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Abstract: This paper examines the suitability of Google Trends data for the modelling and forecasting of 

interregional migration in Russia. Monthly migration data, search volume data, and macro variables are 

used with a set of univariate and multivariate models to study the migration data of the two Russian cities 

with the largest migration inflows: Moscow and Saint Petersburg. The empirical analysis does not provide 

evidence that the more people search online, the more likely they relocate to other regions. However, the 

inclusion of Google Trends data in a model improves the forecasting of the migration flows because the 

forecasting errors are lower for models with internet search data than for models without them. These 

results also hold after a set of robustness checks that consider multivariate models able to deal with po-

tential parameter instability and with a large number of regressors. 
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1. Introduction 

Google Trends (GT) is an online service launched in 2008, which provides an index that reflects the rela-

tive popularity of a particular keyword (or a topic) by calculating the share of users’ searches for this key-

word among the total Google searches. This tool has been used in various fields of research, including IT, 

communications, medicine, health, business, and economics, see the large survey by Jun et al. (2018) for a 

detailed review.  

One of the latest advances in migration research proposed the inclusion of Google Trends data to forecast 

migration flows. In this regard, Böhme et al. (2019) stated that people acquire information about migration 
opportunities online before deciding to emigrate. Therefore, the online demand for information can serve as 

a proxy for future changes in the number of migrants: changes in online search intensity for specific key-

words related to migration can indicate an increase in the demand for migration, and, thus, can help to 

predict migration flows. We remark that there is an increasing literature that shows that Google-based mod-

els significantly outperform most of the competitors in several economic and financial applications, see Chol 

and Varian (2012), Fantazzini (2014), D’Amuri and Marcucci (2017), Bulut (2017), Yu et al. (2019), and Borup 
and Schütte (2020).  Jun et al. (2018) provide a useful review of the research studies using Google Trends in 
a wide range of areas, including IT, communications, medicine, health, business, and economics. 

In this perspective, we propose to use online search data for forecasting the monthly aggregate migra-

tion inflows into Russian regions from all other regions. We justify this choice because the administrative 
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burden for registering in a new region is nontrivial and take some time1, and searching the web for infor-

mation is one of the main strategies a potential immigrant can do. Moreover, given that the most important 

requirement to register in a new region is having a place to stay, searching the web is needed to look for a 

house/flat to buy or rent. Furthermore, the official statistics on monthly migration are published with a lag 

of (usually) 6 months and are not available when a regional government start planning the social and labor 

policies in that region. Instead, internet search data are available on a weekly and monthly basis and they 

can help identify in advance the number of people that have an intention to move. Therefore, Internet data 

may provide precise migration forecasts much before the official statistics release, thus giving the regional 

governments more time and better information to plan their local policies. In this regard, Nikolopoulos et 

al. (2021a,b) recently highlighted that the lack of reliable hard data limits the possibility of policymakers 

making informed decisions, and they suggested employing auxiliary data from social media such as Google 

Trends. Our proposal in this paper goes in this direction2. 

We use monthly migration data, search volume data, and macro variables for the 2009-2018 time sample 

to analyze how these variables affect migration inflows for the two Russian cities with the largest migration 

inflows: Moscow and Saint Petersburg3. We consider both short- and long-term forecasts because in real-life 

the regional government has to plan the social and labor policy for at least a year in advance. ARIMA-class 

models are used to make 1-step ahead forecasts, while multivariate models are used for recursive long-term 

forecasting up to 24 months ahead.   

The empirical analysis does not provide evidence that the more people search online, the more they relo-

cate to other regions. Instead, we find that a one-time shock in internet search queries results in a negative 

migration inflow after approximately five months. However, the inclusion of Google Trends data in a model 

does improve the forecasting of the migration inflows because the forecasting errors are lower for models 

with internet search data than for models without them. These results also hold after a set of robustness 

checks that consider multivariate models able to deal with potential parameter instability and with a large 

number of regressors, potentially larger than the number of observations. 

The use of Google search data represents an important leading indicator for migration dynamics, which 

can complement other instruments, such as data from other social media and telecommunications data, as 

                                                           
1 See the official detailed requirements in Russian:  

https://www.gosuslugi.ru/situation/residential_property/registration_of_citizens, and 

http://www.consultant.ru/document/cons_doc_LAW_7271/2ab816e63f6cf336e7c992753d7a3c5c9a517997 

2 In August 2021, using the simple average of the market shares for search engines provided by the analytics services Yandex-

Radar and StatCounter, Yandex was the top search engine in Russia with a share of 51%, while Google had a share of 45%. 

Unfortunately, Yandex provides only the last 24 months of search data, thus making any statistical analysis with monthly data 

unfeasible. It is for this reason that we used Google search data in place of Yandex data. 

3 The focus of this paper is on legal migrants. Of course, we are aware that there is a large number of illegal migrants in these two 

cities: unfortunately, the estimates of these immigrants vary widely and are not always available (see e.g. 

https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%81%D1%82%D0%B0%D1%80%D0%B1%D0%B0%D0%B9%D1%82%D0%

B5%D1%80%D1%8B_%D0%B2_%D0%A0%D0%BE%D1%81%D1%81%D0%B8%D0%B8 for a summary) so that it is difficult -if 

not impossible- to build a reliable model using these estimates. However, we are confident that both legal and illegal migration 

share the same temporal dynamics, as it was particularly evident during the Covid-19 pandemic in 2020, see e.g. 

https://en.wikipedia.org/wiki/Immigration_to_Russia. 

https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%81%D1%82%D0%B0%D1%80%D0%B1%D0%B0%D0%B9%D1%82%D0%B5%D1%80%D1%8B_%D0%B2_%D0%A0%D0%BE%D1%81%D1%81%D0%B8%D0%B8
https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D1%81%D1%82%D0%B0%D1%80%D0%B1%D0%B0%D0%B9%D1%82%D0%B5%D1%80%D1%8B_%D0%B2_%D0%A0%D0%BE%D1%81%D1%81%D0%B8%D0%B8
https://en.wikipedia.org/wiki/Immigration_to_Russia
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recently discussed by Sirbu et al. (2021). The increasing availability to policymakers of a wide array of lead-

ing indicators can be useful to improve both the development and the implementation of migration policies4. 

The rest of this paper is organized as follows. Section 2 briefly reviews the literature devoted to migration 

research with Google Trends and online data, while the methods proposed for forecasting the migration 

flows in Moscow and Saint Petersburg are discussed in Section 3. The empirical results are reported in Sec-

tion 4, while Section 5 briefly concludes. Robustness checks are discussed in the Appendix. 

 

2. Literature review 

2.1. Migration 

The study of migration in Russia is based on different approaches. One of the oldest streams of migra-

tion research employed the spatial structure of data to explain migration flows between regions, see -just 

to name a few- Ravenstein (1885), Wilson (1970), Willekens (1980), and Alonso (1986). 

Another strand of literature focuses on time series models and mainly employs two types of models: 

ARIMA class models and extrapolation of time series through the propagation of historical forecast errors, 

see Bijak et al. (2019) and references therein for a review. These models can also be extended using expert‐
based information through prior distributions and Bayesian methods. In this regard, Bijak et al. (2019) 

uses time series models with and without expert opinions and considers three types of models: ARIMA 

class models, autoregressive distributed lag (ADL) models, and historical propagation of forecast errors. 

They found that ARMA models of low orders showed better performances with stationary data, whereas 

ADL models worked better with non-stationary data. 

In the last decade, there was a large set of works that focused on the main factors affecting migration 

like economic, institutional, and legal conditions, labor market performance measures, and numerous 

other factors, see, e.g., Mayda (2010), Constant and Zimmermann (2011), Bijak (2011), Ortega and Peri 

(2013), Chort (2014), Docquier et al. (2014), Dustmann and Okatenko (2014), Burkhauser et al. (2016), Ette 

et al. (2016), and Kuhlenkasper and Steinhardt (2017). We refer to Docquier and Rapoport (2012) and Fuchs 

et al. (2021) for an overview of this field of research. 

There is also a smaller but increasing literature that uses social big data to measure migration dynamics 

and future patterns. These data come from social media, internet search services5, mobile phones, super-

market transaction data, and other sources. They can contain detailed information about their users and 

can cover larger sets of the population than traditional data sources. Moreover, they can provide immi-

grants' movements in real-time and show the immigration trends even before the official statistics are 

published, see e.g. Hawelka et al. (2014). Zagheni et al. (2014) inferred migration patterns using Twitter 

data, while Moise et al. (2016) discovered the origins of immigrants from the language used in tweets. 

