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A B S T R A C T

This paper offers an approach to construct a family of extraction paths for nonrenewables that guar-

antee long-run sustainability of an imperfect economy. A path from this family leads to a monotonic

growth of output with a decreasing rate of growth if a sustainability condition holds. Otherwise, the

path leads either to a bounded decline or U-shaped path of output. In this sense, the paper extends

neoclassical results and provides a bridge between neoclassical and degrowth theories because neo-

classical tools are used to quantify degrowth scenarios. The offered path can be incentive-compatible

for climate change problems because it reduces the extraction of polluting minerals consistently with

the IPCC goals. That is, the climate-benefiting emission cuts by the parties of climate agreements

may be guided by purely “egoistic” motives—to make own economies long-run sustainable.

1. Introduction

Ninety years ago Hotelling (1931) wrote: “Contempla-

tion of the world’s disappearing supplies of minerals, forests,

and other exhaustible assets has led to demands for regu-

lation of their exploitation.” These demands receive now

increasing support from awareness that sustainability goals

should coordinate market activities with the needs of future

generations and keep the economy within the Earth’s limits.

Sustainability goals are becoming increasingly impor-

tant for policymakers. Some governments strategic plans de-

clare a need for intertemporal policy regulation (e.g. USDS,

1998; Gosduma, 2014; EC, 2021). These documents re-

quire coordination of current actions with scientific updates

to achieve sustainable social and economic development.

However, the current state of research does not provide a

technique for practical estimation of sustainable distribution

of limited nonrenewable resources among generations (Sec-

tion 2). Moreover, the 17 sustainability goals formulated by

United Nations do not reflect this urgent problem.

This paper offers a closed-form expression for a path of

resource extraction that guarantees long-run sustainability1

of an imperfect economy. The path is specific for technol-

⋆
This research did not receive any specific grant from funding agencies

in the public, commercial, or not-for-profit sectors.

ORCID(s): 0000-0002-8431-1425 (A.V. Bazhanov)
1In a sense of nondecreasing consumption.

ogy and initial conditions. The approach differs from previ-

ous work in that feasible extraction paths are determined by

asymptotic sustainability and then the investment rule maxi-

mizes a welfare criterion. Similarly to climate change prob-

lem, a social planner can realize the path by tax/subsidy poli-

cies (e.g. Acemoglu et al., 2016), which may be combined

with non-price interventions (e.g. Stiglitz, 2019).

The importance of asymptotic results follows from the

Hotelling’s question about the amount of resource that must

be reserved for our remote descendants. This question can

be formulated in terms of the properties of the tail of re-

source distribution among generations. As Hotelling (1931)

put it, “Problems of exhaustible assets are peculiarly liable to

become entangled with the infinite.” The asymptotic prop-

erties are obviously connected with the short-run extraction

because the thicker is the tail of resource distribution, the

less should be current extraction.

Cairns (2008) states that “there is no observable indica-

tor of whether an economy is being sustained.” This paper

offers such an indicator in Theorem 1. The indicator works

if the elasticity of substitution between the resource and pro-

duced capital is not less than one and extraction follows the

offered path. If this indicator shows current unsustainability,

the extraction path leads to a bounded decline or U-shaped
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path of output. In this sense, the paper extends neoclassi-

cal results for the cases when monotonic growth is not fea-

sible and provides a bridge between neoclassical approach

and degrowth theories because neoclassical tools are used

to quantify degrowth scenarios.

The offered path can be incentive-compatible for climate

change problems because it reduces the extraction of pol-

luting minerals consistently with the IPCC goals. That is,

the climate-benefiting emission cuts by the parties of climate

agreements may be guided by purely “egoistic” motives—to

make own economies long-run sustainable.

The paper structure is as follows: Section 2 provides a

review of the relevant literature; Section 3 offers sustainabil-

ity conditions, a long-run sustainable path of extraction, and

the output scenarios depending on satisfaction of these con-

ditions; Section 4 discusses the questions of optimality; Sec-

tion 5 illustrates the sensitivity of optimal paths to uncertain

parameters; Section 6 shows the connection of the results

with the problems of climate change; Section 7 concludes.

2. Investment and sustainability: a review

All happy families are alike; each unhappy

family is unhappy in its own way.

Leo Tolstoy

The first saving rule for a neoclassical economy with

a nonrenewable resource, obtained by Solow (1974b) and

Hartwick (1977), shows the importance of sustaining pro-

duction base by substituting disappearing resource with pro-

duced capital. The balance equation in this economy is

c = q − k̇, (1)

which connects a proper aggregate of per capita consump-

tion c,2 production q(k, r), where r is the resource flow, and

2Consumption should include expenses on health, education, and other

investment k̇ into properly measured produced capital k.

By (1), the path of k̇ is an intuitive tool to control all

issues related to c including sustainability, and the standard

Hartwick rule also uses this tool. A brief and elegant deriva-

tion of this result, provided in Hartwick (2003)3, deserves a

special attention.

The rule leads to constant consumption (ċ = 0) if two

conditions hold: (i) investing resource rents (k̇ = rqr) and

(ii) a necessary condition of dynamic efficiency (Hotelling

rule: qk = q̇r∕qr). By (1) and (i), k̇ = q(k, r) − c = rqr.

Then time derivative of (1) with (i) and (ii) yields the result:

ċ = qkrqr + qrṙ − ṙqr − rq̇r = (qkqr − q̇r)r = 0. (2)

Conditions (i) and (ii) lead to a decreasing path of extrac-

tion4 which can be realized by restructuring the production

and consumption to reduce natural resource dependance and

maintain consumption aggregate constant. How does this

rule relate to sustainability?

Note that q here is any5 function, which can create an im-

pression that consumption can be always kept constant by in-

vesting resource rent into capital for any technology and ex-

traction path if government interventions support the prices

consistent with (ii). Indeed, there are policy-oriented studies

(e.g. Ologunde et al., 2020) that refer to (i) as to a sufficient

condition for sustainability even without (ii).

It is known,6 however, that sustainability is impossible if,

for example, q is a CES function and the effective long-run

elasticity of substitution7 between the resource and capital

valuables that determine quality of life (e.g. UNDP, 2021).
3Hartwick (2003) provides also a review of some generalizations.
4See, e.g., equation (A.4) in Appendix A.
5q should be twice continuously differentiable.
6E.g., Dasgupta and Heal (1974); Solow (1974b).
7Effective elasticity of substitution (EES) is what empirical studies es-

timate. It depends on aggregation and institutions. A review on EES be-

tween capital and labor is in Knoblach and Stöckl (2020). Since EES may

be nonmonotonic, the assumption of constant EES is an approximation.
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(�KR) is less than one. Then where is a magic trick?

Recall that Hartwick (2003) stated that “This result is lo-

cal in time” and the production function must be “with sub-

stitutability among inputs.”8 An example below illustrates

general issues9 reflected in these disclaimers. The example

considers a non-optimal economy under (i) and (ii) with the

data that are close to real economies. The point of inter-

est is the effect of changes in �KR while other parameters,

including the resource-labor and capital-labor substitutabil-

ities, are fixed. Calculations are provided in Appendix A.

Example 1. An economy with a constant population N =

100 mln exploits an oil reserve S0 = 7, 500 mln tonnes

(54,975 mln bbl) or s0 = 75 tonnes/capita. At t = 0 (in

years), the economy uses oil at rate r0 = 3 tonnes / (capita ×

year) (R0 = 5.17 mln bbl/day) and the services of produced

capital k0 = 7 ⋅ 104 $/capita. The output is q = A�f�(k, r)

$/(capita×year), where � = 1 − 1∕�KR is a substitution pa-

rameter, A� is TFP10 and f� is a CES function with the pa-

rameters � = 0.3, � = 0.2 and �KR = 1∕(1 − �). Consider

(a) �KR = 0.9; (b) �KR = 1; and (c) �KR = 1.1.

As shown in Appendix A, economy (a) is inefficient, un-

sustainable and even unsurvivable.11 Unsustainability is in-

evitable due to low �KR – the economy is doomed to collapse

as r → 0. Inefficiency (despite satisfaction of (ii) and exhaus-

tion of the resource stock) follows from capital overaccumu-

lation. Rule (i) requires to invest 67% of output in produced

8Both neoclassical and ecological economists accept that there is long-

run substitutability between many types of natural resources and produced

capital (e.g. Cleveland and Ruth, 1997, Section 3.1).
9Mitra et al. (2013) provide general conditions of existence and effi-

ciency for constant-consumption paths.
10TFP includes all other factors that influence output besides k and r.

A� are chosen to make the initial outputs Q0 equal for different � in order

to compare qualitative effects of � around � = 0, where CES function is

discontinuous. A0 makes q0 close to the average per capita NNI of upper

middle-income countries in 2018 (current $US, World Bank). TFP dimen-

sions depend on � and convert input units into the units of output. For � = 0,

TFP unit is $1−�× tonne−�∕(capita×year)1−� . Reviews on the nature of TFP

are in Hulten (2001) and Lipsey and Carlaw (2004).
11Economy is unsurvivable if consumption drops below subsistence.

capital at t = 0 and this share increases to 71% by the time of

collapse after 31 years. By that time, k = 2.3 ⋅ 105, which is

useless for t > 31.During these 31 years, consumption is, in-

deed, constant at 2,330 $/(capita×year). Inefficiency can be

illustrated by a simple decapitalization, when both s0 and k0

are exhausted in 59.8 years, and c increases from c0 = 2, 330

to c(59.8) = 7, 090.6 and then collapses.

Economy (c) is sustainable but inefficient because of un-

derextraction: r quickly (asymptotically) goes to zero and

the total extracted amount is 42.3 < s0.12 Investment share

w asymptotically decreases from w0 = 0.21 to zero and cap-

ital grows to kmax = 7.47 ⋅ 105. The initial consumption

c0 = 5, 586 is, indeed, maintained infinitely.

Unfortunately, �KR > 1 is not sufficient for sustainabil-

ity.13 Consider a scenario for �KR = 1.1 where, like in re-

ality, r is not decreasing (Jackson and Smith, 2014). Let (i)

still hold but r ≡ r0 during 25 years satisfying efficiency

condition ∫ 25

0
rdt = s0. Rule (ii) does not hold: the ratio

q̇r∕(qrqk) is essentially less than one, which is close to em-

pirics (Gaudet, 2007). In 25 years, w decreases from 0.21

to 0.20 and then drops to zero (no resource, no investment);

consumption grows to 8,361 and then drops to 860. That

is, the economy is inefficient and unsustainable but may be

survivable depending on the subsistence definition.

Numerical estimates show that only for �̄KR = 1.0315

is the economy in Example 1 “happy”—both efficient and

sustainable (c ≡ c0 for any t ≥ 0). For �KR < �̄KR, the

economy “cannot afford” permanently constant consump-

tion. It requires either short-run sacrifices or future con-

sumption drop. For �KR > �̄KR, the prescribed path (stag-

12Theoretically, efficiency can be recovered by a discontinuous shift

in r0 leading to ∫ ∞

0
rdt = s0. However, discontinuity is infeasible here

due to low empirical short-run price elasticities of oil demand and supply

(Baumeister and Peersman, 2013). This infeasibility resulted, e.g., in neg-

ative oil prices in 2020 due to sharp drop in demand caused by COVID-19.
13This is a counterexample for the claim of Sesmero and Fulginiti (2016)

that CES production function leaves an important question unanswered: is

�KR > 1 sufficient for sustainability?
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nation) is too restrictive because the economy can afford a

monotonic growth that depends on technology (�KR, �, �)

and initial conditions.

