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Abstract

An expert communicates about scientific models with a decision maker through cheap-

talk. Models are probability distributions over states. The decision maker is ambiguity

sensitive. I show that all equilibria of the game are outcome equivalent to partitional

equilibria and that the most informative one is interim dominant for the expert. Unlike in

similar models of the literature, information transmission depends both on the strategic

misalignment of players and a form of consensus among scientific models. When science

is divided and the decision maker has maxmin expected utility preferences, whatever the

misalignment, no information can be conveyed above a certain threshold.
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1 Introduction

We are laymen about most of the knowledge we claim to possess. Today’s science is too vast and

complex for a single individual to master it by himself. We say we know about the mechanism

of climate change or the COVID-19 pandemic because of what we have heard from experts in

those fields. On such topics, our claimed knowledge relies much more on the confidence we have in

these experts than on the evidence we can directly access. The importance of our confidence in

experts is even higher if we consider the case of scientific models. Scientific models are descriptive

approximations of reality. They provide structure to our perception of the world by focusing on

a phenomenon’s main mechanism. By nature, scientific models are fallible. Counter-examples to

their predictions can be easy to find, especially in the face of complex and unexpected events such

as the COVID-19 pandemic. Therefore, it can be difficult for experts to convince the general public

that a given model is a phenomenon’s best available reading grid.

In this paper, I study our knowledge of scientific models when it is entirely expert-based. I try to

understand the foundations of the expert-layman bond of trust that will bring the latter to see

reality through the reading grid suggested by the former. In order to do so, I model expert-based

knowledge as a game of strategic information transmission. Information is about models, which I

represent as probability distributions over possible states.1 The transmission is strategic, as the

sender (the expert) does not necessarily have the same interests as the receiver (the decision maker).

For instance, the expert can be concerned with externalities resulting from the decision maker’s

behavior on issues such as the spread of a deadly virus or the limitation of greenhouse gas emissions.

The expert reviews a set of scientific models and decides which is the most accurate. This model is

the expert’s type. He then communicates its findings to the decision maker who acts upon them.

The game I study is in the tradition of Crawford and Sobel’s (1982) cheap talk game (hereafter

CS). The main difference lies in the fact that communication concerns models rather than states.

Given the strategic nature of the communication, the expert is typically not able to truthfully reveal

which model is the most accurate. At equilibrium, the sender designates an interval of models

which contains his type. As in CS, the size of such an interval will depend on the misalignment : the

difference of interest between parties. Yet, I also show that, whatever the misalignment, information

transmission can be impossible over an entire set of models. In the following, I will argue that

this situation is caused by a form of division among models. Because this can happen even for

1In doing so, I follow a tradition in statistics and decision theory dating back at least as far as Wald (1949) (see Marinacci (2015) for
a survey).
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arbitrarily small misalignments, this result offers an alternative explanation to mistrust in experts

and science. Consider the example of the COVID-19 pandemic, where the expert is concerned

about the externalities caused by the decision maker’s behaviour. If over- and under-restricting

social interactions are perceived as comparable threats by the decision maker, experts advising in

favour of the strongest limitations are inaudible at equilibrium.

Under model uncertainty, preferences generally fail to satisfy the expected-utility requirements,

as famously pointed out by Ellsberg (1961). This situation calls for the use of specific ambiguity-

sensitive preferences for the decision maker. An individual is exposed to ambiguity when the

expected payoff of his strategy varies with the probabilities over which he is uncertain. An

ambiguity-averse individual will tend to favour strategies that reduce that exposure. I mainly

focus on the cases where the receiver displays Gilboa and Schmeidler (1989)’s maxmin expected

utility preferences (MEU) or Savage (1972)’s subjective expected utility (SEU). In the SEU case,

the equilibria of the game are similar to CS. But in the MEU case, the change in the nature of

information has a major impact on the outcome of the game.

Because of ambiguity aversion, the most pessimistic model is a strong point of attraction for the

receiver. When the sender’s preferred action leans towards the recommended one in this model,

his influence is extremely high. When his interest is to induce an action in the opposite direction

though, his influence is nonexistent. Yet, if there is no univocally worst state in terms of utility for

the receiver, the worst possible combination of probabilities over states can be an interior element

of the set of types. In that case, there is a change in the monotonicity of the maximal expected

welfare of the receiver according to the model considered. I say that science is divided because, on

either side of the monotonicity change, putting a higher probability on one state has an opposite

effect on the receiver’s maximal expected welfare. Loosely speaking, if there are two states, the two

sides disagree on which state is the worse threat to the receiver.

The equilibrium analysis of this game shows that for all senders on one side of this division, it

is always better to be as informative as possible, even after they learn their type. For types on

the other side though, information transmission is impossible, whatever the misalignment. This

result strongly contrasts with the SEU case, where such asymmetry does not exist. Under SEU

preferences, the precision of information transmission depends only on the difference of interest

between the two parties. When the latter is small, information transmission can be almost perfect

over the entire set of types. But once the sender learns his type, he does not always have an interest

in being as informative as he could be.

2



Arguably, several of the mechanisms described in this paper were exemplified during the COVID-

19 crisis. During the early stages of the pandemic, information was too scarce to exclude the

possibility that, even under optimal restriction policies, the virus would be so deadly that the

outcome would be worse than in any other case. Clearly, for decision makers, there was a consensus

that the more likely that possibility, the worse. In line with the results of this paper, during that

first stage of the crisis, confidence in experts was high. Even models recommending drastic social

restriction measures were influential. Yet, later on in the pandemic, it appeared that for many

decision makers, excessive restrictions in the face of limited epidemic danger could be worse than

even the worst epidemic scenario under appropriate restriction levels. Finding the appropriate

balance between economic activity and social limitations had become the main challenge of the

crisis. This situation paved the way for a division in science: depending on the model considered,

one aspect would be prioritised over the other. The results I derive for this case offer an explanation

to why scepticism appeared at that time, and why models recommending the strongest levels of

social restriction lost influence among decision makers.

Scientific communication is the subject of growing attention in economic research. Recent work by

Spiess (2018), Banerjee et al. (2020), Andrews and Shapiro (2021) and Schwartzstein and Sunderam

(2021) focuses on optimal choice of scientific modelling, according to different objectives or audiences

for the scientist. Unlike these papers, I do not assume that the expert’s audience observes some

data and uses it to assess the statistical properties of the models provided by the expert. This is

because I focus on complex topics where discriminating among different modelling approaches is a

pure act of expert-judgement. For example, take the epidemiological models used to evaluate the

impact of health measures on the COVID-19 pandemic. Two main approaches exist: process-based

models, that try to capture the mechanisms by which diseases spread, and curve-fitting approaches

that aim to mathematically approximate the growth of the epidemic (Ferguson et al., 2003). As

argued by Berger et al. (2020), even with sufficient data to evaluate these models, choosing among

them is a fine art. But deciding which modelling approach is the most promising to describe an

ongoing pandemic is an even harder task. It requires experience of both epidemics and formal

representations which, by definition, only experts possess. During the pandemic, both of these

uncertainties across models and about models were present. For a decision maker, resolving them

requires more than epidemic data. What matters is information about the models themselves.

This study also relates to the literature on cheap talk communication with ambiguity-sensitive

preferences. Kellner and Le Quement (2017) were the first to study this question. In their model,

communication is on states of the world, allowing for Ellsbergian communication strategies. They
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show that the use of these strategies reduces misalignment between players, creating equilibria

which ex-ante Pareto-dominate the corresponding ones in CS. Kellner and Le Quement (2018)

explore a simple two-action two-state setting, with only standard mixed strategies allowed, but

an ambiguous prior over the states. These approaches differ from mine because in the present

paper, communication is over probability distributions. In addition, as pointed out by Hanany et al.

(2020), the updating assumed in these papers violates sequential optimality. This is an issue I do

not face when studying communication about models. To the best of my knowledge, this paper is

the first to study strategic communication directly about the models that form the set of priors of

an ambiguity-sensitive decision maker.

Finally, this study also contributes to the literature on model uncertainty by providing a game-

theoretical foundation to multiple prior beliefs. Because knowledge about models is expert-based,

information transmission is always imprecise. It is therefore justified to assume that decision makers

use multiple models to analyse the world. This generally translates into multiple prior beliefs, as

often assumed under model uncertainty2 and experimentally measured by Abdellaoui et al. (2021).

Section 2 introduces the framework and a simple example. Section 3 establishes general results

regarding the structure of equilibria and proves the main results. Section 4 provides supplementary

characterisations using the example introduced above and section 5 discusses the results. Appendix

A generalises by relaxing some assumptions made in the main text. Appendix B extends to α-MEU

preferences (Ghirardato et al., 2004) and shows that results are, in a certain sense, robust to varying

degrees of ambiguity aversion. Appendix C contains all the proofs.

2 Setup

2.1 Primitives

I consider a game of communication between an expert acting as a sender S (he), and a decision

maker acting as a receiver R (she). Let A = R be the set of actions of R and let Ω = {0, 1} be the

set of possible states of nature. For i = S,R, let ui : A×Ω → R be the von Neumann-Morgenstern

utility function of player i, that maps her actions and states to a utility value. I start by making

the following assumptions:

2See for instance Hansen and Sargent (2001) and Hansen et al. (2006) in the context of dynamic decision making or Millner et al.
(2013) and Berger et al. (2016) in the case of climate change management.
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Assumption 1 (Utilities - Crawford and Sobel (1982)). ui is assumed twice continuously differ-

entiable and strictly concave in a. For every ω ∈ Ω, there is a ∈ R such that
∂ui(a,ω)

∂a
= 0. For all

a ∈ R,
∂ui(a,ω)

∂a
is strictly increasing in ω.

This assumption implies that ui admits a unique maximum for each state. Define ai(ω) =

argmaxa∈A ui(a, ω) as this maximum. It is the optimal action of player i under perfect information

that the state is ω. Assumption 1 ensures that ai(ω) is strictly increasing in ω. In the example of

the COVID-19 pandemic, one can think of the receiver as a political decision maker and of the

sender as an epidemiologist. The virus is either extremely contagious (ω = 1) or of limited spread

(ω = 0). A may then represent the level of social restriction the decision maker has to impose. I

call ω = 1 (ω = 0) the high (low) state as it is the one where the optimal action is the highest

(lowest). The choice of a social restriction level is the result of a trade-off between economic activity

and casualties due to the pandemic. Assumption 1 states that for any epidemic scenario, there is

a single optimal restriction level. A lower restriction level a < ai(ω) is not optimal for i because

it might cause too much loss of life in the population. Nor is a higher restriction level a > ai(ω)

optimal for i, as it entails an over-reduction in economic activity. In addition, assumption 1 states

that the optimal level of social restriction is strictly higher in the case where the virus is the most

contagious. Assumption 1 is a single crossing assumption: it implies that ui(, 0) and ui(, 1) can

cross only once over A.

There is model uncertainty in the sense that, ex-ante, it is not known which distribution the

state is drawn from. Instead, there is a family of Bernoulli distributions D = {pθ|θ ∈ [θ, θ]}, where

θ, θ ∈ [0, 1], that potentially generates the true state, where pθ is the probability mass function of a

Bernoulli distribution of parameter θ:

pθ(ω) =




θ if ω = 1

1− θ if ω = 0

There is a bijection between the sets D and C = [θ, θ]. In the rest of the paper, for simplicity, I

will specify all the communication strategies on the set C which will be referred to as the set of

models. Let Ai(θ) = argmaxa∈AEθ(ui(a, ω)) be the optimal action in the eyes of player i under

model θ, where Eθ(ui(a, ω)) = (1− θ)ui(a, 0) + θui(a, 1) .
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Assumption 2 (Model misalignment). For any model, the optimal actions of S and R are

always misaligned:

AS(θ) > AR(θ) for all θ ∈ C

Assumption 2 states that regardless of the model, there is always a difference of interest between

S and R such that optimal actions are ordered in the same way.3 Note that excluding the case

where AS(θ) < AR(θ)for allθ ∈ C is without loss of generality, as all results are symmetrical.

Finally, note that the sorting condition over states of Assumption 1 implies a sorting condition

over models.