Skype ego networks6 data can also be used to explain international migration patterns, see Kikas et al. 

(2015) for a detailed discussion. Furthermore, big data can be used to study the movements of individuals 

in the time of crisis, as suggested by Bengtsson et al. (2011), who proposed to improve the response to 

disasters and outbreaks by tracking population movements with mobile phone network data. Sirbu et al. 

(2021) provide a survey of this interesting new literature dealing with human migration and big data. 

In the Russian literature, the focus has been to model interregional migration using econometric meth-

ods, moving from initial cross-sectional data, to panel data dealing with net migration rates, up to panel 

                                                           
4 The research in this paper received financial support from a grant from the Russian Science Foundation. The policymakers' 

interest in using such instruments was indirectly confirmed by the request made to us by the grant reviewers to focus specifically 

on the possibility of forecasting migration flows using Google search data. 

5 A specific review of the literature dealing with internet search services is reported in section 2.2 . 

6 Ego-centric social networks (ego-networks) map the interactions that take place among the social contacts of individual people.  
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data models for interregional gross migration flows. Even though different datasets were used, the results 

of these studies are similar and they highlight that the overall migration flow is low compared to other 

countries of similar size (like the US or Canada),  see Andrienko and Guriev (2004) and references therein. 

Besides, the main idea is that the Russian economy is in disequilibrium and the migration flows depend 

on economic fundamentals, such as the differences in the public services provisions, incomes, and the 

unemployment rates between regions. Vakulenko et al. (2011) and Korovkin et al. (2013) provided addi-

tional insights by showing that the main determinants of interregional migration are factors that reflect 

the situation in the labor and residential markets in the region of arrival. Finally, recent works employed 

time series methods for modelling migration data, like Pavlovskij (2017) who applied ARIMA models for 

the short-term forecasting of migration inflows and outflows in the Russian regions. 

We remark that a large part of the migrants searching for work in Moscow and Saint Petersburg are 

from the former Soviet republics.  Following the fall of the Soviet Union, Russia became a major destina-

tion country for international migrants, with officially almost 12 million foreign-born residents in 2017 

(United Nations 2017). In the 1990s, most immigrants were ethnic Russians fleeing from the new post-

Soviet republics, whereas the composition of migration flows changed in the 2000s to non-Russian labor 

migrants (Heleniak 2009; Chudinovskikh and Denisenko 2017). This shift was caused by two changes: 

more liberal policies to grant work permits to non-ethnic Russian citizens of the Commonwealth of Inde-

pendent States (CIS), and better performance of Russia’s economy compared to the other economies in the 

region, see Gerber and Zavisca (2020) and references therein for a large discussion. In this regard, we 

highlight that requirements for obtaining work permits have changed over time, both in policy and in 

implementation, see e.g. Ryazantsev (2016), and Schenk (2018). Moreover, several studies showed that 

most labor migrants from the CIS countries are illegal, due to government limits on the number of admit-

ted migrants, complex procedures for obtaining legal status, and incentives for employers to hire undoc-

umented migrants rather than follow those procedures, see Human Rights Watch (2009), and Schenk 

(2018). This lack of legal status has stimulated a business in fake documents and an array of methods to 

avoid deportation by the authorities, see Reeves (2013, 2015). 

A large literature discussed how migrants from CIS countries learned of opportunities to migrate 

thanks to their connections with other migrants or family/friends in Russia (usually known as "migrant 

networks"), see Gerber and Zavisca (2020) and references therein. Demintseva and Peshkova (2014), De-

mintseva and Kashnitsky (2016), and Demintseva (2017) showed that social networking sites, such as Od-

noklassniki.ru and VKontakte.ru, are among the most important means of communicating by foreign mi-

grants, and they are actively used when looking for accommodation and work. Bedrina et al. (2018) re-

cently provided a detailed econometric analysis of Uzbek migration networks in Russia. Timoshkin (2020) 

further analyzed the whole spectrum of digital migration networks, and he suggested that the success of 

these digital platforms is due to the complexity of official interfaces to communicate with state information 

nodes (regulations, job descriptions, normative acts),  which make them unsuitable for communicating 

at a proper level.  As a consequence, Timoshkin (2020) suggests that these “migrant” digital platforms 
such as social media and other information webpages have become an "instrument that compensates for 

the technological imperfection of the state information hubs". Abashin (2014), Chudinovskikh and Den-

isenko (2020), and Denisenko et al. (2020) provide large historical surveys and analyses about labor mi-

gration on the post-Soviet territory. 

2.2. Google Trends and its applications in migration research 

Ettredge et al. (2005) were among the first to discuss web-based search data to predict macroeconomic 

statistics. Since then, the research scope has expanded to a variety of other applications thanks to the sem-

inal paper by Choi and Varian (2012), which proposed to use Google Trends data in several fields, like 

automobile sales, travel planning, consumer confidence, and many others. Several central banks analyzed 

the suitability of Google Trends for predicting economic fundamentals, see for example Artola and Galan 

(2012), and McLaren and Shanbhorge (2011). 



 5 of 33 
 

 

Google Trends data have been widely used in the fields of fertility, mortality, and migration. As for 

fertility, Billari et al. (2013) found that online search queries could reveal the intention to have a child in 

the future months so that they can be used to increase in forecasting power of traditional demographic 

models. Mortality research in developing countries has benefited from using mobile phone data that stores 

information about causes of death across the country, see Tamgno et al. (2013) for more details. As for 

migration, Qin and Zhu (2018) studied the effect of an air pollution index on the intentions to emigrate 

using an online search index on “emigration” via Baidu, the largest Chinese search engine. They found 

that severe air pollution in the short run may significantly increase people’s interest in emigration, but this 
effect varies across Chinese regions. Böhme et al. (2019), as far as we know, were the first to analyze the 
potential of online search data in predicting migration flows. They built a large set of fixed effects models 

for migration flows based on yearly migration data, Google Trends data from the origin countries, and 

several control variables, as suggested by Mayda (2010). This approach proved to be successful in provid-

ing real-time forecasts of current migration flows ahead of official statistics, and to improve the forecasting 

performances of conventional models of migration flow. 

 

3. Materials and Methods 

The goal of this paper is to verify whether Google Trends data can be useful for modelling and predict-

ing internal migration in Russia. To this end, we will perform an out-of-sample forecasting analysis using 

a set of time series models: given that sufficiently long time-series data for migration in Russia have be-

come available, time series analysis can now be used. Following Pavlovskij (2017), Böhme et al. (2019) and 
Bijak et al. (2019), we will use traditional ARIMA models with and without Google Trends to investigate 

the impact of this new data source for migration forecasting, as well as multivariate models for long-term 

forecasting. Moreover, as suggested by Keilman et al. (2001), for each class of models we will consider 

both a “standard” model with variables in levels and a model using logarithms.  

Before presenting the results of the empirical analysis, we briefly review the forecasting models that 

we will use to predict the monthly migration data for the two Russian cities with the largest migration 

inflows: Moscow and Saint Petersburg. 

3.1. Forecasting methods 

The out-of-sample forecasting analysis will employ three classes of models: univariate time series mod-

els and Google-augmented univariate time series models for 1-step ahead forecasts, while multivariate 

models will be used for long-term forecasts. A brief description of each model is reported below. 

 

3.1.1. Models for short-term forecasts 

The first class of models employed in our analysis is the class of autoregressive integrated moving 

average (ARIMA) models based on migration data only. A non-seasonal ARIMA (p,d,q) model can be 

represented as follows, 

1 1 1(1 ... ))( (1 )p d q

p t tL L y L L             

where (1 )
d d

t Ly   , µ is the mean of d

ty , and L is the usual lag operator. ARIMA models represent a 

standard benchmark in time series analysis and we refer to Hamilton (1994) for more details. Following 

Keilman et al. (2001), we considered models with the variables in levels and in log-levels. In the case of 

seasonal data, a seasonal ARIMA (SARIMA) can be used: 

 

1 1 1 1 1(1 ... )(1 ... )( (1 )(1) )S PS p d S Q q

P tQ

S

p tL L L L y L L L L                 

which can be written compactly as ARIMA (p,d,q)(P,D,Q)[S]. Information criteria can be used to find 

the optimal number of lags for the auto-regressive and moving average terms. 
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If we augment the previous class of models with Google search data, we obtain an autoregressive inte-

grated moving average model with eXogenous variables (ARIMA-X), 

 

1 1 1 1)(1 ... )( (1 )p d q

p t t tL L y x L L              

 

where xt-1 is the lagged Google search index at time t -1 and β is a coefficient. Seasonal components may 

be added if needed. 

