρML). (28)

Let ζ(r) = ξ′(r){σ2ML/(σ
2
y(1 − ρ2xy−1)) + (r − ρML)

2}. Then ζ ′(r) = ξ′′(r){σ2ML/(σ
2
y(1 −

ρ2xy−1)) + (r − ρML)
2} + 2(r − ρML)ξ

′(r) and ζ ′′(r) = ξ′′′(r){σ2ML/(σ
2
y(1 − ρ2xy−1)) + (r −

ρML)
2}+ 4(r − ρML)ξ

′′(r) + 2ξ′(r).

By lemma 3 ζ(r) > 0 when r ≥ −1. Hence any solution r of (28) should satisfy
r > ρML. When r ≥ max(−1, ρML), we also have by lemma 3 that ζ

′(r) > 0 and if T is

even that ζ ′′(r) > 0 while if T is odd we either have ζ ′′(r) > 0 for all r ≥ max(−1, ρML)

or ζ ′′(r) < 0 for all r in [max(−1, ρML), ρ∗∗) and ζ
′′(r) > 0 for all r in (ρ∗∗,∞) where ρ∗∗

satisfies ρ∗∗ > max(−1, ρML) and ζ
′′(ρ∗∗) = 0. It follows that the graph of ζ(r) intersects

the line r − ρML at most twice, say at r = ρ1 and r = ρ2 with max(−1, ρML) ≤ ρ1 ≤ ρ2.
On the other hand we have ρ ≥ max(−1, ρML) and using (17), h(ρ) = ξ′(ρ) and (24)

it is easily verified that ρ is a solution of (28). We have already seen in the main text

that when ρ 6= 1, l̃c(r) and l̃(θ) attain a local maximum at ρ and θ0 = plimN→∞ θ̂(ρ) =

plimN→∞(ρ, σ̂
2(ρ, β̂(ρ)), β̂(ρ))′, respectively. Given that l̃c(r) has a global maximum at

r = ∞ (because limr↑∞ l̃
c(r) = ∞), l̃c(r) cannot attain a local maximum at ρ2 so we

conclude that (28) has two solutions, ρ1 and ρ2, where ρ1 = ρ and ρ2 corresponds to a local

minimum of l̃c(r). Similarly, given that limr↑∞plimN→∞ l̃(θ̂(r)) = limr↑∞ l̃
c(r) = ∞, l̃(θ)

cannot attain a local maximum at plimN→∞ θ̂(ρ2) so we conclude that plimN→∞ θ̂(ρ1) =

plimN→∞ θ̂(ρ) = θ0 and that plimN→∞ θ̂(ρ2) corresponds to a local minimum of l̃(θ).

When ρ = 1, we know that l̃(θ) and l̃c(r) have an inflection point at θ0 and ρ,

respectively. When ρ = 1, we also have that ρML = 1− 3
T+1

, so that max(−1, ρML) = ρML

and ∂l̃c(r)
∂r
|ρML

= (T − 1)ξ′(ρML) > 0. Because
∂l̃c(r)
∂r

is continuous for r ≥ ρML, because

ρ1 is the smallest r > ρML such that
∂l̃c(r)
∂r

= 0, and because ∂l̃c(r)
∂r
|ρML

> 0, we have
∂l̃c(r)
∂r
|ρ1− > 0. We now show that ρ1 is an inflection point. Suppose instead that ρ1 were

a maximum (note that ρ1 cannot be a minimum because ∂l̃c(r)
∂r
|ρ1− > 0). Then ρ2 must

have been a minimum (because ∂l̃c(r)
∂r
|+∞ > 0) and there would be no inflection point

in the interval [ρML,∞). This would contradict that l̃c(r) has at least one inflection
point larger than ρML, namely at r = 1. Thus ρ1 is an inflection point. Remains to

show that ρ1 = ρ2 = 1. Since ∂l̃c(r)
∂r
|ρ1− > 0 and ρ1 is inflection point and

∂l̃c(r)
∂r

= 0

has at most two solutions, we also have ∂l̃c(r)
∂r
|ρ1+ > 0. Because ρ1 > ρML, because

(T − 1)−1(σ2ML/σ
2
y + (r− ρML)

2) is strictly positive, increasing and strictly convex when
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r > ρML, and because (T − 1)−1(σ2ML/σ
2
y + (r− ρML)

2)∂l̃
c(r)
∂r

= ζ(r)− (r− ρML), we have

(ζ(r)− (r − ρML))|ρ1− > 0, (ζ(r)− (r − ρML))|ρ1 = 0 and (ζ(r)− (r − ρML))|ρ1+ > 0. It
follows that ζ ′(ρ1) = 1. Because ρML > −1/2, we have both ξ′′′(r) > 0 and ζ ′′(r) > 0 for
all r > ρML. This implies that ζ

′(r) > 1 for r > ρ1 and hence that there exists no r > ρ1

such that ζ(r) − (r − ρML) = 0. It follows that ρ1 = ρ2 = ρ = 1. Similarly, we obtain

that plimN→∞ θ̂(ρ1) =plimN→∞ θ̂(ρ2) = θ0 �

Lemma 4 Let Θ̃cN be the set of roots of
∂l̃cN
∂r
= 0 corresponding to local maxima of l̃cN on

the interval [−1,∞). Let Assumption 1 hold and ρ = 1. Then limN→∞ Pr(Θ̃
c
N = ∅) > 0.

Proof: Let κ(r) = ξ′(r){σ̂2ML/(s
2
y(1−r2xy−1))+(r− ρ̂ML)

2}− (r− ρ̂ML). To save space

we only prove the lemma for the model without covariates so that r2xy−1 = 0.

Note that
∂l̃cN
∂r
= 0⇔ κ(r) = 0. When ρ = 1,

s2y = (T − 1)−1N−1∑N
i=1 ε

′
iΦ
′QΦεi ≡ (T − 1)−1AN ,

ρ̂ML − 1 = (
∑N

i=1 ε
′
iΦ
′QΦεi)

−1∑N
i=1 ε

′
iΦ
′Qεi ≡ A−1N BN , and

σ̂2ML = (T − 1)−1N−1∑N
i=1 ε

′
i(Φ(1− ρ̂ML) + I)

′Q(Φ(1− ρ̂ML) + I)εi =

(T − 1)−1(CN − A−1N B2N)

where CN ≡ N−1
∑N

i=1 ε
′
iQεi.

When r is close to one, ξ′(r) ≈ ξ′(1)+ξ′′(1)(r−1)+ 1
2
ξ′′′(1)(r−1)2. Note that ξ′(1) = 1

2
,

ξ′′(1) = 1
6
(T − 2) and ξ′′′(1) = 1

12
(T − 2)(T − 3).

Let z = r − 1. When r is close to one, κ(r) ≈ (1
2
+ 1

6
(T − 2)z + 1

24
(T − 2)(T −

3)z2)(A−1N CN − 2A−1N BNz + z2)− z +A−1N BN ≈ 1
2
A−1N CN +A

−1
N BN + (

1
6
(T − 2)A−1N CN −

A−1N BN − 1)z + (12 + 1
24
(T − 2)(T − 3)A−1N CN − 1

3
(T − 2)A−1N BN)z2 ≡ κ̃(z) where in the

last step we have dropped the z3-term and the z4-term which are negligible when r is

close enough to one. Note that when T = 2, the approximations can be replaced by exact

equalities.