Lemma 1. Assumption 1 implies that:

∂2
Eθ(ui(a, ω))

∂a∂θ
> 0

Lemma 1 states that the marginal utility of actions is increasing with θ. As, for a given model,

the expect utility of actions is single-peaked, it implies that the optimal action of players, Ai(θ), is

a strictly increasing function of θ.

2.2 Equilibrium concept

Ex-ante, both players are in a situation of model uncertainty. In order to model the way R acts

under model uncertainty, I will consider two separate cases. First, I will consider the case where

they evaluate actions under uncertainty through the maxmin decision criteria (MEU) proposed by

Gilboa and Schmeidler (1989). According to Gilboa and Schmeidler (1989), in addition to their

utility function, players are characterised by a set of priors over Ω, which I will assume to be C. R

evaluates action a ∈ A by:

V MEU
R (a) = min

θ∈C
Eθ(uR(a, ω))

3In appendix A, I show that Assumption 2 is implied by the equivalent assumption made on optimal actions as a function of the state
(as in CS) plus an assumption on the ordering of the marginal utility of actions of both players.
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Second, I will also consider the case where the receiver’s decision making coincides with Savage

(1972)’s subjective expected utility (SEU), often identified as a case of ambiguity neutrality. In that

case, R’s preferences are represented by a utility function and a subjective prior over models µ ∈ ∆(C)

admitting a probability distribution function g. In order to study a case of communication about

models which is similar to CS, I will assume that in this case, R knows the objective distribution

from which the model is drawn. Thus, µ is an objective distribution and I also assume that

supp(µ) = C. R then evaluates action a under uncertainty through:

V SEU
R (a) =

∫

θ∈C

g(θ)Eθ(uR(a, ω)))dθ

In the following, the MEU case (respectively SEU case) is the one where R’s evaluation of action

coincides with the MEU (respectively SEU) decision criteria.

The timing of the game is as follows:

1. Nature draws the state-generating distribution θ0, according to µ. S is privately informed.

2. S sends a message regarding his type.

3. R updates her beliefs and chooses an action.

Having learned the state-generating distribution4 θ0 ∈ C from nature, S sends a message m ∈ M,

where M = [0, 1] to R. A signalling strategy for S is the strategy σ : C → M. An action rule for R

is a strategy y : M → A. Note that I will focus only on pure strategies. Let σ−1(m) ⊆ C, be the

set of potential types of S, having received message m, when S follows strategy σ. An equilibrium

(σ∗, y∗) is defined such that:

1. A sender of type θ evaluates message m by:

V θ
S (m) = Eθ(uS(y

∗(m), ω))

∀θ ∈ C, any σ∗(θ) ∈ M solves maxm∈M V θ
S (m).

4In appendix A I show that this assumption can be replaced by the assumption that the sender receives a noisy signal regarding
models’ likelihood
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2. Having received an equilibrium message m ∈ supp(σ∗), an MEU receiver updates her belief

such that she evaluates action a by:

V MEU
R (a, σ−1(m)) = min

θ∈σ−1(m)
Eθ(uR(a, ω)))

An SEU receiver is able to update her prior using Bayes’ rule such that:

g(θ|m) =





g(θ)
g(σ∗−1(m))

if θ ∈ σ∗−1(m)

0 if not

R then evaluates action a by:

V SEU
R (a, σ−1(m)) =

∫

θ∈C

g(θ|m)Eθ(uR(a, ω))dθ

In both cases, R chooses action y∗(m) which solves maxa∈A V SEU
R (a, σ(m)) (respectively

maxa∈A V MEU
R (a, σ(m)))

Any message m such that m /∈ supp(σ∗) is interpreted as some equilibrium message m∗ ∈

supp(σ∗).5

2.3 An example

Before directing our attention to the equilibria of this game, it is useful to take a moment to study

a specificity of the receiver’s pay-off structure. Consider the following parametric example:

5Note that this equilibrium concept corresponds to a perfect Bayesian equilibrium, where the receiver has smooth preferences
(Klibanoff et al., 2005) and evaluates actions through V KMM

R (a, σ−1(m)) =
∫
θ∈C

g(θ|m)φ(Eθ(uR(a, ω)))dθ and φ is linear (in the SEU

case) or that −φ
′′

φ
′ → +∞ (in the MEU case).
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Linear-quadratic example:

• uS(a, ω) = −(a− ω − b)2 − cω where b > 0 and c ∈ R

• uR(a, ω) = −(a− ω)2 − cω

• C = [0, 1] and µ ∼ U(C)

Then:




AS(θ) = θ + b

AR(θ) = θ

The example above is similar to CS’s linear-quadratic one, with the difference of the −cω term.

Depending on the value c, the maximal utility in a given state is either higher or lower than in the

other state. When c = 0, both states are comparable, in the sense that under perfect information,

the receiver could achieve exactly the same pay-off in both of them. On the contrary, if for instance

c > 0, state 0 gives a higher maximum pay-off to the receiver than state 1.

As figure 1 shows, when c ∈ (−1, 1), R has the same utility in both states for a = 1+c
2

∈ (0, 1).

Consider the special case where c = 0. As illustrated by figure 1, models on both sides of θ = 0.5

increase the maximal expected utility of the receiver. For instance, θ = 0.2 and θ = 0.8 both

improve the receiver’s maximal expected utility compared with θ = 0.5. There is no strict ordering

over models with respect to R’s expected utility but a division of C into two intervals over which

R’s maximal expected utility goes in opposite directions. For models below θ = 0.5, the higher the

probability of the high state, the lower R’s utility. But for models above θ = 0.5, the higher the

probability of that same state, the higher R’s utility. In a certain sense, on both sides of θ = 0.5,

there is no consensus about which state is the worse threat.

Now consider the case where c ≥ 1. As illustrated by figure 2, the maximal expected utility of

the receiver is strictly decreasing in θ, the probability of the high state. In other words, for any

model of C, the higher the probability of the high state, the lower R’s welfare. Now, there is a

consensus over the fact that the more likely the high state, the worse-off the receiver.
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aR(1)

uR(a, 1)uR(a, 0)

a

uR

E0.5(uR(a, ω))

E0.8(uR(a, ω))

E0.2(uR(a, ω))

Figure 1: c = 0 a case of divided science: for models above 0.5,
the receiver’s maximal welfare is increasing with the probability

of the high state. For models below 0.5, the opposite

happens.

aR(1)

uR(a, 0)

uR(a, 1)

a

uR

E0.7(uR(a, ω))

E0.5(uR(a, ω))

E0.3(uR(a, ω))

Figure 2: c = 1, a case of consensual science: for all models,

the receiver’s maximal welfare is decreasing with the probability

of the high state.

2.4 Consensus and division in science

As the above example illustrates, the pay-off structure of the receiver can be of two kinds. Either

the maximal expected welfare of the receiver is always increasing (or decreasing) with the model

θ ∈ C considered, or this is not the case. I say that in the former case science is consensual for the

receiver and that in the latter case, it is divided.
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Definition 1. Science is consensual for the receiver if any model that puts a higher probability on

the state giving the lowest maximal utility to the receiver decreases her maximal expected welfare.

∀θ, θ
′

∈ C, θ < θ
′

,




uR(aR(0), 0) ≥ uR(aR(1), 1) ⇒ Eθ(uR(AR(θ), ω)) > Eθ

′ (uR(AR(θ
′

), ω))

uR(aR(0), 0) < uR(aR(1), 1) ⇒ Eθ(uR(AR(θ), ω)) < Eθ
′ (uR(AR(θ

′

), ω))

Science is divided for the receiver if it is not consensual.

Consensus in science is a monotonicity condition on the maximal expected welfare of the receiver

Eθ(uR(AR(θ), ω)). It thus depends on both the receiver’s ex-post preferences uR and the set of

models C. There is consensus when, the more models in C put weight on a given state, the more

they reduce the maximal expected welfare of the receiver. When this is not the case, science is

divided.

For science to be divided, two things must happen. First, it must be that no state fully dominates

the other in terms of utility for the receiver. Because of the single crossing assumption I made

on utilities, both states can give the same utility for a single given action in (aR(0), aR(1)). This

action, ã, which I define below, maximises the function that gives the worst possible utility to the

receiver.

Definition 2. Define ã = argmaxa∈A minω∈Ω uR(a, ω) as the precautionary action and θ̃ ∈ [0, 1]

such that AR(θ̃) = ã as the cautious model.

I call ã the precautionary action because it is the optimal action anticipating that the worst state

will always occur. θ̃ is the model for which the precautionary action is the optimal action.6 For

science to be divided, the second condition is that θ̃ is an interior element of C. The maximal

expected utility of the receiver will be decreasing for models putting lower weight on the high state

than on the cautious one (θ < θ̃), and increasing for the others (θ > θ̃). Thus, when θ̃ ∈ (θ, θ),

there is a change in the monotonicity of the maximal expected welfare of the receiver over C.

It is clear that the behavioural response of an MEU decision maker will be of a different

nature, whether science is divided or consensual. In the latter case, the precautionary action

6The fact that θ̃ exists and is unique is proven in Lemma 4.
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consists in anticipating the fully dominated state, thus acting as if the cautious model was the

one putting the highest probability on that state. In the former case, the precautionary action

consists in hedging against uncertainty, thus acting as if the cautious model was balancing odds

between both states in the exact manner that leads to ã as an optimal action. For B ⊂ C, let

AR(B) ⊂ argmaxa∈A minθ∈B Eθ(uR(a, ω)) be the set of optimal actions of a MEU receiver given

the set of priors B.

Proposition 1. Define B = [θ1, θ2] ⊂ C the set of priors of the receiver. Given that θ0 ∈ B, an

MEU receiver has a unique optimal action which is given by:

AR(B) =





AR(θ2) if θ2 < θ̃

AR(θ̃) if θ̃ ∈ B

AR(θ1) if θ1 > θ̃

Proposition 1 states that an MEU receiver has a unique optimal action for any belief θ0 ∈ B

where B is an interval of C. When she further believes that all models are below θ̃ (θ0 ∈ [θ1, θ2]

and θ2 < θ̃), she optimally acts as if the probability of the high state were maximal. When she

believes that all models are above θ̃ (θ1 > θ̃), she optimally acts as if the probability of the high

state were minimal. But when science is divided, θ̃ is in the interior of B. R will always act as if

the probability of the high state were maximal for beliefs below θ̃ (θ2 < θ̃) and minimal for beliefs

above θ̃ (θ1 > θ̃). When R believes that the cautious model could be the state-generating model

(θ̃ ∈ [θ1, θ2]), she optimally acts as if it were the case.

Note that in the SEU case, R’s actions are not sensitive to the change in monotonicity of her

maximal expected welfare. Consensus and division in science play no particular role. In that case,

the game is in fact very similar to CS. One can indeed equate each model with a state in CS’s

setting, where the corresponding payoff is the expected utility under that model and µ is the prior

over states. This case can thus be used as a benchmark.

12



3 Equilibrium analysis

Let us now turn to the study of the game’s equilibria. First, I introduce the following definition:

Definition 3. Set {θ0, ..., θq} ⊆ C such that:

• θ = θ0 < ... < θq = θ where θk, for 0 ≤ k ≤ q, is called the k-th cut-off.

• ∪q
k=1[θk−1, θk] = [θ, θ], where [θk−1, θk), for 1 ≤ k < q − 1, is called the k-th cell and [θq−1, θ]

the q-th cell.

A q-cut-off partition equilibrium is an equilibrium of the game where the signalling strategy of

S is uniform on every cell. That is, for θ ∈ [θk−1, θk), σ∗(θ) = mk, for 1 ≤ k ≤ q − 1 and for

θ ∈ [θq−1, θ], σ
∗(θ) = mq−1.

A q-cut-off partition equilibrium is an equilibrium where there is a partition of the set of types in

q cells. For any cell of this partition, any sender who is in that cell credibly sends the same message

to the receiver. Having received that message, the receiver learns which cell the sender is in, and

acts optimally.

Proposition 2. In every equilibrium of the game, there is a partitioning of C in a finite number of

cells where every cell induces a distinct action. Thus, any equilibrium is outcome-equivalent to a

partition equilibrium.