 

3.1.2. Models for long-term forecasts 

We used vector autoregression (VAR) models and vector error correction (VEC) models to consider the 

potential effects of both macroeconomic and search variables on migration flows, and to build long-term 

forecasts. A general VAR model of order p denoted as VAR(p) is given by 

 

 0

1

, 0,t i t i t t

p

i

WN


   Y Φ ΦY Σu u                   (1) 

 

where Yt is the (n × 1) vector of endogenous variables, Φ0 is an intercept vector, while Φi are the usual 

coefficient matrices with i=1,…,p. As the primary focus of this paper is forecasting, the VAR(p) model is 

estimated in levels and no differencing is applied to non-stationary data. The lag order p of the VAR is 

selected using the Akaike and Bayesian information criterion. The estimated VAR model is then analyzed 

by reporting its impulse response functions (IRF), and its forecast error variance decomposition (FEVD), 

see Lütkepohl (2005, chapters 2-5) for more details. 

We decided to use a simple VAR(p) in levels following the suggestion by Gospodinov et al. (2013), who 

stated that the "unrestricted VAR in levels appears to be the most robust specification when there is uncertainty 

about the magnitude of the largest roots and the co-movement between the variables". This is definitely our case, 

given the moderate size of our dataset (120 observations): in this regard, we want to remark that Elliott 

(1998) was the first to show that cointegration methods may deliver large size distortions in the case of 

systems with near unit-roots. Similar distortions can take place when using sequential modeling and spec-

ification procedures based on pretests for unit roots. Moreover, it is possible to show that the estimates of 

the impulse responses using VAR in levels remain asymptotically valid under weak conditions, even 

when the underlying process contains a unit root (or is possibly cointegrated with other variables), and 

the same holds true for forecast error variance decompositions at any finite horizon, see Inoue and Kilian 

(2020) for more details. Instead, differencing the variables when they are stationary causes these estimates 

to be inconsistent and inference to be invalid. However, for sake of generality and interest, we will also 

consider a VEC model following the standard sequential specification procedure based on pretests for unit 

roots and cointegration, see Lütkepohl (2005, chapters 6-8) for more details. 

Similar to univariate models for short-term forecasting, we will consider VAR and VEC models with 

and without Google search data to evaluate the impact of this new data source for migration forecasting. 

 

3.2. Data 

We used monthly migration, search volume data, and macro variables for the 2009-2018 period to an-

alyze how search internet data and macro variables affect migration inflows into a region and to forecast 

migration. In case there were several alternative data sources for the same variables, we followed previous 

research in the field of migration and accepted standards among data sources. 
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3.2.1. Migration data and macroeconomic variables 

We employed the monthly aggregate inflow into a region from all other regions using the dataset of 

interregional migration inflows inside Russia as reported by the Federal State Statistics Service (FSSS), all 

regions included, for the 2009-2018 period. The goal of this statistical service is to estimate the number of 

people living in each region when the census is not conducted, and the basis for this data collection is a 

change in the place of permanent registration. The FSSS is the primary source of information on migration 

for this work because other sources do not provide the same degree of reliability and they have smaller 

time samples: the latest population census was held in 2010, while the Russian Longitudinal Monitoring 

Survey and the Russian Sample Labor Force Survey are sample studies.  

It is worth noting that in Russia there is currently freedom of movement within the country (except for 

some closed cities and territories related to state security), unlike in the Soviet era when migration to large 

cities was artificially hampered by a special type of registration known as "propiska". The so-called “pro‐
piska” was canceled on October 1, 1993. In its place, the Law of the Russian Federation No. 5242-1 of 

25.06.1993 introduced the so-called "registration", which is applied following the “Rules for registration 

and removal of citizens of the Russian Federation from registration at the place of stay and the place of 

residence within the Russian Federation”, approved by the Decree of the Government of the Russian Fed-

eration No. 713 of 17.07.1995. This law is applied until now. Moreover, the right of movement is now 

enshrined in the Constitution (Article 27), and the current legislation provides only for the notification 

nature of the present-day registration. Therefore, if a citizen (or a foreigner) moves to a new place of resi-

dence for more than 90 days, he/she must notify the migration service within three days. The registration 

of the migration flows is handled by the Federal Migration Service, which was an independent federal 

service in 2012-2016, but it is currently a division of the Ministry of Internal Affairs (that is, the police). 

The registration procedure is regulated by the Government Decree No. 713 of 17.07.1995 with later amend-

ments. The registration is carried out by the owner of the residential premises, and can take place with a 

personal visit to the office of the migration service, by mail, or using the state portal "Gosuslugi.ru". For 

further processing and use, the migration data are later transferred from the regional bodies of the Federal 

Migration Service to the Federal State Statistics Service. 

The FSSS officially states that the migrants' statistical records are compiled upon registration and de-

registration at their place of residence, as well as (since 2011) when registering at the place of stay for 9 

months or more. The deregistration is carried out automatically when processing the migration data of 

the Russian citizens during their movements within the Russian Federation whereas, for foreign migrants, 

it takes place after the expiration of their period of stay, regardless of their place of former residence. 

Interestingly, the Federal State Statistics Service notes that the concepts of "arrivals" and "departures" af-

fect migration data because the same person can change his place of permanent residence more than once 

during the year. See the official "Methodological Explanations" by the FSSS for more details7. We remark that 

there are two types of migration registration in Russia8: the permanent registration ("регистрация по месту 
жительства"), whose data are available on the Federal State Statistics Service website and are used in the 

paper; and the temporary registration for a predetermined period ("регистрация по месту пребывания"), 
which is requested by labor migrants. 

Following the past Russian migration research discussed in the literature review, we used the following 

set of monthly variables dealing with the economic and social situation in Russia: the estimated Russian 

                                                           
7 https://rosstat.gov.ru/storage/mediabank/%D0%9C%D0%95%D0%A2%D0%9E%D0%94%D0%9E%D0%9B%D0%9E%D0%93%

D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95%20%D0%9F%D0%9E%D0%AF%D0%A1%D0%9D%D0%95%D0

%9D%D0%98%D0%AF(1).html  

8 http://www.consultant.ru/document/cons_doc_LAW_2255/ 

https://rosstat.gov.ru/storage/mediabank/%D0%9C%D0%95%D0%A2%D0%9E%D0%94%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95%20%D0%9F%D0%9E%D0%AF%D0%A1%D0%9D%D0%95%D0%9D%D0%98%D0%AF(1).html
https://rosstat.gov.ru/storage/mediabank/%D0%9C%D0%95%D0%A2%D0%9E%D0%94%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95%20%D0%9F%D0%9E%D0%AF%D0%A1%D0%9D%D0%95%D0%9D%D0%98%D0%AF(1).html
https://rosstat.gov.ru/storage/mediabank/%D0%9C%D0%95%D0%A2%D0%9E%D0%94%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95%20%D0%9F%D0%9E%D0%AF%D0%A1%D0%9D%D0%95%D0%9D%D0%98%D0%AF(1).html
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GDP9, the nominal wage of employees, the residential construction volume (in thousand square meters), 

the number of employed people in the 15-72 age class (in thousands), and the employers' need for em-

ployees (according to the Russian Federal Service for Labor and Employment). The descriptive statistics 

of these variables for Moscow and Saint Petersburg, respectively, are reported in Table 1, together with 

the FSSS sources from which they were collected. 

