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Abstract

How do differences in the government’s political and commitment structure affect the aggre-

gate economy, inequality, and welfare? I analyze this question, using a calibrated Aiyagari’s

(1994) economy with wealth effects of labor supply wherein a flat tax rate and transfers are

endogenously determined according to its political and commitment structure. I compare four

economies: a baseline economy, an economy with the optimal tax with commitment in all

steady states, an economy with the optimal tax without commitment, and a political economy

with sequential voting. I obtain two main findings. First, the commitment structure shifts the

government’s weighting between redistribution and efficiency. A lack of commitment leads

the government to pursue a more redistributive policy at the expense of efficiency. Second,

given a lack of commitment, the political economy with voting yields greater welfare than the

economy with the time-consistent optimal policy. In the latter case, a lack of commitment hin-

ders the government from implementing a more frugal policy desirable in the long run; instead,

it cares more for low-income and wealth households, resulting in a substantial efficient loss.

However, in the political economy with voting, the government considers only the interests of

the median voter, who is middle class and reluctant to bear larger distortions from a higher tax

rate and larger transfers. These findings imply that in terms of welfare, policies targeting the

middle class would possibly be better than those exquisitely designed for the general public.

JEL classification: E61, H11, P16.

Keywords: Commitment, Time-Consistent Policy, Political Economy, Voting

*I have benefited from helpful comments by Juan Carlos Conesa, Tatyana Koreshkova, Dirk Krueger, Qian Li,

Svetlana Pashchenko, Ponpoje Porapakkarm, Takeki Sunakawa, Minchul Yum, and seminar participants at the Uni-

versity of Melbourne. A series of discussions with Ji-Woong Moon greatly improved the quality of the paper. I also

thank Yunho Cho, Pantelis Kazakis, and Hoonsuk Park for their generous help. All remaining errors are mine.
†Institute for Advanced Research, Shanghai University of Finance and Economics, No.111 Wuchuan Road, Shang-

hai, China 200433. E-mail: jangys724@gmail.com



1 Introduction

Public and fiscal policies are essentially subject to a lack of government commitment because po-

litical procedures sequentially determine the policy executor. Previous studies have found that a

lack of commitment can yield substantial differences in the implications of designing and imple-

menting policies (Kydland and Prescott, 1977; Calvo, 1978; Barro and Gordon, 1983; Lucas and

Stokey, 1983; Klein and Rı́os-Rull, 2003; Klein, Krusell and Rios-Rull, 2008). However, relatively

few studies have considered how the government’s political structure affects the design of public

and fiscal policies given the difficulty in devising a proper framework. Investigating this issue re-

quires models that incorporate heterogeneous agents because political decisions—from selecting

policymakers to implementing policies—widely interact at the individual level. In addition to het-

erogeneous agents, because a lack of commitment leads successive governments to make strategic

choices, solving a dynamic game of consecutive governments is essential. A major obstacle in this

direction of research is a substantial computational burden.

Political-economy models, originally developed by Krusell et al. (1996); Krusell and Rios-

Rull (1999), have three types of equilibrium objects—individual decisions, the aggregate law of

motion for the distribution of households, and the endogenous government policy function—that

have to be consistent with one another in equilibrium. One might consider using Krusell and

Smith’s (1998) method to achieve their consistency; however, this approach is ineffective for this

class of models. First, more than one aggregate law of motion increases the computational burden

exponentially in this simulation-based method. The existence of the government policy function

leads to adding another outer loop to the outer loop in their method. Second, the government pol-

icy function is severely nonlinear because political decisions, which shape the government policy

function, are sensitive to the distribution of individuals. This nonlinearity is not well-captured by

the parameterized law of motion in Krusell and Smith (1998).

In this paper, I develop a numerical solution method that allows solving a broad class of het-

erogeneous agent models with Markov perfect equilibria (MPE) in a dynamic game of consecutive

governments. To handle the aforementioned computational issues, I take ideas from the backward

induction method of Reiter (2010). Because the backward induction method is not designed for

economies in the MPE but for those with aggregate uncertainty, I make variations to this method

in accordance with the characteristics of the MPE while preserving its computational benefits.

My method is a non-simulation-based approach as in Reiter (2010), which substantially improves

computational efficiency. Furthermore, my solution method approximates the aggregate laws of

motion, including the government policy function, through a non-parametric approach as in Reiter

(2010), thereby enabling me to capture the nonlinearity.

Using this solution method, I explore how differences in the government’s political and com-

mitment structure play roles in the macroeconomy, inequality, and welfare. I apply this solution
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method to the canonical model of Aiyagari (1994) with wealth effects of labor supply, in which

the government’s tax/transfer system is endogenously determined according to its political and

commitment structure. I assume a simple government financing rule to better understand the fun-

damental roles of the political and commitment structure: the government levies a flat tax from

labor and capital income and redistributes its revenue to households through lump-sum transfers

after covering a given size of government spending.

Specifically, I compare four economies: the baseline economy, an economy with the opti-

mal policy with commitment in all steady states (the time-inconsistent case), an economy with

the optimal policy without commitment (the time-consistent case), and a political economy with

sequential voting (the voting case). In the economy with the optimal policy with commitment,

because the government can commit to all future tax policy, it chooses a tax policy that maximizes

the utilitarian welfare function in the long run. By contrast, in the time-consistent optimal case, the

government can only decide a tax rate for the next period and cannot commit to it after that. Thus,

the government sequentially chooses a tax policy maximizing the utilitarian welfare function un-

der this commitment constraint, and this action continues perpetually. Finally, following a seminal

study by Krusell and Rios-Rull (1999), the political economy with voting has two political parties

whose unique goal is to win election in each period, meaning a lack of commitment, through the

majority’s support. The two parties propose tax rates on which households vote. Because the pol-

icy dimension is one in my policy exercise, the dominant strategy of the two parties is to offer the

most preferred tax rate of the median voter. To prevent multiple equilibria, I assume that one party

always wins when votes are tied.

Through these comparisons, I obtain two key findings. First, the commitment structure makes

the government strike a different balance between redistribution and efficiency in determining its

policy. A lack of commitment tends to lead the government to place greater weight on redistri-

bution at the cost of efficiency. The government size, measured by the total tax revenue to output

ratio, is the largest in the economy with the optimal policy without commitment, followed by the

political economy with sequential voting, the economy with the optimal policy with commitment,

and the baseline economy. The ranking on efficiency, measured by the aggregate output, is pre-

cisely the opposite. These are in line with findings in Krusell and Rios-Rull (1999); Klein and

Rı́os-Rull (2003); Klein et al. (2008); Corbae et al. (2009).

Second, and more notable, given a lack of commitment, the political economy with sequential

voting shows a better welfare outcome than the economy with the optimal policy that is time-

consistent. This result is driven by differences in the government’s attitudes toward distortions

according to the political structure. Under the optimal policy without commitment, the government

is less sensitive to distortions from a higher income tax rate, resulting in a larger efficiency loss.

Note that under the optimal policy without commitment, the government is allowed to choose a tax
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rate only in the next period because of a lack of commitment. It cannot select any policy after that,

which is repeated throughout the game. Under this constraint, its optimal policy devotes more care

to low-income individuals whose MPC is high, leading to a more redistributive policy: a higher tax

rate resulting in larger lump-sum transfers. The change in the bottom 50 percent income share from

before to after government increases by 31.7 percent in the optimal policy without commitment

but by 25.4 percent in the optimal policy with commitment.

In the political economy with sequential voting, the government takes into account only the

most preferred tax rate of the median voter, who acts like an individual in the middle class. This

median voter tends to be more sensitive to distortions from a higher income tax. The endogenous

income tax function shaped by the median voter’s behavior indicates that in response to a rise in the

market equilibrium wage, the median voter wants to reduce the income tax rate for the next period

by more than does the government in the economy with the optimal policy without commitment.