The proof of Proposition 2 starts by showing that the number of actions induced at equilibrium

is finite. The argument is similar to the one given in CS’s Lemma 1 and follows from both the

concavity of S’s evaluation of actions and the fact that the optimal actions of R for a given belief

B ⊂ C is in the convex hull of the optimal actions for every element of B. Then I show that types

that induce a given action must form an interval. This is a consequence of the concavity of S’s

evaluation of actions.

Proposition 2 shows that there is a finite partition of C where types in every cell induce a

given action from the receiver. Note that this does not imply that types in every cell send the

same message, as it is possible that different messages induce the same action. As a result, every

equilibrium is not necessarily a partition equilibrium, but must be outcome-equivalent to one. In

13



the following, we focus only on partition equilibria. Note that there is always at least one partition

equilibrium: the 2 cut-off equilibrium, often called the babbling equilibrium, where all types send

the same message.

In the following, I give a characterisation of all partition equilibria of the game.

Proposition 3. In any partition equilibrium of the game (σ∗
q , y

∗), the cut-off types θq0, ..., θ
q
q are

defined such that for k ∈ 1, ..., q:

V
θ
q
k

S (y∗(mq
k−1)) = V

θ
q
k

S (y∗(mq
k)) (1)

where mq
k is the equilibrium message of types θ ∈ [θqk, θ

q
k+1].

Figure 3 represents the interim utility of S when his type is θk. As a convex combination of

concave and single-peaked functions, it is concave and maximal at AS(θk). Figure 3 illustrates that

mk−1 and mk are equilibrium messages because they induce actions that give the same level of

welfare to S. As a result, θk is a cut-off type.

y∗(mk−1) AS(θk) y∗(mk)

V θk
S

a

Figure 3: Identifying cut-offs

I now state the first main result of the paper: no information transmission is possible for types

above the cautious model.

Theorem 1. When the receiver has MEU preferences, all cut-offs in (θ, θ) are below θ̃.
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When the receiver has MEU preferences, there is no cut-off type in [θ̃, θ]. To see why, assume

that there is a q + 1 cut-off equilibrium. Recall the characterisation result of partition equilibria

given by Proposition 3. For θq to be a cut-off type, the message sent by types in the cell below and

above θq must induce actions that give the same utility to a sender of type θq. If θq was a cut-off

type, it would follow from proposition 1 that:




y∗(mq−1) = AR(σ

∗−1(mq−1)) = AR([θq−1, θq)) = AR(θ̃) = ã

y∗(mq) = AR(σ
∗−1(mq)) = AR([θq, θq+1]) = AR(θq)

Yet, as illustrated by Figure 4, the utility of the sender induced by mq−1 is always lower than

that induced by mq. This is a direct consequence of the change in the monotonicity of R’s maximal

expected welfare at θ̃. When R believes that the cautious model could be the state-generating

model, she optimally acts as if it were the case. When she believes that θ0 ∈ [θq, θq+1) and θq > θ̃

she will act as if the model was θq. As a result, because S is misaligned upwards, we have that:

ã < AR(θq) < AS(θq)

and as V
θq
S is strictly increasing for a ≤ AS(θq), it is impossible for types in the cell below and

above θq to induce actions that give the same utility to a sender of type θq. As a result, the

indifference between actions induced by messages mq−1 and mq needed for θq to be a cut-off type

(as displayed in figure 3) is impossible.

A consequence of Theorem 1 is that when science is consensual such that θ̃ ≤ θ, the only

equilibrium is the babbling equilibrium. That is, whatever the sender’s type, whatever the message

he sends, the induced action is always the same.

Before moving to my second main result, I first need to state an important intermediate result.

Lemma 2. When the receiver evaluates actions following the MEU criteria there are M > 0

partition equilibria. Call θ0 < ... < θM the cut-offs of the equilibrium with most cut-offs. Then the

q cut-off partition equilibrium is defined by cut-offs θ0 < θM−q < ... < θM , for 0 ≤ q ≤ M .
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AR([θq−1, θq)) AR([θq, θq+1]) AS(θq)

V
θq
S

a

Figure 4: MEU best responses for θq−1 < θ̃ < θq

As illustrated by Figure 5, lemma 2 states that all equilibria of our game can be built from the

same set of cut-off types. More specifically, it states that if one considers the equilibrium with most

cut-offs, one can describe all other equilibria by successively removing cut-offs starting from the

left.

0 θ θ1 θ2 θ̃ θ 1

m0 m1 m2

0 θ θ2 θ̃ θ 1

m1m0

0 θ θ̃ θ 1

m0

Figure 5: MEU equilibria for θ < θ̃ < θ

To see why lemma 2 is true, first note that, given Theorem 1, all interior cut-offs are in [θ, θ̃].

As a result, when S points out an interval of models, R only cares about its upper bound. Thus,

cut-offs types will not be determined by an indifference between two adjacent cells of models as in

the SEU case, but by an indifference between the models at the upper bound of these cells. In the

former case, each indifference condition depends on three distinct types and the prior. Thus, in

order to determine the cut-off types, the entire sequence of indifference conditions is needed. In the

latter case, each indifference condition depends on two distinct types only. Given that [θ, θ̃] is a

closed interval, it is then possible to find the first cut-off starting from θ and then to iterate the

process to find the following ones. In doing so, I derive the cut-off types of the equilibrium that has

the most cut-offs. Call the corresponding number of cut-offs M . Any signalling strategy of the
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sender characterised by the q first terms (1 ≤ q ≤ M) of that sequence induces exactly the same

incentive constraints for the receiver, which implies that they form part of an equilibrium.

A direct consequence of Proposition 2 is that all equilibria of the game can be ranked by

informativeness, something which is never possible in the SEU case.7 The following result can thus

be established regarding interim Pareto dominance among equilibria.

Theorem 2. When the receiver has MEU preferences, the sender is always interim weakly better-off

by playing the most informative equilibrium strategy

The intuition of the proof is the following. Consider for instance the equilibria described in figure

5. Whatever the equilibrium considered, types in [θ1, θ̃] will induce the same action θ̃. But types in

[θ, θ1] will induce action θ̃ in the babbling equilibrium, and θ1 in the 3 cut-off equilibrium. Yet,

by construction of the latter equilibrium, all types in [θ, θ1] prefer to induce action θ1 than θ̃. It

follows that the 3 cut-off equilibrium interim Pareto-dominates the babbling equilibrium. The

same reasoning can be applied regarding types in [θ, θ2] to show that the 4 cut-off equilibrium

Pareto-dominates the 3 cut-off one.

4 Characterisations on the linear-quadratic example

In order to give a further insight into the results in the MEU case, I characterise all partitional

equilibria in the context of the parametric example introduced above. I also provide the same

characterisation for the SEU case.

Proposition 4. In the context of our linear-quadratic example for any c ∈ R:

• When R has SEU preferences, a n-cut-off equilibrium exists if and only if:

0 < b <
1

2n(n+ 1)
(2)

and, for k ∈ 1, ..., n, cut-offs are:

7The informativeness ranking comes from the fact that when receiving m ∈ M from a type in [θ1, θ2] with θ2 < θ, an MEU receiver

acts exactly the same as when receiving m
′

∈ M from a type in [θ
′

1
, θ2], for any θ

′

1
< θ1. For an SEU receiver, this behavioural pattern

is impossible, the optimal action would necessarily shift to the left.
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θk =
k

n+ 1
− 2kb(n− k + 1)

• When R has MEU preferences, a n-cut-off equilibrium exists if and only if c > −1 and

0 < b <
1

2n
(3)

and, for k ∈ 1, ..., n, cut-offs are:

θk = 1− 2b(n− k)

Proposition 4 shows that the value of c has no influence on communication in the SEU case. Yet,

in the MEU one, when c ≤ −1, the maximal pay-off in state 0 is always lower than in state 1. As

a result, the attraction exerted by ambiguity aversion plays against the sender’s communication

possibilities and no non-babbling equilibrium is possible. Conversely, when c ≥ 1, the attraction

exerted by ambiguity aversion plays in favour of the sender’s communication possibilities and

cut-offs can be on the entire set C.

A corollary of Proposition 4 is that it is possible to characterise each equilibrium’s cell sizes.

Corollary 1. Consider a q-cut-off partition equilibrium. When R is SEU, for any c ∈ R, cells are

increasing in size. For all k ∈ 1, ..., q − 1:

θk+1 − θk = θk − θk−1 + 4b

When R has MEU preferences and c > −1, non-terminal cells are of constant size. For all

k ∈ 1, ..., q − 2:

θk+1 − θk = 2b

where the cell containing θ is called the terminal cell.
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In the MEU case, non-terminal cells always have the same size (2b), whatever the equilibrium

considered. In the SEU case, it depends on the equilibrium considered. This illustrates why the

general result proved in Proposition 2 holds. If all non-terminal cells have the same size in any

given equilibrium, and if in addition the first cut-off is always the same (as proven in Proposition

4), it is straightforward that those equilibria can be ranked by informativeness in the Blackwell

sense. Corollary 1 also states that in the SEU case, cells are at least of size 4b and are thus always

strictly larger.

The sender is able to induce a finer partition of types when the receiver is MEU. Consider a given

positive bias such that it is possible to get an n cut-off equilibrium with an MEU receiver; then it

is not always possible to sustain an n cut-off equilibrium with an SEU receiver. More precisely: let

us call the supremum of the bias for which an n-cut-off equilibrium is possible in the MEU case

bM(n) = 1
2n

. Call the equivalent value of the bias in the SEU case bS(n) =
1

2n(n+1)
. Both functions

are increasing in n. In addition, for n ≥ 2, bS(n) = bM(n(n + 1)). Thus, there is an n cut-off

equilibrium between an SEU receiver of bias b and the sender if and only if there is an n(n+ 1)

cut-off equilibrium between an MEU receiver of bias b.

5 Discussion

This paper models the transmission of expert-based scientific knowledge as cheap talk communication

about models, in a framework similar to Crawford and Sobel (1982). Because models can be

represented as probability distributions, a receiver of this game can naturally be assumed to be

ambiguity-sensitive. For every preference I considered, I showed that all equilibria are outcome

equivalent to a partition equilibrium. When the receiver is MEU, information transmission can only

happen for models below a given threshold, even if misalignment is arbitrarily small. In addition,

the sender always prefers to convey as much information as possible, since the most informative

equilibrium is interim Pareto-dominant. This is not true when the receiver has SEU preferences, a

case which is equivalent to the model of communication about states proposed in Crawford and

Sobel (1982). In the linear-quadratic example I introduced, more cut-offs can exist in the MEU

case than in the SEU one, for a given bias. This shows that when the expert’s preferred action is

aligned with the effect of ambiguity aversion, his influence is extremely high; but in the opposite

case, it is nonexistent.
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In this final section, I discuss further implications of my framework and other possible applications.

Equilibrium selection. Theorem 2 gives that S is always interim better-off by adopting the

most informative equilibrium strategy in his communication. This result differs significantly from

those obtained in CS’s framework. Under their monotonicity condition (M), CS show that the

ex-ante expected payoffs for both Sender and Receiver are maximal for the equilibrium with the

most cut-offs. Condition (M) is satisfied if for any two sequences of cut-off types, the k-th cut-off of

each sequence can be ordered in the same direction, for any k ≥ 1. This assumption is in particular

verified by the linear-quadratic example. The resulting selected equilibrium is often the one studied

in applications. Yet, as already pointed out in CS, ex-ante Pareto dominance is a questionable

equilibrium-selection criterion, since once having learned their type, different sender types will

necessarily have opposed preferences. CS suggests that ex-ante Pareto dominance could be retained

only if there is an equilibrium selection agreement made ex-ante between players or if it can be seen

as a convention maintained over repeated plays with several opponents. An alternative approach

regarding equilibrium selection has been presented by Chen et al. (2008), who propose a condition

on utility functions called NITS. Under this condition, combined with Assumption (M), only the

equilibrium with the most cut-offs survives in CS’s framework. An equilibrium satisfies NITS if

the Sender of the lowest type weakly prefers the equilibrium outcome to the outcome induced by

credibly revealing his type (if he could). In my case, one could adopt interim Pareto dominance as

a selection criterion, which is immune to the limitations of ex-ante Pareto dominance and does

not require supplementary assumptions as NITS does. Nevertheless, it brings out the same (most

informative) equilibrium and provides a foundation for the attention it receives in applications.