In case (b), the production function is

q = Ak�r� , (3)

This case is unsustainable because the economy uses up all

the resource in 39.1 years with c ≡ c0 = 5, 663 and then

collapses with capital k(39.1) = 1.25 ⋅ 105. Of course, simi-

larly to case (a), decapitalization could alleviate the collapse.

However, this choice is questionable because, similarly to

case (c), there are resource policies that allow to avoid the

collapse. Sections below examine case (b) in more detail.

Example 1 shows that a general saving rule may become

either overinvestment or underinvestment. Sustainability of

a real economy needs specificity because real economies are

imperfect with respect to assumptions of general rules and

every economy is imperfect in its own way.

In particular, there is a watershed: �KR < 1 call for poli-

cies such as decapitalization that cushion inevitable doom.

Therefore, too pessimistic assumptions about the long-run

substitutability (�KR < 1) are unacceptable because they

may lead to actions that can cause collapse even if sustain-

ability is possible.

On the contrary, �KR ≥ 1 needs rules that help to avoid

collapse and improve wellbeing by choosing the paths of ex-

traction and (positive) investment. Moreover, even if it is

known that �KR > 1, there may exist such �̄KR that a gen-

eral rule leads to unsustainability for 1 < �KR < �̄KR or

inefficiency for �KR > �̄KR.

Hamilton and Hartwick (2005) generalize condition (i)

for the case of locally growing consumption using the no-

tion of genuine saving offered by Hamilton and Clemens

(1999), which includes depreciation of natural capital be-

sides net investment. The proof of this generalization also

uses (ii) and is similar to (2). The result is also local, depend-

ing on �KR. For ċ > 0, the only “happy” economy (sustain-

able and efficient) requires higher �̄KR or, for the same �̄KR

and �KR < �̄KR, the collapse is faster than for ċ = 0 since

growth is more resource-consuming (e.g. Bazhanov, 2013).

Hamilton (2016) makes important further steps by re-

laxing condition (ii) (economy can be inefficient) and de-

coupling the paths of extraction and investment. Hamilton

offers a path with ṙ∕r = −� ∶= −(r0∕s0) < 0 implying

r = r̃(t) = r0 exp(−�t), which guarantees ∫ ∞

0
rdt = s0 and

r > 0 for any t ≥ 0. Along r̃, an economy with any �KR

applies the rule ċ = qkg − ġ, where g = k̇ − �nr is genuine

saving and n is the value of reserve in SEEA (2014) units.

Hamilton claims that the economy is sustainable along r̃ if

the offered saving rule applies at each point in time. How-

ever, as Bazhanov (2020) shows, the output q of economy

(3) drops to zero along r̃ even if k̇ ≡ q. The problem is that

the benchmark investment�nr is not linked to economy’s in-

vestment ability. That is, a prescribed k̇ may exceed output.

The current paper continues this research line in a sense

that economy is imperfect and the searches for extraction and

investment paths are separated. This paper differs in that

sustainability determines a family of long-run sustainable

extraction paths, and then the parameter of this family and

investment rule maximize a welfare criterion. Another dif-

ference is that this paper, to avoid the drawbacks of general

rules, examines the most interesting case of �KR = 1, which

reflects the research question, and then analyzes sensitivity

of consumption to �KR and other uncertain parameters.

It is difficult to estimate empirically the long-run �KR

due to uncertainty of technical change. However, as argued

above, it is unsafe to assume that this parameter is inher-

ently less than one because such an assumption can lead
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to economy-collapsing policies while sustainability may be

possible. On the other hand, if the assumption is �KR > 1,

the resource is not necessary for production (q(k, 0) > 0),

which may lead to collapse due to resource-wasting poli-

cies if the assumption is too optimistic. Therefore, as Solow

(1974b) put it, “only the Cobb-Douglas remains.”

Another important uncertainty is the dynamics of TFP,

which interpretations differ in theory (Lipsey and Carlaw,

2004) and in positive empirical studies leading to essentially

different results (Schatzer et al., 2019).14 While the efforts

to increase TFP and switch from the use of limited resources

to backstop technologies are important (Solow, 1974a; East-

erly and Levine, 2001; Bretschger and Smulders, 2012; Ses-

mero and Fulginiti, 2016), there is evidence (Brander, 2010;

Byrne et al., 2016) that the pace of innovation in the crucially

important sectors is cause for concern. Therefore, conse-

quentialism suggests that normative works such as sustain-

ability studies should not assume too optimistic technical

change or TFP to avoid overshoot and collapse.

In this paper, TFP compensates for population change,

which must be bounded from above (e.g. Dasgupta and Das-

gupta, 2021), and capital depreciation if k̇ is not net invest-

ment. That is, A is constant and there is no capital decay.

This assumption is a “worst-case” scenario for TFP that still

allows for bounded and unbounded growth of output.

3. Extraction and sustainability

3.1. Asymptotic sustainability

The notion of sustainability requires to treat future gener-

ations in the same way as the current one. Therefore, a search

for sustainable extraction paths can start from securing the

needs of our descendants. It turns out, that such “altruism”

14Empirical studies usually consider the models without resource, e.g.

Q = AK�L1−� , implying that A includes all factors except for capital and

labor. For studies of resource effects, TFP should be recalculated with Q =

AK�R�L1−�−� as a base production function.

can bring some unexpected analytical benefits expressed be-

low in Proposition 2 and Theorem 1.

Assume for clearness, that k̇ = wq, where w = const ∈

(0, 1),15 q is determined by (3), and the balance equation (1)

holds. Ifw = const,monotonicity of q implies monotonicity

of c. This assumption is relaxed in subsection 5.3.

The needs of future generations are expressed below as

asymptotic monotonicity: limt→∞ q̇(t) ≥ 0. Assume that r is

strictly positive and twice continuously differentiable for all

t ≥ 0. Lemma below provides a simple rule for pre-selection

of the paths r that may lead to global16 sustainability. That

is, the paths that do not satisfy the rule cause a decreasing

output for economy (3) at least in the remote future.

Lemma 1. Economy (3) is sustainable, that is q̇(t) ≥ 0 for

all t ≥ 0, only if limt→∞ ṙ∕r1+� = 0.

This lemma disqualifies the paths r with too thin tails. The

result immediately implies the following necessary sustain-

ability condition that is less strict but simpler to verify be-

cause it does not require estimation of �.

Proposition 1. Economy (3) with any w ∈ (0, 1) is sustain-

able, that is q̇(t) ≥ 0 for all t ≥ 0, only if limt→∞ ṙ∕r = 0.

It is surprising, that unsustainable extraction paths, which

can be easily weeded out by Proposition 1, may be prescribed

by a normative approach. For example, an important result

of Dasgupta and Heal (1974) proves that utilitarian criterion

with any positive rate of discount leads to limt→∞ ṙ∕r < 0

for a wide class of production functions including (3). More-

over, this criterion prescribes optimal paths of consumption

and output that, in accord with Proposition 1, decrease to

zero for model (3). Hamilton (2016) offers another example

of a path with ṙ∕r < 0, which is discussed in Section 2.

One more source of unsustainable paths is business as

usual—reliance on predictions of possible future extraction

15By World Bank data, w oscillates in narrow ranges well inside (0,1).
16Global, here, means global in time, not geographically.
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rates. For example, a well-known “oil peak” theory uses his-

torical data to calibrate bell-shaped Hubbert curves. A gen-

eral form of such a curve is rH (t) = 2rmax∕{1 + cosh[a(t −

tmax)]}, where rmax > 0 and tmax > 0 are the maximum

rate of extraction and the correspondent year respectively,

and a > 0 is a parameter. For this curve, limt→∞ ṙH∕rH =

−a < 0, that is, rH is unsustainable. Therefore, even if the

resource market is able to follow this path, a social planner

that cares about sustainability should apply available tools

to avoid this path by redistributing the extraction in favor of

the future. Note that the form of the Hubbert curve was se-

lected as the best fit for historical market-driven patterns of

extraction (Laherrere, 2000). This fact is another evidence

of market failure in extractive industry, which is a standard

reason for policy interventions.

These examples show that Lemma 1 and Proposition 1

sensibly restrict the set of patterns of extraction that may be

sustainable. However, these statements do not guarantee yet

that a path of extraction from this set leads to sustainability

even in the remote future. The following proposition is for-

mulated for the paths that are pre-selected by Lemma 1. The

proposition specifies such r that guarantee an asymptotically

non-decreasing output.

Proposition 2. Assume limt→∞ ṙ∕r1+� = 0. Economy (3) is

asymptotically sustainable iff (if and only if) limt→∞ r̈r∕ṙ2 =

1+�∕�+", where " ≥ 0 is an asymptotic growth parameter.

As the proof in Appendix B shows, the growth of q is faster

the larger is ". In order to define a proper place of asymptot-

ically sustainable path r in the family of convex functions,

recall, for self-sufficiency of the paper, the following facts.

Proposition 3. 1. r(t) is convex iff r̈(t) ≥ 0.

2. r(t) is log-convex iff ln[r(t)] is convex or r̈r∕ṙ2 ≥ 1.

3. r(t) is strictly log-convex if the inequality above is strict.

4. r(t) is strongly convex with parameter m > 0 iff r̈(t) ≥ m.

5. r(t) is strongly log-convex with parameter m > 0 iff

ln[r(t)] is strongly convex with parameter m > 0 or

r̈r∕ṙ2 ≥ 1 + m(r∕ṙ)2.

A direct comparison of the condition in Proposition 2 and

facts 2 and 3 in Proposition 3 imply a more tight necessary

sustainability condition than the one in Proposition 1:

Proposition 4. Economy (3) is sustainable for all t ≥ 0 only

if r is asymptotically strictly log-convex.

A technical benefit of Proposition 4 is the same as the one of

Proposition 1: there is no need to estimate � and �. The cost

is that the condition is still only necessary. It spots the paths

that may be sustainable but does not guarantee sustainabil-

ity even in the remote future. It is intuitive, that a path that

guarantees sustainability must be technology-specific.

As Proposition 2 shows, the more is the resource share

(�) and the faster is a desirable growth (") the stronger must

be the tail convexity. The latter means that the tail of r must

be thicker, leaving more of the initial stock to the future.

Since the asymptotic strict log-convexity is not enough

to guarantee sustainability, the tails of sustainable paths must

belong to a more restricted subset of convex functions. Does

it mean that sustainable paths are strongly log-convex?

Fact 5 in Proposition 3 implies that strong log-convexity

is too strong compared to the prescription of Proposition 2.

This is because limt→∞ r̈r∕ṙ2 = ∞ for a strongly log-convex

path that is a “candidate-sustainable” by Proposition 1.

Hence, the tail of a sustainable path must be between

strictly log-convex and strongly log-convex:

Corollary 1. Assume limt→∞ ṙ∕r1+� = 0. Economy (3) is

asymptotically sustainable iff r(t) is asymptotically strongly

log-convex with a variable parameter v(t) = (�∕�)(ṙ∕r)2.

Asymptotic sustainability conditions sort out unsuitable

paths for the future. However, these conditions are only nec-

essary for global sustainability. One of the problems is the

same as with any attempt to construct a sustainability indi-

cator that does not reflect the requirement of distributing a

given finite stock s0 over the infinite period of time. That is,

an indicator must be connected to a necessary sustainability

(and efficiency) condition ∫ ∞

0
rdt = s0.
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The results of this section raise the questions: What are

the paths that satisfy Proposition 2 for any t ≥ 0? What are

the conditions that guarantee global sustainability for these

paths, and what happens if these conditions do not hold? The

following subsection provides the answers.