 

 

Table 1. Descriptive statistics of the migration data and the macroeconomic variables 

MOSCOW 

variable mean min Q1 median Q3 max st.dev Source 

Migration Inflow 16252 4024 8455 16248 22962 38217 8534 https://rosstat.gov.ru/folder/12781 

Number of employed  6612 5800 6064 6853 7047 7224 502 https://rosstat.gov.ru/labour_force 

Nominal wage (per capita) 60666 29797 42719 59833 69791 361938 32509 https://rosstat.gov.ru/labour_costs 

GDP (Russia) 44167 8483 23685 41540 62357 103627 23783 https://rosstat.gov.ru/compendium/document/50801 

Employers' need  156347 97163 134390 153704 169585 272824 33380 https://rosstat.gov.ru/labour_force 

Residential construction v. 242 1 95 171 294 1104 236 https://rosstat.gov.ru/folder/13706 

SAINT PETERSBURG 

variable mean min Q1 median Q3 max st.dev Source 

Migration Inflow 13655 3225 8735 14607 17291 25458 6061 https://rosstat.gov.ru/folder/12781 

Number of employed  2800 2537 2630 2839 2967 3027 161 https://rosstat.gov.ru/labour_force 

Nominal wage (per capita) 39923 21998 29623 38873 48426 72342 11698 https://rosstat.gov.ru/labour_costs 

GDP (Russia) 44167 8483 23685 41540 62357 103627 23783 https://rosstat.gov.ru/compendium/document/50801 

Employers' need  59404 35023 45548 57363 66519 113880 16912 https://rosstat.gov.ru/labour_force 

Residential construction v. 248 21 97 160 250 2200 285 https://rosstat.gov.ru/folder/13706 

 

3.2.2. Search volume data 

Russia has two search engines that take most of the market: Yandex and Google. In this regard, we 

remark that the computation of market shares for search engines is not straightforward, it can be contro-

versial10, and different analytical services may provide different numbers. In the case of Russia, the two 

most well-known analytical services are Yandex Radar11 and StatCounter12. We report in Figure 1 the 

market shares of Yandex and Google search engines since the beginning of 2015 for all platforms provided 

by these two services, together with their average (2015 is the first year when both analytical services are 

available). 
 

                                                           
9 We are aware that the monthly estimates of the Russian GDP are sometimes considered disputable or doubtful statistical 

indicators. However, despite being potentially biased measures, they provide new (updated) information that is important for 

policymakers, and they can be useful to improve the efficiency of any model estimates. It is for these reasons that there are several 

efforts to estimate monthly GDP indicators: see, for example, the Eurocoin indicator for the euro area GDP growth rate developed 

by Altissimo et al. (2010), the Aruoba-Diebold-Scotti Business Conditions Index proposed by Aruoba et al. (2009) for the US, till 

the daily indicator of economic growth for the euro area proposed by Aprigliano et al. (2017). 

10 https://www.conductor.com/blog/2014/05/shouldnt-trust-comscores-numbers-search-engine-market-share-data  

11 https://radar.yandex.ru/search?period=all&group=month 

12 https://gs.statcounter.com/search-engine-market-share/all/russian-federation 

https://www.conductor.com/blog/2014/05/shouldnt-trust-comscores-numbers-search-engine-market-share-data
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Figure 1. Market shares of Yandex and Google provided by Yandex Radar, Statcounter, and their av-

erage. 

 

 

StatCounter shows that Google was the top search engine in Russia for most of the time, while the 

opposite is true for Yandex Radar. Given that investigating which online analytical service is more reliable 

goes beyond the scope of this work, we focused our attention on their simple average, and we observed 

that Google had a market share in the 40%-45% range, compared with a market share of 50-55% for Yan-

dex. As we anticipated in the Introduction, Yandex provides only a limited amount of free monthly data, 

so that we had to use Google search data for our work. Even though the latter does not appear to be the 

main search engine in Russia, its high market share guarantees that its data can still provide useful insights 

for this research. 

Google Trends is a website by Google that publishes a standardized index known as Google Index (GI), 

which estimates the popularity of a particular search query relative to the total number of searches in the 

same period in a specific region, and whose scale ranges from 0 to 100.  

Although the general reach of Google Trends in Russia is wide, we found that the availability of online 

searches for our research purposes was quite limited, and search volumes were mostly available only from 

2009 onwards. Therefore, we decided to focus only on the regions with the largest migration inflows, given 

that the online searches for the intentions to migrate were available only for these regions. 

The top-10 regions by the total immigration flow in 2018 (see Table 2) represented the starting point 

that we used to look for online search queries. 
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Table 2. Top-10 Russian regions and cities for migrants inflows in 2018 (Federal State Statistics Ser-

vice). 

 2018 total inflow (in thou-

sands) 

Share from total inflow  

Total migration inside Russia  4345.881 100%  

Moscow oblast  343.373 7.9% 

Moscow  314.868 7.2% 

Saint-Petersburg  213.83 4.9% 

Krasnodar krai  178.326 4.1% 

Tyumen oblast  153.596 3.5% 

Republic of Bashkortostan  135.867 3.1% 

Krasnoyasrk krai   113.808 2.6% 

Sverdolvsk oblast  113.222 2.6% 

Leningrad oblast  110.254 2.5% 

Rostov oblast  100.112 2.3% 

Other regions and cities  2568.625 59.1% 

 

After comparing the volumes of migration flows in Russian regions with the availability of online 

search queries, we decided to choose Moscow and Saint-Petersburg that account for 12% of the total mi-

gration inflow: even though the number of migrants in these cities is comparable to the migration inflows 

into other regions, the number of online searches for the other regions is almost insignificant compared to 

these two cities.  

The choice of keywords for migration research is not predefined and clear cut unlike the studies dealing 

with unemployment (for example), where the set of keywords ‘work’ (“работа”) and ‘vacancies’ 
(“вакансии”) is generally enough to obtain a good estimate of the intentions to find a job, see D'Amuri 
and Marcucci (2017) and references therein for more details. It is for this reason that Böhme et al. (2019) 
used a wide range of words that could potentially reflect an intention to move, including indirect interest 

in economic and legal issues, using for example keywords such as “GDP” and “passport”.  According to 
the previously cited Russian studies dealing with migration, the main factors that explain the decision to 

emigrate are finding a job in the region of interest and finding an apartment. Therefore, we used not only 

the general query indicating the interest in emigrating (“переезд в «название региона»”) but also queries 
on job and housing searches (“работа в «название региона»”, “жилье в «название региона»”). This 
choice allows us to focus on capturing the intentions to move from one region to another, whether other 

queries may not indicate the direct intention to relocate. Moreover, we avoided the queries including the 

word ‘migration’ (“миграция”) and its derivatives because they may be associated only with a general 
interest in migration policy. Furthermore, we specified the name of the region to exactly identify the di-

rection of migration. We chose these three queries because they are the most popular search queries in 

each respective group of words concerning relocation, finding a job, and a place to live. As a result, com-

pared to Böhme et al. (2019), our choice of keywords may provide an underestimated number of intentions 
to emigrate, but the willingness to move in our case is much more certain and it contains a specific geo-

graphical component.   

We used the previous three queries separately for the in-sample analysis to examine the effect of each 

query on the migration flow. For forecasting purposes, we also considered the average of these three time 

series to reduce the number of variables involved and to improve the forecasting efficiency, see e.g. Fan-

tazzini and Fomichev (2014) and Algan et al. (2019) for details. 
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4. Results 

4.1. In-sample analysis 

The monthly migrants’ inflows in Moscow and Saint Petersburg, and the monthly averages for the 
three Google searches (“переезд в «название региона»”,“работа в «название региона»”,“жилье в 
«название региона»”) are reported in Figure 2. 

 

 

Figure 2. Monthly migrants’ inflows in Moscow and Saint Petersburg, and monthly averages for 
the three Google searches (“переезд в «название региона»”,“работа в «название 

региона»”,“жилье в «название региона»”) . 

 

A first look at the data seems to show a certain degree of seasonality in the monthly inflows, particularly 

for Saint Petersburg. Therefore, we formally tested for seasonality using a battery of tests for the data in 

levels and in log-levels, which are reported in Table 3. More specifically, we used the F-test for seasonality 

based on the joint significance of seasonal dummies in a non-seasonal ARIMA model (where the latter is 

selected using the Hyndman-Khandakar (2008) algorithm), the Friedman (1937) test, the Kruskal and Wal-

lis (1952) test, the QS test by Maravall (2011) that is a variant of the Ljung-Box test computed on seasonal 

lags, and the Welch (1951) test. We also implemented the Ollech-Webel (2020) test that is a machine learn-

ing (ML) classification approach, which first performs a recursive feature elimination algorithm using 

random forests to identify the most informative seasonality tests, and then uses their p-values as predic-

tors within a single conditional inference tree to determine whether a time series has a significant seasonal 

component or not. 
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Table 3 Seasonality tests for the monthly migrants’ inflows in Moscow and Saint Petersburg. 

Seasonality test 
P-values 

 - Moscow 
P-values - S. Petersburg  

  Levels Log-levels Levels Log-levels 

F-test on seasonal dummies 0.00 0.00 0.00 0.00 

Friedman test 0.00 0.00 0.00 0.00 

Kruskall-Wallis test 0.07 0.07 0.00 0.00 

QS test 0.00 0.00 0.00 0.00 

Welch test 0.08 0.04 0.05 0.25 

Ollech-Webel ML test Seasonal Seasonal Seasonal Seasonal 

 

 

The seasonality tests highlighted a significant seasonal component, so that we employed seasonal-

ARIMA models and VAR/VEC models allowing for seasonality when modelling the monthly inflows data. 