Objective imprecision. Let us assume we stick to the interpretation of C as the set of objective

possible models. The size of C captures the degree of objective imprecision in scientific knowledge.

For instance, if C = [0, 1], the objective probability of the high state is between 0 and 1. It is then

possible to analyse the effects of a change in this objective imprecision. In particular, an increase

in precision can move science from a state of division (where θ̃ is an interior point of C) to one of

consensus (where θ̃ is at the boundary of C). As exposed until now, such an increase in precision

could result in a major change in communication possibilities, making R fully influential over C

or, on the contrary, completely inaudible. Take our linear-quadratic example in the case when

c = 0. Then science is divided because θ̃ = 0.5 and all interior cut-offs are in [0, 0.5], whatever

the misalignment b > 0 of the sender. Assume the objective imprecision C shifts from [0, 1] to

C
′

= [0, 0.5]. Then science becomes consensual and the partitioning of the set of types is possible
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over the entire C
′

. Conversely, objective imprecision could shift to C
′′

= [0.5, 1]. Science would then

be consensual as well, but partitioning impossible.

Other applications While communication around the COVID-19 pandemic is a good example

of the phenomena described in this paper, there are other interesting examples of communication

about scientific models. The estimation of the effects of greenhouse gas (GHG) emissions on global

temperature is one. It relies heavily on black box prospective computer simulations. The process

through which these simulations provide predictions is obscure; as pointed out by Pidgeon and

Fischhoff (2011), black box simulations are hardly considered as convincing supporting evidence,

even for scientists whose disciplines use observational methods. It is extremely difficult for an

expert in this field to justify why a given prospective simulation was chosen, a given methodology

implemented or given assumptions made. Predicting the impact of the rise of global temperatures

also involves modelling the socioeconomic response of our societies. As argued by Heal and Millner

(2014), this can be done in a great variety of ways, leading to model uncertainty. Millner et al. (2013)

and Berger et al. (2016) have argued for the relevance of model uncertainty and ambiguity aversion

in the context of climate change management, where knowledge is scarce. They show that under

ambiguity-averse preferences, model disagreement is the main driver of GHG abatements. This

paper belongs to that line of thought, highlighting the informational and decisional consequences of

this type of uncertainty when the source of information is explicitly modelled.

Another interesting application of this study is the modelling of the social world by economists.

Constantly, economists have to navigate among modelling choices for the sake of tractability,

compatibility with the rest of the literature or empirical testability. Economic modelling is complex

because it requires this expertise. The resulting choices can be extremely hard to justify outside of

the profession, a difficulty that has and still does attract a great deal of criticism.

The epistemological status of expert assessments This paper also relates to a continuing

debate in epistemology regarding the role of testimony in the foundation of knowledge. In classical

epistemology, beliefs qualify as knowledge only if one can verify their truth by perception or

inference. This position has been called reductionist and has notably been defended by Hume

(1740) and Chisholm et al. (1989). But in that case, how can we say, for instance, that we know

that GHG emissions are responsible for global warming? For most of us, this comes neither from

perception nor from logical inference. As argued by Burge (1993), perception and inference cannot

be seen as warrants for most of what we collectively designate as knowledge. An alternative

anti-reductionist approach argues in favour of adding testimony to the list of primary warrants
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of knowledge (Hardwig, 1985). For supporters of this view, it is the confidence in an expert’s

testimony which rationally entitles the layman to consider the expert’s judgement as knowledge

(Goldman, 2001). It is the strength of this bond of trust that epistemologically entitles the layman

to knowledge. This paper’s contribution is to formally model the relationship of trust between

expert and layman as a strategic interaction. How much expert-based knowledge the layman is

entitled to possess is the information he holds at equilibrium. Because this approach is formal, it is

possible to finely describe the knowledge of scientific models a layman is, solely through experts,

entitled to. In addition, it emerged from the present analysis that the degree of consensus among

models also plays a major part in the foundation of expert-based knowledge.
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Appendix

A Supplementary Assumptions

A.1 Assumptions on states

In the following I show that Assumption 2 is implied by the two following assumptions.

Assumption 3 (Misalignment - Crawford and Sobel (1982)). The optimal actions of S and R

are always misaligned:

aS(ω) > aR(ω) for all ω ∈ Ω

Assumption 3 states that whatever the state, there is always a difference of interest between S

and R such that optimal actions are ordered the same way.

Assumption 4 (Sharpness). Whatever the state, the sender has sharper preferences than the

receiver, for every action a ∈ A

∀a ∈ A,
∂uR(a,ω)

∂a
< ∂uS(a,ω)

∂a

Assumption 4 is a more technical assumption about the players’ utility function. I assume that

the player with highest optimal action in a given state has a more concave utility function in that

state, as illustrated by Figure 6. I call that property sharpness, in the sense that it translates a

sharper preference for the optimal action.

Given Assumptions 3 and 4, I now show that the two players’ optimal actions are never aligned,

whatever the model.

Lemma 3. Assumptions 3 and 4 imply that:

AS(θ) < AR(θ) for all θ ∈ C or AS(θ) > AR(θ) for all θ ∈ C
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1 2

uR(a, ω) uS(a, ω)

a

Figure 6: Sharpness Assumption

Proof of lemma 3:

For player i and any θ ∈ C, define f θ
i : a → (1 − θ)∂ui(a,0)

∂a
+ θ ∂ui(a,1)

∂a
. f θ

i is a continuous and

decreasing function crossing the x-axis only once, at Ai(θ). We want to prove that for all θ ∈ C,

AR(θ) < AS(θ). In order to do so, it is enough to prove that for any θ ∈ C, f θ
R(a) < f θ

S(a). Set

hθ : a → f θ
R(a)− f θ

S(a).

hθ(a) = (1− θ)(
∂uR(a, 0)

∂a
−

∂uS(a, 0)

∂a
) + θ(

∂uR(a, 1)

∂a
−

∂uS(a, 1)

∂a
)

Thus, by Assumption 4, for all a ∈ A, hθ(a) < 0.

Lemma 3 states that whatever the model realised, R’s and S’s optimal actions are always ordered

in the same direction. Note that Assumption 3 isn’t enough for this result. When Assumption 4 is

violated, there can be θ ∈ C such that AS(θ) = AR(θ).
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A.2 Imperfect knowledge of the model

In the following I show that the assumption that the sender observes the state generating distribution

- the true model - can be replaced without significant change in the result. Instead, I will assume

that S observes a noisy signal regarding the state generating distribution. I focus on the case where

both players have MEU preferences. However, results regarding the linear-quadratic example differ.

The noise decreases the precision of information transmission (cell sizes), acting as an additional

bias.

Following Gajdos et al. (2008), I assume that S does not know the true model θ0 but only observes

an interval of models [θ0 − ǫ, θ0 + ǫ] of size 2ǫ > 0.

Assume that S’s preferences under uncertainty are MEU. Then, having observed [θ0 − ǫ, θ0 + ǫ], S

evaluates action a through:

V MEU
S (a) = min

θ∈[θ0−ǫ,θ0+ǫ]
Eθ(uS(a, ω)))

Then, note that the structure of equilibria is unaffected by those changes. Proposition 2, which

guarantees that all equilibria are outcome-equivalent to a partition equilibrium, only depends on

the sender’s type, and not the state generating distribution.

The fact that information transmission can only take place below θ̃ (Theorem 1) is also unaffected

under my assumptions. Recall that there cannot be a cut-off θk above θ̃ because AS(θk) > AR(s ∈

[θk, θk+1]). Yet, the optimal action when the sender’s signal is in [θk, θk+1] is AR(θk − ǫ) and the

optimal action of S when his type is θk is AS(θk − ǫ). Because of the misalignment of players

(assumption 2), it is not possible for AR(θk − ǫ) > AR(θk − ǫ).

The evaluation of actions by R changes. Take B = [θ1, θ2] ⊂ C, if R learns that s ∈ B it implies

that θ0 ∈ [θ1 − ǫ, θ2 + ǫ]. As a result, given that the sender’s type is in B, R evaluates action a

through:
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V MEU
R (a,B) = min

θ∈[θ1−ǫ,θ2+ǫ]
Eθ(uR(a, ω))

= Eθ2+ǫ(uR(a, ω))

Thus, R’s evaluation of actions, for a given interval of parameters, still depends only on the upper

bound of that interval. As a result, Theorem 2 still holds as well.

However, the characterisation in the linear quadratic will differ. The arbitrage condition of

proposition 2 gives that:

θk+1 = θk + 2b+ ǫ

Thus, it is as if the bias of the sender was b+ ǫ
2
. The cells’ length will change to a size of 2b+ ǫ.

This will have an effect on ex-ante evaluation of utility, as the noise and the sender’s ambiguity

aversion reduce the precision of communication.

B α-MEU receiver

B.1 Optimal actions and structure of equilibria

In this section, I consider the case where R evaluates actions under uncertainty through the

α-maxmin decision criteria proposed by Ghirardato et al. (2004)(α-MEU). According to Ghirardato

et al. (2004), in addition to their utility function, players are characterised by two more elements.

First, a set of priors over Ω, which I will assume to be C. Second, a parameter αi ∈ [0, 1] which

captures their attitude towards ambiguity. As all the analysis will be conducted at the interim

stage, αS is irrelevant. Thus, in the following, I will erase the subscript. R evaluates action a ∈ A
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by :

V α
R (a) = αmin

θ∈C
Eθ(uR(a, ω)) + (1− α)max

θ∈C
Eθ(uR(a, ω)) (4)

Here, the behavioural consequences of ambiguity aversion are captured by α. It translates the

decision maker’s weighting between optimistic and pessimistic models regarding his expected utility.

When α = 1, the α-MEU decision criteria coincide with MEU.8 Adapting Ghirardato et al. (2004)’s

proposition 20 to our model, we can state the following:

Definition 4 (Ghirardato et al. (2004)). Receiver i, evaluating actions through V αi

R , is said to be

more ambiguity-averse9 than receiver j, evaluating actions through V
αj

R , if and only if

αi > αj

Thus, for a fixed utility function and set of priors, increasing ambiguity aversion leads the receiver

to anticipate an increasingly worse model in terms of expected utility.

As for the MEU case, having received an equilibrium message m ∈ supp(σ∗), an α-MEU receiver

updates her belief such that she evaluates action a by:

V α
R (a, σ(m)) = α min

θ∈σ−1(m)
Eθ(uR(a, ω))) + (1− α) max

θ∈σ−1(m)
Eθ(uR(a, ω)))

By a natural extension of the notations introduced above, for B ⊂ C, define AR(B) = argmaxa∈AV
α
R (a,B)

the set of optimal actions of the α-MEU receiver when his belief is B.

Figure 7 illustrates the ex-ante evaluation of actions by the receiver in the context of the linear-

quadratic example. All valuation functions are located in the blue area and are a convex combination

between minθ∈C Eθ(uR(a, ω)) (in red) and maxθ∈C Eθ(uR(a, ω)) (in black). Then, note that for a

given α V α
R (a) is not necessarily single-peaked. For instance, for α = 0.3, V 0.3

R (a) is maximal at 0.3

8In general, for non-symmetric utility functions, α-MEU does not have SEU as a special case here. For instance, both criteria coincide
if the set of models is a singleton. Yet, this set depends on the information conveyed by the sender, which, at equilibrium, is never a
singleton.

9In the sense of Ghirardato and Marinacci (2002)
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0.5 1

uR(a, 1)uR(a, 0)

a

uR

minθ∈C Eθ(uR(a, ω))

maxθ∈C Eθ(uR(a, ω))

V 0.3
R (a)

V α
R (a)

Figure 7: α-MEU ex-ante valuation

I now characterise the set of optimal actions of R for a given set of priors.