3.2. Global sustainability conditions

After securing sustainability for the remote future, the

condition of Proposition 2 can be applied to all t ≥ 0 lead-

ing to a family of extraction paths. Then the requirement of

global sustainability yields a sustainability condition. It is

interesting that this condition must hold only at the initial

moment. Future sustainability follows from abiding a spe-

cific extraction path. This result is formulated below with a

detailed proof provided in Appendix C.

Theorem 1. Economy (3) is globally sustainable along

r(t) = r0(1 + r1t)
−�∕(�+�"), (4)

where r1 = r0(� + �")∕
{
s0[�(1 − ") − �]

}
> 0, iff

ps
0
ṡ0 + k̇0 ≥ 0, (5)

where ps
0
= �k0∕{s0[�(1 − ") − �]} is a sustainability ac-

counting price of natural capital in the units of produced

capital for economy (3) along (4) at t = 0, and " ∈ [0, (� −

�)∕�) is an asymptotic growth parameter.

This result requires neither optimality nor efficiency, and

the conditions of global sustainability are specified for an

“imperfect” initial state. Moreover, even if (5) does not hold,

a path from family (4) with " > 0 provides, as shown below

in Corollary 3, a transition to global sustainability. A special

case of (4) with " = 0 can be derived from the proof of

Proposition 5b in Stiglitz (1974) by solving for two constants

of integration and assuming q̇ ≡ 0.17

Inequality (5) with " = 0 coincides with the condition

of potential sustainability offered in Bazhanov (2011). The-

17Stiglitz (1974) came to a second order differential equation for r by

differentiating q̇∕q = �k̇∕k + �ṙ∕r and substituting qk = q̇r∕qr as an effi-

ciency condition, whereas here the second order equation comes from the

requirement of asymptotic sustainability.

orem 1 is more general because it offers the conditions that

guarantee not only potential sustainability, like condition (5)

itself, but global sustainability along a path from family (4).

Moreover, the proposition guarantees an asymptotic growth

for " > 0. The bound " < (� − �)∕� or �(1 − ") > � is a

generalized Solow (1974b)-Stiglitz (1974) convergence con-

dition for " ≥ 0. When (5) holds, it implies a tighter bound:

" ≤ "̄ = (� − �)∕� − �k0r0∕(�k̇0s0). (6)

The LHS of (5) has a familiar form of net investment, al-

though (5) is not a saving rule and ps
0
, in general, is neither

a competitive price, nor marginal productivity qr (Hartwick,

2003), nor the average unit value of the asset (SEEA, 2014).

In terms of Dasgupta and Mäler (2000), the difference is de-

termined by the differences in goals and, consequently, in the

allocation mechanisms. ps
0

shows by how much k0 must be

increased to compensate for a unit of the extracted resource

in a sense that the economy is still able to maintain infinitely

constant consumption along (4) with " = 0.18 Path (4), un-

like the paths in previous studies, guarantees the long-run

sustainability regardless of possible current overextraction.

Corollary 2 below provides the relation between ps and qr.

Condition (5) can be reformulated in terms of the change

in s0, namely ṡ0 + pk
0
k̇0 ≥ 0, where pk

0
= 1∕ps

0
shows how

much of the extracted resource can be compensated by a unit

increase in k0 given that the economy is still able to maintain

infinitely constant consumption along (4) with " = 0.

For a general q with n types of resources ri, and pro-

duced capital as a numeraire, the definition of sustainabil-

ity accounting price follows from the equality q̇ = qkk̇ +

18Definition of ps
0

follows from equality in (5) with ṡ0 = −r0 = −1.
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∑n

i=1 qri
ṙi, which implies k̇ +

∑n

i=1 p
si ṡi = q̇∕qk, where

psi = (qri∕qk) ⋅ (−ṙi)∕ri. (7)

For economy (3) along the path (4) formula (7) is

ps = [�kr0∕r]∕
{
s0[�(1 − ") − �](1 + r1t)

}
,

which becomes ps
0

provided in Theorem 1 for t = 0.

The formulas for ps
0

and pk
0

are intuitive. They show, for

example, that the maximum sustainable extraction rmax
0

=

−ṡmax
0

= pkk̇0 is lower if � is higher (the economy depends

more on the resource); � is lower (the impact of capital on

output is lower); s0∕k0 is lower (due to the concavity of q in

both r and k); " is higher (an asymptotic growth is faster).

It is not surprising that resource value for sustainability

ps may exceed a current market price or marginal produc-

tivity qr, which are local measures. For example, ps
0

of oil

in Example 1 (b) with " = 0 is ps
0
= 254.7 $/bbl, whereas

qr|t=0 = 64.4 $/bbl. For this economy, condition (5) does

not hold: k̇0 − ps
0
r0 = −$4184, which can be interpreted

either as underinvestment or overextraction valued at ps
0
.

Feasibility of investment. The relation between ps and qr

is linked with the feasibility of a smallest sustainable invest-

ment k̇min (leads to constant consumption) in a sense that

k̇min should be less than output q. By Theorem 1, k̇min
0

=

ps
0
r0 guarantees sustainability along (4) but it is not obvi-

ous that ps
0
r0 < q0. Recall that this kind of “benchmark in-

vestment” for the Hartwick rule is k̇min = qrr, which is al-

ways feasible for economy (3): qrr = �q < q. For imperfect

economies, prescribed investments are not feasible automat-

ically. The corollary below provides a feasibility condition

that follows immediately from (3) and the formula for ps
0
.

Corollary 2. For economy (3), ps
0
r0 < q0 iff

A > �k1−�
0

r
1−�

0
∕
{
s0[�(1 − ") − �]

}
, (8)

and ps
0
≤ qr|t=0 iff

A ≥ k1−�
0

r
1−�

0
∕
{
s0[�(1 − ") − �]

}
. (9)

According to (3), a low TFPA (e.g., due to inefficient institu-

tions) can lead to a low output q despite high k and intensity

of extraction r∕s.Condition (8) shows that ifA is too low, the

whole output is not enough to compensate for the extracted

resource in order to maintain at least constant consumption.

That is, inefficiencies of real economies may cause infea-

sibility of prescribed sustainability investments (Bazhanov,

2015). But even if (8) holds, k̇min
0

can be close to q0, pre-

scribing consumption c0 = q0 − k̇min
0

below a subsistence

level. In this sense, condition (9) guarantees a reasonable

level of k̇min
0

by requiring a higher A.

Paths of output. If (8) does not hold, any feasible invest-

ment violates (5) and the economy is (locally) unsustain-

able. This situation raises an important question for real

economies: What are the scenarios of output along path (4)

depending on " and initial conditions? The corollary below

(proof is in Appendix D) provides the answer.

Corollary 3. The path of output along (4) is

q =q0
[
(1 − k2)(1 + r1t)

−�(1−�)∕(�+�")

+k2(1 + r1t)
�"∕(�+�")

]�∕(1−�)
, (10)

where k2 = wAs0(1 − �)[�(1 − ") − �]yk�−1
0

r
�−1

0
and y =

1∕[�(1 − �) + �"]. This path is

1. " = 0, (a) stagnation q ≡ q0 iff k̇0 = ps
0
r0 or k2 = 1;

(b) bounded monotonic growth q = q0[k2 − (k2 −1)(1 +

r1t)
−(1−�)]�∕(1−�) with q → q∞ ∶= q0(k2|"=0)�∕(1−�) as t →

∞ iff k̇0 > ps
0
r0 or k2 > 1;

(c) bounded monotonic decline q = q0[k2 + (1− k2)(1+

r1t)
−(1−�)]�∕(1−�) with q → q∞ as t → ∞ iff k̇0 < ps

0
r0 or

k2 < 1;

2. " > 0, (a) unbounded monotonic growth with q̇0 ≥ 0 iff

k̇0 ≥ ps
0
r0 or k2 ≥ �(1 − �)y;

(b) U-shaped path with q̇0 < 0 iff k̇0 < ps
0
r0 or k2 <

�(1 − �)y or w < ŵ ∶= �k1−�
0

r
1−�

0
∕{As0[�(1 − ") − �]}.

Moreover, q attains a unique minimum

tmin =
{[

�"k2∕[�(1 − �)(1 − k2)]
]−(�+�")y

− 1
}
∕r1,

(11)

❆❱ ❇❛③❤❛♥♦✈✿ Preprint submitted to Elsevier P❛❣❡ ✽ ♦❢ ✷✺



❊①tr❛❝t✐♦♥ ♣❛t❤ ❛♥❞ s✉st❛✐♥❛❜✐❧✐t②

qmin = q(tmin) = q0
{
k2∕[�(1 − �)]

}��y
×

×
[
�"∕(1 − k2)

]−�2"y∕(1−�)
y−�∕(1−�), (12)

where qmin|"→+0 = q∞, qmin|"→(�−�)∕� = 0, and follows an

unbounded monotonic growth for t > tmin. The initial value

q0 is recovered at

trec =
[
z̄(�+�")∕(�") − 1

]
∕r1, where z̄ > 1 (13)

is a unique solution to (1 − k2)z
−�(1−�)∕(�") = 1 − k2z.

This corollary shows that path (4) helps to avoid an explicit

collapse—an output that goes to zero. It is important that

there is no explicit collapse even if economy overextracts at

the current moment, that is, (5) does not hold.19 In this case,

the output follows a monotonic decline to a sustainable level

q∞ if " = 0 (scenario 1(c)) or a U-shaped path if " > 0 (sce-

nario 2(b)). Obviously, current overextraction hurts future

generations, and the values of ps
0
r0 that are essentially higher

than k̇0 may lead to an implicit collapse, which can be de-

fined by consumption ((1−w)q∞ in case 1(c) or (1−w)qmin

in case 2(b)) that is below a critical level cs (e.g. subsis-

tence). In this case, economy may collapse due to riots and

wars rather than from starvation as in the explicit collapse.

That is, an implicit collapse may happen even if the resource

is not necessary for production (q(k, 0) > 0).20

The implicit collapse in case 2(b) may also result from

" that is close to (� − �)∕�. Using the term of Chichilnisky

(1996), this choice of " is the dictatorship of the future: The

requirement of a fast future growth redistributes the resource

into the future and may lead to a short- or middle-run col-

lapse even if the discrepancy between k̇0 and ps
0
r0 is low and

transition to sustainability is possible.

Corollary 3 provides a range of paths of output depend-

ing on ",w, and initial conditions (satisfaction of (5)). The

initial state cannot be changed at t = 0, whereas " pinpoints

19qmin can be close to zero in case 2(b) but it is always positive since

the feasibility of " requires " < (� − �)∕�.
20See a discussion in Dasgupta and Heal (1979), p. 197, which develops

the definition of essential resource given in Dasgupta and Heal (1974).

the path of extraction from family (4) and w specifies the

paths of output and consumption.21 The following section

discusses peculiarities of selection of optimal paths.

4. Sustainability and optimality

The practical value of consumption (utility) paths cru-

cially depends on criterion. The problems of choosing a cri-

terion for ranking infinite streams are reviewed, for example,

in Asheim et al. (2010). This section concentrates on prac-

tical questions of this ranking. It is known22 that sustain-

ability is a constraint in normative problems. Following this

paradigm, Corollary 3 offers a test range of feasible paths

of output that are either globally sustainable if (5) holds, or

allow to avoid explicit collapse if (5) does not hold. This

test range can be used for consequentialist analyses of nor-

mative approaches. The following subsections show that (5)

is a watershed that separates qualitatively different norma-

tive questions, which illustrates “the dependence of justice

evaluation on the context” (Konow, 2003).

4.1. How to minimize the risk of implicit collapse?

Implicit collapse may result from the lack of basic goods

rather than from a low level of output directly. Therefore,

this subsection considers the aggregate consumption c =

(1 −w)q rather than q as a welfare indicator.