Note that κ̃(z) = 0⇔ 6AN κ̃(z) = 0. Solving 6AN κ̃(z) = 0 gives: z1,2 = {(6AN+6BN−
(T−2)CN)±

√
DN}/(6AN+ 1

2
(T−2)(T−3)CN−4(T−2)BN) where DN ≡ 36(A2N+B2N−

ANCN)+(T−2)2C2N+12(T−2)(BNCN−ANCN+4B2N)−(3CN+6BN)(T−2)(T−3)CN .
It is easily seen that plimN→∞AN = 1

6
(T + 1)σ2, plimN→∞BN = −1

2
σ2 and

plimN→∞CN = σ
2. It follows that plimN→∞(6AN +

1
2
(T − 2)(T − 3)CN − 4(T − 2)BN) =

3(T − 1)σ2 + 1
2
(T − 2)(T − 3)σ2 > 0, plimN→∞(6AN + 6BN − (T − 2)CN) = 0 and

plimN→∞DN = 0 so that plimN→∞ z1,2 = 0, as predicted by lemma 2. However, in
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finite samples of any size we can have DN < 0, so that κ̃(z) = 0 does not have a

real solution. Pr(DN < 0) does not tend to zero when N → ∞. We conclude that
limN→∞ Pr(Θ̃

c
N = ∅) > 0. �

Proof of theorem 1:

Lemma 1 implies that θ̂W and θ̂C are uniquely defined when they exist. When l̃
c
N(r)

and l̃N(θ) have local maxima on the interval [−1,∞) and the set Ω̃, respectively, this
follows from lemma 1. We will now turn to the other claims of the theorem. To prove the

consistency claims, we will verify the conditions of theorem 2.1 in Newey and McFadden

(NMcF, 1994). To simplify matters and following NMcF, we will simply assume that the

parameter space for θ is a very large compact subset of Ω̃, viz. Ω = Ωρ×Ωσ2 ×Ωβ where
Ωρ = [−1, ρu] and Ωσ2 = [1/σu, σu] for some very large ρu, σu ∈ R+ and Ωβ is a very large
compact subset of RK .

We will first prove the claims for θ̂C . Using that 1
(T−1)

∣∣∣∂l̃
c
N (r)

∂r
− ∂l̃c(r)

∂r

∣∣∣ =
∣∣∣∣
(r−ρ̂ML)s

2
y(1−r

2
xy−1

){σ2ML+(r−ρML)
2σ2y(1−ρ

2
xy−1

)}−(r−ρML)σ
2
y(1−ρ

2
xy−1

){σ̂2ML+(r−ρ̂ML)
2s2y(1−r

2
xy−1

)}

(σ̂2ML+(r−ρ̂ML)
2s2y(1−r

2
xy−1

))(σ2
ML

+(r−ρML)
2σ2y(1−ρ

2
xy−1

))

∣∣∣∣ ≤
∣∣∣∣
(r−ρ̂ML)s

2
y(1−r

2
xy−1

){σ2ML+(r−ρML)
2σ2y(1−ρ

2
xy−1

)}−(r−ρML)σ
2
y(1−ρ

2
xy−1

){σ̂2ML+(r−ρ̂ML)
2s2y(1−r

2
xy−1

)}

σ̂2MLσ
2

ML

∣∣∣∣ ≡

|U(r)| and noting that the terms in the numerator of U(r) are polynomials in r and
that σ2ML = plimN→∞ σ̂

2
ML > 0, it follows from plimN→∞ U(r) = 0 ∀r ∈ Ωρ that

plimN→∞ supr∈Ωρ |U(r)| = 0 and hence plimN→∞ supr∈Ωρ

∣∣∣∂l̃
c
N (r)

∂r
− ∂l̃c(r)

∂r

∣∣∣ = 0.

In a similar way it can be shown that plimN→∞ supr∈Ωρ

∣∣∣∣
(
∂l̃cN (r)

∂r

)2
−
(
∂l̃c(r)
∂r

)2∣∣∣∣ = 0 and

plimN→∞ supr∈Ωρ

∣∣∣∂
2 l̃cN (r)

∂r2
− ∂2 l̃c(r)

∂r2

∣∣∣ = 0. Also the polynomials
(
∂l̃c(r)
∂r

)2
and ∂2 l̃c(r)

∂r2
are con-

tinuous on Ωρ. Next we need to distinguish between two cases, ρ 6= 1 and ρ = 1 :
When ρ 6= 1, limN→∞ Pr(Θ̃

c
N = ∅) = 0, where Θ̃cN is the set of roots of

∂l̃cN
∂r

= 0

corresponding to local maxima of l̃cN on the interval [−1,∞). Furthermore, it follows from
lemma 2 above and theorem 2.1 in NMcF that ρ̂C converges in probability to ρ, which

corresponds to a unique local maximum of l̃c(r) on Ωρ. It then follows straightforwardly

that θ̂C (= (ρ̂C , σ̂
2(ρ̂C , β̂(ρ̂C)), β̂(ρ̂C))

′ ) exists w.p.a.1. and is consistent.

When ρ = 1, limN→∞ Pr(Θ̃
c
N = ∅) > 0 by lemma 4, notwithstanding that

∂l̃c(r)
∂r
|ρ = 0.

However, because ∂l̃
c(r)
∂r
|ρ = 0, ∂

2 l̃c(r)
∂r2

|ρ = 0 and ∂3 l̃c(r)
∂r3

|ρ > 0 (∂l̃
c(r)
∂r
|ρ− > 0 and ∂l̃c(r)

∂r
|ρ+ > 0,

cf. proof of lemma 2), we have that ρ̂C exists w.p.a.1. and by lemma 2 above and theorem

2.1 in NMcF that ρ̂C converges in probability to ρ, which is a unique solution of
∂l̃c(r)
∂r
|ρ = 0

on Ωρ. It follows that also when ρ = 1, θ̂C exists w.p.a.1. and is consistent.
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We now proceed to prove the claims for θ̂W . To prove consistency of θ̂W we will make

use of theorem 2.6 in NMcF to verify the conditions of their theorem 2.1.

Let l̃N,i(θ) = (T−1)ξ(r)−0.5(T−1) log s2−0.5s−2(yi−ryi,−1−Xib)
′Q(yi−ryi,−1−Xib).

In the notation of NMcF ∂l̃N,i(θ)/∂θ = g(zi, θ).We assume that θ0 ∈ Ω, which is compact.
It is easily checked that ∂l̃N,i(θ)/∂θ is continuous at each θ0 ∈ Ω w.p.1. Furthermore,

E(supθ∈Ω(g(zi, θ)
′g(zi, θ))) < ∞. To complete the proof, we again need to distinguish

between two cases, ρ 6= 1 and ρ = 1 :
When ρ 6= 1, limN→∞ Pr(Θ̃N = ∅) = 0, where Θ̃N is the set of roots of

∂l̃N
∂θ
= 0 corre-

sponding to local maxima of l̃N on the set Ω̃. Furthermore, it follows from lemma 2 above

and theorem 2.6 in NMcF that θ̂W converges in probability to θ0, which corresponds to

a unique local maximum of l̃(θ) on Ω. Thus θ̂W exists w.p.a.1. and is consistent.

When ρ = 1, limN→∞ Pr(Θ̃N = ∅) > 0 by lemma 4, notwithstanding that
∂l̃(r)
∂θ
|θ0 =

0. However, because ∂l̃(θ)
∂θ
|θ0 = 0, x′

(
∂2 l̃(θ)
∂θ∂θ′

|θ0
)
x ≤ 0 ∀x ∈ R

2+K , det
(
∂2 l̃(θ)
∂θ∂θ′

|θ0
)
= 0,

∂2 l̃c(r)
∂r2

|ρ = 0 and ∂3 l̃c(r)
∂r3

|ρ > 0 (∂l̃
c(r)
∂r
|ρ− > 0 and ∂l̃c(r)

∂r
|ρ+ > 0, cf. proof of lemma 2), we

have that θ̂W exists w.p.a.1. and by lemma 2 above and theorem 2.6 in NMcF that θ̂W

converges in probability to θ0, which is a unique solution of
∂l̃c(θ)
∂θ
|θ0 = 0 on Ω. Thus also

when ρ = 1, θ̂W exists w.p.a.1. and is consistent.

The proofs of the claims for θ̂F are similar. �

Derivation of the minimum rate of convergence of ρ̂C:

We first state some preliminary results. Let σ̆2 = σ̂2(1, β̂(1)). Note that β̂(1) =

(
∑N

i=1X
′
iQXi)

−1
∑N

i=1X
′
iQεi and σ̆

2 = 1
(T−1)N

∑N
i=1(εi − Xiβ̂(1))

′Q(εi − Xiβ̂(1)). Let

∂j l̃cN (1)

∂rj
=

∂j l̃cN (r)

∂rj
|r=1 and Φ = Φ(1). Then

∂l̃cN(1)

∂r
= σ̆−2[(T − 1)ξ′(1)(σ̆2 − σ2) + (29)

(T − 1)ξ′(1)σ2 +N−1
N∑

i=1

(εi −Xiβ̂(1))
′QΦεi]

and

∂2l̃cN(1)

∂r2
= (T − 1)ξ′′(1)− σ̆−2N−1

N∑

i=1

(Φεi +Xi
∂β̂(1)

∂r
)′QΦεi −

σ̆−4
∂σ̂2(1)

∂r
N−1

N∑

i=1

(εi −Xiβ̂(1))
′QΦεi,
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where ∂β̂(1)
∂r

= −(∑N
i=1X

′
iQXi)

−1
∑N

i=1X
′
iQΦεi and

∂σ̂2(1)
∂r

= −2(T − 1)−1N−1
∑N

i=1(εi −
Xiβ̂(1))

′Q(Φεi +Xi
∂β̂(1)
∂r
).