This finding means that the median voter prefers a lower tax resulting in lower transfers. The

change in the bottom 50 percent income share from before to after government in this political

economy increases by 28.1 percent but by 31.7 percent in the time-consistent optimal case. This

mechanism alleviates efficiency loss, resulting in a better welfare outcome in the political economy.

These findings imply that without commitment, following policies preferred by the middle class

would possibly be better at certain times than exquisitely designed policies for the general.

This paper belongs to the stream of political macroeconomic literature that examines the im-

plications of governments’ political and commitment structure in designing public policies. Moti-

vated by the seminal studies of Aiyagari and Peled (1995); Krusell, Quadrini and Rios-Rull (1996);

Krusell and Rios-Rull (1999), several works have investigated the effects of the political procedure

on policy decisions from a macroeconomic perspective. Corbae, D’Erasmo and Kuruscu (2009)

studies how political governments make decisions on income taxation in response to the increased

inequality in wages in the U.S. They find that the increased inequality in wages raises the equi-

librium income tax rate without commitment. The study of Corbae et al. (2009) is similar to my

work in the sense that both studies compare a series of economies with heterogeneous agents ac-

cording to the political and commitment structure of the government. However, in contrast to

my model, Corbae et al. (2009) employs the preference of Greenwood, Hercowitz and Huffman

(1988), which lacks wealth effects of labor supply.1 Note that the wealth effects of labor supply are

crucial for the macroeconomy and welfare because changes in transfers affect efficiency through

this channel. Although Corbae et al. (2009) did not analyze detailed equilibrium outcomes in the

macroeconomy and welfare, this paper, by allowing for wealth effects of labor supply, examines

the macroeconomic implications and welfare consequences of the political and commitment struc-

ture of governments. The inclusion of wealth effects of labor supply is enabled by the numerical

1The authors mention that this choice is made to mitigate the computational burden.
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solution method that is another independent contribution of this paper.

Song, Storesletten and Zilibotti (2012) is another study using a political economy. Their goal

is to understand intergenerational conflict through public policy instruments. The different objec-

tive leads to a different model selection. While they consider an overlapping generations model in

partial equilibrium, this paper uses an infinite-horizon model in general equilibrium. Farhi, Sleet,

Werning and Yeltekin (2012) is also related to my work because they address the choice of in-

come tax without commitment. However, their approach is different from mine. Whereas Farhi

et al. (2012) solves the planner’s centralized problem in a dynamic Mirrleesian model, I solve

households’ decentralized problems in an incomplete markets model.

The solution method in this paper is a nonnegligible, independent contribution to the literature.

Broadly, two types of methods are often used to solve macroeconomic models with Markov-perfect

equilibria. The first is Klein, Krusell and Rios-Rull’s (2008) approach that is a local solution

method using the generalized Euler equation. This method is accurate and efficient but not general

enough to handle the class of heterogeneous agent models. My method in this paper is a global

solution method applicable to heterogeneous agent models. The other approach is Krusell and

Smith’s (1998) method, which applicable to heterogeneous agent models. For example, Corbae

et al. (2009) used this approach in their heterogeneous agent economy. However, this simulation-

based method is computationally costly in the political equilibrium because a political economy

would have more than one aggregate law of motion (e.g., the law of motion for the distributions

and the endogenous tax policy function). This political economy-specific structure increases the

computational burden in an exponential manner. Additionally, the endogenous policy function

is severe nonlinear that is not well-captured by the parameterized law of motion in Krusell and

Smith’s (1998) method. My method is an efficient non-simulation-based solution approach that

captures the non-linearity through a non-parametric way as in Reiter (2010).

The remainder of this paper proceeds as follows. Section 2 presents the model and defines

the equilibrium. Section 3 explains the core ideas of the numerical solution algorithm. Section 4

describes the calibration strategy. Section 5 presents the results of the policy analysis. Section 6

concludes this paper. Finally, Appendix A demonstrates the full details of the numerical solution

algorithm.

2 Model

The quantitative model here builds upon the canonical model of Aiyagari (1994), incorporating

wealth effects of labor supply. In this model, given a tax policy function, heterogeneous households

make decisions on consumption, savings and labor supply at the intensive margin, as in standard

incomplete markets models. A notable difference from the standard models is the setting of its tax
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policy function. The tax policy function is determined, according to the political and commitment

structure of government. In equilibrium, the tax policy function, individual decisions, and the

evolution of the distribution are consistent with one another under the political and commitment

structure.

2.1 Environment

The model economy is populated by a continuum of infinitely lived households. Their preference

follows

E

[ ∞
∑

t=0

βtu(ct, 1− nt)

]

(1)

where ct is consumption, nt ∈ [0, 1] is labor supply in period t ((1− nt) refers to leisure), and β is

the discount factor. Preferences are represented by

u(ct, 1− nt) =
ct

1−σ

1− σ
+B

(1− nt)
1−1/χ

1− 1/χ
(2)

where σ is the coefficient of relative risk aversion, B is the utility of leisure, and χ is the Frisch

elasticity of labor supply.

It is worth spending more time on the above preference. Note that the preference here captures

wealth effects of labor supply. By contrast, Corbae, D’Erasmo and Kuruscu (2009) employed the

preference in Greenwood, Hercowitz and Huffman (1988) that lacks wealth effects of labor supply,

to mitigate the computational burden. Such wealth effects are crucial for welfare analysis, closely

related to efficiency loss. An increase in transfers, for example, decreases overall labor supply,

shrinking the size of the aggregate economy and playing a role in reducing welfare.

The representative firm produces output with a constant return to scale. The firm’s technology

is represented by

Yt = F (Kt, Nt) = Kθ
tN

1−θ
t (3)

where Kt is the quantity of aggregate capital, Nt is the quantity of aggregate labor, and θ is the

capital income share. Capital depreciates at the rate of δ each period.

In each period, households confront an uninsurable, idiosyncratic shock ϵt to their wage that

follows an AR-1 process:

log(ϵt+1) = ρϵ log(ϵt) + ηϵt+1 (4)
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where ηϵt+1 ∼ N(0, σ2
ϵ ). Using the method in Rouwenhorst (1995), I approximate the AR-1 process

as a finite-state Markov chain with transition probabilities πϵij from state i to state j where Nϵ is

the total number of ϵ states. Households earn wtϵtnt as their labor income where wt is the market

equilibrium wage. They can self insure through assets at. Such households have capital income of

as much as rtat where rt is the equilibrium risk-free interest rate.

The government obtains its tax revenue by levying taxes on household capital and labor income

at the same proportional flat tax rate, τt. Given a tax revenue, the government covers government

spending Gt, and the rest is used for lump-sum transfers Tt. The government runs a balanced

budget each period:

Gt + Tt = τt [rtKt + wtNt] . (5)

2.2 Recursive Competitive Equilibrium, Exogenous Policy

It is convenient to present the household dynamic problems in a recursive manner. At the beginning

of each period, households differ from one another in asset holdings a and labor productivity ϵi. In

addition to the individual state variables a and ϵi, there are two aggregate state variables, including

the distribution of households µ(a, ϵi) over a and ϵi and income tax τ . A variable with a prime

symbol denotes its value in the next period.

Let v(a, ϵi;µ, τ) denote the value of households associated with a state of (a, ϵi;µ, τ). They

solve

v(a, ϵi;µ, τ) = max
c>0, a′≥a, 0≤n≤1

[

c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

Nϵ
∑

j=1

πϵi,jv(a
′, ϵ′j;µ

′, τ ′)

]

(6)

such that

c+ a′ = (1− τ)w(µ) ϵi n+ (1 + r(µ)(1− τ)) a+ T

τ ′ = Ψ(µ, τ)

µ′ = Γ(µ, τ, τ ′) = Γ(µ, τ,Ψ(µ, τ))

where a ≤ 0 is a borrowing limit, τ ′ = Ψ(µ, τ) is the perceived law of motion of taxes, and

µ′ = Γ(µ, τ, τ ′) is the law of motion for the distribution over households. Note that households

here solve the above problem given an exogenous tax policy function τ ′ = Ψ(µ, τ).