 

 

4.1.1. Univariate models 

The best seasonal and non-seasonal ARIMA models, with and without Google search data, found using 

the Hyndman and Khandakar (2008) algorithm with the corrected Akaike criteria (AICC) proposed by 

Sugiura (1978) and Hurvich and Tsai (1989) are reported in Table 4 for both Moscow and Saint Petersburg. 

For sake of interest, Table 4 reports also the Bayesian Information Criteria (BIC) for each selected model. 

Seasonal models have lower information criteria than non-seasonal models, and this is particularly true 

for Saint Petersburg, while the differences are much smaller for Moscow inflow data, thus confirming the 

previous seasonality tests. The Moscow data has a non-seasonal unit root, while the inflow data for Saint 

Petersburg displays both a seasonal and non-seasonal unit root. Interestingly, (S)ARIMA models aug-

mented with Google search data as an exogenous regressor almost always show worse information criteria 

than the baseline models without Google data13. No qualitative differences are found when using data in 

levels and data in log-levels14. 

 

 

 

 

 

 

 

 

 

 

                                                           
13 The coefficients of the Google search data were never statistically significant across all models considered. These results are not 

reported for sake for space, but are available from the authors upon request. 

14 We remark that the information criteria for the data in levels and in log-levels cannot be directly compared because the datasets 

used are different, see section 2.11 in Burnham and Anderson (2004) for a detailed discussion of this issue at the textbook level. 
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Table 4. Best seasonal and non-seasonal ARIMA models, with and without Google search data for the 

Moscow and Saint Petersburg inflows data, selected using the AICC and the Khandakar and Hyndman 

(2008) algorithm. 

Information MOSCOW 

criteria Data in levels Data in log-levels 

  Best seasonal SARIMA  Best non-seasonal ARIMA  Best seasonal SARIMA  Best non-seasonal ARIMA  

  ARIMA(0,1,1)(1,0,3)[12]  ARIMA(1,1,1)  ARIMA(1,1,1)(2,0,0)[12]  ARIMA(0,1,2) 

AICC 2390 2399 83 92 

BIC 2406 2408 97 103 

  Best seasonal ARIMA-X  Best non-seasonal ARIMA-X  Best seasonal ARIMA-X  Best non-seasonal ARIMA-X  

  ARIMA(0,1,1)(1,0,2)[12]  ARIMA(1,1,1) ARIMA(1,1,1)(0,0,2)[12] ARIMA(0,1,2) 

AICC 2390 2401 89 95 

BIC 2406 2412 105 108 

Information SAINT PETERSBURG 

criteria Data in levels Data in log-levels 

  Best seasonal SARIMA  Best non-seasonal ARIMA  Best seasonal SARIMA  Best non-seasonal ARIMA  

  ARIMA(2,1,0)(0,1,1)[12] ARIMA(0,1,0)  ARIMA(0,1,2)(0,1,1)[12]  ARIMA(0,1,0) 

AICC 1910 2222 -156 -60 

BIC 1920 2225 -146 -57 

  Best seasonal ARIMA-X  Best non-seasonal ARIMA-X  Best seasonal ARIMA-X  Best non-seasonal ARIMA-X  

  ARIMA(2,0,0)(0,1,1)[12] ARIMA(0,1,0) ARIMA(0,1,2)(0,1,1)[12] ARIMA(1,1,1) 

AICC 1929 2223 -154 -65 

BIC 1944 2228 -141 -51 

 

 

4.1.2. Multivariate models 

Consistent with the past literature dealing with Russian migration research, we employed multivariate 

models for a set of variables including the migration inflows, the estimated Russian monthly GDP, the 

nominal wage of employees (per capita), the residential construction volume (in thousand square meters), 

the number of employed people in the 15-72 age class, the employers' need for employees (according to 

the Russian Federal Service for Labor and Employment), and the Google search data for the queries about 

moving in a certain region, about work and about and housing. 

Information criteria selected a VAR(1) model for both Moscow and Saint Petersburg. Given the pres-

ence of seasonality, we estimated all multivariate models with centered seasonal dummies, which sum to 

zero over time and therefore do not affect the asymptotic distributions of testing procedures, see Johansen 

(1995, 2006) for more details. For ease of interpretation and sake of interest, we report the orthogonalised 

impulse responses15 from a shock in Google searches on migration inflows in Moscow and Saint Peters-

burg in Figure 3 and 4, respectively, the forecast error variance decompositions16 for the migration inflows 

are reported in Figure 5, while the full results are available from the authors upon request. 

                                                           
15 The orthogonalised impulse responses are derived from a Choleski decomposition of the error variance-covariance matrix Σ = 

PP’, with P being lower triangular, see Lütkepohl (2005) for more details. 
16 The forecast error variance decomposition is based upon the orthogonalised impulse response coefficient matrices and shows 

the contribution of the variable j to the h-step forecast error variance of variable k, see Lütkepohl (2005) for more details. 



 14 of 33 
 

 

 

 

 

Figure 3. VAR(1) with centered seasonal dummies: orthogonalised  impulse responses from a 

shock in Google searches on migration inflow in Moscow over 24 months. 

  

Figure 4. VAR(1) with centered seasonal dummies: orthogonalised impulse responses from a 

shock in Google searches on migration inflow in S.Petersburg over 24 months. 
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Figure 5. Forecast error variance decomposition of the VAR(1) with centered seasonal dummies: 

Moscow (left panel), Saint Petersburg (right panel).  

Figure 3 and 4 show that the effects of shocks in internet searches on migration inflows are not signifi-

cant for queries related to emigration and housing searches, while there are significant negative effects for 

queries related to job searches. In the latter case, it appears that a one-time shock in internet search queries 

results in a negative migration inflow after approximately five months. The forecast error variance decom-

positions in Figure 5 show that the variances of migration inflows are mostly affected by their own vari-

ances, but the effects of online job searches and the numbers of employed people become stronger in later 

periods, particularly for Saint Petersburg. The negative relationship between online job searches and mi-

gration inflows is probably due to immigrants moving to the regions bordering Moscow and Saint Peters-

burg because of the high cost of living and traffic congestion in these two metropolises, see e.g. Efimova 

and Mikhaltsov (2017), Pavlovskij (2017), Varaksin and Varaksina (2017), Demidova et al. (2020), and 

Vakulenko and Mkrtchyan (2020). 

Given the evidence of non-stationarity that emerged from the previous univariate analysis, for sake of 

generality and interest, we also considered a VEC model following the standard sequential specification 

procedure based on pretests for unit roots and cointegration. We tested for cointegration using the Johan-

sen trace test with centered seasonal dummies and we rejected the null hypothesis of no cointegration for 

both Moscow and Saint Petersburg. We estimated a VEC(1) model with six cointegration relationships 

and a constant term in the cointegration equations for both cities. The orthogonalised impulse responses 

from a shock in Google searches on migration inflows in Moscow and Saint Petersburg are reported in 

Figures A3 and A4 in the Appendix B, respectively, while the forecast error variance decompositions for 

the migration inflows are reported in Figure A5 and the full results are available from the authors upon 

request. The IRFs and the FEVDs obtained with VEC models are qualitatively similar to those estimated 

with VAR models in levels, confirming a significant negative effect of online job searches on migrants 

inflows (for Saint Petersburg), and a much larger importance of Google searches for Saint Petersburg than 

for Moscow. 

4.2. Out-of-sample forecasting analysis 

The last step to evaluate the ability of Google search data to predict internal migration in Russia was to 

perform an out-of-sample forecasting analysis for both Moscow and Saint Petersburg, to forecast the 

monthly inflows using several competing models with and without Google data, over different time ho-

rizons. The data in January 2009 – September 2015 were used as the first training sample for the models’ 
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estimation, while the data for October 2015 - December 2018 was left for out-of-sample forecasting using 

an expanding estimation window. 
 

4.2.1. Short-term forecasts: 1-step ahead forecasts 

Three classes of models were considered for short-term forecasts for a total of 20 models:  

1) ARIMA models with the dependent variable represented by the monthly inflows in levels or log-levels 

(2 models); 

2) Google-augmented ARIMA-X models with the variables in levels or log-levels (8 models): we consid-

ered lagged Google search data for the query about moving in a certain region, queries about job and 

housing, as well as the average of these three queries. 

3) Seasonal-ARIMA (SARIMA) models with and without Google search data, with the variables in levels or 

log-levels (10 models). 