Proposition 5. Define B ⊂ C the set of priors of the receiver with minimal element θ1 and

maximal element θ2. Given this belief, her optimal set of actions AR(B) ⊂ [AR(θ1), AR(θ2)]. In the

context of the linear-quadratic example, the set of optimal actions of an α-MEU receiver is given by:

AR(B) =





αAR(θ2) + (1− α)AR(θ1) if θ2 < θ̃

{αAR(θ̃) + (1− α)AR(θM)|θM ∈ argmaxθ∈{θ1,θ2}Eθ(uR(a, ω))} if θ̃ ∈ B

αAR(θ1) + (1− α)AR(θ2) if θ1 > θ̃

A direct consequence of Proposition 5 is that ex-ante, for any a ∈ A, minθ∈C Eθ(uR(a, ω)) =

E
θ̃
(uR(a, ω)) and that maxθ∈C Eθ(uR(a, ω)) = max(Eθ(uR(a, ω),Eθ(uR(a, ω)). Thus, AR(C) =

AR(αθ̃+(1−α)θ) when Eθ(uR(a, ω)) < Eθ(uR(a, ω)), AR(C) = AR(αθ̃+(1−α)θ) when Eθ(uR(a, ω)) >

Eθ(uR(a, ω)) and AR(C) = {AR(αθ̃+(1−α)θ), AR(αθ̃+(1−α)θ)} when Eθ(uR(a, ω)) = Eθ(uR(a, ω)).

This explains the fact that in the example we considered before, where E0(uR(a, ω)) = E1(uR(a, ω)),

optimal actions were not unique. Note also that, when α increases, AR(C) gets closer to ã, in the

Euclidean sense. Thus, an increase in ambiguity aversion moves R’s ex-ante optimal action closer
10In the linear-quadratic example for c = 0, there are two optimal actions for any α ≤ 0.5. The fact that this threshold is the one

separating love of and aversion to ambiguity is non-generic. For sharper utility functions, this threshold would be above 0.5. A formal
definition is given in assumption 4 of the appendix
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to the precautionary action.

I now prove that under α-MEU preferences, all equilibria are still outcome-equivalent to a partition

equilibria.

Proposition 6. In every equilibrium of the game, there is a partitioning of C in a finite number of

cells where every cell induces a distinct action. Thus, any equilibrium is outcome-equivalent to a

partition equilibrium.

As for the proof of Proposition 2, I start by showing that the number of actions induced at

equilibrium is finite. The argument is similar to the one given in CS’s Lemma 1 and follows from

both the concavity of S’s evaluation of actions and the fact that the optimal actions of R for a

given belief B ⊂ C is in the convex hull of the optimal actions for every element of B. This is also

true when R has α-MEU preferences, as one can deduce from Proposition 5. Then I show that

types that induce a given action must form an interval. This is a consequence of the concavity of

S’s evaluation of actions.

B.2 Comparative ambiguity aversion

In the following, I examine the effect that ambiguity aversion has on the structure of partitional

equilibria. I compare the equilibria of two versions of the game, where the only difference is the

degree of ambiguity aversion of the receivers, identified by their degree of ambiguity aversion α1

and α2. Note that the ex-post optimal action ARi
(θ) is unaffected by ambiguity aversion, thus, I

will erase the subscript. I will only consider the linear-quadratic example introduced before. Recall

that in the MEU case, when c = 1, science is consensual and communication is possible over the

entire C; when c = 0, science is divided and communication is only possible over (0, 1
2
), and finally

when c = −1, science is consensual but no information transmission is possible.

I start by considering the consensual science cases: c = 1 or −1. In the following, I characterise

all the cut-offs of the corresponding partition equilibrium.

Proposition 7. In the linear quadratic example, when R is α-MEU, for α /∈ {0, 1
2
, 1} :

• When c = 1, there are N > 0 cut-off equilibria, one for each cut-off, and the k-th cut-off of

the 1 ≤ n ≤ N cut-off equilibrium is given by:
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• When c = −1, there are M > 0 cut-off equilibria, one for each cut-off, and the k-th cut-off of

the 1 ≤ n ≤ M cut-off equilibrium is given by:

θ
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Figure 8: 3-cut-offs equilibria for c = 1

Figures 8 and 9 compute the cut-offs of the 3-cut-off equilibrium as a function of α for a fixed

positive bias b = 0.01. Note that for a given level of misalignment, information transmission is

possible in both cases, for given levels of ambiguity aversion. Thus, the asymmetry of the MEU

case does not survive at any level of ambiguity aversion. Yet, simulations suggest that, when

c = −1, cut-off values decrease with α towards θ̃. Thus for a given bias, there is a level of ambiguity

aversion from which all types in C must pool. Conversely, simulations suggest that, when c = 1,

cut-off values continuously increase with α towards their MEU values.
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Figure 9: 3-cut-offs equilibria for c = −1

I now formally prove that in the case of consensual science, no communication is possible in

c = −1 when α is above a given threshold. In addition, I show that for a given bias, ambiguity

aversion eases the existence of an n cut-off equilibrium, for n ≥ 2.

Proposition 8. In the context of the linear-quadratic example, when c = −1, b > 0 and α ∈ (1
2
, 1)

:

1. There is α(b) ∈ (1/2, 1) such that for α ≥ α(b), no information transmission is possible in

[0, 1]. Moreover, α(b) is a decreasing function.

2. For two receivers α1 and α2 such that α1 < α2, if there is an n ≥ 2 cut-off equilibrium between

S and α1, there is an n cut-off equilibrium between S and α2

Thus, as suggested by the simulations, when c = −1, for a given bias, there is a level of ambiguity

aversion from which all types in C must pool. This follows from the fact that for any N ≥ 2,

θ
N

N−1(α) is a strictly decreasing and continuous function and that limα→+∞ θ
N

N−1(α) < 1
2
. As a

result, there must be α ∈ (1
2
, 1) such that no partitioning of C is possible.

In addition, when there is an equilibrium with at least 3 cut-offs, ambiguity aversion eases the
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existence of an n cut-off equilibrium. Recall that bounds of C are included in the count, which

means that we are looking at every equilibrium which is a non-babbling one. In other words, for

a given bias, increasing ambiguity aversion might enable the existence of a k-cut-off equilibrium

which was not sustainable for a lower level of ambiguity aversion. In that sense, ambiguity aversion

eases information transmission, when science is consensual. This second result follows from the fact

that for any N ≥ 2, θNN−1(α) is a strictly increasing function and that limα→+∞ θNN−1(α) <
1
2
.

I know further prove that the first result of Proposition 8 extends to the case where c = 0 and

science is divided:

Proposition 9. In the context of the linear-quadratic example when c = 0, b > 0 and α ∈ (1
2
, 1),

there is α(b) ∈ (1/2, 1) such that for α ≥ α(b), only one action can be induced by types in [1
2
, 1].

Moreover, α(b) is a decreasing function.

As for the consensual science case, for a given bias, there is a level of ambiguity aversion from

which all types in [1
2
, 1] must pool. This suggests that there is a form of continuity in the division

of the set of types - on both sides of the hedging model - that we have observed in the MEU case.

For any level of misalignment of S, there is degree of ambiguity aversion of R in (1
2
, 1) such that all

models above θ̃ must pool. The proof of Proposition 9 builds on the one of proposition Proposition

8. I show that for any N ≥ 2, θ
N

N−1(α) is a strictly decreasing and continuous function and that

limα→+∞ θ
N

N−1(α) <
1
2
. As a result, there must be α ∈ (1

2
, 1) such that no partitioning of [1

2
, 1] is

possible.

C Proofs of the results in the main text

Proof of lemma 1:

∂2
Eθ(ui(a, ω))

∂θ∂a
=

∂ui(a, 1)

∂a
−

∂ui(a, 0)

∂a

Assumption 1 gives that the latter is strictly positive.
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Proof of Proposition 1:

In order to prove our result we need to study the variations of Eθ(uR(a, ω)) as a function of θ.

For a ∈ A,

∂Eθ(uR(a, ω))

∂θ
= uR(a, 1)− uR(a, 0)

Thus, we are interested in the sign of uR(a, 1)− uR(a, 0). First, we need to prove the following

lemma:

Lemma 4. Define B ⊂ C the belief of the receiver with minimal element θ1 and maximal element

θ2. Given this belief, her optimal action AR(B) ⊂ [AR(θ1), AR(θ2)].

Proof of lemma 4:

We prove this lemma in the more general context of α-MEU preferences. This criteria coincides

with MEU when α = 1.

First, note that ∀a ∈ A, there is θm(a) ∈ B such that minθ∈B Eθ(uR(a, ω)) = Eθm(a)(uR(a, ω)).

Similarly, ∀a ∈ A, there is θM(a) ∈ B such that maxθ∈B Eθ(uR(a, ω)) = EθM (a)(uR(a, ω)).

As a result, ∀a ∈ A, αminθ∈B Eθ(uR(a, ω)) + (1− α)maxθ∈B Eθ(uR(a, ω)) = αEθm(a)(uR(a, ω)) +

(1 − α)EθM (a)(uR(a, ω)) = Eαθm(a)+(1−α)θM (a)(uR(a, ω)). As, for all a ∈ A, θ1 ≤ αθm(a) + (1 −

α)θM(a) ≤ θ2 and that AR(θ) is a strictly increasing function, it must be that AR(B) ⊂

[AR(θ1), AR(θ2)].

A consequence of the Lemma 4 is that when looking for optimal actions for a given B, it is

sufficient to look for actions in [AR(θ1), AR(θ2)]. Note that [AR(θ1), AR(θ2)] ⊂ [aR(0), aR(1)] and

that for all a ∈ [aR(0), aR(1)] either:
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1. uR(aR(0), 0) < uR(aR(0), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, utilities in both states are

never equal and uR(a, 0) < uR(a, 1) for all a ∈ A. As in this case ã = aR(0) and thus

θ̃ = 0, Eθ(uR(a, ω)) is strictly increasing with θ for all a ∈ [aR(0), aR(1)]. As a result,

AR(B) = AR(θ1).

2. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) > uR(aR(1), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, but as uR(aR(1), 0) >

uR(aR(1), 1) it must be that utilities in both states are never equal. As a result, uR(a, 0) >

uR(a, 1) for all a ∈ A. Thus, in this case ã = aR(1) and θ̃ = 1. It follows that Eθ(uR(a, ω)) is

strictly decreasing with θ for all a ∈ [aR(0), aR(1)]. As a result, AR(B) = AR(θ2).

3. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) ≤ uR(aR(1), 1).

As for a > aR(0), uR(a, 0) is strictly decreasing and uR(a, 1) is strictly increasing. Thus, both

utilities are equal for a unique given action and by definition of ã it must be that this point is

ã. As a result:





uR(a, 0) > uR(a, 1) for a < ã

uR(a, 0) = uR(a, 1) for a = ã

uR(a, 0) < uR(a, 1) for a > ã

Thus, for a ∈ [AR(θ1), AR(θ2)], Eθ(uR(a, ω)) is strictly decreasing with θ when θ2 < θ̃ and

strictly increasing with θ when θ1 > θ̃, which gives the corresponding result. The above system

also implies that when θ̃ ∈ B, Eθ(uR(a, ω)) is always minimal for θ = θ̃. As a result, for all

a ∈ [AR(θ1), AR(θ2)] the minimal pay-off of the receiver as a function of the sender’s type is

given by:

min
θ∈B

Eθ(uR(a, ω)) =





Eθ2(uR(a, ω)) if a < ã

E
θ̃
(uR(a, ω)) if a = ã

Eθ1(uR(a, ω)) if a > ã

The above system implies that when θ̃ ∈ B, minθ∈B Eθ(uR(a, ω)) is increasing on (AR(θ1), ã)
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(as Eθ2(uR(a, ω)) is maximal at AR(θ2) > ã) and decreasing on (ã, AR(θ2)) (as Eθ1(uR(a, ω)) is

maximal at AR(θ1) < ã). As a result, it is always maximal for ã. As a result, minθ∈B AR(B) =

AR(θ̃).