Definition 2.2.1. Recursive Competitive Equilibrium (RCE).

Given G and Ψ(µ, τ), a recursive competitive equilibrium (RCE) is a set of prices {w(µ), r(µ)}, a

set of decision rules for households ga(a, ϵi;µ, τ) and gn(a, ϵi;µ, τ), a value function v(a, ϵi;µ, τ),

a distribution of households µ(a, ϵi) over the state space, and the law of motion for the distribution
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of households Γ(µ, τ,Ψ(µ, τ)) such that

(i) Given {w(µ), r(µ)}, the decision rules a′ = ga(a, ϵi;µ, τ) and n = gn(a, ϵi;µ, τ) solve the

household problem in (6), and v(a, ϵi;µ, τ) is the associated value function.

(ii) The representative agent firm engages in competitive pricing:

w(µ) = (1− θ)

(

K

N

)θ

(7)

r(µ) = θ

(

K

N

)θ−1

− δ. (8)

(iii) The factor markets clear:

K =
Nϵ
∑

i=1

∫

a µ(da, ϵi) (9)

N =
Nϵ
∑

i=1

∫

ϵi gn(a, ϵi;µ, τ) µ(da, ϵi) (10)

(iv) The government budget constraint (5) is satisfied.

(v) The law of motion for the distribution of households µ′ = Γ(µ, τ,Ψ(µ, τ)) is consistent with

individual decision rules and the stochastic process of ϵi.

2.3 Recursive Competitive Equilibrium, Endogenous Policy

In the spirit of Krusell and Rios-Rull (1999); Klein and Rı́os-Rull (2003), I endogenize the tax

choice in three ways: the optimal income tax with commitment in all steady states; the optimal

income tax without commitment; and majority voting. Then, I compare the macroeconomic impli-

cations and welfare consequences of these economies.

Definition 2.3.1. A RCE with the Optimal Income Tax with Commitment in All Steady States.

(i) A set of functions {w(·), r(·), ga(·), gn(·), v(·),Γ(·)} satisfy the RCE definition 2.2.1.
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(ii) For each (µ, τ), the government chooses τW (µ, τ) such that

τW (µ, τ) = argmax
τ̃

Nϵ
∑

i=1

∫

V̂ (a, ϵi;µ, τ̃)µ(da, ϵi) (11)

where

V̂ (a, ϵi;µ, τ̃) = max
c>0, a′≥a, 0≤n≤1

[

c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

Nϵ
∑

j=1

πϵi,jv(a
′, ϵ′j;µ

′, τ̃)

]

such that

c+ a′ = (1− τ̃)w(µ) ϵi n+ (1 + r(µ)(1− τ̃)) a+ T ;

τ ′ = τ̃ , and thereafter τ ′′ = τ ′ = τ̃ = Ψ(µ′, τ ′ = τ̃); (12)

µ′ = Γ(µ, τ = τ̃ , τ ′ = τ̃) (13)

(iii) a′ = ĝa(a, ϵi;µ, τ̃) and n = ĝn(a, ϵi;µ, τ̃) solve (11) at prices that clear markets and the

government budget constraint, and Γ is consistent with individual decisions and the stochastic

process of ϵi.

(iv) For each (µ, τ), the policy outcome function satisfies Ψ(µ, τ) = τW (µ, τ).

In the above economy with the optimal income tax with commitment, the government adopts

the time-inconsistent optimal policy: a tax rate that is permanently committed for all the future

periods while maximizing its utilitarian welfare function in the long run. Thus, once a tax rate

τ̃ is chosen, tax rates thereafter are persevered as τ̃ , as shown in (12), because the government

can commit to the future tax policy all along. This approach has been broadly used in the public

policy-related macroeconomics literature with heterogeneous agents (Conesa et al., 2009; Wu and

Krueger, 2021; Holter et al., 2019; Jang, 2020; Heathcote et al., 2020).

Definition 2.3.2. A RCE with the Optimal Income Tax without Commitment.

(i) A set of functions {w(·), r(·), ga(·), gn(·), v(·),Γ(·)} satisfy the RCE definition 2.2.1.
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(ii) For each (µ, τ), the government chooses τWO(µ, τ) such that

τWO(µ, τ) = argmax
τ̃ ′

Nϵ
∑

i=1

∫

V̂ (a, ϵi;µ, τ : τ̃ ′)µ(da, ϵi) (14)

where

V̂ (a, ϵi;µ, τ : τ̃ ′) = max
c>0, a′≥a, 0≤n≤1

[

c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

Nϵ
∑

j=1

πϵi,jv(a
′, ϵ′j;µ

′, τ̃ ′)

]

such that

c+ a′ = (1− τ)w(µ) ϵi n+ (1 + r(µ)(1− τ)) a+ T

τ ′ = τ̃ ′, and thereafter τ ′′ = Ψ(µ′, τ ′ = τ̃ ′) (15)

µ′ = Γ(µ, τ, τ̃), and thereafter µ′′ = Γ(µ′, τ̃ , τ ′′ = Ψ(µ′, τ ′ = τ̃ ′)) (16)

(iii) a′ = ĝa(a, ϵi;µ, τ̃ : τ̃ ′) and n = ĝn(a, ϵi;µ, τ̃ : τ̃ ′) solve (14) at prices that clear markets

and the government budget constraint, and Γ is consistent with individual decisions and the

stochastic process of ϵi.

(iv) For each (µ, τ), the policy outcome function satisfies Ψ(µ, τ) = τWO(µ, τ).

In the economy with the optimal income tax without commitment, the government implements

the time-consistent optimal policy as in Klein and Rı́os-Rull (2003); Corbae et al. (2009): a tax

rate that is sequentially chosen only for the next period while maximizing its utilitarian welfare

under this commitment constraint. Note that the government cannot commit to the future tax rate

from the period after the next period. Thus, once a chosen tax rate τ̃ ′ deviates from the equilibrium

tax policy function Ψ(·), tax rates thereafter follow the equilibrium tax policy function Ψ(·) be-

cause the government cannot commit to the future tax policy after one period. (15) presents such

dynamics. The law of motion for the distribution of households Γ(·) has to capture all the changes

in the evolution of distributions caused by the deviation of the income tax from the equilibrium tax

function, which is shown in (16). In equilibrium, for each aggregate state (µ, τ), the government’s

choice τWO(µ, τ) should be equal to the equilibrium tax function ψ(µ, τ), which is presented in

(iv).

Definition 2.3.3. A Political RCE with Voting.

(i) A set of functions {w(·), r(·), ga(·), gn(·), v(·),Γ(·)} satisfy the RCE definition 2.2.1.
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(ii) For each (a, ϵi;µ, τ), households choose ψ(a, ϵi;µ, τ) such that

ψ(a, ϵi;µ, τ) = argmax
τ̃ ′

Nϵ
∑

i=1

∫

V̂ (a, ϵi;µ, τ : τ̃ ′)µ(da, ϵi) (17)

where

V̂ (a, ϵi;µ, τ : τ̃ ′) = max
c>0, a′≥a, 0≤n≤1

[

c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

Nϵ
∑

j=1

πϵi,jv(a
′, ϵ′j;µ

′, τ̃ ′)

]

such that

c+ a′ = (1− τ)w(µ) ϵi n+ (1 + r(µ)(1− τ)) a+ T

τ ′ = τ̃ ′, and thereafter τ ′′ = Ψ(µ′, τ ′ = τ̃ ′) (18)

µ′ = Γ(µ, τ, τ̃), and thereafter µ′′ = Γ(µ′, τ̃ , τ ′′ = Ψ(µ′, τ ′ = τ̃ ′)). (19)

(iii) For each (µ, τ), the median voting outcome τM(µ, τ) satisfies

Nϵ
∑

i=1

∫

{ψ(a,ϵ;µ,τ)≤τM (µ,τ)}

µ(da, ϵ) ≥
1

2
(20)

Nϵ
∑

i=1

∫

{ψ(a,ϵ;µ,τ)≥τM (µ,τ)}

µ(da, ϵ) ≥
1

2
. (21)

(iv) For each (µ, τ), the policy outcome function satisfies Ψ(µ, τ) = τM(µ, τ).