If (5) does not hold, c decreases along (4) at least in the

short-run. Assume that implicit collapse eventually leads to

zero consumption for all succeeding generations. Then the

solution that minimizes the risk of collapse provides a con-

straint for the optimal growth after the period of decline.

To illustrate numerically the properties of the paths of c

and their sensitivities to " andw, the choice of the best values

of " and w is split below into a two-step process using the

data of Example 1(b). First step shows the effects of " under

21Recall that family (4) does not depend on w.
22E.g., Pezzey (1997).

❆❱ ❇❛③❤❛♥♦✈✿ Preprint submitted to Elsevier P❛❣❡ ✾ ♦❢ ✷✺



❊①tr❛❝t✐♦♥ ♣❛t❤ ❛♥❞ s✉st❛✐♥❛❜✐❧✐t②

" c10 Δc10(%) tmin ✭②❡❛rs✮ cmin trec ✭②❡❛rs✮
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✵✳✶✵ ✹✼✽✻ ✶✳✻✼ ✻✻✶ ✸✹✻✸ ✶✳✾⋅✶✵✼
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❚❛❜❧❡ ✶

c(t) ✐♥ ❊①❛♠♣❧❡ ✶✭❜✮ ❛❧♦♥❣ ✭✹✮ ✇✐t❤ w = 0.2 ❛♥❞ c0 = 5663.

the standard Hartwick rule (w = �, that is, c = 0.8q). The

second step considers the reaction of some paths, selected

on the first step, to the choice of w.

Choice of ". The future costs of current overextraction are

as follows: for " = 0, c monotonically decreases from $5663

to c∞ =$3142; for " > 0, c follows U-shaped paths de-

scribed in Table 1 depending on ", where c10 is consumption

after 10 years and Δc10 = 1 − (c10∕c0)
0.1 is the average per-

cent decline in consumption during 10 years. Recall that "

is upper bounded by (�−�)∕�, which is 1/3 in this example.

The path of c is asymmetric with respect to tmin: fast de-

cline for t ≤ tmin and long recovery for t > tmin. Dictatorship

of the future is represented by " = 0.333—a fast and deep

drop in c which is a cost of a relatively fast growth after 782

years. The opposite case, " = 0, is the dictatorship of the

present constrained by (4) because the short-run values of

c are the highest among feasible paths. The costs are ever

decreasing consumption and a possible implicit collapse.

Two values of " in Table 1 are optimal with respect to dif-

ferent criteria. " = 0.1 is maximin-optimal (max"[c
min(")]).

Maximin is practical in this situation despite its known draw-

back – lack of sensitivity to other values of c > cmin. Possible

collapse turns this drawback into advantage—a full concen-

tration is needed to avoid extinction.

By Kahneman and Tversky (1979), “the carriers of value

are changes in wealth or welfare, rather than final states.”

That is, a fast drop in c (low ċ) may lead to an implicit col-

lapse. Then the problem is to findmax"W {u[c(t, "), ċ(t, ")]}

where W is a criterion (e.g. mint) and u(c, ċ) with uc >

0, uċ > 0 accounts for both c and ċ.

The exact form of criterion is context-specific and de-

pends, besides the observable data, on intangibles such as

the levels of people’s awareness and sympathy to the future,

disutility from long recession, credibility of government(s),

strength of international agreements, etc.

If the risk of collapse is low, " can reduce transition time.

In this example, " = 0.275 provides the fastest transition to

sustainability23—“just” in 274 years. Moreover, c0 recovers

by millions of years earlier than for " = 0.1. The cost is a

faster and deeper transition decline of c compared to " = 0.1.

Choice of w. Investment, as reviewed in Section 2, is a

conventional tool for adjusting consumption. This tool can

work simultaneously with the choice of extraction path. This

paper, however, finds first a family of extraction paths that

guarantee the long-run sustainability of output. Then the

best (in terms of a welfare measure and criterion) path from

this family can be selected using a saving rule.

In particular, the standard Hartwick rule prescribes w =

� = const for the base case (�KR = 1) of this paper. The

following corollary (proof is in Appendix E) shows that a

constant w that maximizes cmin in scenario 2(b) always ex-

ceeds �. To guarantee that the economy remains in scenario

2(b) for any w ∈ (0, 1) and " ∈ (0, (� − �)∕�), the corollary

considers only the cases where the benchmark investment is

infeasible (ps
0
r0 ≥ q0).24

Corollary 4. For ps
0
r0 ≥ q0, a uniquew that maximizes cmin

23Some studies (e.g. Cairns and Martinet, 2021) define sustainability

in terms of maximin value implying that economy may be considered sus-

tainable if this value increases despite current consumption decline. This

approach, as argued above, requires a very accurate definition of utility to

avoid a short-run implicit collapse (despite the growth of sustainability in-

dicator) due to a fast drop in current consumption.
24Recall that scenario 2(b) does not exist for any combinations of " and

w̄ > ŵ(") if ŵ(") < 1. That is the economy can switch to a sustainable path

1(a), 1(b), or 2(a) (depending on " and w̄) at t = 0 just by reducing " and

increasing w to w̄ if w̄ is “politically” feasible (not too close to one). Corol-

lary 4 considers more complicated cases when this switch is impossible.
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" w c10 Δc10(%) tmin ✭②❡❛rs✮ cmin trec ✭②❡❛rs✮
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❚❛❜❧❡ ✷

c(t) ✐♥ ❊①❛♠♣❧❡ ✶✭❜✮ ❛❧♦♥❣ ✭✹✮ ✇✐t❤ ♦♣t✐♠✐③❡❞ w.

in scenario 2(b) of Corollary 3 is w∗ =

�∕2+
[
k1−�
0

r
1−�

0
(�+�")−d

]
∕(2As0[�(1−")−�]), (14)

where the expression for d is provided in the proof. More-

over, � < w∗ < �,w∗|"→0 = �, and w∗|"→(�−�)∕� = �.

It is important that w∗ is feasible and specific for techno-

logical parameters and initial conditions, which allows to

avoid the drawbacks of general rules discussed in Section 2.

For any parameters, the maximin investment for scenario

2(b) exceeds the resource rent (w∗ > �). Note also that

w∗ < � holds not only for steady, efficient growth as shown

in (Stiglitz, 1974, condition (15)).

Substitution of (14) into cmin leads to cmin(") = [1 −

w∗(")]qmin("), where qmin(") is given by (12), and maxi-

mization in " yields the maximin solution. The second line

of Table 2 illustrates how w∗(") and a search in " improve

the solution with w = � and " = 0.1 provided in Table 1.

The improvements include, besides higher cmin, faster tran-

sition and recovery. The costs are paid by the generations

with t < tmin, including a discontinuous drop in c0 from

5663 to 5259 (7%). This drop may be feasible if government

reduces some spending (e.g., military expenses or fossil fuel

subsidies) rather than cutting private consumption.

An increase in w can essentially reduce transition time.

By (11), tmin monotonically decreases in w, therefore, if the

goal is to minimize tmin, w should be constrained by a lower

bound for consumption:

min
w,"

[tmin(w, ")] s.t. cmin(w, ") ≥ c̄.

For example, the first line of Table 2 shows that the bound-

ary solution of this problem with c̄ = 2000 reduces tmin from

274 (Table 1) to 50 years. The cost, however, is a very sen-

sitive drop in c0 from 5663 to 2322 (59%), which, using the

argument above, can cause implicit collapse at t = 0. The

problem can be approached by a variable w = w(t) with

w(0) = w0, which is considered in subsection 5.3 below.

4.2. Optimal growth: bounded or unbounded?

When condition (5) holds (k̇0 ≥ ps
0
r0), Corollary 3 pro-

vides a family of sustainable paths, which include stagna-

tion, bounded and unbounded growth depending on ".

However, not all sustainable paths can be considered as

desirable and intergenerationally just. The case k̇0 = ps
0
r0

with " = 0 leads to stagnation, and economy is optimal for

the standard Hartwick rule, which connects this study with

previous results.25 Stagnation is a trivial and the least at-

tractive form of intergenerational justice because it does not

provide any gains, which, by Kahneman and Tversky (1979),

are important carriers of value.

The author conducted a survey of his students during a

number of years about the choice among combinations of

current consumption sacrifices and the rates of growth.26 In

these combinations, a larger sacrifice led to a faster concave

growth but later time of overtaking the level of stagnation.

The respondents’ choice was always in the range from 1.8%

to 3.5% growth at t = 0 with the corresponding overtaking

time from 5 to 10 years. A small loss today was always better

than “loss of a dream:” nobody selected stagnation when

future growth was possible even at a cost of sacrifice.27

Perpetual stagnation is avoidable by increasing either w

(discontinuous drop in c at t = 0) or ". After increase in

25Indeed, formula (4) for r coincides with (A.5), where k1 for w = �

becomes k1 = k̇0∕k0 = �r0∕[s0(�−�)] = r1, and with the one in Bazhanov

(2013, p. 344) using s0 = ∫ ∞

0
rdt, which gives r0 = [s0k

�−1
0

(�−�)]1∕(1−�).
26The survey was in the form of open discussion of the patterns of sus-

tainable growth provided in Fig. 1 of Bazhanov (2013).
27The rate of time preference varies interpersonally and over time but

saving rates are always separated from zero (e.g. World Bank data).
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", condition (5) will not hold at t = 0, which is considered

above in Section 4.1. An increase in w with " = 0 leads to

scenario 1(b)—a bounded growth.

Assume that k̇0 > ps
0
r0 for any " ∈ [0, "̂], where "̂ < "̄

and "̄ is defined by (6). If utility is u(c, ċ) with uc > 0 and

uċ > 0, intergenerational justice28 can be expressed as

u(c, ċ) = ū = const ∀t ≥ 0 with u(0, ċ) = u(c, 0) = 0, (15)

where the last condition formalizes the aversions to collapse

and stagnation. For example, Bazhanov (2013) provides in-

tergenerationally just paths satisfying (15) for utility u =

ċc1− = (ċ∕c)c, where  ≥ 0. A family of maximin-

optimal growth paths for this u and q = k�r� is c = c0(1 +

't) , where ' = ċ0∕(c0) and  is bounded by nonrenewable

resource constraint:  < (� − �)∕(1 − �), which for conven-

tional values of � and � is less than one. That is, optimal

paths of c are unbounded but concave (decelerating), and in-

tergenerational justice means that a slower future growth is

compensated by a higher level of consumption.

By Kahneman and Tversky (1979), the smaller the gain

is, the more valuable a unit of the gain is. That is, for con-

cave c(t), a unit increase in c becomes more valuable in time,

which may lead to projection bias (Loewenstein et al., 2003).

The bias can be reduced by a proper factor in utility, specify-

ing the condition of intergenerational justice (15) as follows:

u(c, ċ) = (ċℎ)c = ū = const ∀t ≥ 0, (16)

where  ≥ 0 and ℎ̇ ≥ 0. Due to a variance in individual time

preferences,  and ℎ can be specified empirically only as

ranges. Then (16) raises the questions: what are the ranges

28On the concepts of justice between generations see, e.g. Dasgupta

(2005). This paper follows Solow (1974b) but applies maximin to u(c, ċ)

rather than to the level of consumption c.
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for  and ℎ, and if some of the paths in Corollary 3 satisfy

these ranges? While the first question can be addressed by

a separate empirical study, an answer to the second one is

given in the corollary below (proof is in Appendix F), which,

for simplicity, assumes k2 > 1 and � < 0.5.