Clearly N1/2
(
∂l̃cN (1)

∂r

)
= Op(1). Recall that ξ

′′(1)− (T − 1)−1tr(Φ′QΦ)+2(ξ′(1))2 = 0.
Therefore we also have N1/2

(
∂2 l̃cN (1)

∂r2

)
= Op(1). Finally, we have

p limN→∞
∂3l̃cN(1)

∂r3
=

∂3l̃c(1)

∂r3
=
T (T − 1)(T + 1)

12
> 0,

ξ′′′′(1) =
1

20
(T − 2)(T − 3)(T − 4),

p limN→∞
∂4l̃cN(1)

∂r4
=

∂4l̃c(1)

∂r4
= (T − 1) ξ′′′′(1) + 1

6
(T − 1)(T 2 − 10T + 7) 6= 0,

ξ′′′′′(1) =
1

30
(T − 2)(T − 3)(T − 4)(T − 5) and

p limN→∞
∂5l̃cN(1)

∂r5
=

∂5l̃c(1)

∂r5
= (T − 1) ξ′′′′′(1)− 1

3
(T − 1) (5T 2 − 20T + 11) 6= 0.

We now derive the minimum rate of convergence of ρ̂C . W.p.a.1 ρ̂C is a solution of

the f.o.c.
∂2 l̃cN (r)

∂r2
∂l̃cN (r)

∂r
= 0. Let GcN(r) = N

3/4 ∂
2 l̃cN (r)

∂r2
∂l̃cN (r)

∂r
. Forming a Taylor expansion of

GcN(ρ̂C) around r = 1 gives that ρ̂C must solve

0 = GcN(1) +
3∑

j=1

1

j!

∂jGcN(1)

∂rj
(r − 1)j + P1,N(N1/4(r − 1)),

where P1,N(N
1/4(r − 1)) is a polynomial in N1/4(r − 1) with coefficients that are op(1).

That is, ρ̂C must solve

0 = N−1/4N
∂2l̃cN(1)

∂r2
∂l̃cN(1)

∂r
+

N1/2


∂

3l̃cN(1)

∂r3
∂l̃cN(1)

∂r
+

(
∂2l̃cN(1)

∂r2

)2
N1/4(r − 1) +

1

2
N−1/4N1/2

(
∂4l̃cN(1)

∂r4
∂l̃cN(1)

∂r
+ 3

∂3l̃cN(1)

∂r3
∂2l̃cN(1)

∂2r

)
N1/2(r − 1)2 +

1

3!


∂

5l̃cN(1)

∂r5
∂l̃cN(1)

∂r
+ 4

∂4l̃cN(1)

∂r4
∂2l̃cN(1)

∂r2
+ 3

(
∂3l̃cN(1)

∂r3

)2
N3/4(r − 1)3 +

P1,N(N
1/4(r − 1))
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or equivalently

0 = N1/2

(
∂3l̃cN(1)

∂r3
∂l̃cN(1)

∂r

)
N1/4(r − 1) + (30)

1

2

(
∂3l̃cN(1)

∂3r

)2
N3/4(r − 1)3 + P2,N(N1/4(r − 1)),

where P2,N(N
1/4(r − 1)) is another polynomial in N1/4(r − 1) with coefficients that are

op(1). It follows that N
1/4(ρ̂C − 1) = Op(1), i.e., the rate of convergence of ρ̂C is at least

N1/4.

Proof of theorem 2 and corollary 1:

We will show in the proof below that Z1,N
d→ Z1 ∼ N(0, 48T−2((T − 1)(T + 1))−1)

and that there exists a sequence {UN} with UN = Op(N−1/2) such that if Z1,N +UN > 0,

then M c
N(r), which is given in (13), has two local minima attained at values ρ̃ such that

N1/2(ρ̃−1)2 = Z1,N+op(1), whereas if Z1,N+UN < 0, thenM c
N(r) has one local minimum

attained at r = ρ̂ with N1/2(ρ̂ − 1)2 = op(1). Furthermore, if Z1,N + UN > 0, then the
sign of N1/4(ρ̂ − 1) is determined by the remainder Rc1,N(N1/4(ρ̂ − 1)) in (13). We first
examine this remainder:

N1/4Rc1,N(N
1/4(ρ̂− 1)) = N1/4(ρ̂− 1)Rc2,N(N1/2(ρ̂− 1)2) +Rc3,N(N1/4(ρ̂− 1))

where

Rc2,N(N
1/2(ρ̂− 1)2) = 2N ∂

2l̃cN(1)

∂r2
∂l̃cN(1)

∂r
+N1/2∂

3l̃cN(1)

∂r3
∂2l̃cN(1)

∂r2
N1/2(ρ̂− 1)2 +

1

3
N1/2∂

4l̃cN(1)

∂r4
∂l̃cN(1)

∂r
N1/2(ρ̂− 1)2 + 1

6

∂4l̃cN(1)

∂r4
∂3l̃cN(1)

∂3r
N(ρ̂− 1)4 and

Rc3,N(N
1/4(ρ̂− 1)) = op(1).

However, if N1/2(ρ̂− 1)2 = Z1,N + op(1), then Rc2,N(N1/2(ρ̂− 1)2) = op(1). Therefore we
need to consider Rc3,N(N

1/4(ρ̂− 1)). We have

N1/2Rc3,N(N
1/4(ρ̂− 1)) = N1/4Rc4,N(N

1/2(ρ̂− 1)2) +
N5/4(ρ̂− 1)5Rc5,N(N1/2(ρ̂− 1)2) +Rc6,N(N1/4(ρ̂− 1))
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where

Rc4,N(N
1/2(ρ̂− 1)2) = (N1/2∂

2l̃cN(1)

∂r2
)2N1/2(ρ̂− 1)2 + ( 8

4!
N1/2∂

4l̃cN(1)

∂r4
∂2l̃cN(1)

∂r2
+

2

4!
N1/2∂

5l̃cN(1)

∂r5
∂l̃cN(1)

∂r
)N(ρ̂− 1)4 + (30

6!

∂5l̃cN(1)

∂r5
∂3l̃cN(1)

∂r3
+

20

6!
(
∂4l̃cN(1)

∂r4
)2)N3/2(ρ̂− 1)6 + op(1),

Rc5,N(N
1/2(ρ̂− 1)2) = 2

5!
N1/2∂

6l̃cN(1)

∂r6
∂l̃cN(1)

∂r
+
10

5!
N1/2∂

5l̃cN(1)

∂r5
∂2l̃cN(1)

∂r2
+

1

5!

∂6l̃cN(1)

∂r6
∂3l̃cN(1)

∂r3
N1/2(ρ̂− 1)2 + 10

6!

∂5l̃cN(1)

∂r5
∂4l̃cN(1)

∂r4
N1/2(ρ̂− 1)2 and

Rc6,N(N
1/4(ρ̂− 1)) = op(1).

If N1/2(ρ̂− 1)2 = −2(∂3 l̃cN (1)
∂r3

)−1(N1/2 ∂l̃
c
N (1)

∂r
) + op(1), then

Rc4,N(N
1/2(ρ̂− 1)2) = (N1/2∂

2l̃cN(1)

∂r2
)2N1/2(ρ̂− 1)2 +

1

3
N1/2∂

4l̃cN(1)

∂r4
∂2l̃cN(1)

∂r2
N(ρ̂− 1)4 + 1

36
(
∂4l̃cN(1)

∂r4
)2N3/2(ρ̂− 1)6 + op(1).