The political economy with sequential voting follows a dynamic game between two political

parties, as in Krusell and Rios-Rull (1999). These parties compete with one another to take power,

and the winner is determined bymajority voting by households on income taxes that the two parties

proposed for each period—a lack of commitment. One-dimensional voting with a single-peaked

preference leads the most preferred policy of the median voters to be supported by the majority.

As a result, the dominant strategy of these two parties is a policy preferred by the median voter. To

avoid multiple equilibria, I assume that one party always wins when the votes are tied.

Condition (ii) implies that each household solves the one-time deviation problem in (17), re-

sulting in ψ(·), the most preferred tax of households associated with a state of (a, ϵi;µ, τ). As in

the case with the optimal policy without commitment, a lack of government commitment makes

households believe that future tax rates after one period will follow a sequence of income taxes

induced by the equilibrium tax policy function Ψ(·) as shown in (18). The law of motion for the

distribution of households has to capture all changes in the evolution of these distributions caused

by the one-time deviation problem of households, which is presented in (19).
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Following Corbae et al. (2009), I use condition (iii) to define the median voter. I sort the agents

by the most preferred tax rate of households ψ(·) and find τM(·) for each (µ, τ). Condition (iv)

implies that in the political equilibrium, the median voting outcome τM(µ, τ) should be equal to

the equilibrium tax function Ψ(µ, τ) for each (µ, τ).

3 Numerical Solution Algorithm

Here, I focus on conveying the key ideas of the numerical solution algorithm. Appendix A demon-

strates each step of the algorithm with details.

Solving the model entails a substantial computational burden. The law of motion for the dis-

tribution of households Γ(·) has to be consistent with individual decisions. Additionally, because

the labor supply is endogenous with wealth effects, the two factor markets—K and N—must clear.

Furthermore, perhaps the most challenging part is finding the equilibrium policy function Ψ(·)

that should be determined according to the political and commitment structure while consistent

with individual decisions and the law of motion for the distribution of households. In other words,

three equilibrium objects—individual decisions, the law of motion for the distribution Γ(·), and

the policy function Ψ(·)—interact and have to be consistent with one another in a Markov-perfect

equilibrium.

I address the above computational issues by taking ideas from the backward induction method

of Reiter (2010). The author introduced a non-simulation-based solution method to solve an in-

complete markets economy with aggregate uncertainty. As in Krusell and Smith’s (1998), Reiter’s

(2010) approach also reduces the dimension of distributions in the law of motion Γ(·) to some finite

moments of the distribution, and it is defined across the aggregate finite grid points. However, the

way of finding Γ(·) is differs substantially between the two methods. In Krusell and Smith (1998),

their algorithm repeatedly simulates the model economy through the inner and outer loops. In the

inner loops, the value is solved given a perceived law of motion for the distribution of households,

and the law of motion is updated after a simulation in the outer loop. This procedure is repeated

until the perceived law of motion is equal to the updated one.

By contrast, the backward induction method of Reiter (2010) does not simulate the economy

to update the law of motion for the distribution of households Γ(·); rather, this is updated while

solving for the value given a set of proxy distributions across the aggregate finite grid points.

Given a proxy distribution, finding the law of motion for the distribution of households Γ(·) is

feasible by using the moment-consistent conditions. For example, individual decision rules for

assets allow me to obtain the information (e.g., mean or variance) on the aggregate capital in the

next period. A simulation step is followed not to update the law of motion for the distribution of

households Γ(·) but to update a set of proxy distributions across the finite nodes in the aggregate
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state. Simulations are much less required in Reiter (2010) than in Krusell and Smith (1998),

which improves computational efficiency for the backward Induction method. Additionally, with

these proxy distributions, the backward induction method allows me to approximate not only the

aggregate law of motion for the distribution Γ(·) but also the tax policy function Ψ(·) consistent

with the political and commitment structure. This is feasible because, with the value function,

these endogenous tax functions can be directly obtained by solving (11), (14), and (17).

However, I wish to clarify that I cannot directly apply the Reiter’s (2010) method to the model

in this paper because of the existence of off-equilibrium paths. In the incomplete markets economy

with aggregate uncertainty, for which Reiter’s (2010) method is originally designed, the distribu-

tion of aggregate shocks (TFP) Z is stationary. Thus, all the aggregate states Z are not measure

zero. With a positive probability, all the states in Z are realized on the equilibrium path. However,

an economy in Markov-perfect equilibrium does not have this property. For example, in the po-

litical economy with sequential voting, the vote on policies are obtained by comparing one-time

deviation policies. Some tax paths would not be reached on the equilibrium path.

0 50 100 150

Time

1.2

1.4

1.6

1.8

2

2.2
Aggregate Capital Paths during the Simulation

0 50 100 150

Time

0.3

0.35

0.4

0.45

0.5
Income Tax Paths during the Simulation

Figure 1: Transitions from off the Equilibrium to the Equilibrium

To cope with this issue, I make three variations to the original backward induction method of
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Reiter (2010). First, as mentioned above, I approximate not only the aggregate law of motion for

the distribution of households but also the endogenous tax policy function. I find these mappings

in a nonparametric way as in Reiter (2010). Second, I arrange distributions for all types of off the

equilibrium paths, taking the initial distribution of the simulations as the previous proxy distribu-

tion for each finite grid point of the aggregate state. Figure 1 shows various transitions from off the

equilibrium to the steady-state equilibrium in the political economy with voting. Finally, I modify

the way of constructing reference distributions, which is required to update the proxy distributions

in Reiter (2010), by reflecting the features of the Markov-perfect equilibrium, in which how many

times a tax rate off the equilibrium takes place is unknown before simulation. Appendix A demon-

strates the full details of the solution method, with its performances in efficiency and accuracy.
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Figure 2: Income Tax Function Ψ(mi, τk)

Because of these somewhat complex variations in Reiter’s (2010) method, one might consider

simply using Krusell and Smith’s (1998) method to solve this model. However, their approach

would not be efficient in addressing this class of models in Markov-perfect equilibrium. First,

finding the two aggregate laws of motion–Γ and Ψ—is computationally very costly when using
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this simulation-based solution method. When this method is employed to solve the economy in this

paper, this process is the same as adding another outer loop to the outer loop in Krusell and Smith’s

(1998) original algorithm, thereby exponentially increasing the computational burden. Second, the

parametric assumption of Krusell and Smith’s (1998) approach would act as a barrier because the

equilibrium tax function Ψ(·) could be severely nonlinear in the aggregate state. The parametric

assumption works well when the law of motion for household distributions Γ(·) is close to linear.

I find that although this linearity still appears in Γ(·), Ψ(·) shaped by the median voter’s choice is

severely nonlinear, as shown in Figure 2.2

4 Calibration

I calibrate the model to capture the features of the U.S. economy. I divide the parameters into two

groups. The first set of the parameters requires solving the stationary distribution of the model

to match moments generated by the model with their empirical counterparts. The other set of

the parameters is determined outside the model. I take the values of these parameters from the

macroeconomic literature and policies.