Corollary 5. If there are " ∈ [0, "̂], such that u(c, ċ) =

(ċℎ)c represents intertemporal utility with  = �∕(1 − 2�)

and ℎ = ℎ(t) = (1 + r1t)
�∕(�+�")∕

∕
{
�"k2∕[(k2 − 1)�(1 − �)] + (1 + r1t)

−[�−�(�−")]∕(�+�")
}

with ℎ̇ > 0, then the paths c = (1 − w∗)q correspondent to

these " and q determined by Corollary 3 can be considered

as candidates for intergenerationally just paths in the sense

of (16) with constant utility ū∗ = c0(w
∗)
{
c0(w

∗)[k2(w
∗) −

1]��r1∕(� + �")
}�∕(1−2�)

maximized by

w∗(") = � + k1−�
0

r
1−�

0
[� − �(� − ")]∕{As0[�(1 − ") − �]},

where w∗(") increases in " and w∗(") > � ∀" ∈ [0, "̂].

Figure 1 illustrates the difficulty of selecting the best path of

growing c. The figure uses the result of Corollary 5 and the

data of Example 1(b) with a larger initial reserve (s0 = 4000)

to satisfy condition (5) for any " ∈ [0, 0.2].

A finitely living agent should choose bounded growth

(" = 0) because it is life-cycle undominated. However, the

choice of a planner who treats generations equally may be

different. Behind the Rawls (1971) “veil of ignorance”—the

respondents do not know to which generation they belong—

a stagnation-averse agent may select a path with " > 0 be-

cause the path with " = 0 quickly approaches a constant
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cmax = 17972, and consumption gains are impalpable dur-

ing life cycle starting from some t = T .

It is questionable if it makes sense to determine in prac-

tice the fairest sustainable path with high accuracy as op-

posed to a plausible path from a range of “fair-candidates.”

Besides personal projection biases, the parameters that de-

termine the value of ū∗ and the path of c are uncertain and

change over time. The following section illustrates the sen-

sitivity of the consumption path to some of these parameters.

5. Sensitivity

The analysis above uses a most pessimistic model that

still allows for sustainable consumption growth. Assume

that a planner enables the extraction to follow path (4) con-

structed for model (3). However, actual technological pa-

rameters and the stock estimate s0 are more optimistic than

the data used for calibration. As Solow (1974a) put it, “a cor-

rect theory of optimal social policy will have to take account

of technological uncertainty (and perhaps also uncertainty

about the true size of mineral reserves).” How do these mis-

specifications affect the path of consumption? The question

can be reformulated: How do the efforts in reducing natu-

ral resource dependence affect consumption compared to the

effects of " and w considered in Section 4? The following

subsections illustrate the answer.

5.1. Changes in technology

�KR > 1. Let an economy follow a path of extraction (4)

estimated for �KR = 1, whereas in reality �KR > 1. For ex-

ample, the economy overuses the resource at t = 0 and the

planner chooses a maximin-optimal U-shaped path of c de-

scribed in the second line of Table 2. Table 3 illustrates the

reaction of this path to increases in �KR given other parame-

ters fixed. Suboptimality of path (4) for �KR = 1.01 (second

line of Table 3) redistributes consumption from the short and

�KR c10 Δc10(%) tmin ✭②❡❛rs✮ cmin trec ✭②❡❛rs✮

✶ ✹✺✹✸ ✷✳✶✽ ✺✸✵ ✸✺✵✺ ✶✳✵✾⋅✶✵✼
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middle run to the future. The resulting path is in the middle

between maximin-optimal and fastest-transition paths from

Table 2. Consumption overtakes the path for �KR = 1 only

after 3809 years. Of course, using flexibility of path (4),

the resource can be redistributed from the future to present

by reducing ". Indeed, numerical search in " and w, using

(3) for r and equation k̇ = wA�(�k
� + �r�)1∕� for k with

� = 1 − 1∕1.01 yields a better solution: cmin = 3056 at

tmin = 123 for " = 0 and w = 0.44, which is still a U-shaped

path whereas for �KR = 1 with " = 0, c monotonically de-

creases to an asymptote c∞ by scenario 1(c) of Corollary 3.

No model is perfect, therefore a search for a “best” path,

which may require high sacrifices (24% drop in c only at

t = 0 and 46% total drop by tmin in the example above) is

a questionable policy. The next example shows that a better

way to improve the path of c is a further increase in resource-

capital substitutability.

Section 2 shows that �KR = 1.0315 is “perfect” for econ-

omy in Example 1 to maintain constant c forever while using

up all the resource. If this economy follows path (4) esti-

mated for �KR = 1 (third line in Table 3), it has a 64-year

period of consumption sacrifice from c0 = 5663 to 3671 fol-

lowed by unbounded growth with the fastest across examples

above recovery of c0—496 years. By the time of recovery

for �KR = 1.01 (10572 years), per capita consumption of

economy with �KR = 1.0315 is 20 times higher—$112,528.

For this economy, the same rule works as for �KR = 1.01:

an increase in �KR should be combined with decrease in ".

Namely, for " = 0 and w = 0.32, consumption starts grow-
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ing after tmin = 40.5 with cmin = 4060 (28% total drop).

The examples in Table 3 confirm the effect known in

medicine: combining some drugs may lead to an opposite re-

sult. The antidote is intuitive—increases in resource-capital

substitutability should be accompanied with gradual redistri-

bution of the resource from the future to present compared

to path (4) for model (3) (not to the initial overextracting

path!). The examples also show that if economy follows a

path from family (4), some inevitable in practice deviations

from planned consumption look better than explicit collapse

in 39 years as shown in Example 1(b).

Changes in � and �. Assume that estimated � and � dif-

fer from actual �+ and �+. The assumption of other param-

eters fixed (including q0) implies that the estimation of TFP

A also differs from actual A+. For the example above (first

line of Table 3), assume that �+ + �+ = 0.5 still holds, that

is the production function is still homogeneous of degree

one (Appendix A). Then the path of extraction r determined

by (4) with � = 0.3 and � = 0.2 leads to different paths

of capital and consumption for �+, �+, and A+. Capital is

determined by the equation k̇+ = wA+k
�+
+ r�+ , which yields

k+ = k0
{
1+k2+

[
(1+r1t)

[�−�(�+−")]∕(�+�")
]}1∕(1−�+), where

k2+ = wA+r
�+
0
(� + �")(1 − �+)∕

{
k
1−�+
0

r1[� − �(�+ − ")]
}
,

leading to c+ = (1 −w)A+k
�+
+ r�+ .

Table 4 does not reveal any paradoxes similar to the one

resulted from increases in �KR. All generations are better off

along path (4) if economy is less resource dependent, that is

if � − � increases, and worse off if this difference decreases.

5.2. Underestimated stock as investment

Paths from family (4) depend on stock s0,which is highly

uncertain due to geological factors (e.g. McGlade, 2012).

Moreover, future prices may or may not make low grade de-

posits economically valuable. Sustainability requires to use

the lowest estimate of s0 to avoid future collapse due to over-

estimation. Of course, underestimation of production possi-

bilities leads to inefficiency. Bazhanov (2015) considers this

inefficiency as an insurance against possible collapse. How-

ever, underestimation of stock is more than just an insurance.

Figure 2 compares the consumption paths for the exam-

ple above (first line of Table 4) under different assumptions

about s0. Assume that the total additional stock that will be

economically recoverable in the future equals current proven

reserve s0, and the current additional stock Δs(t) is concave

in time, for example, Δs(t) = s0(1 − e−0.001t). Figure 2 il-

lustrates three scenarios: (a) precommitment for s0 = 75

(dashes); (b) precommitment for s0 = 150 (dots)—the plan-

ner takes a risk by adding Δs(t)|t→∞ to s0 at t = 0, which

may end up in collapse; (c) consumption c is being estimated

quarterly (solid line in Figure 2) while the path of extraction

(4) is being reconstructed annually given the stock s(t) with

updates29 as shown in Appendix G.

It is intuitive that, for some period of time, consumption

in case (c) is between the one in cases (a) and (b) because the

estimated resource stock in case (c) is always between 75 and

150. But why does case (c) consumption eventually exceed

the one in case (b)? The answer is clear if marginal resource

productivity qr increases over time, which holds for model

(3). That is, a unit of extracted resource is more productive

in the future than in the present. Therefore, a cautious under-

estimation of resource stock works not only as an insurance

29For analytical goals, it may be convenient to express extraction via

current stocks s and k using the criterion (e.g. Cairns and Martinet, 2021).

In practice, however, it can be less robust than recalculation because pref-

erences are changing in time (Loewenstein et al., 2003) and coordination of

many activities requires the time path of extraction.
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against collapse but also as an investment.

5.3. Variable investment rate

Under the setup of this paper, a general problem of find-

ing w(t) and "(t) is to maximize W {u[c(t, w, "), ċ(t, w, ")]}

subject to k̇ = wq, ṡ = −r, the constraints 0 < wmin ≤ w ≤

wmax < 1, 0 ≤ " ≤ "max < (� − �)∕�, and the initial con-

ditions k(0) = k0, s(0) = s0, w(0) = w0, "(0) = "0, where

q and r are determined by (3) and (4) respectively, and, as

discussed in Section 4, W is context-specific.

However, the efforts to increase W should include also

technological parameters (Section 5.1), which depend on the

path of restructuring. This path is not easy to predict or con-

trol, calling for robust practical solutions for r(") and w.

This subsection illustrates the sensitivity of consumption

to changes in w under uncertainty of capital-resource sub-

stitutability given other parameters fixed. It is known30 that

an increase in current investment redistributes consumption

from the present to future, and decrease leads to a reverse

redistribution. Therefore, a hump-shaped w(t) can improve

the maximin value of a U-shaped consumption path con-

structed with a constant w∗.

Table 5 shows that cmin can be increased for all values of

�KR considered in Section 5.1 (Table 3) for W = mint[c(t)]

30See, e.g. Solow (1974b).

�KR c10 Δc10(%) tmin ✭②❡❛rs✮ cmin trec ✭②❡❛rs✮
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by the same simple piecewise linear w of the form w(t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(wmax −w0)t∕t
max +w0 | t ∈ [0, tmax]

(w∗ −wmax)(t − tmax)∕(t∗ − tmax) +wmax | t ∈ (tmax, t∗]

w∗ | t > t∗,

where w0 = w(0), wmax < 1 is a maximal feasible w at a

minimal feasible tmax > 0, and t∗ > tmax (parameter) is a

time of switching to a sustainable growth investment policy.

For Table 5, w0 = 0.2, tmax = 5 years, wmax = 0.3, t∗ =

300, w∗ = 0.257. That is, there exists a �KR−robust w(t)

that improves the maximin value of a U-shaped path, and

the best pattern of this w(t) is context-specific.

6. Sustainable extraction and climate change

The results above show that the long-run sustainability

of production may require a fast decrease in current extrac-

tion compared to business as usual. These results assume

that resource always benefits production and utility, which

does not hold for many minerals such as coal or petroleum.

The theory (e.g. Stollery, 1998; Bazhanov, 2012) suggests

that negative side effects from resource use call for further

redistribution of extraction from the present to future.

Meanwhile, numerical estimates of the Intergovernmen-

tal Panel on Climate Change (IPCC) conclude that to limit

global warming to 1.5°C requires halving GHG emissions

by 2030 and meeting near-zero emissions by 2050 (Rogelj

et al., 2018).31 How do these numbers relate to the neces-

31Confirmed by IPCC (2021).

❆❱ ❇❛③❤❛♥♦✈✿ Preprint submitted to Elsevier P❛❣❡ ✶✺ ♦❢ ✷✺



❊①tr❛❝t✐♦♥ ♣❛t❤ ❛♥❞ s✉st❛✐♥❛❜✐❧✐t②

sity to reduce the use of polluting minerals just to achieve

sustainable production while ignoring negative effects?