Proof of Proposition 2

The proof is structured as follows. First, I show that the number of outcome actions induced at

equilibrium is finite. Then, I prove that the set of types which obtain the same equilibrium outcome

must form an interval. The continuity and the strict monotonicity of the sender’s preferences closes

the argument.

Lemma 5. There exists ǫ > 0 such that if u and v are actions induced in equilibrium, |u− v| ≥ ǫ.

Furthermore, the set of actions induced in equilibrium is finite.

Proof of Lemma 5

I say that action u is induced by an S-type θ if it is a best response to a given equilibrium message

m: u ∈ {AR(θ)|θ ∈ σ−1(m)}. Let Y be the set of all actions induced by some S-type θ. First, note

that if θ induces a, it must be that V θ
S (a) = maxa∈Y V θ

S (a). Since uS is strictly concave, V θ
S (a) can

take on a given value for at most two values of a. Thus, θ can induce no more than two actions in

equilibrium.

Let u and v be two actions induced in equilibrium, u < v. Define Θu the set of S types who

induce u and Θv the set of S types who induce v. Take θ ∈ Θu and θ
′

∈ Θv. By definition, θ reveals

a weak preference for u over v and θ
′

reveals a weak preference for v over u that is:




V θ
S (u) ≥ V θ

S (v)

V θ
′

S (v) ≥ V θ
′

S (u)

Thus, by continuity of θ → V θ
S (u)− V θ

S (v), there is θ̂ ∈ [θ, θ
′

] such that V θ̂
S (u) = V θ̂

S (v). Since uS

is strictly concave, we have that:
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u < AS(θ̂) < v

Then, note that since ∂2
Eθ(uS(a,ω))

∂a∂θ
> 0 (Lemma 1), it must be that all types that induce u are

below θ̂. Similarly, it must be that all types that induce v are above θ̂. That is:

∀θ ∈ Θu, θ ≤ θ̂

∀θ ∈ Θv, θ ≥ θ̂

Thus, when R is MEU, Lemma 4 implies that the optimal action of the receiver, given that

θ ∈ Θu is below the optimal action when the type is θ̂. Similarly, the optimal action of the receiver,

given that θ ∈ Θv is above the optimal action when the type is θ̂. The same is true when when R

is SEU. That is:




AR(Θu) ≤ AR(θ̂)

AR(Θv) ≥ AR(θ̂)

⇐⇒ u ≤ AR(θ̂) ≤ v

However, as AR(θ) 6= AS(θ) for all θ ∈ C, there is ǫ > 0 such that |AR(θ) − AS(θ)| ≥ ǫ for all

θ ∈ C. It follows that |u− v| ≥ ǫ.

Lemma 4 implies that for any belief B ⊂ C, the optimal action of the receiver is in [AR(θ, AR(θ)].

Thus, the set of actions induced in equilibrium is bounded by AR(θ) and AR(θ) and at least ǫ away

from one another, which completes the proof.

Lemma 6. In every equilibrium of the game, if a is an action induced by type θ and by type θ
′′

for

some θ < θ
′′

, then a is also induced by θ
′

∈ (θ, θ
′′

)
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Proof of Lemma 6:

For the purpose of the proof, we introduce the notation W θ(a) = Eθ(uS(a, ω)), which is the

evaluation of a ∈ A by a sender of type θ.

We proceed by contradiction. Suppose a1 is induced by type θ and by type θ
′′

and that there is

θ
′

∈ (θ, θ
′′

) such that a1 is not induced. Then there must be a2 6= a1 that type θ
′

prefers and that

θ
′′

does not. Formally, this is:





W θ(a2) ≤ W θ(a1)

W θ
′

(a1) ≤ W θ
′

(a2)

W θ
′′

(a2) ≤ W θ
′′

(a1)

(5)

Notice that for a ∈ A:

∂W θ(a)

∂θ
= uS(a, 1)− uS(a, 0)

Similarly to S, define ãS = argmaxa∈A minω∈Ω uS(a, ω). ãS is the action that maximises the

worst possible expected utility of the sender among the set of models. Two special cases are to be

noted. Either the high state is sufficiently worse than the good one for it to give a lower utility at

its optimal point: uS(aS(1), 1) ≤ uS(aS(1), 0). Then the hedging action is the optimal action in the

high state ãS = aS(1). Or the former is not true (uS(aS(1), 1) > uS(aS(1), 0)) and both states must

give the same utility for a given action in (aS(0), aS(1)). In that case, ãS is the action that gives

the same utility in both states.

As a result, W θ(a) is strictly decreasing for a < ãS, constant for a = ãS and strictly increasing

for a > ãS. Assume that a1 < a2:

• When a1 < ãS and a2 ≥ ãS can cross at most once and system (5) is impossible.

• Assume ãS ≤ a1 < a2. Then:
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∂(W θ(a1)−W θ(a2))

∂θ
= uS(a1, 1)− uS(a1, 0)− (uS(a2, 1)− uS(a2, 0))

As, for a ≥ ãS, uS(a, 1) is a strictly increasing function and uS(a, 0) a strictly decreasing

one, we have that a1 < a2 implies that uS(a1, 1) − uS(a1, 0) < uS(a2, 1) − uS(a2, 0). Thus,

W θ(a1)−W θ(a2) is a strictly decreasing function of θ and W θ(a2) and W θ(a1) can cross at

most once, making system (5) impossible.

• Assume a1 < a2 < ãS. Then, W θ(a1)−W θ(a2) is a strictly increasing function of θ and W θ(a2)

and W θ(a1) can cross at most once, making system (5) impossible.

The case a2 > a1 is symmetrical.

By Lemma 5, there is a finite number of outcomes induced in equilibrium. The continuity of

AS(θ) gives that there is a type of the sender which is indifferent between any pair of outcomes

induced in equilibrium and the monotonicity of AS(θ) implies there are only a finite number of

types which are indifferent between any pair of outcomes. Hence, Lemma 6 implies that there is a

partitioning of C in a finite number of cells where every cell induces a given action at equilibrium.

Proof of Proposition 3

The outline of the proof is as follows. I start by showing that the cut-off types of any equilibrium

must satisfy condition (1). Any other equilibrium strategies would be outcome-equivalent.

Consider a couple of strategy (σ∗
q , y

∗
q ) and write Cq

k = [θqk, θ
q
k+1].

• Assume y∗q is the equilibrium strategy of R. Given Proposition 2, any type θ ∈ Cq
k induces the

same action and prefers it to any other equilibrium action. Thus, for σ∗
q to be an equilibrium

strategy, it is without loss of generality to assume that any type θ ∈ Cq
k sends the same message

mk and prefers it to any other message.11 In particular, it must be preferred to message mk−1,

11Any other signaling strategy must induce the same action from R and will thus lead to the same pay-offs for both players, whatever
the sender’s type.
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which induces the preferred equilibrium action of types in Cq
k−1. For all θ ∈ Cq

k :

V θ
S (y

∗(mq
k)) ≥ V θ

S (y
∗(mq

k−1))

Similarly, any type θ ∈ Cq
k−1 must prefer sending mk−1 to mk. For all θ ∈ Cq

k−1:

V θ
S (y

∗(mq
k)) ≤ V θ

S (y
∗(mq

k−1))

Thus, for σ∗
q to be an equilibrium strategy a necessary condition is that:

V
θ
q
k

S (y∗(mq
k−1)) = V

θ
q
k

S (y∗(mq
k))

• Assume σ∗
q is the equilibrium strategy of S. Then, for any θ ∈ C, the best response of R in the

MEU case to any equilibrium message σ∗
q (θ) is:

argmaxa∈AV
MEU
R (a, σ∗−1

q (σ∗
q (θ))) = y∗q (σ

∗
q (θ))

Similarly, in the SEU case, the best response of R to any equilibrium message σ∗
q (θ) is:

argmaxa∈AV
SEU
R (a, σ∗−1

q σ∗
q (θ))) = y∗q (σ

∗
q (θ))

Proof of Theorem 1

Assume there is a q + 1 cut-off equilibrium and that θq−1 < θ̃ < θq. As θq > θ̃, we have that:
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y∗(mq−1) = AR(σ

∗−1(mq−1)) = AR([θq−1, θq)) = AR(θ̃) = ã

y∗(mq) = AR(σ
∗−1(mq)) = AR([θq, θq+1)) = AR(θq)

As AR is a strictly increasing function and because S is misaligned upwards, we have that

y∗(mq−1) < y∗(mq) < AS(θq). As, by definition, a → Eθ(uS(a, ω)) is strictly increasing on

[0, AS(θq)], we have that Eθq(uS(y
∗(mq−1), ω)) < Eθq(uS(y

∗(mq), ω)) ⇐⇒ V
θq
S (mq−1) < V

θq
S (mq),

which is a contradiction to the assumption that θq is a cut-off type.

Proof of Lemma 2:

The structure of the proof is as follows. First, I provide an algorithm that characterises the

cut-off types of the equilibrium that has most cut-offs: θ0 < ... < θM (step 1). Define E =

{(θ1+k, ..., θM )|1 ≤ k ≤ M}. Then, I show that any non-babbling partitional strategy of the sender

characterised by cut-offs which are elements of E is an equilibrium strategy (step 2). I conclude by

showing that this describes every equilibrium of the game (step 3).

In the following, I call Cq = [θq, θq+1], for 1 ≤ q < M − 1, CM = [θM , θ] and C0 = [θ, θ1]

Step 1:

Assume there is a M cut-off equilibrium. Then the signalling strategy of the sender σ must be

such that for q ∈ 0, ...,M , ∀θ ∈ Cq, σ(θ) = mk

First note that V MEU
R (a, C0) = Eθ1(uR(a, ω)). For σ to be an equilibrium strategy we need that

∀θ ∈ C0 and m 6= m0:

V θ
S (m0) ≥ V θ

S (m)

In C0, type θ1 has the most incentive to deviate from sending m0 to sending m1, which would
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induce a higher action, as, V MEU
R (a, C1) = Eθ2(uR(a, ω)) and AR(θ) is strictly increasing by Lemma

1.

Thus, a necessary condition for all types in C0 to send m0 is that:

V θ1
S (m0) ≥ V θ1

S (m1)

Furthermore, it is also necessary that all types in C1 prefer message m1. In particular it must be

the case for type θ1, thus: V θ1
S (m1) ≥ V θ1

S (m0). As a consequence, a necessary condition for σ to

be an equilibrium strategy is:

V θ1
S (m0) = V θ1

S (m1) (6)

By repeating the argument for all Cq, q ∈ 1, ...,M , a necessary condition for σ to be an equilibrium

strategy is for all q ∈ 1, ...,M :

V
θq
S (mq−1) = V

θq
S (mq) (7)

Furthermore, the fact that ∪M
k=0Ck = C and that for every pair of consecutive cells of the partition

the incentive constraints are transitive gives that condition (7) is both necessary and sufficient. As

AR(θ) is strictly monotonic, it implies that AR(θk) 6= AR(θk+1). θ being known, it is possible to

derive θ1 directly from (6). By repeating the reasoning by induction, θk+1 can be derived from θk

for k ∈ 1, ...,M − 1 from (7) as long as there is θM < θ̃.

Step 2:

I show that any partitional strategy of the sender characterised by θ0 < ... < θq is an equilibrium

strategy. I proceed by iteration:
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• Step 1 proves that θ0 < ... < θM characterise an equilibrium. Let us show that θ0, θ2 < ... < θM

does as well.

Assume S’s strategy is σM−1 such that for 2 ≤ k ≤ M , ∀θ ∈ Ck, σM−1(θ) = mk and ∀θ ∈ [θ, θ2],

σM−1(θ) = m0. Then for k ∈ 1, ..., n − 1, when learning its type θ ∈ Ck, by construction of

the previous equilibrium, S’s preferred message is mk. When θ ∈ [θM−1, θM ], mM−1 induces

the same outcome as in the M cut-off equilibrium and is preferred to all other messages.

When θ ∈ [θ, θ2] the fact that, for every pair of consecutive cells of the partition, the incentive

constraints are transitive implies that message m0 is preferred to any other message.

• Let us assume that for q ≥ 2, σq defined as above is an equilibrium strategy for S. By the

same reasoning as above, it is straightforward to show that σq−1 is one as well. This completes

the proof of step 2.