Table 1: Parameter Values of the Baseline Economy

Description (Target) Value

β Discount factor (K/Y = 3) 0.951

B Utility of leisure (AVG Wrk Hrs = 1/3) 3.803

σ Relative risk aversion 2

χ Frisch elasticity of labor supply 0.75

a Borrowing constraint 0

θ Capital income share 0.36

δ Depreciation rate 0.08

ρϵ Persistence of wage shocks 0.955

σϵ STD of wage shocks 0.20

G Government spending G/Y = 0.19
τ AVG income tax 0.31

Table 1 displays the parameters. I internally calibrated two parameters: the discount factor β

and the utility of leisure B. β is selected to match a capital to output ratio of 3, and B is chosen to

reproduce an average hours worked of 8 hours a day. The other parameters are determined outside

the model. The coefficient of relative risk aversion is set to 2. The Frisch elasticity of labor supply

χ is taken to be 0.75. I set the borrowing constraint a = 0. The capital income share θ is chosen to

2Corbae et al. (2009) employed Krusell and Smith’s (1998) method to solve a similar economy to mine but without

wealth effects of labor supply. Such difficulties might lead them to omit wealth effects of labor supply although adding

more states to the forecasting rules.
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reproduce the empirical finding that the share of capital income is 0.36. The annual depreciation

rate δ is 8 percent. The persistence of wage shocks ρϵ is set to be 0.955, and the standard deviation

of wage shocks σϵ is taken as 0.20. The values of ρϵ and σϵ lie in the range of those frequently used

in the literature. Government spending G is set up so that the fraction of government spending out

of GDP is equal to 19 percent. The flat income tax rate is chosen as 0.31 in the baseline economy.

5 Results

Table 2: Redistribution Outcomes According to Political and Commitment Structure

Baseline OPT w/ Commit OPT w/o Commit Voting

AVG income Tax 0.31 0.440 0.478 0.457

Trans/Y 0.046 0.156 0.190 0.171

Tax rev/Y 0.236 0.346 0.380 0.361

Change in BOT 50% Inc sh. +7% +25.4% +31.7% +28.1%

from before to after govt.

Table 2 compares government size and redistribution-related outcomes across the four economies.

I measure the size of governments as the total tax revenue to output ratio. The government size

is the largest in the economy with the time-consistent optimal policy without commitment, fol-

lowed by the political economy with voting (without commitment), the economy with the time-

inconsistent optimal policy with commitment, and the baseline economy. The other government

size-related measures (the average income tax rate and the total transfers to output ratio) also show

consistent results. This result implies that a lack of commitment leads to a larger government.

Given that the government in the baseline economy commits the future income tax to the baseline

tax rate, economies with commitment (Baseline and OPT w/ Commit) present smaller govern-

ments than do those without commitment (OPT w/o Commit and Voting), in line with findings

in Krusell et al. (1996); Krusell and Rios-Rull (1999); Klein and Rı́os-Rull (2003); Klein et al.

(2008); Corbae et al. (2009).

Table 2 also shows how much the government intends to redistribute income to households via

its policy instrument, according to the political and commitment structure. To quantify this chan-

nel, I employ the change in the bottom 50 percent income share from before to after government

to measure the extent of government-driven income redistribution. Income before government

denotes the sum of labor and capital incomes before tax, excluding transfers; income after gov-

ernment refers to the sum of labor and capital incomes after tax, including transfers. A more

significant gap between these two types of incomes, for instance, means a more substantial income

redistribution intended by the government. Furthermore, the change in the bottom 50 percent of
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income share from before to after government indicates how much the government redistributes

income, especially for low-income households.

Table 2 implies that the size of government is positively related to the extent of income redis-

tribution driven by the policy executor. The magnitude of income redistribution, measured by the

change in the bottom 50 percent income share from before to after government, is the largest in

the economy with the time-consistent optimal policy without commitment, followed by the polit-

ical economy with sequential voting, the economy with the time-inconsistent optimal policy with

commitment, and the baseline economy. This order is the same as that in the size of government.

This consistency suggests that the government uses its tax/transfer system to redistribute income

to households the magnitude of which it targets.

Table 3: Efficiency Outcomes According to Political and Commitment Structure

Baseline OPT w/ Commit OPT w/o Commit Voting

Y 0.681 0.587 0.559 0.575

K/Y 3 2.67 2.562 2.623

H 0.333 0.295 0.282 0.289

Table 3 shows efficiency-related outcomes. For economic efficiency, I take output Y as the

measure. The ranking for efficiency is precisely the opposite of that in the size of govern-

ment. Efficiency is most significant in the baseline economy, followed by the economy with the

time-inconsistent optimal policy with commitment, the political economy with sequential voting,

and the case with the time-consistent optimal policy with commitment. Other efficiency-related

measures—–the capital to output ratio and the average hours worked–—are also ranked in the

same order. The opposite ranking between government size and efficiency implies that govern-

ments implement a more redistributive tax/transfer policy at the expense of efficiency.

The balance struck by the government in this trade-off differs according to its political and com-

mitment structure. The policy executor with the optimal policy with commitment place greater

weight on efficiency than that with the optimal policy without commitment. This tendency is

closely related to the political and commitment constraint these policy executors confront. Think-

ing of a finite game is helpful to understand the government’s behavior. With commitment, because

the government must adopt the time-inconsistent policy (commitment), it does not follow the time-

consistent policy at any time. This commitment is preserved in a backward manner. Therefore, the

predecessors can also choose the time-inconsistent optimal tax policy maximizing the utilitarian

welfare function in the long run.

In contrast, the policy executor with the optimal policy without commitment places greater

weight on redistribution than that with the optimal policy with commitment. In this economy, the

policy executor can choose a tax rate only for the next period and cannot commit to any policy
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Figure 3: Response of the Income Tax Function to mt

after that. Thinking of a finite game is helpful to understand the government’s behavior. When

the government is in the last period, a more generous policy is optimal because it does not have

to be concerned about efficiency loss in the future. Because its predecessor knows this behavior

of the successive government, the predecessor does not choose that highly frugal policy that is

desirable in the long run with commitment. This strategic tendency is repeated in a backward

manner throughout the game.

Note that the political economy with sequential voting places less weight on redistribution than

the economy with the optimal policy without commitment. Although the political economy lacks

commitment, as in the case with the optimal policy without commitment, the goal of political

agents is very different. The objective of the two parties in this economy is to take power by

winning majority support. When the voting-related policy instrument is one-dimensional, and

preferences are single-peaked, offering a policy preferred by the median voter is the domestic

strategy. As before, let us think of a finite repeated game. When the two parties are in the last

period, their behavior is to provide the most preferred tax rate of the median voter, who is in the

middle class and reluctant to accept a high tax rate with large transfers. This government behavior

is repeated in a backward manner throughout the game.

Figure 3 shows how these strategic behaviors by the governments are reflected in their equi-

librium income tax function Ψ(mi, τk). I fix the current tax rate in each equilibrium and examine

how the policy function changes in the current aggregate capital mt. Because an increase in mt

leads to a rise in the market equilibrium wage in general equilibrium, Figure 3 shows how the gov-

ernments’ income tax rate endogenously responds to changes in the market equilibrium wage w.

The dotted line is the income tax function in the economy with the time-consistent optimal policy.

Their levels are overall higher than those in the political economy with voting, and its response to
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mt w is smaller. These findings imply that this government embraces a large redistribution and is

less sensitive to distortions. On the other hand, the solid line shows that the political economy with

voting has lower levels of the income tax function and is more sensitive to distortions, reflecting

the median voter’s preference in the middle class. Therefore, given a lack of commitment, the

policy in the political economy with voting tends to be less redistributive than the time-consistent

optimal policy.