The approach of this paper provides a rough estimate.

For example, the maximin-optimal path of oil extraction in a

hypothetical economy described in the first lines of Tables 3

and 4 reduces extraction by 65% in 10 years and by 87% in

30 years. By EIA (2021), the share of fuels in petroleum

products is 71% (May 2021). That is, if the reduction dur-

ing the first 10 years happens due to switch to zero-emission

energy, which can be realized by tax/subsidy policies (e.g.

Acemoglu et al., 2016),32 the use of petroleum fuels and the

correspondent GHG emissions will be cut by 92%. The next

20 years will require further restructuring of consumption

and production such as phasing out plastic cups, bags, etc.

The example illustrates that the goal of production sus-

tainability may work as an incentive-compatibility mecha-

nism for resource-extracting countries: this goal requires the

same actions as the global goal of reducing GHG emissions.

If the parties of climate agreements are concerned about

sustainability of their own economies, they should cut the

extraction of polluting nonrenewables by the amounts con-

sistent with the goals of agreements and regardless of the

actions of other parties.

Moreover, the output-sustaining cuts of extraction for

nonrenewables are not limited by climate goals. Even under

zero-emission use, planners should always keep updating the

long-term programs of restructuring technologies and con-

sumption to reduce per capita extraction of these resources.

Practical realization of these programs may be achieved by

the same tax/subsidy policies that lead to transition from

dirty to clean technologies. Some studies use Integrated As-

sessment Models (IAM) to estimate these policies (e.g. Ace-

32Acemoglu et al. (2016) uses Hotelling rule for price dynamics of a

polluting resource although the dynamic efficiency condition in this case is

more complicated (Bazhanov, 2015, Lemma 1) and the real price increase

is slow (Gaudet, 2007), which may require additional tax/subsidy efforts.

moglu et al., 2016; Golosov et al., 2014).

As is known, the prescriptions of IAM, the main tool of

climate-economy modeling, highly depend on uncertain key

parameters such as discount rate or damage functions. As

Stern and Stiglitz (2021) put it, “In the presence of these ex-

treme uncertainties . . . a full analysis is impossible.” IPCC

conclusions induce an additional approach for rough esti-

mates of mitigating policies. The conclusions imply that the

perceived quality of life33 for majority of Earth’s population,

including the least advantageous, will decline with further

growth of global temperature. Since the approach to justice

evaluation depends on context (Konow, 2003), the climate

context calls for the maximin to mitigate the worst dam-

ages while eliminating the most controversial parameter—

discount rate—and, again, bringing closer the problem of

climate change to the analysis of the current paper.

For a decreasing welfare indicator, the maximin, as il-

lustrated in Sections 4.1 and 5.3, requires to start with the

most aggressive “politically feasible” actions, which is con-

sistent with climate mitigating investments that are less than

2% GDP annually (Stern and Stiglitz, 2021). This claim does

not require full optimization since it follows from a simple

logical exercise similar to the one in Solow (1974b).

Under uncertainties, the IAM prescriptions and the paths

in the form of (4) can be used as first order approximations

with further corrections after updates in knowledge (Section

5.2) possibly using feedback control: if emissions exceed the

limits advised by IPCC or the extraction of a mineral exceeds

an estimate given by (4), the correspondent taxes/subsidies

should be incrementally increased.

7. Conclusions

Sustainability requires coordination of market activities

with the ability of economy to satisfy the current and fu-

33On measurements see, e.g., Helliwell et al. (2020) or UNDP (2021).
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ture consumption needs using limited stocks of nonrenew-

ables. This ability depends on the consistency of intertem-

poral distribution of a stock with the possibility to gradually

replace the resource with other factors. This paper assumes

the weakest form of this possibility (unitary long-run elastic-

ity of resource-capital substitution) that still gives a chance

for sustainability. More pessimistic assumptions can lead to

collapse-inducing policies such as complete decapitalization

in finite time while sustainability may be possible.

The paper provides a closed-form expression for a fam-

ily of extraction paths that guarantee long-run sustainability

of an imperfect economy. A path from this family leads to a

monotonic growth of output with a decreasing rate of growth

if a sustainability condition holds. Otherwise, the path leads

either to a bounded decline or U-shaped path of output de-

pending on a parameter. That is, the offered approach allows

to quantify degrowth scenarios.

The paper does not assume that a planner should com-

mit to the offered path. It is known that inevitable varia-

tions in technologies and other uncertain parameters such as

stock estimates and consumer preferences lead to dynamic

inconsistency. A sensitivity analysis provides practical rec-

ommendations on the path corrections depending on these

changes. For example, an increase in capital-resource sub-

stitutability may be accompanied by a slower decrease in the

short run extraction. Another example shows that stock un-

derestimation and dynamic reestimation of extraction path

depending on stock updates works as an investment rather

than just insurance against future collapse.

Theoretical results are illustrated with numerical exam-

ples for a hypothetical upper middle-income oil extracting

economy. In particular, these estimates show that the long-

run sustainability requires a fast short-run decrease of ex-

traction consistently with the IPCC goals on cutting GHG

emissions. That is, the offered approach may work as an

incentive-compatibility mechanism for resource-extracting

countries: domestic production sustainability requires the

same actions as the global goal of mitigating climate change.

Quantification of sustainable extraction, for example, for

oil extracting countries, requires estimation of technologi-

cal parameters including TFP using (3) as a base model,34

which is an important direction for further work, as well as

the estimation of tax/subsidies that can make the extraction

sustainable. Another direction is studying the alternatives

for formula (4), which is not a unique expression for a fam-

ily of asymptotically sustainable extraction paths satisfying

Proposition 2. Separate work may pinpoint unique sets of

paths, for example, for specific welfare criteria.

One more problem that needs constant updates is the

path of effective long-run resource-capital substitutability.

Unfortunately, as Cleveland and Ruth (1997) note, “Most of

the work has focused on measuring substitution between en-

ergy, labor and manufactured capital”. Although energy ef-

ficiency is important, it is intuitive that energy-capital com-

plementarity and energy efficiency may be not relevant for

sustainability if an economy uses only renewables. Empir-

ical estimates of resource-capital substitutability, similar to

the ones reviewed in Knoblach and Stöckl (2020) for capital-

labor substitutability, could essentially advance sustainabil-

ity studies by reducing the uncertainty of this key parameter.

A. Calculations for Example 1

By Theorem 1 in Uzawa (1962), a constant return to

scale CES function with �KL = �RL = 1 and �KR ≠ 1 is

Q = Ā�L
1−�−�(�K� + �R�)1∕�, where � = 1 − 1∕�KR is a

substitution parameter. Let Ā� = AK�
0
R
�

0
∕(�K

�

0
+ �R

�

0
)1∕�,

34Recall that there are different variants of TFP estimates for a number

of countries provided, e.g. in the Penn Tables (Feenstra et al., 2015). How-

ever, these estimates are based on a two-factor (capital-labor) model while

the questions of sustainability with respect to nonrenewables require at least

three-factor models (resulting TFP should not include the resource effect).

❆❱ ❇❛③❤❛♥♦✈✿ Preprint submitted to Elsevier P❛❣❡ ✶✼ ♦❢ ✷✺



❊①tr❛❝t✐♦♥ ♣❛t❤ ❛♥❞ s✉st❛✐♥❛❜✐❧✐t②

where A = 200 leads to q0 = 7, 079 $/(capita×year) for any

�. Denote A� = Ā�L
1−�−� . Then the per capita output is

q = A� (�k
� + �r�)1∕� (A.1)

and qr = A��r
�−1 (�k� + �r�)1∕�−1 . Rule (i) is k̇ = rqr =

A��r
� (�k� + �r�)1∕�−1 ≥ 0 implying that the gross fixed

capital formation as a share of q is w = k̇∕q = �r�∕(�k� +

�r�) = {(�∕�)(k∕r)� + 1}−1 (when r > 0 and ṙ < 0, w

increases for � < 0 and decreases for � > 0). Moreover,

w = 0 if r = 0, implying discontinuity for � < 0. Then,

by (2), c(t) ≡ c0 = q − k̇ = A��k
�

0

(
�k

�

0
+ �r

�

0

)1∕�−1

for r > 0. Equations q = c0∕(1 − w) and (A.1) lead to

c0[1 + (�∕�)(r∕k)�] = A��
1∕�k[1 + (�∕�)(r∕k)�]1∕� which,

denoting k̄ = c0∕(A��
1∕�), is k̄ = k[1 + (�∕�)(r∕k)�]1∕�−1

yielding (r∕k)� = (�∕�) ⋅
(
(k̄∕k)�∕(1−�) − 1

)
and then r =

k{(�∕�)[(k̄∕k)�∕(1−�) − 1]}1∕�. Substitution into the saving

rule provides the equations that govern this economy:

k̇(t) = c0
{
[k̄∕k(t)]�∕(1−�) − 1

}
, (A.2)

r(t) = k(t)
(
(�∕�)

{
[k̄∕k(t)]�∕(1−�) − 1

})1∕�
. (A.3)

This substitution leads also to w = 1−(k∕k̄)�∕(1−�). Deriva-

tive of (A.2) yields k̈ = −c0�(k∕k̄)
−1∕(1−�)∕[k̄(1−�)] imply-

ing the convexity of k(t) for � ≤ 0 and concavity for � ≥ 0.

(a) �KR = 0.9. A numerical solution of (A.2) substituted

into (A.3) yields a decreasing path of extraction.35 Integra-

tion of this path shows that the initial reserve s0 is extracted

in 31 years resulting in the collapse of the economy. During

this period, w increases from w0 = 0.67 to wmax = 0.71, k

grows from k0 = 7⋅104 to kmax = 2.3⋅105, and consumption

is, indeed, constant at c(t) = (1 −w0)q0 = 2, 330.

Let (ii) hold and, at t = 0, rule (i) switches to a decap-

italization: k̇ = r0qr(0) − 2bt, where b > 0 is a parame-

35For analytical goals, r(t) can be approximated, e.g., by r̃(t) = r0∕(1 +

r1t
r2 ), where, for the data of Example 1, r1 = 0.025 and r2 = 0.85.

ter. Then the path of capital is k(t) = k0 + r0qr(0)t − bt2

and rule (ii), using (A.1), is �(1 − �)k�(�k� + �r�)−1(k̇∕k−

ṙ∕r) = A��k
�−1(�k� + �r�)1∕�−1 yielding the equation for

r: ṙ = r{k̇∕k − A�[� + �(r∕k)�]1∕�−1∕(1 − �)} with the

given k̇ and k. An iterative numerical solution with arbitrary

b, T and the conditions ∫ T

0
rdt = s0 and k(T ) = 0 yields

b = 99.0 and T = 59.8. c(t) increases as a concave function

from c0 = 2, 330 to c(T ) = 7, 090.6 and then collapses.

(b) The case �KR = 1 is analyzed for any w ∈ (0, 1).

More generality than in cases (a) and (c) is used in Section 4.

Rules (i) and (ii) provide the following differential equations

in r and k with the initial conditions r(0) = r0 and k(0) =

k0 ∶ ṙ = −[�A(1 −w)∕(1 − �)]k�−1r1+� and k̇ = wAk�r� .