It follows that if Z1,N + UN > 0, then the value of M
c
N(r) is in fact minimized at

N1/2(ρ̂− 1)2 = Z1,N +N−1/2Rc7,N + op(N
−1/2)

where

Rc7,N ≡ (
∂3l̃cN(1)

∂r3
)−2(−2(N1/2∂

2l̃cN(1)

∂r2
)2 −

4

3
(
∂4l̃cN(1)

∂r4
)(N1/2∂

2l̃cN(1)

∂r2
)Z1,N −

1

6
(
∂4l̃cN(1)

∂r4
)2Z21,N),

and

Rc2,N(N
1/2(ρ̂− 1)2) = (N1/2∂

3l̃cN(1)

∂r3
∂2l̃cN(1)

∂r2
+

1

6

∂4l̃cN(1)

∂r4
∂3l̃cN(1)

∂r3
Z1,N)×N−1/2Rc7,N + op(N

−1/2).
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We also have Rc4,N(N
1/2(ρ̂− 1)2) = Op(1) and

Rc5,N(N
1/2(ρ̂− 1)2) = 10

5!
N1/2∂

5l̃cN(1)

∂r5
∂2l̃cN(1)

∂r2
+
10

6!

∂5l̃cN(1)

∂r5
∂4l̃cN(1)

∂r4
Z1,N + op(1).

We conclude that if Z1,N + UN > 0, then N
1/2(ρ̂− 1)2 = Z1,N +Op(N−1/2),

Rc1,N(N
1/4(ρ̂− 1)) =

N−1/2Rc4,N(N
1/2(ρ̂− 1)2) +N1/4(ρ̂− 1)N−3/4RcN(N

1/2(ρ̂− 1)2) + op(N−3/4)

where

RcN(N
1/2(ρ̂− 1)2) ≡ N1/2Rc2,N(N

1/2(ρ̂− 1)2) + Z21,NRc5,N(N1/2(ρ̂− 1)2) + op(1),

and

sgn(N1/4(ρ̂− 1)) = sgn(−RcN(N1/2(ρ̂− 1)2)).

It also follows that UN = Op(N
−1/2).

If Z1,N + UN < 0, then M
c
N(r) has one local minimum and its value is minimized at

N1/2(ρ̂− 1)2 = op(1).
Next we derive the limiting distributions of N1/2

(
∂l̃cN (1)

∂r

)
and N1/2

(
∂2 l̃cN (1)

∂r2

)
. Using

that under normality of εi for any constant T×T matricesM1 andM2, E(ε
′
iM1εiε

′
iM2εi) =

σ4(tr(M1)tr(M2) + tr(M1M2 +M
′
1M2)), we find that

N1/2(σ̆2 − σ2)/σ2 d→ V1 ∼ N(0, 2/(T − 1)),

N1/2(N−1
N∑

i=1

ε′iΦ
′QΦεi − σ2tr(Φ′QΦ))/σ2 d→ V2 ∼ N(0, 2tr(Φ′QΦΦ′QΦ)),

N1/2(N−1
N∑

i=1

ε′iQΦεi − σ2tr(QΦ))/σ2
d→ V3 ∼ N(0, (tr(QΦQΦ) + tr(Φ′QΦ))),

and

E(V1V2) = 2(T − 1)−1tr(QΦ′QΦ) =
1

6
(T + 1),

E(V1V3) = 2(T − 1)−1tr(QΦ) = −1, and

E(V2V3) = 2tr(Φ
′QΦQΦ) = −1

6
(T − 1)(T + 1).
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It is now easily seen that

N1/2

(
∂l̃cN(1)

∂r

)
d→ V4 ≡ (T − 1)ξ′(1)V1 + V3 =

1

2
(T − 1)V1 + V3,

N1/2

(
∂2l̃cN(1)

∂r2

)
d→ V5 ≡ (2(T − 1)ξ′′(1)− tr(Φ′QΦ))V1 − V2 − 4ξ′(1)V3 =

1

6
(T − 1)(T − 5)V1 − V2 − 2V3 and

Z1,N
d→ Z1 ≡

(
−1
2

∂3l̃c(1)

∂r3

)−1
V4 = −24 (T (T − 1)(T + 1))−1 V4,

where we have used that ξ′(1) = 1
2
, ξ′′(1) = 1

6
(T − 2), tr(Φ′QΦ) = 1

6
(T − 1)(T + 1) and

∂3 l̃c(1)
∂r3

= T (T−1)(T+1)
12

. Clearly

Z2,N = N
1/2(σ̆2 − σ2) d→ Z2 ≡ σ2V1.

By using the delta method, we obtain

N1/2(σ̂2n − σ2) = N1/2(σ̂2/ρ̂− σ2) = N1/2((σ̂2 − σ2)− σ2(ρ̂− 1)) + op(1).

Noting that

N1/2(σ̂2 − σ2) = Z2,N + 2N
−1/2(1− ρ̂)(T − 1)−1

N∑

i=1

ε′iQΦεi +

N−1/2(ρ̂− 1)2(T − 1)−1 ×
N∑

i=1

ε′iΦ
′QΦεi + op(1) and

K+ = σ2tr(Φ′QΦ)/(T − 1),

we find that

N1/2(σ̂2n − σ2)
d→ (Z2 +K+Z1)× 1{Z1 > 0}+ Z2 × 1{Z1 ≤ 0}.

It also follows that

N1/4(σ̂2C − σ2)−N1/4(ρ̂C − 1)σ2 = op(1).
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Finally, it is easily seen that

Z3,N
d→ Z3 ∼ N(0, σ2(Σxqx)−1),

that E(Z1Z2) = E(Z1Z3) = E(Z2Z3) = 0, and that N1/2Rc2,N(Z1,N + UN)
d→ Rc2,

Rc5,N(Z1,N + UN)
d→ Rc5 and R

c
N(Z1,N + UN)

d→ Rc for some Rc2, R
c
5 and R

c.

Next let

R̃c2 ≡
(
∂3l̃cN(1)

∂r3

)−1(
−2V 35 −

5

3

∂4l̃c(1)

∂r4
V 25 Z1 −

7

18
(
∂4l̃c(1)

∂r4
)2V5Z

2
1 −

1

36
(
∂4l̃c(1)

∂r4
)3Z31

)

and

R̃c5 ≡
1

12

∂5l̃c(1)

∂r5
(V5 +

1

6

∂4l̃c(1)

∂r4
Z1).

When Z1 > 0, R
c
2 = R̃

c
2, R

c
5 = R̃

c
5 and

Rc = R̃c2 + Z
2
1 R̃

c
5. (31)

Noting that tr(QΦQΦ) = − 1
12
(T−1)(T−5) and tr(Φ′QΦΦ′QΦ) = 1

180
(2T 4+5T 2−7),

we have

V4 ∼ N(0,
1

12
(T − 1)(T + 1)),

V5 ∼ N(0,
1

90
(T − 1)(T + 1)(2T 2 + 7)) and

E(V4V5) = −
1

12
(T − 1)(T + 1).

We can decompose V5 as V5 = −V4 + V0 so that E(V0V4) = 0 and

V0 ∼ N(0,
1

180
(T − 1)(T + 1)(4T 2 − 1)).

Let

κ = −2
(
∂3l̃cN(1)

∂r3

)−1
∂4l̃c(1)

∂r4
,

κ̃0(T ) = 2− 5
3
κ+

7

18
κ2 − 1

36
κ3 +

1

18

(
∂3l̃cN(1)

∂r3

)−1
∂5l̃c(1)

∂r5
(κ− 6) and

κ̃2(T ) = 6− 5
3
κ.
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Then we have

R̃c2 + Z
2
1 R̃

c
5 = (

∂3l̃cN(1)

∂r3
)−1(κ̃0(T )V

3
4 + κ̃1(T )V

2
4 V0 + κ̃2(T )V4V

2
0 + κ̃3(T )V

3
0 )

for some κ̃1(T ) and κ̃3(T ). It is easily verified that κ̃0(T ) > 0 and κ̃2(T ) > 0 for T ≥ 4,
κ̃0(2) = 0, κ̃0(3) < 0, κ̃2(2) < 0 and κ̃2(3) < 0. Furthermore, because V0 is a Gaussian r.v.

with mean zero, the conditional p.d.f. of κ̃1(T )V
2
4 V0+ κ̃3(T )V

3
0 given V4 (or equivalently,

given Z1) is symmetric around zero. Also, V
2
0 ≥ 0. Noting that Bc = 1(Rc > 0), it is now

easily seen that E((−1)BcZ1/21 |Z1, Z1 > 0) > 0 when T ≥ 4, while E((−1)BcZ1/21 |Z1, Z1 >
0) < 0 when T = 2 or T = 3. We can conclude that E((−1)BcZ1/21 |Z1 > 0) > 0 when

T ≥ 4, while E((−1)BcZ1/21 |Z1 > 0) < 0 when T = 2 or T = 3. �

Derivation of the rate of convergence of ρ̂F and the limiting distribution

of θ̂F when ρ = 1:

Let

ΨN,n(θn) ≡ (Ψρ,N,n(r),Ψσ2n,N,n(θn),Ψ
′
β,N,n(θn))

′ =

(
∂l̃cN(r)

∂r
, s2nr

∂l̃N,n(θn)

∂s2n
, s2nr

∂l̃N,n(θn)

∂b′
)′ and

MN(θn) = N
(
Ψ′N,n(θn)

)
WN (ΨN,n(θn)) .