Additional models could surely be added, but this selection already gave important indications 

whether Google search data are useful for forecasting the monthly migration inflows in Moscow and Saint 

Petersburg. A summary of the models’ performances according to the mean squared error (MSE), the 
mean absolute error (MAE), and the mean absolute percentage error (MAPE) is reported in Table 517. 

Table 5. Models’ performances according to the mean squared error (MSE), the mean absolute error 
(MAE), and the mean absolute percentage error (MAPE). The smallest values are reported in bold font. 

  MOSCOW SAINT PETERSBURG 

  MSE MAE MAPE (%) MSE MAE MAPE (%) 

ARIMA 6.51E+09 5.79E+05 29.82 9.93E+08 2.59E+05 14.89 

SARIMA 6.05E+09 5.50E+05 28.27 4.01E+08 1.69E+05 9.24 

ARIMAX (Google: average) 6.44E+09 5.65E+05 29.22 8.94E+08 2.40E+05 13.65 

SARIMAX (Google: average) 5.75E+09 5.14E+05 26.58 4.51E+08 1.76E+05 9.82 

ARIMAX1 (Google: Moving) 6.49E+09 5.63E+05 29.11 9.82E+08 2.59E+05 14.95 

SARIMAX1 (Google: Moving) 5.37E+09 5.13E+05 26.17 3.93E+08 1.67E+05 9.14 

ARIMAX2 (Google: Work) 6.47E+09 5.69E+05 29.34 9.92E+08 2.65E+05 15.17 

SARIMAX2 (Google: Work) 5.76E+09 5.31E+05 27.04 4.06E+08 1.71E+05 9.61 

ARIMAX3 (Google: Housing) 6.51E+09 5.66E+05 29.54 1.04E+09 2.69E+05 15.58 

SARIMAX3 (Google: Housing) 5.97E+09 5.33E+05 27.40 3.93E+08 1.67E+05 9.12 

ARIMA.LOG 7.63E+09 6.16E+05 32.42 1.01E+09 2.45E+05 13.93 

SARIMA.LOG 6.57E+09 5.74E+05 29.01 3.52E+08 1.56E+05 8.46 

ARIMAX.LOG (Google: average) 7.64E+09 6.17E+05 32.48 9.72E+08 2.45E+05 14.20 

SARIMAX.LOG (Google: average) 6.88E+09 5.84E+05 29.24 3.84E+08 1.63E+05 8.74 

ARIMAX.LOG1 (Google: Moving) 8.63E+09 6.46E+05 34.34 1.06E+09 2.46E+05 14.11 

SARIMAX.LOG1 (Google: Moving) 6.26E+09 5.83E+05 28.12 3.96E+08 1.70E+05 9.22 

ARIMAX.LOG2 (Google: Work) 7.53E+09 6.13E+05 32.40 9.54E+08 2.46E+05 14.51 

SARIMAX.LOG2 (Google: Work) 6.85E+09 5.85E+05 29.37 4.10E+08 1.67E+05 9.04 

ARIMAX.LOG3 (Google: Housing) 7.55E+09 6.14E+05 32.48 9.87E+08 2.44E+05 13.91 

SARIMAX.LOG3 (Google: Housing) 6.91E+09 5.87E+05 29.40 4.66E+08 1.87E+05 10.08 

                                                           
17 The optimal seasonal and non-seasonal ARIMA models, with and without Google search data, were estimated using the 

Hyndman and Khandakar (2008) algorithm at each iteration of the forecasting procedure. 
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In general, Google-augmented time series models forecasted the monthly inflows better than models 

without Google data. However, the simple SARIMA model with data in logs turned out to be the best 

model for Saint Petersburg (even though Google-based models were close): this result was expected due 

to the strong local seasonality in monthly inflows, differently from Moscow where the seasonality was 

barely significant. This phenomenon may also explain why models with the variables in logs forecasted 

better than models with the variables in levels for Saint Petersburg, whereas the opposite was true for 

Moscow. Among Google search terms, queries about moving in a certain region or the averages of all three 

queries provided better forecasts than the other choices. 

 

4.2.2. Long-term forecasts: 24-step ahead forecasts 

The previous univariate models can also be used for long-term forecasting, but it is well known that 

their forecasting ability quickly degrades, see Hyndman and Athanasopoulos (2018) and references 

therein for more details. Moreover, if exogenous variables are present, multivariate models have to be 

used to build long-term forecasts. 

More specifically, we used three classes of models to build long-term 24-step ahead forecasts: 

1) VAR models with centered seasonal dummies, with and without Google data, with the variables in levels, 

log-levels, first differences, or log-returns (12 models).  

2) VEC models with centered seasonal dummies, with and without Google data, with the variables in levels 

or log-levels (6 models). 

3) Seasonal-ARIMA models, as simple univariate benchmark models, with the variables in levels or log-

levels (2 models). 

As for the Google search queries, we considered three possible variants: no Google data, the average of 

the three Google search queries, or all three Google search queries together. A summary of the models’ 
performances according to the mean squared error (MSE), the mean absolute error (MAE), and the mean 

absolute percentage error (MAPE) is reported in Table 6. 

In general, multivariate models with Google data forecasted better than multivariate models without 

Google data and much better than simple SARIMA models (as expected). In the case of Moscow, the VAR 

model with the variables in log levels and the average of the Google search queries was the best, while 

VAR models with the variables expressed in log returns (with and without Google data) provide the best 

forecasts: therefore, this forecasting evidence confirmed the initial in-sample analysis where the evidence 

of non-stationarity was much stronger for Saint Petersburg than for Moscow. Interestingly, the VEC mod-

els performed poorly, in some cases even worse than SARIMA models: these results were not a surprise 

because the large variance of the estimators for cointegrated models in small-medium samples is a well-

known issue in the econometric literature, see Stock and Watson (1993), Maddala and Kim (1998) section 

5.7 and Hayashi (2000) section 10.4, for more details. Moreover, Fantazzini and Toktamysova (2015) 

showed that the sampling noise of Google data can exacerbate this inference problem, and using the av-

erages of Google data can solve this issue to some extent, but not completely. This is what we also found 

with our data, where models with the averages of Google data often performed better than models with 

the separate Google search queries. 

These results are consistent with a large body of the forecasting literature that shows that Google-based 

models outperform their competitors, see -for example- Fantazzini (2014), D’Amuri and Marcucci (2017), 

Borup and Schütte (2020), Aaronson et al. (2021), and references therein. 
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Table 6. Models’ performances according to the mean squared error (MSE), the mean absolute error 
(MAE), and the mean absolute percentage error (MAPE). The smallest values are reported in bold font. 

  MOSCOW SAINT PETERSBURG 

  
MSE MAE 

MAPE 

(%) 
MSE MAE 

MAPE 

(%) 

SARIMA 7.54E+07 7.21E+03 24.83 1.02E+07 2.70E+03 14.23 

SARIMA.log 9.68E+07 7.84E+03 27.07 2.63E+07 3.89E+03 20.45 

VAR (NO Google) 4.27E+07 5.70E+03 22.46 1.72E+07 3.27E+03 18.78 

VAR.log (NO Google) 3.30E+07 4.52E+03 18.11 2.20E+07 3.34E+03 19.22 

VAR.diff (NO Google) 7.44E+07 7.08E+03 26.32 1.09E+07 2.77E+03 14.81 

VAR.dlog (NO Google) 9.89E+07 8.23E+03 28.73 3.89E+06 1.64E+03 8.62 

VAR (all 3 Google queries) 5.23E+07 6.27E+03 23.81 8.24E+06 2.41E+03 13.55 

VAR.log (all 3 Google queries) 4.90E+07 5.38E+03 19.72 6.59E+06 2.12E+03 11.54 

VAR.diff (all 3 Google queries) 7.52E+07 6.91E+03 25.14 1.02E+07 2.67E+03 14.31 

VAR.dlog (all 3 Google queries) 9.89E+07 8.23E+03 28.73 3.89E+06 1.64E+03 8.62 

VAR (Google average) 4.52E+07 5.91E+03 23.17 1.69E+07 3.26E+03 18.79 

VAR.log (Google average) 3.33E+07 4.51E+03 18.09 2.22E+07 3.38E+03 19.49 

VAR.diff (Google average) 7.24E+07 6.95E+03 26.01 1.09E+07 2.77E+03 14.82 

VAR.dlog (Google average) 9.89E+07 8.23E+03 28.73 3.89E+06 1.64E+03 8.62 

VECM (NO Google) 6.94E+07 7.00E+03 27.12 1.07E+07 2.74E+03 14.33 

VECM.log (NO Google) 7.46E+07 6.73E+03 25.82 7.00E+07 7.78E+03 40.25 

VECM (all 3 Google queries) 5.95E+07 6.25E+03 24.21 1.12E+07 2.80E+03 14.65 

VECM.log (all 3 Google queries) 5.69E+07 5.99E+03 21.91 8.01E+07 8.25E+03 42.62 

VECM (Google average) 5.52E+07 5.94E+03 23.79 1.41E+07 3.22E+03 16.59 

VECM.log (Google average) 5.63E+07 5.90E+03 23.28 6.93E+07 7.73E+03 40.02 

 

5. Discussion and Conclusions 

There is an increasing literature that shows that Google-based models significantly outperform most of 

the competitors in several economic and financial applications, see Jun et al. (2018) for a review. Böhme et 
al. (2019) analyzed the potential of online search data in predicting migration flows for the first time, and 

they showed that this approach improved the forecasting performances of conventional models of the 

migration flow. Moreover, it provided real-time forecasts ahead of official statistics. 