Elimination of time leads to r = crk
−�(1−w)∕[w(1−�)], where

cr = r0k
�(1−w)∕[w(1−�)]

0
. Substitution of this r into the equa-

tion for k̇ results in k(t) = k0(1 + k1t)
w(1−�)∕d , where d =

��+w(1−�−�) > 0 and k1 = Ac
�
r dk

−d∕[w(1−�)]

0
∕(1−�) =

Ar
�

0
k�−1
0

d∕(1 − �). Using this k in r = crk
−�(1−w)∕[w(1−�)]

and then substitutions of k(t) and r(t) into q yield

r(t) = r0(1 + k1t)
−�(1−w)∕d , (A.4)

k(t) = k0(1 + k1t)
w(1−�)∕d , (A.5)

q(t) = q0(1 + k1t)
�(w−�)∕d . (A.6)

In accord with the “non-negative genuine investment rule”

(k̇ ≥ rqr), output does not decline iff w ≥ �. Moreover, by

(A.4), the convergence of ∫ ∞

0
rdt requires w < � since for

w ≥ �, d ≥ �(1−�). That is, the rate of globally sustainable

growth of q is decreasing and bounded from above. These

two conditions imply � ≤ w < �, i.e., the Solow (1974b)

convergence condition � < � holds.

When w ≥ �, the growth of q is unsustainable because it

leads to exhaustion of the resource in finite time and q = 0.

The same outcome results from a too high r0. The maximum
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r0 = rmax
0

(s0) that allows to keep infinitely r > 0 along the

path (A.4), can be found from s0 = ∫ ∞

0
rdt. Namely,

rmax
0

= [s0A(� −w)∕k1−�
0

]1∕(1−�). (A.7)

If w < � and r0 > rmax
0

then s0 = ∫ T

0
rdt, where T < ∞ ∶

T = {[1− (rmax
0

∕r0)
1−�]−d∕[(�−w)(1−�)] −1}∕k1. (A.8)

The economy collapses at t = T , i.e., q = 0 for all t ≥ T .

(c) For �KR = 1.1, a numerical solution of (A.2) substi-

tuted into (A.3) yields a quickly decreasing path of extrac-

tion36 and k(t) → kmax = k̄ = c0∕(A��
1∕�) = 7.47 ⋅ 105.

Consumption is constant for any t ≥ 0 at c0 = 5, 586. For

this technology, r0 is too low for given s0. Constant con-

sumption under rules (i) and (ii) is an “artificial” restriction

and can be maintained only if not all reserve is extracted:

numerical integration yields ∫ ∞

0
rdt = 42.3 < s0. An itera-

tive search shows that only if �̄KR = 1.0315, is the economy

in Example 1 both sustainable (c(t) ≡ c0 for any t ≥ 0) and

efficient under the rules (i) and (ii). For �KR < �̄KR, the

economy “cannot afford” permanent constant consumption.

It requires either short-run sacrifices or ends up in collapse

in the future. For �KR > �̄KR, the economy can afford a

sustainable (for any t ≥ 0) growth, which is determined by

economy’s technology (�KR, �, �) and the initial conditions.

B. Proofs of Lemma 1 and Proposition 2

PROOF OF LEMMA 1. Using (3) and k̇ = wq, q̇ = qkk̇ +

qrṙ = �q2w∕k + �qṙ∕r. Then q̇ is

q̇ = (�q2w∕k)
[
1 + (�∕�)(kṙ∕(rqw))

]
.

36r(t) can be approximated by r̃(t) = r0 exp(−r1t
r2 ), where, for the data

of Example 1, r1 = 0.121 and r2 = 0.8294.

Assume that ṙ < 0 and r > 0 for large enough t. Then q̇ ⩾ 0

for large enough t iff (�∕�)(kṙ∕(rqw)) ⩾ −1 or37

−�∕� ⩾ wAr1+�∕(k1−� ṙ) = rqw∕(kṙ). (B.1)

The saving rule k̇ = wq (w ≥ ŵ > 0 and q > 0) im-

plies limt→∞ k1−� = ∞.38 Then limt→∞ rqw∕(kṙ) is upper

bounded by −�∕� (implying q̇ ⩾ 0 may hold for all t ⩾ 0)

only if limt→∞ ṙ∕r1+� = 0, which is the lemma’s claim. □

PROOF OF PROPOSITION 2. Assume limt→∞ ṙ∕r1+� = 0.

By the proof of Lemma 1, a condition of asymptotic mono-

tonicity of q follows from the expression for the limit of

LHS in (B.1), that is limt→∞(wAr1+�∕ṙ)∕k1−� = ∞∕∞.

The L’Hôpital’s rule yields limt→∞(wAr1+�∕ṙ)∕k1−� =

=
A

1 − �
lim
t→∞

{
w
[
(1 + �)r� ṙ2 − r1+� r̈

]
∕ṙ2

}
∕k−�k̇. (B.2)

Substitution k̇ = wq = wAk�r� cancels out k−� and wA.

Then (B.2) is limt→∞

[
(1 + �)r� ṙ2 − r1+� r̈

]
∕
[
ṙ2r�(1 − �)

]
,

which is limt→∞

[
1 + � − rr̈∕ṙ2

]
∕(1−�) or (1+�)∕(1−�)−

limt→∞ rr̈∕[ṙ2(1−�)].Then, by (B.1), inequality limt→∞ q̇ ⩾

0 is equivalent to − limt→∞ rr̈∕[ṙ2(1 − �)] ⩽ −(1 + �)∕(1 −

�)−�∕�. Multiplication by −(1−�) leads to limt→∞ rr̈∕ṙ2 ⩾

1+�+�(1−�)∕� = 1+�∕�, which implies the proposition

statement: limt→∞ q̇ ⩾ 0 ⇔ limt→∞ rr̈∕ṙ2 = 1 + �∕� + ",

where " ⩾ 0 is a parameter of asymptotic growth. □

37Recall that rqw∕(kṙ) < 0.
38If limt→∞ k1−� = k̂ < ∞, e.g. when w(t) approaches zero faster than

1∕t, (B.1) becomes ṙ∕r1+� ≥ −�wA∕(�k̂) implying limt→∞ ṙ∕r1+� = 0.
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C. Proof of Theorem 1

Path (4) comes from the requirement that the asymptotic

sustainability condition of Proposition 2, limt→∞ r̈r∕ṙ2 =

1 + �∕� + ", holds for any t ≥ 0.

Recall that
d2

(dt)2
(ln r) =

[
r̈r∕ṙ2 − 1

]
∕ (r∕ṙ)2 , which is

[
r̈r∕ṙ2 − 1

] [ d

dt
(ln r)

]2
. Denote x = �∕� + " > 0. Then the

equation r̈r∕ṙ2 = 1 + x becomes
d2

(dt)2
(ln r) = x

[ d

dt
(ln r)

]2
.

Denote f = ln r or r = exp f. Then r belongs to a general

family f̈ = x
(
̇f
)2

with r(0) = r0 and ∫ ∞

0
rdt = s0.

Denote g = ̇f .Then f̈ = x
(
̇f
)2

is equivalent to ġ = xg2

or dg∕g2 = xdt ⇔ −1∕g = xt − 1∕g0, where g0 = g(0) is

a constant to be expressed via r0 or s0. The last equation

yields g(t) = g0∕(1 − g0xt) or df = g0dt∕(1 − g0xt), which

integrates to f (t) = −[ln(1−g0xt)]∕x+f0,where f0 = ln r0.

Substitution r = expf yields

r(t) = r0(1 − g0xt)
−1∕x, (C.1)

where g0 is to be found from ∫ ∞

0
rdt = s0. By (C.1), s0 =

r0 ∫
∞

0
(1 − g0xt)

−1∕xdt, which converges only if x < 1 ⇔

" < 1 − �∕� = (� − �)∕�. Under this condition, s0∕r0 =

[
(1 − g0xt)

1−1∕x
]
∕[g0(1 − x)]

|||
∞

0
= −1∕[g0(1 − x)] imply-

ing g0 = −r0∕[s0(1 − x)]. Substitution of 1 − x = 1 −

(� + �")∕� leads to g0 = −r0�∕{s0[�(1 − ") − �]}. After

substitution of g0, formula for r(t) in (C.1) becomes r(t) =

r0
{
1 + r0�xt∕

[
s0(�(1 − ") − �)

]}−x
.

Denote r1 = r0�x∕
{
s0[�(1 − ") − �]

}
, which is posi-

tive since �(1 − ") − � > 0 by the convergence condition.

Then substitution of x yields (4).

Given r, the saving rule k̇ = wq allows to find k, which

is needed to find global sustainability condition along (4).

Indeed, k̇ = wAk�r� , where w = const ∈ (0, 1) or, by (4),

dkk−� = wAr
�

0
(1 + r1t)

−��∕(�+�")dt. Integration leads to

k1−�∕(1−�) = k1(1+r1t)
k3+C,whereC = k1−�

0
∕(1−�)−k1

using k(0) = k0, k1 ∶= wAr
�

0
(� + �")y∕r1 > 0, y ∶=

1∕[�(1 − �) + �")] > 0, and k3 ∶= 1∕[y(� + �")] > 0.

Substitution for r1 leads to k1 = wAs0[�(1 − ") − �]yr
�−1

0
.

Denote k2 ∶= k1(1 − �)k�−1
0

. Then

k(t) = k0
{
1 + k2

[
(1 + r1t)

k3 − 1
]}1∕(1−�)

. (C.2)

To find a condition that guarantees q̇ ≥ 0 for all t ≥ 0

(recall that path (4) guarantees only limt→∞ q̇ ≥ 0), con-

sider, similarly to the proof of Lemma 1, q̇ = (A�q2w∕k) ×

[
1 + (�∕�)(kṙ∕(rqw))

]
, which implies

q̇ ≥ 0 ⇔ ṙk1−�∕r1+� ≥ −�wA∕�. (C.3)

By (4), ṙ = −�r0r1(1 + r1t)
−�∕(�+�")−1∕(� + �") or ṙ =

ṙ0(1 + r1t)
−[�+�(1+")]∕(�+�"), where, using the expression for

r1, ṙ0 = −�r2
0
∕{s0[�(1 − ") − �]} (note that ṙ < 0 for all

t ≥ 0). Then LHS in (C.3) becomes ṙk1−�∕r1+� = ṙ0 ×

(1+r1t)
−[�+�(1+")]∕(�+�")×r

−1−�

0
(1+r1t)

[�(1+�)]∕(�+�")k1−�
0

×

{
1 + k2

[
(1 + r1t)

k3 − 1
]}

, which leads to ṙ0r
−1−�

0
k1−�
0

(1+

r1t)
−k3

{
1 + k2

[
(1 + r1t)

k3 − 1
]}

and then ṙk1−�∕r1+� =

ṙ0r
−1−�

0
k1−�
0

[
k2 + (1 − k2)(1 + r1t)

−k3
]
.

Using the formulas for ṙ0 and k2, the second inequality

in (C.3) can be written as follows:

k2 ≥ �(1 − �)y
[
k2 + (1 − k2)(1 + r1t)

−k3
]
, (C.4)

which, consistently with construction of path (4), holds for

t → ∞ because �(1 − �)y ≤ 1 and k3 > 0. Since RHS of

(C.4) is monotonic in t, it remains to check (C.4) at t = 0.

That is, (C.3) is equivalent to q̇ ≥ 0 ⇔ k2 ≥ �(1 − �)y.