Let GN be an (2 +K)× (2 +K) matrix with

GN,1,1 =
1

2

∂3l̃cN(1)

∂r3
, GN,2,2 =

∂Ψσ2n,N,n(θ∗)

∂s2n
, GN,2,3 =

∂Ψσ2n,N,n(θ∗)

∂b
,

GN,3,3 =
∂Ψβ,N,n(θ∗)

∂b′
, GN,2,1 =

1

2

∂2Ψσ2n,N,n(θ∗)

∂r2

and the other elements of GN equal to zero. Note that plimN→∞GN = G has full rank.

Similarly to the analysis for M c
N(r), we consider a Taylor expansion of MN(θn) around

θn = θ∗. Let θ̂ = θ̂F , θ̂n = θ̂n,F and ω̂n = ((ρ̂− 1)2, (σ̂2n − σ2), β̂
′
)′. Substituting θ̂n for θn

we obtain

MN(θ̂n) = N
(
Ψ′N,n(θ∗)

)
WN (ΨN,n(θ∗)) + 2N

1/2Ψ′N,n(θ∗)WNGNN
1/2ω̂n +

N1/2ω̂′nG
′
NWNGNN

1/2ω̂n +R1,N(N
1/4(ρ̂− 1)), (32)

where R1,N(N
1/4(ρ̂− 1)) = op(1).
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Let

WN =

[
WN,1,1 WN,1,2

WN,2,1 WN,2,2

]
and GN =

[
GN,1,1 GN,1,2
GN,2,1 GN,2,2

]
,

where WN,2,1 = W
′
N,1,2, GN,2,1 = (GN,2,1, 0

′)′ and G′N,1,2 = 0 are (K +1)−vectors, and let

ΨN,n(θ∗) = (Ψρ,N,n(1),Ψ
′
N,n(θ∗))

′ and ω̂n = ((ρ̂− 1)2, ω̂′n)′.

Then we have the following result:

Lemma 5 There exists a sequence {ŨN} with ŨN = op(1) such that if Z1,N+ŨN > 0, then
the value of MN(θ̂n) in (32) is minimized at N

1/2(ρ̂− 1)2 = Z1,N + op(1) and N1/2ω̂n =

N1/2ω̂+ where N
1/2ω̂+ = G−1N,2,2GN,2,1G

−1
N,1,1N

1/2Ψρ,N,n(1) − G−1N,2,2N1/2ΨN,n(θ∗) + op(1)

(i.e., at N1/2ω̂n = −G−1N N1/2ΨN,n(θ∗) + op(1) ), whereas if Z1,N + ŨN < 0, the value of

MN(θ̂n) is minimized at N
1/2(ρ̂ − 1)2 = op(1) and N

1/2ω̂n = N1/2ω̂− where N
1/2ω̂− ≡

N1/2ω̂++K−,NZ1,N withK−,N ≡ G−1N,2,2W−1
N,2,2WN,2,1GN,1,1+G

−1
N,2,2GN,2,1 (i.e., at N

1/2ω̂n =

(op(1), N
1/2ω̂′−)

′ ).

Proof of lemma 5: Minimizing MN(θ̂n) given in (32) w.r.t. N
1/2ω̂n is equivalent to

minimizing

M̃N(θ̂n) ≡ 2(G−1N N1/2ΨN,n(θ∗))
′W̃NN

1/2ω̂n +N
1/2ω̂′nW̃NN

1/2ω̂n +R1,N(N
1/4(ρ̂− 1))

w.r.t. N1/2ω̂n, where W̃N = G
′
NWNGN . SinceWN is PD and GN has full rank, W̃N is also

PD. Partition W̃N as

[
W̃N,1,1 W̃N,1,2

W̃N,2,1 W̃N,2,2

]
where W̃N,1,1 is a scalar and W̃N,2,1 = W̃

′
N,1,2 is

a (K + 1)−vector. Given the value of N1/2(ρ̂ − 1)2, M̃N(θ̂n) is minimized at N
1/2ω̂n =

N1/2ω̂+ − W̃−1
N,2,2W̃N,2,1(N

1/2(ρ̂− 1)2 − Z1,N). Substituting this expression for N1/2ω̂n in

M̃N(θ̂n) and noting that G
−1
N,1,1N

1/2Ψρ,N,n(1) = −Z1,N gives

M̃N(θ̂n) = (−2Z1,NN1/2(ρ̂− 1)2+N(ρ̂− 1)4)(W̃N,1,1− W̃ ′
N,2,1W̃

−1
N,2,2W̃N,2,1) + R̃N + op(1),

(33)

where R̃N does not depend on θ̂n. Noting that plimN→∞(W̃N,1,1−W̃ ′
N,2,1W̃

−1
N,2,2W̃N,2,1) > 0

(because plimN→∞ W̃N is PD) and W̃
−1
N,2,2W̃N,2,1 = G

−1
N,2,2W

−1
N,2,2WN,2,1GN,1,1+G

−1
N,2,2GN,2,1

= K−,N , the claims in the lemma follow straightforwardly. �
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Proof of theorem 3:

According to lemma 5, if Z1,N+ŨN > 0, then the value ofMN(θ̂n) in (32) is minimized

at N1/2(ρ̂ − 1)2 = Z1,N + op(1) and N1/2ω̂n = N
1/2ω̂+. The sign of N

1/4(ρ̂ − 1) is such
that it minimizes the value of R1,N(N

1/4(ρ̂− 1)) in (32) where

N1/4R1,N(N
1/4(ρ̂− 1)) = 2N1/2(ΨN,n(θ∗) +

∂ΨN,n(θ∗)

∂w′n
ω̂n)

′WN ×

N1/2(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)N

1/4(ρ̂− 1) + (34)

(
2

3!
N1/2(ΨN,n(θ∗) +

∂ΨN,n(θ∗)

∂w′n
ω̂n)

′WN
∂3ΨN,n(θ∗)

∂r3
+

N1/2(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂2ΨN,n(θ∗)

∂r2
)N3/4(ρ̂− 1)3 +

1

3!

∂3Ψ′N,n(θ∗)

∂r3
WN

∂2ΨN,n(θ∗)

∂r2
N5/4(ρ̂− 1)5 + op(1).

We can write (34) asN1/4R1,N(N
1/4(ρ̂−1)) = N1/4(ρ̂−1)R2,N(N1/4(ρ̂−1))+R3,N(N1/4(ρ̂−

1)) where R3,N(N
1/4(ρ̂− 1)) = op(1). Noting that

N1/2Ψσ2n,N,n(θ∗)
d→ (T − 1)

2
V1, N1/2Ψβ,N,n(θ∗)

d→ V6 ∼ N(0, σ2Σxqx),

p limN→∞
∂ΨN,n(θ∗)

∂w′n
= p limN→∞(0,

∂Ψσ2n,N,n(θ∗)

∂wn
,
∂Ψ′β,N,n(θ∗)

∂wn
)′,

p limN→∞

∂Ψσ2n,N,n(θ∗)

∂s2n
= −(T − 1)

2σ2
, p limN→∞

∂Ψ′β,N,n(θ∗)

∂b
= −Σxqx,

p limN→∞

∂Ψσ2n,N,n(θ∗)

∂b
= p limN→∞

∂Ψ′β,N,n(θ∗)

∂s2n
= 0,

p limN→∞
∂2ΨN,n(θ∗)

∂r∂w′n
= p limN→∞(0,

∂2Ψσ2n,N,n(θ∗)

∂r∂wn
, 0)′,

p limN→∞

∂2Ψσ2n,N,n(θ∗)

∂r∂s2n
= −(T − 1)

2σ2
, p limN→∞

∂2Ψσ2n,N,n(θ∗)