Following this literature, this paper used monthly migration data, Google search volume data, and 

macroeconomic variables for the 2009-2018 time sample to analyze how these variables affected migration 

inflows for the two Russian cities with the largest migration inflows: Moscow and Saint Petersburg. The 

choice of keywords for migration research was not predefined and clear cut, unlike previous studies deal-

ing with unemployment or financial and economic forecasting. We followed past Russian studies that 

showed that the main factors explaining the decision to emigrate are finding a job (in the region of interest) 

and finding an apartment. Therefore, we used not only the general query indicating the interest in emi-

grating (“переезд в «название региона»”) but also queries on job and housing searches (“работа в 
«название региона»”, “жилье в «название региона»”). We chose these three queries because they are 
the most popular search queries in each respective group of words concerning relocation, finding a job, 

and a place to live. As a result, compared to Böhme et al. (2019), our choice of keywords may provide an 
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underestimated number of intentions to emigrate but the willingness to move is more certain, and it con-

tains a specific geographical component.  

The empirical analysis did not provide evidence that the more people search online, the more they 

relocate to other regions, but we found that a one-time shock in internet search queries results in a negative 

migration inflow after approximately five months. We then performed an out-of-sample forecasting anal-

ysis to forecast the monthly inflows using several competing models with and without Google data, over 

different time horizons ranging from 1 month to 24 months ahead. In terms of short-term forecasting, 

Google-augmented time series models forecasted the monthly inflows usually better than models without 

Google data. However, the simple SARIMA model with data in logs turned out to be the best model for 

Saint Petersburg, thanks to the strong local seasonality in monthly inflows, whereas this was not the case 

for Moscow where the monthly seasonality was barely significant. 

In terms of long-term forecasting, multivariate models with Google data forecasted better than multi-

variate models without Google data and much better than univariate models. Interestingly, the VEC mod-

els performed poorly, in some cases even worse than simple univariate models, thus confirming well-

known estimation problems in small-medium samples that can be further exacerbated by the sampling 

noise of Google data. These results also held after a set of robustness checks that considered multivariate 

models able to deal with potential parameter instability and with a large number of regressors, potentially 

larger than the number of observations. 

Our empirical evidence showed that Google Trends does help forecast migration inflows in the two 

Russian cities with the largest migration inflows (Moscow and Saint Petersburg). As recently highlighted 

by Nikolopoulos et al. (2021 a,b), the lack of reliable hard data limits the possibility of policymakers mak-

ing informed decisions, and this is why they suggested employing auxiliary data from social media such 

as Google Trends. Given that migration inflows represent a sensitive social issue in Russia, the option to 

improve the modelling and forecasting of these flows via using auxiliary data such as Google Trends can 

be of great help to local policymakers. This improvement is even more important if we consider that a part 

of these migration inflows is represented by illegal immigrants, which are not included in official statistics 

but can be revealed by Google Trends. 

The availability to policymakers of a wide array of leading indicators for migration dynamics, ranging 

from online search data to telecommunications data, can be useful to plan and implement more realistic 

migration policies that can significantly help the inclusion process of migrants, see Sirbu et al. (2021) for a 

large discussion. 

The negative relationship between online job searches and migration inflows is probably due to immi-

grants moving to the regions bordering Moscow and Saint Petersburg because of the high cost of living 

and traffic congestion in these two metropolises, see e.g. Efimova and Mikhaltsov (2017), Pavlovskij (2017), 

Varaksin and Varaksina (2017), Demidova et al. (2020), and Vakulenko and Mkrtchyan (2020). An empir-

ical analysis including also these bordering regions would require spatial econometric models able to deal 

with situations when the number of variables is larger than the number of time points for the data, see e.g. 

Ahrens and Bhattacharjee (2015), Lam and Souza (2020), and references therein. Given that this issue goes 

beyond the scope of this paper and the size of the paper is already quite substantial18, we leave this issue 

as an avenue for further research. 

Another possibility of future work will be to check how the empirical evidence found in this work will 

change when using Yandex search data in place of Google search data. To reach this aim, a direct agree-

ment between Russian policymakers and Yandex will probably be necessary to have access to long time 

series of monthly search data, which currently are not available. The inclusion of such data will likely 

considerably improve the forecasting performances of the models proposed in this work, so we leave it as 

a compelling topic of further work. 

                                                           
18 The authors want to thank an anonymous reviewer for highlighting the initial excessive length of the paper. 
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Appendix A 

Google Trends is a website (https://trends.google.com) that reports the standardized volume of Google 

searches for a keyword or a topic. Google Trends calculates the ratio of the number of online searches for 

a specific keyword (or topic) K in a given geographical region a, on a particular day t (Ka,t), to the total 

amount of searches for the same day and region (Ta,t): Ra,t = Ka,t / Ta,t . The obtained time series is then 

divided by the value of the day in which it reaches the maximum level, and multiplied by 100. The Google 

index (GI) for a specific keyword K on day t, and in the area a is thus given by, GIKa,t = [100  Ra,t / maxt (Ra,t)]. 

Google Trends tracks only queries with a minimum volume due to privacy considerations: if the search 

volume is too low, a value of zero is reported19. The data are available from an intraday time-frequency 

up to a monthly frequency (which was our case), depending on the selected time range. The longer is the 

time sample selected, the lower is the frequency provided by Google Trends (the lowest frequency possible 

is monthly data). Note that Google Trends allows comparing the search volumes of up to five search terms, 

or up to a maximum of 30 search terms grouped in a single entry using quotation marks (to return searches 

that match an exact expression), and using the + or - signs between the search terms to include or exclude 

search terms, respectively. The data are available since 2004, see https://support.google.com/trends for more 

details.  

An example of the Google Trends interface to download the monthly data for the keywords “Работа в 
Москве” (=”Job in Moscow”) searched in Russia from 01/01/2009 until 31/12/2018, is reported in Figure 

A1: 

 

Figure A1. Google Trends data for the keywords “Работа в Москве”, searched in Russia. Sample: 
01/01/2009 - 31/12/2018. 

                                                           
19 In the case of zero values, the GIs were linearly re-scaled using a small positive constant, following the approach proposed by 

Fantazzini and Toktamysova (2015). 
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The monthly GIs can be downloaded as a csv file by clicking on the arrow on the right, as highlighted 

in Figure A1. Given that the manual download of the GIs for several keywords can become too 

burdensome, it can be executed using an R script and the gtrendsR package as reported below: 

library(gtrendsR) 

dat=gtrends("Работа в Москве", geo = "RU", time = "2009-01-01 2018-12-31") 

plot(dat) 

 

Figure A2. Google Trends data for the keywords “Работа в Москве”, searched in Russia. Sample: 
01/01/2009 - 31/12/2018. Data downloaded using the gtrendsR package. 

We remark that Google Trends data are computed using a sampling method, so the results may be 

slightly different if the data are downloaded on different days. A possible way to decrease the sample 

variability is to compute the GIs as the simple average of different data downloads performed over 

different days. We also tried this approach as a robustness check, but we decided to use the original raw 

data coming from the single downloads because we found that using the raw data does not alter the final 

results,  similarly to what found by Fantazzini and Toktamysova (2015) and D’Amuri and Marcucci 
(2017).  