Table 4: Welfare Outcomes According to Political and Commitment Structure

Baseline OPT w/ Commit OPT w/o Commit Voting

Welfare (CEV) - +2.189% +1.953% +2.144%

This disparity results in a difference in welfare consequences, according to the government’s

political and commitment structure. Table 4 shows that welfare, measured by the consumption

equivalent variation (CEV) of the utilitarian welfare function, is the highest in the economy with

the time-inconsistent optimal policy (with commitment), followed by the political economy with

voting and the economy with the time-consistent optimal policy. A notable result is that, given

a lack of commitment, the political economy with sequential voting produces a better welfare

outcome than the economy with the optimal, time-consistent policy. As highlighted in Figure 3,

the time-consistent optimal policy tends to include that highly redistributive policy at the expense

of efficiency, which plays a role in reducing welfare. However, in the political economy with

voting, the government considers only the median voter’s interest, who acts like an individual in

the middle class and does not prefer enormous distortions from a more redistributive policy. These

findings imply that, without commitment, democracy—pursuing policies supported by the middle

class-—would be better than delicately-designed optimal policies for a broad group of people.

6 Conclusion

This paper examines how differences in the government’s political and commitment structure af-

fect the macroeconomy, inequality, and welfare. I develop a numerical solution method for models

with a Markov-perfect equilibrium with heterogeneous agents and apply it to an Aiyagari’s (1994)

economy, in which its tax/transfer system is endogenously determined according to its govern-

ment’s political and commitment structure.

I find that, given a lack of commitment, the political economy with sequential voting shows

a better welfare outcome than the economy with the optimal policy that is time-consistent. An

absence of commitment leads the government to strategically adopt a more redistributive policy at

the expense of efficiency. However, the government in the political economy with voting takes into
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account only the interest of the median voter, who is in the middle class and dislikes more distor-

tions from a higher tax rate and larger transfers. These findings imply that, without commitment,

adopting policies supported by the middle class would be better than implementing well-designed

policies for a broad group of people.

Note that the solution method itself could provide many opportunities for studying unexplored

research topics. Given the fundamental feature of Reiter (2010), this solution method can be

compatible with aggregate uncertainty. This research direction would make it possible to revisit

questions on fiscal policies according to the political and commitment structure. Another exciting

application of the method is addressing the interactions between policies and life-cycle dimensions.

Kim’s (2021) method would make this direction reachable. She extends Reiter’s (2010) backward

induction method to solve an overlapping generations model with aggregate uncertainty. Such

analyses are deferred to future work.
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Appendix A Numerical Solution Algorithm

Solving the Markov-Perfect Equilibria (MPE) of consecutive governments entails heavy compu-

tational burdens with heterogeneous agents. As in standard macroeconomic heterogeneous agent

models, individual decisions should be consistent with the aggregate law of motion for the dis-

tribution of agents. On top of that, the aggregate tax policy function must be compatible with

individual decisions and the aggregate law of motion for the distribution of agents. In other words,

these three equilibrium objects—individual decisions, the law of motion for the distribution, and

the tax policy function—have to be consistent with each other in the Markov-perfect equilibrium.

I address this computational issue by taking ideas from the Backward Induction method of Re-

iter (2010). This method discretizes the aggregate state into finite grid points. For each aggregate

grid point, the Backward Induction algorithm allows updating the aggregate law of motion while

solving the decision rules thanks to the existence of the proxy distribution. This means that for each

aggregate grid point, the backward induction algorithm would make it possible to approximate not

only the aggregate law of motion for the distribution; but also the tax policy function consistent

with the voting outcome or optimal policy without government commitment. With the value func-

tion, this endogenous tax policy outcome can be directly obtained when the proxy distribution is

explicitly available.

Unfortunately, the original Reiter’s (2010) method cannot directly be applied to the MPE mod-

els because the existence of off the equilibrium paths makes it challenging to arrange the proxy

distribution. In the model of Krusell and Smith (1998), for which Reiter’s (2010) method is orig-

inally designed, the distribution of TFP shocks Z is stationary, thus all the aggregate states Z are

not measure zero. With a positive probability, all the states Z are realized on the equilibrium path.

However, the MPE economy does not have this property. Let us think about a political economy

with sequential voting and its stationary distribution. In this political equilibrium, the voted poli-

cies are obtained by comparing among one-time deviation policies. Some tax paths would not be

reached at all on the equilibrium path.

I have three variations from the original backward induction method. First, I have to approx-

imate not only the aggregate law of motion for distributions but also the tax policy function that

is endogenous. I find these mappings in a non-parametric way, as in Reiter (2010). Second, I

arrange distributions for all types of off the equilibrium paths, taking the initial distribution of the

simulations as the previous proxy distribution for each aggregate state. Finally, I modify the way of

constructing the reference distributions in Reiter (2002, 2010), reflecting the features of economies

in the MPE wherein how many times a policy off the equilibrium takes place is unknown before

simulations.

Here, I show how to apply the algorithm to the political economy with sequential voting, which

1



is the most complicated and informative in the three economies. Note that I solve all the value

functions in the following steps with the Endogenous Grid Method of Carroll (2006).

A.1 Notation and Sketch of the Solution Method

The aggregate law of motion Γ and the tax policy function Ψ are evolved with the distribution

µ that is an infinite dimensional equilibrium object, and thus it not not feasible in computations.

To handle this issue, the Backward Induction method replaces µ with m, a set of moments from

the distribution and discretize it. Here, I take the mean of the distribution and discretize it, M =

{m1, · · · ,mNm
}. Furthermore, I discretze the tax policy, T = {τ1, · · · , τNτ

}. This setting allows

me to define the aggregate law motion and the tax policy function on each grid (mim , τiτ ) such that

m′ = G(mim , τiτ , τ
′) where τ ′ = P (mim , τiτ ). Note that G and P do not rely on a parametric law.

Across a grid of aggregate states (mim , τiτ ), each point selecting a proxy distribution, the Back-

ward Induction method simultaneously solves for households’ decision rules and an intratempo-

rally consistent end-of-period distribution. This implies a future approximate aggregate state con-

sistent with households’ expectation (m′ = G(mim , τiτ , τ
′)). Likewise, the backward induction

can find the tax policy function that is consistent with the voting outcome, by using household’s

value functions and the proxy distribution (τm = τ ′ = P (mim , τiτ )). Theses mappings imply that

G interacts with P . Given P , first, I find G during the iteration of value functions, and then update

P with the value function and proxy distribution (voting). I repeat this until P is convergent.

Given a distribution over individual states at each aggregate grid point (mim , τiτ ), my goal is

to obtain the law of motion for households distribution G and the tax policy function P that are

intratemporally consistent with the end-of-period distribution and the voting outcome. Explicitly,

m′ = G(mim , τiτ , τ
′) (22)

τ ′ = P (mim , τiτ ) (23)

τ ′ = τm(mim , τiτ ) (24)

w = W (mim , τiτ ) (25)

T = TR(mim , τiτ ) (26)

(22) is to approximate Γ, (23) is to do Ψ, (24) is for the voting outcome, (25) is the mapping for

the market wage, and (26) is the mapping for trasnfers.

The backward induction method explicitly computesG, P , τm,W, and TR, given a set of proxy

distributions before the simulation step. An issue is that computing G(mim , τiτ , τ
′) in solving the

value is costly because it depends on τ ′ not only on the equilibrium path but also off the equilibrium

path. To address this issue, I reduce G(mim , τiτ , τ
′) into G̃(mim , τiτ ) = G(mim , τiτ , P (mim , τiτ ))
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while solving the value function; retrieve G(mim , τiτ , τ
′) with the converged value function and

the proxy distribution. Note that G(mim , τiτ , τ
′) must also satisfy an intratemporal consistency.