∂r∂β
= 0,

p limN→∞N
−1
∑N

i=1
(X ′

iQΦΦ
′QXi) = Σxqφφ′qx,

N1/2∂Ψσ2n,N,n(θ∗)

∂r

d→ −V3, N1/2∂Ψβ,N,n(θ∗)

∂r

d→ V7 ∼ N(0, σ2Σxqφφ′qx),

p limN→∞
∂4l̃cN(1)

∂r4
=
∂4l̃c(1)

∂r4
=
1

60
(T − 1)(T + 1)(3T 2 − 20T − 2),

p limN→∞

∂3Ψσ2n,N,n(θ∗)

∂r3
= 0, p limN→∞

∂3Ψβ,N,n(θ∗)

∂r3
= 0,

p limN→∞

∂2Ψσ2n,N,n(θ∗)

∂r2
= tr(Φ′QΦ) and p limN→∞

∂2Ψβ,N,n(θ∗)

∂r2
= 0,
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and recalling that N1/2 ∂l̃N
c
(1)

∂r

d→ V4, N
1/2 ∂

2 l̃N
c
(1)

∂r2
d→ V5 and plimN→∞

∂3 l̃cN (1)

∂r3
= ∂3 l̃c(1)

∂r3
=

1
12
T (T − 1)(T + 1), in other words, noting that

N1/2ΨN,n(θ∗)
d→ Ψn(θ∗), N1/2∂ΨN,n(θ∗)

∂r

d→ Ψn,ρ(θ∗),

p limN→∞
∂ΨN,n(θ∗)

∂wn
= Ψn,ω(θ∗),

p limN→∞
∂2ΨN,n(θ∗)

∂r∂w′n
= Ψn,ρω(θ∗),

p limN→∞
∂2ΨN,n(θ∗)

∂r2
= Ψn,ρρ(θ∗) and

p limN→∞
∂3ΨN,n(θ∗)

∂r3
= Ψn,ρρρ(θ∗),

it follows that plimN→∞GN = G and that if Z1,N + ŨN > 0, then N1/2(ρ̂ − 1)2 d→ Z1,

N1/2ω̂n = N1/2ω̂+
d→ ω+ = −G−12,2G2,1Z1 − G−12,2Ψn(θ∗) = −(Ψ′n,ω(θ∗)WΨn,ω(θ∗))−1×

Ψ′n,ω(θ∗)W (Ψn(θ∗)+
1
2
Ψn,ρρ(θ∗)Z1) and R2,N(N

1/4(ρ̂− 1)) d→ R2, which after lengthy but

simple calculations can be shown to obey:

R2 = (Z1
∂3l̃c(1)

∂r3
+ 2V4)(W1,1 −W 1,2W

−1
2,2W 2,1)(

1

6

∂4l̃c(1)

∂r4
Z1 + V5). (35)

Let Ψn,ω = Ψn,ω(θ∗) andM = −(Ψ′n,ωWΨn,ω)−1Ψ′n,ωW. To derive (35) we have used that
W (I +Ψn,ωM) = diag(W1,1 −W 1,2W

−1
2,2W 2,1, 0, ..., 0) and W (I +Ψn,ωM)Ψn,ρω(θ∗) = 0.

Recall that Z1 = −(12
∂3 l̃c(1)
∂r3

)−1V4. Hence R2,N = op(1). This result also follows directly

from (34) and N1/2(ΨN,n(θ∗)+
∂ΨN,n(θ∗)

∂w′n
ω̂n+

1
2

∂2ΨN,n(θ∗)

∂r2
(ρ̂−1)2) = op(1) when Z1,N+ŨN >

0. The latter limit result holds because in the just identified case ΨN,n(θ̂n) = 0. Just as

in the case of N1/4Rc1,N(N
1/4(ρ̂ − 1)) in the proof of theorem 2, we need to consider a

higher order expansion of the remainder term N1/4R1,N(N
1/4(ρ̂− 1)) in order to find the

limiting distribution of the sign of N1/4(ρ̂ − 1) when Z1 > 0, i.e., the distribution of B
given Z1 > 0. This means we need to consider R3,N(N

1/4(ρ̂− 1)). We have

N1/2R3,N(N
1/4(ρ̂− 1)) = N1/4R4,N(N

1/2(ρ̂− 1)2) +
N1/4(ρ̂− 1)R5,N(N1/2(ρ̂− 1)2) +R6,N(N1/4(ρ̂− 1))

where

R4,N(N
1/2(ρ̂− 1)2) =
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(N(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n) +

1

2!
N(κ1,N , κ2,N , κ3,N)

′WN
∂2ΨN,n(θ∗)

∂r2
+

N(ΨN,n(θ∗) +
∂ΨN,n(θ∗)

∂w′n
ω̂n)

′WN
∂3ΨN,n(θ∗)

∂r2∂w′n
ω̂n)N

1/2(ρ̂− 1)2 +

(
2

3!
N1/2(

∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂3ΨN,n(θ∗)

∂r3
+

1

2!
N1/2

∂2Ψ′N,n(θ∗)

∂r2
WN

∂3ΨN,n(θ∗)

∂r2∂w′n
ω̂n +

2

4!
N1/2(ΨN,n(θ∗) +

∂ΨN,n(θ∗)

∂w′n
ω̂n)

′WN
∂4ΨN,n(θ∗)

∂r4
)N(ρ̂− 1)4 +

(
1

4!

∂2Ψ′N,n(θ∗)

∂r2
WN

∂4ΨN,n(θ∗)

∂r4
+

1

3!3!

∂3Ψ′N,n(θ∗)

∂r3
WN

∂3ΨN,n(θ∗)

∂r3
)N3/2(ρ̂− 1)6,

R5,N(N
1/2(ρ̂− 1)2) = N3/2(κ1,N , κ2,N , κ3,N)

′WN(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n) +

(
1

3!
N(κ1,N , κ2,N , κ3,N)

′WN
∂3ΨN,n(θ∗)

∂r3
+

2

3!
N(ΨN,n(θ∗) +

∂ΨN,n(θ∗)

∂w′n
ω̂n)

′WN
∂4ΨN,n(θ∗)

∂r3∂w′n
ω̂n +

N(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂3ΨN,n(θ∗)

∂r2∂w′n
ω̂n)N

1/2(ρ̂− 1)2 +

(
2

5!
N1/2(ΨN,n(θ∗) +

∂ΨN,n(θ∗)

∂w′n
ω̂n)

′WN
∂5ΨN,n(θ∗)

∂r5
+
1

3!
N1/2

∂2Ψ′N,n(θ∗)

∂r2
WN

∂4ΨN,n(θ∗)

∂r3∂w′n
ω̂n +

2

4!
N1/2(

∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂4ΨN,n(θ∗)

∂r4
+
1

3!
N1/2

∂3Ψ′N,n(θ∗)

∂r3
WN

∂3ΨN,n(θ∗)

∂r2∂w′n
ω̂n)×

N(ρ̂− 1)4 + ( 1
5!

∂2Ψ′N,n(θ∗)

∂r2
WN

∂5ΨN,n(θ∗)

∂r5
+

2

3!4!

∂3Ψ′N,n(θ∗)

∂r3
WN

∂4ΨN,n(θ∗)

∂r4
)N3/2(ρ̂− 1)6 and

R6,N(N
1/4(ρ̂− 1)) = op(1).

with κk,N = ω̂
′
nKk,N ω̂n and Kk,N =

∂2Ψk,N,n(θ∗)

∂wn∂w′n
for k = 1, 2, ..., K + 2, where Ψk,N,n(θ) is

the kth element of ΨN,n(θ).

Note that R4,N(N
1/2(ρ̂ − 1)2) = Op(1) and R5,N(N

1/2(ρ̂ − 1)2) = Op(1). Recalling

that in the just identified case ΨN,n(θ̂n) = 0 and hence N1/2(ΨN,n(θ∗) +
∂ΨN,n(θ∗)

∂w′n
ω̂n +

1
2

∂2ΨN,n(θ∗)

∂r2
(ρ̂ − 1)2) = op(1), we can simplify the expressions for R4,N(N1/2(ρ̂ − 1)2) and
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R5,N(N
1/2(ρ̂− 1)2) :

R4,N(N
1/2(ρ̂− 1)2) =

N(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n

1

2!
(κ1,N , κ2,N , κ3,N)

′WN
∂2ΨN,n(θ∗)

∂r2
)N1/2(ρ̂− 1)2 +

2

3!
N1/2(

∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂3ΨN,n(θ∗)

∂r3
N(ρ̂− 1)4 +

1

3!3!