Step 3:

Assume there is an equilibrium strategy of the sender σ which is not described above. Recall AR(B)

to be the optimal action of R under the belief that θ0 ∈ B for B ⊂ C and W θ(a) = Eθ(uS(a, ω))

the evaluation of action a ∈ A by a sender of type θ.

• Proposition 2 gives that all equilibria are partitional. First I will show that any equilibria

only characterised by elements of θ0, ..., θq must be characterised by elements of E . It is

straightforward to see that any equilibria only characterised by elements of θ0, ..., θq which is

not in E can be constructed from an element of E by removing at least one element which is not

an extrema. To prove our claim, it is thus sufficient to prove that no equilibrium constructed

from an element of E by removing exactly one element which is not an extrema exists.

For 1 ≤ q ≤ M , consider a strategy σp characterised by cut-offs θ0, θq, ..., θp−1, θp+1, ..., θM

for q + 1 ≤ p ≤ M and assume it is an equilibrium strategy.12 It must be that that type

θp+1 prefers outcome AR([θp−1, θp+1)) to outcome AR([θp+1, θp+2)). Yet, by construction of the

equilibrium of q cut-offs, type θp+1 is exactly indifferent between outcome AR([θp, θp+1)) and

outcome AR([θp+1, θp+2)). As AR([θp−1, θp+1)) < AR([θp, θp+1)), the previous implies that type

θp+1 prefers outcome AR([θp+1, θp+2)) to outcome AR([θp−1, θp+1)), which is a contradiction.

• Thus σ must have a cut-off type θ∗ /∈ {θ1, ..., θM}. Assume without loss of generality that

12the choice of removing an element θp < θ̃ is without loss of generality.
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θp < θ∗ < θp+1 for p ∈ 1, ...,M − 1. Then we have that:

W θ∗([θp, θ
∗]) = W θ∗([θ∗, θp+1])

⇐⇒ Eθ∗(uS(AR(θ
∗))) = Eθ∗(uS(AR(θp+1)))

Yet, by the construction in step 1, the above implies that θ∗ = θp+1, which is a contradiction.

Proof of Theorem 2:

Assume the equilibrium with most cut-offs has M elements. For any 1 ≤ q ≤ M let a q cut-off

equilibrium be characterised by S’s strategy σ∗
q and elements θ0, θM−q, ..., θM .

First I will show that S is interim better-off in the q + 1 cut-off equilibrium than in the q cut-off

equilibrium. Then a simple iteration gives that S is better-off in the M cut-off equilibrium than in

the q cut-off equilibrium, for any q < M .

• Assume θ0 ∈ [θq, θ].

Then, S’s interim utility in the q + 1 cut-off equilibrium and in the q cut-off equilibrium is

Eθ0(uS((AR(θ̃)). Thus S is indifferent between both equilibria.

• Assume θ0 ∈ [θk, θk+1], for M − q ≤ k ≤ M .

Then, S’s interim utility in the q + 1 cut-off equilibrium and in the q cut-off equilibrium is

Eθ0(uS((AR(θM−q−1)). Thus S is indifferent between both equilibria.

• Assume θ0 ∈ [θ, θM−q−1], for M − q ≤ k ≤ M .

Then, S’s interim utility in the q+1 cut-off equilibrium is Eθ0(uS((AR(θM−q−1)) and S’s interim

utility in the q cut-off equilibrium is Eθ0(uS((AR(θM−q)).

Yet, because θM−q−1 is a cut-off type in the q + 1 cut-off equilibrium, for any θ ∈ [θ, θM−q−1),

Eθ0(uS((AR(θM−q−1)) > Eθ0(uS((AR(θM−q))

Thus, any type of sender in [θ, θM−q−1) is interim better-off in the q + 1 cut-off equilibrium

than in the q cut-off equilibrium.
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Proof of Proposition 4:

1. Assume R has SEU preferences. Assume there are n equilibrium cut-offs in [0, 1]: θ0, ..., θn

and thus θ0 = 0 θn = 1. When receiving equilibrium message mk sent by types θ ∈ [θk, θk=1) S

evaluates action through:

VR(a|mk) =

∫

θ∈[θk,θk+1]

(1− θ)uR(a, 0) + θuR(a, 1)dθ

= (1− E(θ|mk))uR(a, 0) + E(θ|mk)uR(a, 1)

where E(θ|mk) =
∫
θ∈[θk,θk+1]

θdθ = θk+θk+1

2
. A first-order condition on the above gives that

when evaluating actions through VR(a|mk), the optimal action is E(θ|mk). It follows that

the equilibrium action of R is y∗(mk) = θk+θk+1

2
. The optimal action in the eyes of S is

AS(θ0) = θ0 + b. The arbitrage condition gives that a sender of type θk must be indifferent

between mk−1 and mk. That is, for k ∈ 2, ..., n:

AS(θk+1) =
y∗(mk) + y∗(mk+1)

2

Note that this arbitrage condition translates into the same condition as in CS’s example:

θk+1 − θk = θk − θk−1 + 4b (8)

Equation (8) further gives that:

θk = k(θ1 − θ0) +
k(k − 1)

2
4b

Specifically, 1 = E(θn) = n(θ1) +
n(n−1)

2
4b which gives θ1 =

1
n
− 2(n− 1)b and:

E(θk) = θk =
k

n
− 2kb(n− k)
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It follows that a n cut-off equilibrium exists if and only if:

0 < b <
1

2n(n− 1)

2. Assume R has MEU preferences and that there is a n-cut-off equilibrium. When receiving

message mn
k , for k ≥ 2:

VR(a|mk) = minθ∈[θk,θk+1]Eθ(uR(a))

Thus, when θ1 ≤ θ̃, VR(a|m0) = Eθ1(uR(a)) and the arbitrage condition giving the cut-off

types gives that AS(θ1) = θ1 + b must thus be at equal distance from θ1 and θ2. For this to be

possible, it must be that b > 0. Thus, when there is a n-cut-off equilibrium, it must be that

θ̃ > θn. When receiving message mk, for k ≥ 1:

VR(a|mk) = Eθk+1
(uR(a))

The equilibrium action of R when receiving the equilibrium message [θk, θk+1] is y(mn
k) =

E(θk+1). The arbitrage condition giving the cut-off types gives that AS(θk+1) must thus be at

equal distance from E(θk+1) and E(θk+2), giving

θk+1 + b =
θk+1 + θk+2

2
⇐⇒ θk+2 = θk+1 + 2b

When receiving message mn, the equilibrium action of R is y(mn) = θ̃ = 1
2
. The arbitrage

condition when S is of type θn−1 gives that:

θ̃ + θn−1

2
= θn−1 + b

⇐⇒ θn−1 = 1− 2b

Which implies that, for all 1 ≤ k ≤ n− 1:
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θk = θk = 1− 2b(n− k)

It follows that a n cut-off equilibrium exists if and only if:

θ1 > 0

⇐⇒ 1− 2bn > 0

⇐⇒ 0 < b <
1

2n

Proof of Corollary 1:

It is possible to derive from Proposition 4 that in the SEU case:

θk+1 − θk = θk − θk−1 + 4b

It is also possible to derive from Proposition 4 that in the MEU case:

θk+1 − θk = 2b

Proof of Proposition 5 :

In order to prove our result we need to study the variations of Eθ(uR(a, ω)) as a function of θ.

For a ∈ A,
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∂Eθ(uR(a, ω))

∂θ
= uR(a, 1)− uR(a, 0)

Thus, we are interested in the sign of uR(a, 1)− uR(a, 0). We want to prove that :

min
θ∈B

AR(θ) =





AR(θ2) if θ2 < θ̃

AR(θ1) if θ1 > θ̃

AR(θ̃) if θ̃ ∈ B

The maximal pay-off of the receiver as a function of the sender’s type is given by :

max
θ∈B

AR(θ) =





AR(θ1) if θ2 < θ̃

AR(θ2) if θ1 > θ̃

AR(θM) if θ̃ ∈ B

where θM = argmaxθ∈{θ1,θ2}Eθ(uR(a, ω)). A consequence of Lemma 4 is that when looking for

optimal actions for a given B, it is sufficient to look for actions in [AR(θ1), AR(θ2)]. Notice that

[AR(θ1), AR(θ2)] ⊂ [aR(0), aR(1)] and that for all a ∈ [aR(0), aR(1)] either:

1. uR(aR(0), 0) < uR(aR(0), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, utilities in both states are

never equal and uR(a, 0) < uR(a, 1) for all a ∈ A. As in this case ã = aR(0) and thus

θ̃ = 0, Eθ(uR(a, ω)) is strictly increasing with θ for all a ∈ [aR(0), aR(1)]. As a result,

minθ∈B AR(B) = AR(θ1) and maxθ∈B AR(B) = AR(θ2)

2. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) > uR(aR(1), 1).

For a > aR(0), uR(a, 0) is decreasing and uR(a, 1) is increasing, but as uR(aR(1), 0) >

uR(aR(1), 1) it must be that utilities in both states are never equal. As a result, uR(a, 0) >

47



uR(a, 1) for all a ∈ A. Thus, in this case ã = aR(1) and θ̃ = 1. It follows that Eθ(uR(a, ω)) is

strictly decreasing with θ for all a ∈ [aR(0), aR(1)]. As a result, minθ∈B AR(B) = AR(θ2) and

maxθ∈B AR(B) = AR(θ1)

3. uR(aR(0), 0) > uR(aR(0), 1) and uR(aR(1), 0) ≤ uR(aR(1), 1).

As for a > aR(0), uR(a, 0) is strictly decreasing and uR(a, 1) is strictly increasing. Thus, the

two utilities are equal for a unique given action and by definition of ã it must be that this

point is ã. As a result:





uR(a, 0) > uR(a, 1) for a < ã

uR(a, 0) = uR(a, 1) for a = ã

uR(a, 0) < uR(a, 1) for a > ã

(9)

It follows from system (9) that, for all a ∈ [AR(θ1), AR(θ2)] the minimal pay-off of the receiver

as a function of the sender’s type is given by:

min
θ∈B

Eθ(uR(a, ω)) =





Eθ2(uR(a, ω)) if a < ã

E
θ̃
(uR(a, ω)) if a = ã

Eθ1(uR(a, ω)) if a > ã

The above system implies that when θ̃ ∈ B, minθ∈B Eθ(uR(a, ω)) is increasing on (AR(θ1), ã)

(as Eθ2(uR(a, ω)) is maximal at AR(θ2) > ã) and decreasing on (ã, AR(θ2)) (as Eθ1(uR(a, ω)) is

maximal at AR(θ1) < ã). As a result, it is always maximal for ã. As a result, minθ∈B AR(B) =

AR(θ̃).

It also follows from system (9) that, for all a ∈ [AR(θ1), AR(θ2)] the maximal pay-off of the

receiver as a function of the sender’s type is given by:

max
θ∈B

Eθ(uR(a, ω)) =





Eθ1(uR(a, ω)) if a < ã

EθM (uR(a, ω)) if a = ã

Eθ2(uR(a, ω)) if a > ã
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where θM = argmaxθ∈{θ1,θ2}Eθ(uR(a, ω)). The above system implies that when θ̃ ∈ B,

maxθ∈B Eθ(uR(a, ω)) is decreasing on (AR(θ1), ã) (as Eθ1(uR(a, ω)) is maximal at AR(θ1)) and

increasing on (ã, AR(θ2)) (as Eθ2(uR(a, ω)) is maximal at AR(θ2)). As a result, it is maximal

at either AR(θ1) or AR(θ2). As a result, maxθ∈B AR(B) = AR(θM).

Note that when utilities are quadratic, a simple algebra gives that for θ < θ
′

:

argmaxa∈A

[
αEθ(ui(a, ω)) + (1− α)Eθ

′ (ui(a, ω))
]

= α
(
argmaxa∈AEθ(ui(a, ω))

)
+ (1− α)

(
argmaxa∈AEθ

′ (u

= Ai(αθ + (1− α)θ
′

)

which implies that:

AR(B) = argmaxa∈A

[
αmin

θ∈B
Eθ(uR(a, ω)) + (1− α)max

θ∈B
Eθ(uR(a, ω))

]

=





αAR(θ2) + (1− α)AR(θ1) if θ2 < θ̃

αAR(θ̃) + (1− α)AR(θM) if θ̃ ∈ B

αAR(θ1) + (1− α)AR(θ2) if θ1 > θ̃

Proof of Proposition 6

Lemma 7. There exists ǫ > 0 such that if u and v are actions induced in equilibrium, |u− v| ≥ ǫ.