Google Trends has both advantages and limits when forecasting migration is of concern. In general, 

Google Trends has several advantages in terms of economy, coverage, and immediacy: they are free of 

charge, and they can cover larger sets of population than some of the traditional data sources, which may 

suffer from sample size limits. Moreover, they can allow researchers to monitor immigrants’ intentions 
almost in real-time. In this regard, the main advantage of online search queries is the possibility to 

anticipate immigrants’ movement, as highlighted by Böhme et al. (2019), who validated this proposition 
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by comparing the Gallup World Poll data about emigration20 with the results obtained with Google 

Trends, and they found that Google Trends data can indeed now-cast the “genuine migration intention”. 

Yet, Google Trends data have also their limitations: for example, it is well known that online users may 

not represent the whole population, and these data may require significant cleaning, see Jun et al. (2018), 

Nikolopoulos et al. (2021a), and references therein. The impossibility to track specific categories of users 

may determine migration policies that perpetuate discrimination or neglect the needs of some groups. For 

these reasons, the latest research efforts try to combine online big data with more traditional data sources, 

see Salini et al. (2020) and Iacus and Porro (2021) for more details. 

Despite these limitations, increasing literature showed that Google Trends and other online big data 

can still improve the understandings of migration patterns, see Hawelka et al. (2014), Zagheni et al. (2014), 

Moise et al. (2016), Iacus and Porro (2021), Sîrbu et al. (2021) for more details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
20 This is a survey done over more than 160 countries and that wants to find whether the local individuals are planning to move 

to another country and, if so, whether the plan will take place within 12 months, see http://gallup.com for more details. 

http://gallup.com/
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Appendix B 

 

Figure A3. VECM(1) with centered seasonal dummies: orthogonalised impulse responses from a 

shock in Google searches on migration inflow in Moscow over 24 months. 

 

Figure A4. VECM(1) with centered seasonal dummies: orthogonalised impulse responses from a 

shock in Google searches on migration inflow in S.Petersburg over 24 months. 
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Figure A5. Forecast error variance decomposition of the VECM(1) with centered seasonal dummies: 

Moscow (left panel), Saint Petersburg (right panel). 
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Appendix C: Robustness Checks 

We wanted to check how our previous results changed with models able to deal with potential param-

eter instability and with a large number of regressors, potentially larger than the number of observations. 

To achieve this goal, we employed the time-varying VAR model proposed by Casas and Fernandez-Casal 

(2018) and Casas et al. (2019), and a set of multivariate shrinkage estimation methods. 

 

C.1. Parameter instability 

We tested for the structural stability of our VAR(1) models using the generalized fluctuation tests dis-

cussed by Kuan and Hornik (1995), Zeileis et al. (2005), and Zeileis (2006). For sake of interest and space, 

we report below only the fluctuation test based on the moving OLS estimates for the VAR equation of the 

monthly migration flow in Moscow and Saint Petersburg, while the full results are available from the 

authors upon request21. 

 

 

 

Figure 6. Fluctuation test based on the moving OLS estimates for the VAR equation of the 

monthly migration flow in Moscow and Saint Petersburg, with the boundary for the 5% confidence 

level (red line). The standardized sample cover the period 2009-2020. 

 

Figure A6 and the battery of tests that we computed to test for structural stability highlighted that the 

evidence for parameter instability is mild or not significant. Nevertheless, we decided to implement the 

time-varying coefficient vector autoregressive model (TVVAR) proposed by Casas and Fernandez-Casal 

(2018) and Casas et al. (2019) to take any potential parameter instability into account: 

 

                                                           
21 This (large) class of fluctuation tests for testing, monitoring and dating structural changes in linear regression models is 

implemented in the R package strucchange. 
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where the elements of Φi,t are unknown functions of either the rescaled time value τ = t / T with τ ∈ [0, 

1], or of a random variable at time t. The variance-covariance matrix t can also be time varying. If the 

matrixes Φi,t are a function of τ, then the TVVAR model is locally stationary in the sense of Dahlhaus 

(1997), which means that the functions in the matrices  are constant or change smoothly over time. In this 

case, the TVVAR model (2) has a well-defined Wold representation given by 
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sent the time-varying coefficient matrices of the impulse response function (TVIRF), see Casas and Fer-

nandez-Casal (2018) for more details. The orthogonal TVIRF can be computed using 
,j t t P  instead of

,j t

, where
tP  is the lower triangular matrix obtained employing the Cholesky decomposition of 

tΣ  at time 

t given by
t tΣ '

t
P P .  

The TVVAR model (2) can be estimated using a multivariate non-parametric Nadaraya–Watson esti-

mator that minimizes a smoothed weighted sum of squared residuals, see Casas et al. (2019) for a detailed 

analysis of the asymptotic properties of this kernel estimator22. 

The orthogonal impulse responses from a shock in Google online searches on migration inflow in Mos-

cow (left column) and Saint-Petersburg (right column) are reported in Figure A7, where the values re-

ported are the means of the time-varying IRF over every time period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
22 The TVVAR model is implemented in the R package tvReg. 
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Figure A7. Orthogonal impulse responses from a shock in Google online searches on migration 

inflow in Moscow (left column) and Saint Petersburg (right column) using a TVVAR (1) model.  

The values reported are the means of the time-varying IRF over every period. 

 

Similar to the baseline case, a one-time shock in online google searches related to emigration and job 

queries has a negative effect on migration inflows but, differently from the baseline case, these effects are 

no more significant. 

The lack of significance of the IRFs can probably be explained by the larger variances of the TVVAR 

model estimates compared to traditional VAR models with constant parameters and by the weak evidence 

of model instability, which makes the TVVAR model more inefficient. 
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C.2. Additional lags 

The simple VAR(1) model used in the baseline case can be an efficient way to deal with several varia-

bles, but it is hardly realistic, considering that the decision and the entire process to emigrate may take 

several months, at the very least23. Unfortunately, given the limited size of our dataset, VAR models with 

more than 6 lags were numerically unstable or simply impossible to estimate. Therefore, we resorted to 

multivariate shrinkage estimation methods that can be applied to high-dimensional VAR models with 

dimensionality potentially larger than the number of observations. 

More specifically, we considered the multivariate ridge regression by Hoerl and Kennard (1970). If we 

rewrite the VAR model described in eq. (1) in a more compact form as follows, 

 

 Y XΒ U  
  

where Y is a (T – p) × n matrix collecting the temporal observations of all endogenous variables, X is a 

(T – p) × (np+1) matrix collecting the lags of the endogenous variables and the constants, B is a (np+1) × n 

matrix of coefficients, while U is a (T – p) × n matrix of error terms, then the multivariate ridge regression 

estimator of B can be obtained by minimizing the following penalized sum of squared errors: 
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ijF i j
a  A  is the Frobenius norm of a matrix A, and λ ≥ 0 is known as the regularization 

parameter or the shrinkage parameter. The ridge regression estimator ( )Ridge B  has a closed form solution 

given by, 
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The shrinkage parameter λ can be automatically determined by minimizing the generalized cross-val-

idation (GCV) score by Golub, Heath, and Wahba (1979): 

 
2

21 1
( ) ) ( ))

F
GCV Trace

T p T p
   

     
I H( Y I H(    

 

where -1( ) ( ( )T p   ' ' '
H X X X I) X . 

Given our previous discussion, we considered a VAR(12) model estimated with the ridge regression 

estimator. The orthogonal impulse responses from a shock in Google online searches on migration inflow 

in Moscow (left column) and Saint Petersburg (right column) are reported in Figure A8. 
 

                                                           
23 The first author of this paper immigrated to Moscow in August 2007: if the initial planning phase is considered, together with 

the time needed to satisfy all the administrative and migration requirements necessary for the physical transfer, the entire process 

took up to 1 year. 
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 Figure 8. Orthogonal impulse responses from a shock in Google online searches on migration inflow 

in Moscow (left column) and Saint-Petersburg (right column) using a VAR(12) model estimated with the 

ridge regression estimator. 
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The estimated IRFs are similar to the baseline case, except for one-time shocks in online searches related 

to emigration that have a positive effect on migration inflows in Moscow, thus confirming similar evidence 

reported in Böhme et al. (2019). However, all these effects are no more statistically significant.  

We remark that we also tried alternative multivariate shrinkage estimation methods for VAR models, 

like the nonparametric shrinkage estimation method proposed by Opgen-Rhein and Strimmer (2007), the 

full Bayesian shrinkage methods proposed by Sun and Ni (2004) and Ni and Sun (2005), and the semi-

parametric Bayesian shrinkage method proposed by Lee et al. (2016): the results with these methods were 

qualitatively similar but their computational performance was much worse in several cases, so that we do 

not report them for sake of space and interest24,25. 
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