∂3Ψ′N,n(θ∗)

∂r3
WN

∂3ΨN,n(θ∗)

∂r3
N3/2(ρ̂− 1)6 + op(1), and

R5,N(N
1/2(ρ̂− 1)2) = N3/2(κ1,N , κ2,N , κ3,N)

′WN(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n) +

(
1

3!
N(κ1,N , κ2,N , κ3,N)

′WN
∂3ΨN,n(θ∗)

∂r3
+

N(
∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂3ΨN,n(θ∗)

∂r2∂w′n
ω̂n)N

1/2(ρ̂− 1)2 +

(
2

4!
N1/2(

∂ΨN,n(θ∗)

∂r
+
∂2ΨN,n(θ∗)

∂r∂w′n
ω̂n)

′WN
∂4ΨN,n(θ∗)

∂r4
+

1

3!
N1/2

∂3Ψ′N,n(θ∗)

∂r3
WN

∂3ΨN,n(θ∗)

∂r2∂w′n
ω̂n)N(ρ̂− 1)4 +

(
2

3!4!

∂3Ψ′N,n(θ∗)

∂r3
WN

∂4ΨN,n(θ∗)

∂r4
)N3/2(ρ̂− 1)6 + op(1). (36)

We can easily show that if Z1,N + ŨN > 0, then R4,N(N
1/2(ρ̂ − 1)2) 6= op(1) and

R5,N(N
1/2(ρ̂− 1)2) 6= op(1). In particular, the terms involving N3/2(ρ̂− 1)6 in the expres-

sions for R4,N(N
1/2(ρ̂− 1)2) and R5,N(N1/2(ρ̂− 1)2) in (36) do not vanish or cancel out

when N →∞.
We conclude that if Z1,N + ŨN > 0, then N

1/2(ρ̂− 1)2 = Z1,N +Op(N−1/2) and

sgn(N1/4(ρ̂− 1)) = sgn(−R5,N(N1/2(ρ̂− 1)2)).

If Z1,N + ŨN < 0, then MN(θ̂n) has one local minimum and its value is minimized at

N1/4(ρ̂− 1) = op(1). It also follows that ŨN = Op(N−1/2).

It is easily seen thatR5,N(Z1,N+ŨN)
d→ R5 for someR5. Likewise, when Z1,N+ŨN > 0,

R5,N(Z1,N + ŨN)
d→ R̃5 for some R̃5. We obtain a formula for R̃5 from the expression for

R5,N(N
1/2(ρ̂ − 1)2) in (36) by replacing appropriately scaled versions of the derivatives

of ΨN,n(θ) at θ∗ by their stochastic limits, N
1/2ω̂n by ω+ , and N

1/2(ρ̂− 1)2 by Z1.
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Now, when Z1 > 0, R = R̃5. We also have plimN→∞K−,N = K−. We conclude that

[
N1/4(ρ̂F − 1)
N1/2ω̂n

]
d→
[
(−1)BZ1/21

ω+

]
1{Z1 > 0}+

[
0

ω+ +K−Z1

]
1{Z1 ≤ 0}

where B = 1(R > 0). Regarding Σω we note that E(V6V4) = E(V6V1) = 0. �

Derivation of generic formulae for Z1, ω+ and K− given in a comment below

theorem 3:

In this case we minimize (cf. the proof of lemma 5):

M̃N(θ̂n) ≡ 2(N1/2ΨN,n(θ∗))
′WN1/2(Ψn,ωω̂n +

1

2
Ψn,ρρ(ρ̂− 1)2) +

N(Ψn,ωω̂n +
1

2
Ψn,ρρ(ρ̂− 1)2)′W (Ψn,ωω̂n +

1

2
Ψn,ρρ(ρ̂− 1)2) + op(1)

with respect to N1/2(ρ̂− 1)2 and N1/2ω̂n, where Ψn,ρρ = Ψn,ρρ(θ∗). The f.o.c.’s are:

1

2
Ψ′n,ρρWN

1/2ΨN,n(θ∗) +
1

2
Ψ′n,ρρWN

1/2(Ψn,ωω̂n +
1

2
Ψn,ρρ(ρ̂− 1)2) + op(1) = 0,

Ψ′n,ωWN
1/2ΨN,n(θ∗) + Ψ

′
n,ωWN

1/2(Ψn,ωω̂n +
1

2
Ψn,ρρ(ρ̂− 1)2) + op(1) = 0

Solving and letting N →∞ yields N1/2(ρ̂−1)2 d→ Z1 = −2(Ψ′n,ρρW 1/2MωW
1/2Ψn,ρρ)

−1×
(Ψ′n,ρρW

1/2MωW
1/2Ψn) and N

1/2ω̂n
d→ ω+ = M(Ψn +

1
2
Ψn,ρρZ1), where Ψn = Ψn(θ∗).

When Z1 < 0, these solutions are not allowed. In this case we solve the lower part of

the system of f.o.c.’s for N1/2ω̂n while N
1/2(ρ̂− 1)2 = op(1). Again letting N →∞ gives

N1/2ω̂n
d→ ω+ +K−Z1 =MΨn so that K− = −1

2
MΨn,ρρ. �

Proof of theorem 4:

We first prove that the restricted estimator θ̃n = θ̃N,n that satisfies Aθ̃N,n = aN ,

which includes a restriction on ρN , is root N consistent under the parameter sequence

θ0,N,n with θ0,N,n → θ∗ and Aθ0,N,n = aN (so that Aθ∗ = a = limN→∞ aN). Consider

the restricted reparametrized modified log-likelihood where AθN,n = aN (e.g. r = aN).

Noting that this function converges uniformly in probability to a limiting function that

is continuous on a compact parameter set Θ that contains θ∗, and is uniquely maximized

at θ∗, the claim follows from Theorem 2.1 in NMcF. In a similar way we can prove that

the restricted FE(Q)MLE for σ2v,n is consistent under the parameter sequence θ0,N,n with

θ0,N,n → θ∗ ∈ Θ and Aθ0,N,n = aN , where Θ is a compact parameter set.
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Following Davidson andMacKinnon (1993, pp. 276-277), we obtainN1/2(θ̃n−θ0,N,n) asy=
−H−1(I − A′(AH−1A′)−1AH−1)N1/2 ∂l̃N,n(θ0,N,n)

∂θn
with H = H(θ0,N,n) and ρN 6= 1. We

also have N1/2 ∂l̃N,n(θ̃n)

∂θn

asy
= N1/2 ∂l̃N,n(θ0,N,n)

∂θn
+ HN1/2(θ̃n − θ0,N,n). Hence N1/2 ∂l̃N,n(θ̃n)

∂θn

asy
=

A′(AH−1A′)−1AH−1N1/2 ∂l̃N,n(θ0,N,n)

∂θn
and (AH−1(θ̃n)J (θ̃n)H−1(θ̃n)A

′)−1/2AH−1(θ̃n)×
N1/2 ∂l̃N,n(θ̃n)

∂θn

asy
= (AH−1(θ0,N,n)Eθ0,N,n(J (θ0,N,n))H−1(θ0,N,n)A

′)−1/2AH−1(θ0,N,n) ×
N1/2 ∂l̃N,n(θ0,N,n)

∂θn
under the parameter sequence θ0,N,n with θ0,N,n → θ∗, Aθ0,N,n = aN

and ρN 6= 1. Similarly we can show that (AH̃−1(θ̃n)J̃ (θ̃n)H̃−1(θ̃n)A
′)−1/2AH̃−1(θ̃n)N

1/2×
S̃(θ̃n)

asy
= (AH̃−1(θ0,N,n)Eθ0,N,n(J̃ (θ0,N,n))H̃−1(θ0,N,n)A

′)−1/2AH̃−1(θ0,N,n)N
1/2S̃(θ0,N,n)

when θ0,N,n = θ∗ with Aθ∗ = a.