A.2 Computing the Aggregate Mappings given a Set of Proxy Distributions

(1) Given vn(a, ϵ;m, τ) and τ ′ = P q(m, τ), where n = 1, 2, · · · and q = 1, 2, · · · denote the

rounds of iteration, at grid (mim , τiτ ), where im = 1, · · · , Nm and iτ = 1, · · · , Nτ are grid

indexes, solve for intratemporally consistent m′.

a) Guess m′ . Using vn and P q, solve for a′ = gn+1
a (a, ϵi;mim , τiτ ) and n =

gn+1
n (a, ϵi;mim , τiτ ) using

vn+1(a, ϵi;mim , τiτ ) = max
c,a′,n

u(c, 1− n) + β
Nϵ
∑

j=1

vn(a′, ϵj,m
′, τ ′) (27)

such that

c+ a′ = (1− τiτ )w(mim , τiτ )ϵin+ (1 + (1− τiτ )r(mim , τiτ ))a+ T (mim , τiτ )

τ ′ = P q(mim , τiτ )

b) Using the proxy distribution, µ(a, ϵi;mim , τiτ ), compute the distribution consistent with

capital stock in the end of period m̃′, wage w̃, and transfers T̃ .

m̃′ =
Nϵ
∑

i=1

∫

gn+1
a (a, ϵi;mim , τiτ )µ(da, ϵi;mim , τiτ ) (28)

w̃ = (1− θ)

(

mi

N

)θ

(29)

T̃ = τiτ (r(mim , τiτ )mi + w(mim , τiτ )N) (30)

where

N =
Nϵ
∑

i=1

∫

gn+1
n (a, ϵi;mim , τiτ )ϵi µ(da, ϵi;mim , τiτ )

c) If max
{

|m̃′ − m′|, |w̃ − w|, |T̃ − T |
}

>precision, update m′, w, and T ; set r =

θ
(

w
1−θ

)
θ−1

θ − δ; and return to a).

(2) Having found m′ = G̃q(mim , τiτ ), w = W q(mim , τiτ ), and T = TRq(mim , τiτ ), use (27)
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to define vn+1(a, ϵ;m, τ) consistent with vn(a′, ϵ′;Gq(mim , τiτ ), P
q(mim , τiτ )). If ||vn+1 −

vn|| > precision, n = n+ 1 and return to (1).

(3) For each aggregate grid (mim , τiτ , τ
′
iτ ), retrieve Gq(mim , τiτ , τ

′
iτ ) by solving for intratempol-

lay consistent m̂′.

a) For each (mim , τiτ , τ
′
iτ ), guess m̂′. With v∞, solve for a′ = ĝa(a, ϵi;mim , τiτ , τ

′
iτ ) and

n = ĝn(a, ϵi;mim , τiτ , τ
′
iτ ) using

v̂(a, ϵi;mim , τiτ , τ
′
iτ ) = max

c,a′,n
u(c, 1− n) + β

Nϵ
∑

j=1

v∞(a′, ϵj,m
′, τ ′iτ )

such that

c+ a′ = (1− τiτ )ŵ(mim , τiτ , τ
′
iτ )ϵin+ (1 + (1− τiτ )r̂(mim , τiτ , τ

′
iτ ))a+ T̂

b) For each (mim , τiτ , τ
′
iτ ), using the proxy distribution, µ(a, ϵi;mim , τiτ ), compute the

distribution consistent with the end of period aggregate capital stock.

m̃′ =
Nϵ
∑

i=1

∫

ĝa(a, ϵi;mim , τiτ , τ
′
iτ )µ(da, ϵi;mim , τiτ )

w̃ = (1− θ)

(

mi

N

)θ

T̃ = τiτ (r̂mi + ŵN)

where

N =
Nϵ
∑

i=1

∫

ĝn(a, ϵi;mim , τiτ , τ
′
iτ )ϵi µ(da, ϵi;mim , τiτ )

c) If max
{

|m̃′ − m̂′|, |w̃ − ŵ|, |T̃ − T̂ |
}

> precision, update m̂′, ŵ, and T̂ ; set r̂ =

θ
(

ŵ
1−θ

)
θ−1

θ − δ; and return to a).

(4) Having found m′ = Gq(mim , τiτ , τ
′
iτ ), keep Gq(mim , τiτ , τ

′
iτ ). Note that here is no update of

the value.

(5) For each aggregate grid (mim , τiτ ), find τm,q(mim , τiτ ).

a) Given (a, ϵ;mim , τiτ ), using v̂(a, ϵi;mim , τiτ , τ
′
iτ ) in (3) - a), solve ψq(a, ϵ,m, τ) as fol-
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lows:

ψq(a, ϵ;mim , τiτ ) = argmax
τ̃ ′

v̂(a, ϵi;mim , τiτ , τ̃
′) (31)

The golden section search is used to find ψq(a, ϵ;mim , τiτ ) with a cubic spline for v̂

over τ ′.

b) For each aggregate grid (mim , τiτ ), using the proxy distribution µ(a, ϵi;mim , τiτ ), com-

pute the policy outcome τm,q(mim , τiτ ) that satisfies

Nϵ
∑

i=1

∫

{ψq(a,ϵ;τ,µ)≤τm,q(mim ,τiτ )}

µ(da, ϵi;mim , τiτ ) ≥
1

2
(32)

Nϵ
∑

i=1

∫

{ψq(a,ϵ;τ,µ)≥τm,q(mim ,τiτ )}

µ(da, ϵi;mim , τiτ ) ≥
1

2
(33)

(34)

c) For each aggregate grid (mim , τiτ ), if P q(mim , τiτ ) = τm,q(mim , τiτ ), G
q and P q are

the solutions, given the proxy distribution. Then, go to the next step. Otherwise, they

are not the solutions. Take P q+1 = ω · P q + (1− ω) · τm,q, and go back to (1).

A.3 Constructing the Reference Distributions

Until now, I have solvedG and P for a given set of proxy distributions. In the following step, I will

simulate the economy and update the distribution selection function, as in Reiter (2002, 2010); but,

the simulation step in this paper is substantially different from that in his method. He addresses

Krusell and Smith (1998) model where aggregate uncertainty exists. Thus, what matters in his

papers is to obtain the Ergodic set that is not affected by the initial distribution.

However, in economies without government commitment, it is important to obtain not only

distributions on the equilibrium path but also those off the equilibrium path. For example, let us

think of a political economy with sequential voting in the stationary equilibrium. Then, there will

be a unique value of τ ∗ = P (m∗, τ ∗) and m∗ = G(m∗, τ ∗, τ ∗). In this case, I may not know the

value of other alternatives because this economy has nothing but the unique equilibrium path. This

difficulty might lead the previous studies to employ local solution methods in solving this type

of the MPE. By constrast, my approach is a global solution method, which means I need proxy

distributions over all types of off the equilibrium paths.

To reserve distributions off the equilibrium path, I use the proxy distributions in the previous

step as the initial distribution for the simulation. For each (mim , τiτ ), I run a simulations for T
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periods from the proxy distribution µ0 = µ(a, ϵ;mim , τiτ ), implying the number of simulations is

Nm ×Nτ and that of simulation outcomes is T ×Nm ×Nτ . Note that any type of (mim , τiτ ) will

be observed at least once in the simulations. For each (mim , τiτ ), using µ0 = µ(a, ϵ;mim , τiτ ) and

v∞ from the previous step, I simulate the economy in a forward manner. I compute the market

cleared wt and rt and transfers Tt satisfying the government budget condition for each simulation

period t = 1, · · · , T . In addition, I solve the median voting rule τmt for each simulation period

t = 1, · · · , T with the m′ = G(mim , τiτ , τ
′
iτ ) obtained in the previous step.

I gather all the simulated distributions and rearrange the index as t̃ = 1, · · · , T × Nm × Nτ .