Using k̇0 = wAk�
0
r
�

0
and r0 = −ṡ0, the last inequality can

be written as k̇0s0[�(1 − ") − �]∕(�k0) ≥ −ṡ0 yielding the

claim of the theorem: q̇ ≥ 0 ⇔ ps
0
ṡ0 + k̇0 ≥ 0, where

ps
0
∶= �k0∕

{
s0[�(1 − ") − �]

}
. □
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D. Proof of Corollary 3

By (3) and formulas (4) for r and (C.2) for k, q =

q0(1 + r1t)
−��∕(�+�")

{
1 + k2

[
(1 + r1t)

k3 − 1
]}�∕(1−�)

,

where k2 = wAs0(1 − �)[�(1 − ") − �]yk�−1
0

r
�−1

0
, y =

1∕[�(1 − �) + �"], and k3 = 1∕[y(� + �")] (see the proof of

Theorem 1). Substitution for k3 and rearrangements lead to

expression (10) of the corollary.

The proof of Theorem 1 shows the equivalence of the

following three inequalities: q̇0 ≥ 0, k̇0 ≥ ps
0
r0 (condition

(5) in Theorem 1), and k2 ≥ �(1 − �)∕[�(1 − �) + �"].

For " = 0, the last inequality becomes k2 ≥ 1 and for-

mula (10) is q = q0
[
k2 + (1 − k2)(1 + r1t)

−(1−�)
]�∕(1−�)

,

yielding claims 1(a), 1(b), and 1(c) of the corollary.

For " > 0, formula (10) implies that q unboundedly in-

creases in the long run regardless of condition (5). If (5)

does not hold, i.e., k̇0 < ps
0
r0, or q̇0 < 0, then q attains a

unique minimum tmin > 0. Indeed, by (C.4), q̇ = 0 is equiv-

alent to k2 = �(1−�)y
[
k2 + (1 − k2)(1 + r1t)

−k3
]
, yielding

tmin =
({

k2[1∕[�(1 − �)y] − 1]∕(1 − k2)
}−1∕k3 − 1

)
∕r1,

which, after substitutions for k3 and y, provides a unique

positive tmin in the form of (11). Substitution of 1+ r1t
min =

{
�"k2∕[�(1 − �)(1 − k2)]

}−(�+�")y
into (10) leads to

qmin =q0

[
(1 − k2)

{
�"k2∕[�(1 − �)(1 − k2)]

}y�(1−�)

+k2
{
�"k2∕[�(1 − �)(1 − k2)]

}−y�"]�∕(1−�)
.

Using �(1 − �) = 1∕y − �", it can be written as

qmin =q0
[
�"k2∕[�(1 − �)]

{
�"k2∕[�(1 − �)(1 − k2)]

}−y�"

+k2
{
�"k2∕[�(1 − �)(1 − k2)]

}−y�"]�∕(1−�)
,

or, after factoring out, as

qmin =q0
{
k2∕[�(1 − �)]

{
�"k2∕[�(1 − �)(1 − k2)]

}−y�"
×

× [�" + �(1 − �)]}�∕(1−�) ,

which, using the expression for y, yields (12). The bound-

ary limits are: qmin|"→+0 = q0
{
k2|"=0∕[�(1 − �)]

}�∕(1−�)
×

lim"→+0

{
�"∕(1 − k2)

}−�2"y∕(1−�)
[�(1 − �)]�∕(1−�), where

lim"→+0

{
�"∕(1 − k2)

}−�2"y∕(1−�)
= 1. Then qmin|"→+0 =

q0
{
k2|"=0

}�∕(1−�)
. The limit qmin|"→(�−�)∕� = 0 because

k2|"→(�−�)∕� = 0.

The time of recovery trec > 0 follows from the equation

q(trec) = q0, which, by (10), can be written as

(1 − k2)(1 + r1t)
−�(1−�)∕(�+��) = 1 − k2(1 + r1t)

�"∕(�+��).

Denoting z ∶= (1 + r1t)
�"∕(�+��), it becomes

(1 − k2)z
−�(1−�)∕(�") = 1 − k2z.

Except for a trivial solution z = 1 (t = 0), this equation

has a unique solution z̄ > 1 because (i) both LHS and RHS

are monotonically decreasing in z, (ii) LHS asymptotically

approaches zero while RHS becomes zero at finite z, (iii) the

initial slope of LHS is steeper than the one of RHS. Property

(iii) follows from d∕dz(LHS)|z=1 < d∕dz(RHS)|z=1,which

is −�(1−�)∕(�")(1−k2) < −k2 or k2[�"+�(1−�)]∕(�") <

�(1−�)∕(�"). The last inequality holds because in case 2(b)

(q̇0 < 0), k2 < �(1 − �)∕[�" + �(1 − �)]. Then, using the

unique numerical solution z̄ > 1, the formula for z yields

equation (13): trec =
[
z̄(�+�")∕(�") − 1

]
∕r1. □
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E. Proof of Corollary 4

Denote a0 ∶= k2∕w. By (12), cmin = (1 −w)qmin =

(1 −w)w��y{a0∕[�(1 − �)]}��y×

× [(1 −wa0)∕(�")]
�2"y∕(1−�)y−�∕(1−�) or

cmin =a1(1 −w)w��y[(1 −wa0)∕(�")]
�2"y∕(1−�),

where a1 = {a0∕[�(1−�)]}��yy−�∕(1−�). Then )cmin∕)w =

a1w
��y[(1 −wa0)∕(�")]

�2"y∕(1−�)× (E.1)

×
{
−1 + (1 −w)

[
��y∕w − �2"ya0∕[(1 − �)(1 −wa0)]

]}

where a1w
��y[(1 −wa0)∕(�")]

�2"y∕(1−�) > 0, implying that

sgn()cmin∕)w) = sgn {⋅} . The range w ∈ (0, 1) contains at

least one maximizer of cmin because {⋅} |w→+0 = +∞ and

{⋅} |w→1 = −1. Since 0 < w < 1∕a0, the equality {⋅} = 0

can be written as

(1−w)
[
��y(1−�)(1−wa0)−w�2"ya0

]
= w(1−�)(1−wa0),

which, multiplied by k1−�
0

r
1−�

0
[�(1 − �) + �"]∕(1 − �), and

using the formulas for a0 and y, can be written as b2w
2 −

b1w + b0 = 0 with b2 = As0[�(1 − ") − �] > 0 (since

" < (� − �)∕�), b1 = k1−�
0

r
1−�

0
(� + �") + �As0[�(1 − ") −

�] > 0, and b0 = ��k1−�
0

r
1−�

0
> 0. The discriminant D =

b2
1
− 4b2b0 is positive because, by adding and subtracting

4�As0k
1−�
0

r
1−�

0
(� + �")[�(1 − ") − �], it can be written as

D =
{
k1−�
0

r
1−�

0
(� + �") − �As0[�(1 − ") − �]

}2

+

+ 4As0k
1−�
0

r
1−�

0
�2"[�(1 − ") − �] > 0.

The two roots are real, distinct, and positive: w∗
1,2

=

0.5
{
� + [k1−�

0
r
1−�

0
(� + �") ∓ d]∕

[
As0[�(1 − ") − �]

]}
,

where d ∶= D1∕2. The larger root w∗
2

is irrelevant because

w∗
2
|"→(�−�)∕� → ∞ and the infimum of w∗

2
(b2 monotoni-

cally decreases in ") is w∗
2
|"→0 = ŵ|"→0, which is infeasible

in scenario 2(b) of Corollary 3 (w < ŵ). Denote w∗ ∶= w∗
1
.

Since d > k1−�
0

r
1−�

0
(�+�")−�As0[�(1−")−�], w

∗ < �.

To show w∗ > �, D can be rearranged as follows:

D =
{
k1−�
0

r
1−�

0
(� + �") − (2� − �)As0[�(1 − ") − �]

}2

−

− 4As0�[�(1 − ") − �]2
[
k1−�
0

r
1−�

0
− As0(� − �)

]
,

where k1−�
0

r
1−�

0
− As0(� − �) > 0 since, by Corollary 2

with " → 0, A ≤ �k1−�
0

r
1−�

0
∕[s0(� − �)] for ps

0
r0 ≥ q0

implying k1−�
0

r
1−�

0
> �k1−�

0
r
1−�

0
≥ As0(� − �). Then d <

k1−�
0

r
1−�

0
(�+�")− (2�−�)As0[�(1−")−�] yielding w∗ >

�. The limits w∗|"→0 = �, and w∗|"→(�−�)∕� = � follow

directly from the expression for the smaller root w∗
1
. □

F. Proof of Corollary 5

Formula (10) can be written as q(t) = q0g(t)
�∕(1−�) im-

plying c(t) = c0g(t)
�∕(1−�), where c0 = (1 − w)q0. For w =

const, ċ = c0g
−(1−2�)∕(1−�)ġ�∕(1 − �), where, by (10), ġ =

(1+r1t)
−�∕(�+�")

[
�(1−�)(k2−1)(1+r1t)

−[�−�(�−")]∕(�+�")+

�"k2
]
r1∕(� + �"), which, using k2 > 1, can be written

as ġ = ℎ−1�(1 − �)(k2 − 1)r1∕(� + �"), where ℎ coin-

cides with the expression given in the corollary. Then ġℎ =

�(1 − �)(k2 − 1)r1∕(� + �") = const and [ċℎ]�∕(1−2�) =

g−�∕(1−�)[c0��(k2 − 1)r1∕(� + �")]�∕(1−2�) implying that

u(c, ċ) = c[ċℎ]�∕(1−2�) = ū = c0[c0��(k2 − 1)r1∕(� +

�")]�∕(1−2�) is constant overtime.

To maximize ū = ū(w), consider ũ =
{
(1 − w)[(1 −

w)(k2(w)−1)]�∕(1−2�)
}(1−2�)∕�

= (1−w)(1−�)∕�(k2(w)−1),

which is strictly concave in w and has the same maximizer

as ū. Recall that k2(w) = wa0, where a0 = As0(1−�)[�(1−

")−�]k�−1
0

r
�−1

0
∕[�(1−�)+�"] > 0. FOC for ũ is )ũ∕)w =

❆❱ ❇❛③❤❛♥♦✈✿ Preprint submitted to Elsevier P❛❣❡ ✷✷ ♦❢ ✷✺



❊①tr❛❝t✐♦♥ ♣❛t❤ ❛♥❞ s✉st❛✐♥❛❜✐❧✐t②

−(1−w)(1−�)∕�−1(wa0−1)(1−�)∕�+(1−w)(1−�)∕�a0 = 0 or

(1−w)(1−�)∕�−1{−wa0(1−�)∕�+(1−�)∕�+a0−wa0} = 0,

where 1 − w > 0 for feasible w. Then {⋅} = 0, which is

equivalent to wa0[(� − 1)∕� − 1] = −(1 − �)∕� − a0 or

w = �[1 + (1 − �)∕(�a0)], which after substitution for a0

yields the expression for w∗("). □

G. Updates in extraction path

A planner reconstructs the path (4) at ti, i = 1, 2,… , as

follows: ri(�) = ri
0
(1+ ri

0
��∕si

0
)−1∕�−1, where � ∈ [0, ti+1−

ti], � ∶= (� + �")∕[�(1 − ") − �], ri
0
= ri−1(ti − ti−1), t0 =

0, r0(�) is given by (4), r0
0
= r0, s

i
0
= si−1

0
−Xi+Δs̄i, s0

0
= s0,

Xi is the extracted amount in the period [ti−1, ti], Δs̄
i is the

additional stock in the same period. Then, similar to (C.2),

ki(�) = ki
0

{
1 + ki

2

[
(1 + ri

0
��∕si

0
)k3 − 1

]}1∕(1−�)
,

where ki
0
= ki−1(ti − ti−1), k

0(�) is given by (C.2), k0
0
= k0,

and ki
2
= wAsi

0
(ki

0
)�−1(ri

0
)�−1(1 − �)y(� + �")∕�, which

yields ci(�) = (1 −w)A(ki(�))�(ri(�))� .
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