Let SN,i(θn) = AH−1(θn)
∂l̃N,n,i(θn)

∂θn
, SN,i = SN,i(θ0,N,n) and θ0,N,n → θ∗ ∈ Θ with

Aθ0,N,n = aN and ρN 6= 1. Under appropriate regularity conditions (cf. Bottai, 2003)

Eθ
0,N,n

(SN,i) = 0, V arθ
0,N,n

(SN,i) = AH−1(θ0,N,n)Eθ0,N,n(Ji(θ0,N,n))H−1(θ0,N,n)A
′ and

supi supθn∈N Eθ0,N,n(|λ
′SN,i(θn)|

ς
) < ∞ for some ς > 2 and for all λ ∈ RJ where N ⊂ Θ

is an open neighbourhood around θ∗. We also have N
−1
∑N

i=1 V arθ0,N,n(λ
′SN,i) > 0 uni-

formly inN for all λ ∈ RJ\{0}. Thus the Lyapunov conditions are satisfied and by (a mul-
tivariate version of) Lindeberg’s CLT for triangular arrays, (

∑N
i=1 V arθ0,N,n(SN,i))

−1/2×
∑N

i=1 SN,i converges under the parameter sequence θ0,N,n to N(0, IJ). It follows that

(AH−1(θ̃n)J (θ̃n)H−1(θ̃n)A
′)−1/2AH−1(θ̃n)N

1/2 ∂l̃N,n(θ̃n)

∂θn

d→ N(0, IJ) and QLM(θ0,n)
d→

χ2(J) under the parameter sequence θ0,N,n with θ0,N,n → θ∗, Aθ0,N,n = aN and ρN 6= 1.
Next let S̃N,i(θn) = AH̃−1(θn)S̃(θn), S̃N,i = S̃N,i(θ0,N,n) and θ0,N,n = θ∗ ∈ Θ with

Aθ∗ = a. Under appropriate regularity conditions (cf. Bottai, 2003) we can also show

that (
∑N

i=1 V arθ0,N,n(S̃N,i))
−1/2

∑N
i=1 S̃N,i

d→ N(0, IJ) and hence QLM(θ0,n)
d→ χ2(J)

when θ0,N,n = θ∗ with Aθ∗ = a.

We conclude that limN→∞ supθ
0
∈N

∣∣Prθ
0
{QLM(θ0) > χ2J,α} − α

∣∣ = 0. �
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Table 1: Estimators of ρ; Design S; 5000 replications.

N=100 T=4 NM MMLC FEML REML
σ2µ ρ bias RMSE bias RMSE bias RMSE

1 0.50 .075 .019 .126 .023 .140 .017 .125
1 0.80 .396 -.010 .132 .010 .147 .038 .156
1 0.90 .468 -.040 .132 -.012 .135 .038 .149
1 0.95 .471 -.065 .139 -.009 .138 .042 .146
1 0.98 .485 -.076 .144 .009 .138 .038 .140
1 1.00 .481 -.084 .148 .026 .135 .035 .136
0 0.50 .079 .017 .125 .021 .138 .005 .098
0 0.80 .385 -.012 .131 .008 .146 .019 .139
0 0.90 .459 -.042 .132 -.013 .135 .030 .147
0 0.95 .474 -.064 .141 -.010 .139 .037 .145
0 1.00 .481 -.086 .150 .026 .135 .026 .135
25 0.50 .077 .016 .125 .019 .138 .022 .143
25 0.80 .400 -.010 .133 .011 .148 .045 .173
25 0.90 .461 -.043 .134 -.015 .136 .040 .159
25 0.95 .474 -.064 .140 -.010 .137 .041 .148
25 1.00 .479 -.089 .152 .025 .137 .035 .137

NM: relative frequency that ρ̂LAN does not exist (No Maximum).

Table 2: Estimators of ρ; Design NS; 5000 replications.

N=100 T=4 NM MMLC FEML REML
σ2µ ρ bias RMSE bias RMSE bias RMSE

1 0.50 .326 .010 .143 .014 .141 .015 .142
1 0.80 .467 -.069 .148 .028 .161 .028 .163
1 0.90 .471 -.085 .153 .010 .146 .021 .149
1 0.95 .478 -.085 .150 -.001 .133 .016 .139
1 0.98 .483 -.088 .152 .005 .137 .024 .139
1 1.00 .481 -.084 .148 .026 .135 .035 .136

Table 3: Estimators of ρ; Design S; 5000 replications.

N=100 T=9 NM MMLC FEML REML
σ2µ ρ bias RMSE bias RMSE bias RMSE

1 0.50 .000 .000 .042 .000 .042 .000 .041
1 0.80 .130 .006 .064 .008 .069 .005 .061
1 0.90 .375 -.004 .060 .007 .070 .011 .067
1 0.95 .455 -.020 .061 -.004 .064 .014 .067
1 0.98 .489 -.032 .063 .001 .062 .017 .063
1 1.00 .490 -.041 .068 .013 .057 .016 .058
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Table 4: Estimators of ρ; Design S; 5000 replications.

N=500 T=4 NM MMLC FEML REML
σ2µ ρ bias RMSE bias RMSE bias RMSE

1 0.50 .001 .003 .052 .002 .048 .002 .046
1 0.80 .306 .007 .084 .017 .099 .008 .077
1 0.90 .442 -.016 .082 -.003 .089 .015 .090
1 0.95 .482 -.035 .085 -.017 .087 .024 .095
1 0.98 .498 -.047 .090 -.014 .089 .029 .093
1 1.00 .512 -.054 .092 .018 .087 .024 .088
0 0.50 .001 .002 .053 .002 .050 .001 .042
0 0.80 .293 .007 .085 .019 .101 .004 .068
0 0.90 .438 -.018 .084 -.007 .090 .009 .085
0 0.95 .473 -.034 .085 -.016 .085 .020 .093
0 1.00 .493 -.056 .094 .018 .088 .018 .088
25 0.50 .002 .002 .054 .000 .049 .000 .049
25 0.80 .314 .009 .085 .017 .097 .058 .135
25 0.90 .443 -.016 .082 -.004 .088 .055 .118
25 0.95 .471 -.036 .084 -.016 .085 .043 .102
25 1.00 .489 -.058 .096 .018 .090 .023 .090

NM: relative frequency that ρ̂LAN does not exist (No Maximum).

Table 5: Estimators of ρ; Design NS; 5000 replications.

N=500 T=4 NM MMLC FEML REML
σ2µ ρ bias RMSE bias RMSE bias RMSE

1 0.50 .180 .016 .091 .004 .064 .004 .064
1 0.80 .489 -.036 .088 .019 .104 .021 .105
1 0.90 .502 -.051 .094 .027 .101 .032 .102
1 0.95 .484 -.056 .094 .009 .091 .019 .092
1 0.98 .481 -.058 .096 -.004 .088 .011 .090
1 1.00 .512 -.054 .092 .018 .087 .024 .088

Table 6: Estimators of ρ; Design S; 5000 replications.

N=500 T=9 NM MMLC FEML REML
σ2µ ρ bias RMSE bias RMSE bias RMSE

1 0.50 .000 .001 .020 .001 .020 .000 .017
1 0.80 .006 .003 .028 .002 .026 .001 .022
1 0.90 .272 .005 .039 .009 .046 .003 .033
1 0.95 .420 -.007 .036 .001 .041 .007 .039
1 0.98 .460 -.019 .039 -.006 .039 .009 .041
1 1.00 .488 -.027 .044 .010 .039 .012 .039
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Table 7: Empirical size of Quasi LM test based on Modified Likelihood; Nominal size is
0.05; T=9; 10000 replications.

model S-Normal S-ChiSq NS-Normal
ρ N = 100 N = 500 N = 100 N = 500 N = 100 N = 500
0.50 .0547 .0474 .0531 .0491 .0533 .0483
0.80 .0540 .0514 .0551 .0519 .0575 .0522
0.90 .0557 .0500 .0529 .0510 .0527 .0539
0.95 .0495 .0510 .0496 .0498 .0501 .0512
0.98 .0502 .0508 .0482 .0512 .0472 .0443
0.99 .0512 .0518 .0528 .0508 .0496 .0506

Table 8: Empirical power of Quasi LM test based on Modified Likelihood; H0 : ρ = 0.8;
Nominal size is 0.05; T=9; 5000 replications.

model S-Normal S-ChiSq NS-Normal
true ρ N = 100 N = 500 N = 100 N = 500 N = 100 N = 500
0.50 .999 1.000 .966 .999 .993 1.000
0.60 .919 1.000 .828 .999 .781 1.000
0.70 .375 .926 .399 .878 .274 .783
0.90 .170 .743 .207 .775 .141 .667
0.95 .421 .989 .404 .956 .391 .982
0.99 .714 1.000 .529 .992 .726 1.000
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