In creating the reference distributions from the simulation, I need a measure of distance for the

moments of a distribution. For (m, τ), define an inverse norm

d((m0, τ0), (m1, τ1)) = (m0 −m1)
−4 + (τ0 − τ1)

−4 (35)

In contrast to an economy with uncertainty, the initial simulation results should be preserved,

having to be used to construct the reference distributions off the equilibrium path (non-Ergodic

set). For each t, when (mt, τt) with mt ∈ [mk,mk+1) and τt ∈ [τs, τs+1),

d1(mk, τs) = d1(mk, τs) + (mt −mk)
−4 + (τt − τs)

−4

d1(mk+1, τs) = d1(mk+1, τs) + (mt −mk+1)
−4 + (τt − τs)

−4

d1(mk, τs+1) = d1(mk, τs+1) + (mt −mk)
−4 + (τt − τs+1)

−4

d1(mk+1, τs+1) = d1(mk+1, τs+1) + (mt −mk+1)
−4 + (τt − τs+1)

−4

Above mk (τs) is the k-th (s-th) grid point for m (τ). Note that distances between a given node

and non-adjacent moments are not taken into account, which is different from the corresponding

step in Reiter (2002, 2010).

I construct the reference distributions for each (mim , τiτ ) using the above, when (mt̃, τt̃) ∈
(

[mim ,mim+1), [τiτ , τiτ+1)
)

,

µr(a, ϵ;mim , τiτ ) =
T×Nm×Nτ
∑

t̃=1

d((mim , τiτ ), (mt̃, τt̃))

d1(mim , τiτ )
µt̃(a, ϵ). (36)

Each reference distribution is a weighted sum of distributions over the simulation only when simu-

lated moments are adjacent to a given pair of grid points (mim , τiτ ). Since the simulation moments

are not on an Ergodic set, this should be considered.

I arrange the finite grid, which is the distribution support, as explicit. The distribution over

(a, ϵ) used below size (Na × Nϵ) with ϵ ∈ E = {ϵ1, · · · , ϵNϵ
} and a ∈ A = {a1, · · · , aNa

}.
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I represent µr(a, ϵ;mim , τiτ ) using µria,iϵ(im, iτ ), indexing (aia , ϵiϵ) over A × E for (mim , τiτ ).

The moment of a reference distribution,
∑Nϵ

iϵ
µria,iϵ(im, iτ )aia , will not be consistent with mim .

However, the proxy distribution at (im, iτ ) will have this property.

A.4 Updating the Proxy Distributions

Following Reiter (2002, 2010), for each aggregate grid (im, iτ ), I solve for µia,iϵ , the proxy distri-

bution, as the solution to a problem that minimizes the distance to the reference distribution while

imposing that each type of sums to its reference value and moment consistency.

min
{µia,iϵ}

Na,Nϵ
ia=1,iϵ=1

Na
∑

ia=1

Nϵ
∑

iϵ=1

(

µia,iϵ − µria,iϵ(im, iτ )
)2

(37)

Na
∑

ia=1

µia,ıϵ =
Na
∑

ia=1

µria,iϵ(im, iτ ) for i = 1, · · · , Nϵ (38)

Nϵ
∑

iϵ=1

Na
∑

ia=1

µia,iϵ · aia = mim (39)

µia,iϵ ≥ 0 (40)

The first-order condition for µia,iϵ with λi as the LaGrange multiplier for (38) and ω the multi-

plier (39) is

2(µia,iϵ − µria,iϵ(im, iτ ))− λi − ω · aia = 0 (41)

If I ignore the non-negative constraints for probabilities in (40), I have Nϵ constraint in (38). 1

constraint in (39) andNa×Nϵ first-order conditions in (40). These are a system ofNa×Nϵ+Nϵ+1

linear equations in
(

{µia,iϵ}
Na,Nϵ

ia=1,iϵ=1, {λiϵ}
Nϵ

iϵ
, ω
)

.

I construct a column vector x. The first block of x are the stack of the elements from the proxy

distribution, such that x(j) = µia,iϵ where j = (iϵ − 1)×Na + ia. Next are the Nϵ multipliers λi,

followed by one multiplier ω. I solve for x using a system of linear equations, Ax = b in Figure 4.

The non-zero element of A and b are described here. The coefficients for µia,iϵ are entered into A

as

A((iϵ − 1)×Na + ia, (iϵ − 1)×Na + ia) = 2 (42)

A(Nϵ ×Na + iϵ, (iϵ − 1)×Na + ia) = 1 for iϵ = 1, · · · , Nϵ (43)

A(Nϵ ×Na +Nϵ + 1, (iϵ − 1)×Na + ia)) = aia . (44)
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The coefficient for λi are entered in A, for iϵ = 1, · · ·Nϵ and ia = 1, · · · , Na, as

A((iϵ − 1)×Na + ia, Nϵ ×Na + iϵ) = −1 (45)

The coefficients for ω sets the following elements of A, for iϵ = 1, · · ·Nϵ and ia = 1, · · · , Na,

A((iϵ − 1)×Na + ia, Nϵ ×Na +Nϵ + 1) = −aia . (46)

The elements of b are, for iϵ = 1, · · ·Nϵ and ia = 1, · · · , Na,

b((iϵ − 1)×Na + ia) = 2µria,iϵ(im, iτ ) (47)

b(Nϵ ×Na + iϵ) =
Na
∑

ia=1

µria,iϵ(im, iτ ) (48)

b(Nϵ ×Na +Nϵ + 1) = mim . (49)

I solve x = A−1b iteratively using an active set method corresponding to probabilities that are not

set to 0.

Figure 4: A × x = b

To solve the linear system, I use the active set approach to non-negative constraints in Reiter

(2002, 2010). If any of the first Nϵ × Na elements of x are negative, the constraint µia,ıϵ ≥ 0 has

been violated for some (iϵ − 1)Na + ia = j ∈ J0 where

J0 = {j|1 ≤ j ≤ Na ×Nϵ and x(j) < 0}. (50)

For some O > 0, set the most negative O elements indexed in J0 to 0, µia,iϵ = 0. Remove the

j − th row and column of A along with the j − th element of b. Solve the reduced system with O
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less rows. If any of the Nϵ × (Na − O) elements are negative, again discard the most negative O.

I repeat this procedure until the most negative elements of x is larger than a precision level. This

iteratively implements the non-negativity of probabilities (50).

Table 5: Setting for Computation

num. of nodes Description

Na 400(400) asset (distribution)

Nϵ 10 persistence wage process

Nm 5 aggregate capital (aggregate)

Nτ 7 income tax (aggregate)

Table 5 shows the setting of the grids in this paper. With this setting, I continue to repeat the

whole steps above until no improvement in accuracy statistic proposed by Den Haan (2010). I find

that the mean errors on the equilibrium path are sufficiently small (considerably less than 0.6%

for all cases) and the mean errors over transitions from off the equilibrium to the equilibrium are

also reasonably small (not exceeding 0.6% for all cases). Furthermore, the method is substantially

efficient in a usual personal computer.

Table 6: Accuracy and Efficiency of the Solution Method

OPT w/o Commitment Voting

Run time 11.1 min 15.8 min

DH of m at EQ 0.394% 0.539%

DH of w at EQ 0.048% 0.046%

DH of τ at EQ 0.153% 0.263%

AVG(DH) of m 0.668% 0.577%

AVG(DH) of w 0.251% 0.202%

AVG(DH) of τ 0.129% 0.244%

MAX(DH) of m 2.133% 2.44%

MAX(DH) of w 0.949% 0.935%

MAX(DH) of τ 0.415% 1.4%

AV G(·) and MAX(·) are computed with all of the results both on and off the equilibrium paths.

Processor: i7-10770 @ 2.9GHz, RAM: 16GB
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