Furthermore, the set of actions induced in equilibrium is finite.

Proof of Lemma 7

I say that action u is induced by an S-type θ if it is a best response to a given equilibrium message

m: u ∈ {AR(θ)|θ ∈ σ−1(m)}. Let Y be the set of all actions induced by some S-type θ. First,

notice that if θ induces a, it must be that V θ
S (a) = maxa∈Y V θ

S (a). Since uS is strictly concave,
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V θ
S (a) can take on a given value for at most two values of a. Thus, θ can induce no more than two

actions in equilibrium.

Let u and v be two actions induced in equilibrium, u < v. Define Θu the set of S types who

induce u and Θv the set of S types who induce v. Take θ ∈ Θu and θ
′

∈ Θv. By definition, θ reveals

a weak preference for u over v and θ
′

reveals a weak preference for v over u that is:




V θ
S (u) ≥ V θ

S (v)

V θ
′

S (v) ≥ V θ
′

S (u)

Thus, by continuity of θ → V θ
S (u)− V θ

S (v), there is θ̂ ∈ [θ, θ
′

] such that V θ̂
S (u) = V θ̂

S (v). Since uS

is strictly concave, we have that:

u < AS(θ̂) < v

Then, notice that since ∂2
Eθ(uS(a,ω))

∂a∂θ
> 0 (Lemma 1), it must be that all types that induce u are

below θ̂. Similarly, it must be that all types that induce v are above θ̂. That is :

∀θ ∈ Θu, θ ≤ θ̂

∀θ ∈ Θv, θ ≥ θ̂

Thus, when R is α-MEU, Lemma 4 implies that the optimal action of the receiver, given that

θ ∈ Θu is below the optimal action when the type is θ̂. Similarly, the optimal action of the receiver,

given that θ ∈ Θv is above the optimal action when the type is θ̂. That is:
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AR(Θu) ≤ AR(θ̂)

AR(Θv) ≥ AR(θ̂)

⇐⇒ u ≤ AR(θ̂) ≤ v

However, as AR(θ) 6= AS(θ) for all θ ∈ C, there is ǫ > 0 such that |AR(θ) − AS(θ)| ≥ ǫ for all

θ ∈ C. It follows that |u− v| ≥ ǫ.

Lemma 4 implies that for any belief B ⊂ C, the optimal action of the receiver is in [AR(θ, AR(θ)].

Thus, the set of actions induced in equilibrium is bounded by AR(θ) and AR(θ) and at least ǫ away

from one another, which completes the proof.

By Lemma 7 there is a finite number of outcomes induced in equilibrium. The continuity of AS(θ)

gives that there is a type of the sender which is indifferent between any pair of outcomes induced

in equilibrium and the monotony of AS(θ) implies there are only a finite number of types which are

indifferent between any pair of outcomes. Hence, Lemma 6 implies that there is a partitioning of C

in a finite number of cells where every cell induces a given action at equilibrium.

Proof of Proposition 7:

I focus on the case c = 1. The case c = −1 is symmetrical.

Assume there is an n > 0 cut-off equilibrium. It follows from the characterisation of cut-off types

in the linear-quadratic example given in the proof of Proposition 4 and the characterisation of

optimal actions in the α-MEU case given in Proposition 5 that, for 1 ≤ k ≤ n− 2 and α > 0:
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θnk + b =
αθnk + (1− α)θnk−1 + αθnk+1 + (1− α)θnk

2

⇐⇒ θk+1 − θk =
1− α

α
(θnk − θnk−1 +

2b

α
)

Set Vk = θnk+1 − θnk . It follows from the previous equality that (Vk)k is an arithmetico-geometrical

sequence. As a result, for 1 ≤ k ≤ n− 2 and α /∈ {0, 1
2
}:

Vk = (
1− α

α
)k(θn1 −

2b

2α− 1
) +

2b

2α− 1

By induction, if follows that:

θnk+1 =
k∑

j=1

[(
1− α

α
)k(θn1 −

2b

2α− 1
) +

2b

2α− 1
] + θ1

⇐⇒ θnk+1 =
k∑

j=0

Vj

⇐⇒ θnk = (θ1 −
2bn

2α− 1
)
(1− (1−α

α
)k

1− (1−α
α

)

)
+

2bk

2α− 1

In particular, it must be that θnn = 1
2

which give that θn1 = (1
2
− 2bn

2α−1
)
(

1−( 1−α
α

)

1−( 1−α
α

)n

)
+ 2b

2α−1
. As a

result, we obtain that:

θnk = (
1

2
−

2bn

2α− 1
)
(1− (1−α

α
)k

1− (1−α
α

)n

)
+

2bk

2α− 1

Proof of Proposition 8:
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1. I start by proving that for n ≥ 2, θnn−1(α) is a strictly increasing function. Define f(a) = 1−an−1

1−an
,

for a ∈ (0, 1/2). Note that:

∂f(a)

∂a
=

an−2(an − na+ n− 1)

(1− an)2

Thus:

∂f(a)

∂a
< 0

⇐⇒ =
an−2(an − na+ n− 1)

(1− an)2
< 0

⇐⇒ = an > n(a− 1) + 1

Yet, a ∈ (0, 1
2
) ⇒ an > 0 and n(a − 1) + 1 < 0 ⇐⇒ a < 1 − 1

n
which is true because

a ∈ (0, 1/2) and n ≥ 2. As a result, ∂f(a)
∂a

< 0 and f is a decreasing function. Yet:

θnn−1(α) =
1

2
f(

1− α

α
) +

2bn

2α− 1
(1− f(

1− α

α
))−

2b

2α− 1

1−α
α

∈ (0, 1/2) for α ∈ (1
2
, 1) and is decreasing in α. As a result f(1−α

α
) is increasing in α and

θnn−1(α) as well as a sum and product of increasing functions of α. In addition, we have that:

∂θnn−1(α)

∂b
< 0

⇐⇒ =
2n

(2α− 1
(1− f(

1− α

α
))−

2

(2α− 1
< 0

⇐⇒ = f(
1− α

α
) > 0

which is true. By a symmetrical process, one can prove that θ
n

n−1(α) is a strictly decreasing

function and that
∂θ

n

n−1(α)

∂b
< 0. Yet:

limα→1θ
n

n−1(α) = −2b <
1

2
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Thus, as θ
n

n−1(α) is strictly decreasing and continuous, there is α(b) ∈ (1/2, 1) such that

θ
n

n−1(α) =
1
2
. As θ

n

n−1(α) is strictly decreasing, for α ≥ α(b), no information transmission is

possible in C. In addition, because
∂θ

n

n−1(α)

∂b
< 0, it follows that α(b) is a decreasing function.

2. I start by proving that for n ≥ 2, θn1 (α) is a strictly increasing function. Define f(a) = 1−a
1−an

,

for a ∈ (0, 1/2). Note that:

∂f(a)

∂a
=

n(1− a)an−1

(1− an)2
−

1

1− an

Thus :

∂f(a)

∂a
< 0

⇐⇒ = n− (n− 1)a <
1

an−1

Yet, a ∈ (0, 1/2) ⇒ 1
an−1 > 2n−1 and a ∈ (0, 1/2) ⇒ n− (n− 1)a < n. As a result, for n ≥ 2,

n− (n− 1)a < n ≤ 2n−1 < 1
an−1 which implies that ∂f(a)

∂a
< 0 and f is a decreasing function.

Yet:

θnn−1(α) =
1

2
f(

1− α

α
) +

2bn

2α− 1
(1− f(

1− α

α
))−

2b

2α− 1

1−α
α

∈ (0, 1/2) for α ∈ (1
2
, 1) and is decreasing in α. As a result f(1−α

α
) is increasing in α and

θn1 (α) as well as a sum and product of increasing functions of α. By a symmetrical process, we

can prove that θ
n

1 (α) is a decreasing function.

Consider two receivers α1 and α2 such that α1 < α2. Assume there is a n cut-off equilibrium

between S and α1. Then θ
n

1 (α1) ∈ (0, 1). As θ
n

1 (α) is a decreasing function, it must be that

θ
n

1 (α2) < 1. In addition, as θ
n

n−1(α) is an decreasing function, it follows that θ
n

n−1(α2) >

limα→1θ
n

n−1(α) =
1
2
− 2b > 0 for b < 1

4
, which is the existence condition of the considered

equilibrium. As a result, there is a n cut-off equilibrium between S and α2
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Proof of Proposition 9:

We are in the case where c = 0. Recall that in this case θ̃ = 1
2
.

• Consider the case of an n cut-off equilibrium that has n ≤ N − 3 cut-off types below 1
2
.

I call θNk (α) the k-th cut-off of our equilibrium. By Proposition 5, we get that for n+ 2 ≤ k ≤

N − 1 and 1
2
< α < 1:

θNk (α) + b =
(1− α)θNk (α) + αθNk−1(α) + (1− α)θNk+1(α) + αθNk (α)

2

as before, we obtain by induction that:

θNk (α) = (θNn+1(α)−
2bN

2α− 1
)
(1− ( α

1−α
)k

1− ( α
1−α

)

)
−

2bk

2α− 1
−

1

2

In particular, it must be that θNN = 1 which gives that θNn+1 = (1 + 2bN
2α−1

)
(

1−( α
1−α

)

1−( α
1−α

)N

)
+ 2b

2α−1
.

As a result, we get that :

θNN−1(α) = (1−
2bN

2α− 1
)
(1− ( α

1−α
)N−1

1− ( α
1−α

)N

)
−

2b(N − 1)

2α− 1
+

1

2

Yet, reproducing the reasoning in the proof of Proposition 8, we can show that θNN−1(α) is a

strictly decreasing function and that:

limα→1θ
N
N−1(α) =

1

2
− 2b <

1

2

Thus, as θNN−1(α) is strictly decreasing and continuous, there is α(b) ∈ (1/2, 1) such that

θNN−1(α) =
1
2
. It follows that there is α(b) ∈ (0, 1) such that, for α ≥ α(b), only one action can

be induced by types in [1
2
, 1].

• Second, consider the case where n = N − 2. Then, there is a single cut-off type in (1
2
, 1). Call

that type θNN−1(α) ∈ (1
2
, 1). By Proposition 5 it must be that:

55







θNN−1(α) + b =
α 1

2
+(1−α)θNn +αθNN−1

(α)+(1−α)1

2

or

θNN−1(α) + b =
α 1

2
+(1−α)θNn+1

+αθNN−1
(α)+(1−α)1

2

⇐⇒





θNN−1(α) =
1
2
− 1−α

2−α
θNn − 2b

or

θNN−1(α) =
1
2
− 1−α

2−α
θNn+1 − 2b

In both cases we have that limα→1θ
N
N−1(α) =

1
2
− 2b < 1

2
. By the same argument as above,

there must be α(b) ∈ (0, 1) such that, for α ≥ α(b), only one action can be induced by types

in [1
2
, 1].

• Finally, consider the case where N = 2. Then, either θNN−1(α) ≤
1
2

for any α > 1
2
, either there

is α > 1
2

such that θNN−1(α) >
1
2
. In that second case, following Proposition 5 it must be that:

θNN−1(α) + b =
αθ̃ + (1− α)0 + αθNN−1(α) + (1− α)1

2

⇐⇒ θNN−1(α) =
2− α− 4b

4− 2α

As limα→1
2−α−4b
4−2α

= 1
2
− 2b < 1

2
. By the same argument as above, there must be α(b) ∈ (0, 1)

such that, for α ≥ α(b), only one action can be induced by types in [1
2
, 1].

In all three cases one can show that
∂θNN−1

(α)

∂b
< 0, which implies that that α(b) is a decreasing

function.
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