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Abstract

We investigate the problem of testing finiteness of moments for a class of semi-
parametric augmented GARCH models encompassing most commonly used specifica-
tions. The existence of positive-power moments of the strictly stationary solution is
characterized through the Moment Generating Function (MGF) of the model, defined
as the MGEF of the logarithm of the random autoregressive coeflicient in the volatil-
ity dynamics. We establish the asymptotic distribution of the empirical MGF, from
which tests of moments are deduced. Alternative tests relying on the estimation of
the Maximal Moment Exponent (MME) are studied. Power comparisons based on lo-
cal alternatives and the Bahadur approach are proposed. We provide an illustration
on real financial data, showing that semi-parametric estimation of the MME offers an
interesting alternative to Hill’s nonparametric estimator of the tail index.

Keywords: APARCH model, Bahadur slopes, Hill’s estimator, Local asymptotic power, Max-
imal moment exponent, Moment generating function



1 Introduction

Volatility of financial returns certainly constitutes the most important concept in decision
making based on risk analysis, portfolio management or asset pricing. For this reason, a
plethora of models has emerged during the last four decades. Among them, GARCH-type
formulations continue to attract the greatest attention, in particular due to their simplicity
of use, flexibility and their seemingly infinite capacity of extensions.

By construction, GARCH models are based on specifications of the conditional variance
but, indirectly, the volatility dynamics constrains the shape of the marginal distribution of
the returns process, in particular through the unconditional moments. For most classes of
GARCH models, moments do not exist at any order and their existence is not a simple
consequence of the model coefficients, but also depends intricately (not only through the
moments) of the innovations distribution. Necessary and sufficient conditions for the exis-
tence of moments of GARCH processes are well-known, at least for the standard GARCH
formulation (e.g. Ling and McAleer (2002)), but little attention has been devoted to testing
these conditions. Testing the existence of moments seems however crucial, in particular for
the validity of many statistical tools commonly used for the analysis of such models. Even if
the asymptotic properties of the Quasi-Maximum Likelihood (QML) estimators of GARCH
models hold without any extra moment assumption, many applications rest on finite un-
conditional moments. Moreover, the existence of moments for financial returns is per se an
interesting issue, which regularly gives rise to controversial views in the empirical finance
literature.

The present paper proposes new methods for testing the existence of moments for a
general class of GARCH-type processes. A first step in this direction has been taken in
Francq and Zakoian (2021a) who proposed tests of the existence of even-order moments for
the standard GARCH model. In this set up, the problem essentially reduces to the derivation
of the joint asymptotic distribution of the QML estimator of the volatility parameter and of
a vector of moments of the innovations process (see Heinemann (2019) for a bootstrap-based
approach). However, this approach cannot be extended to other GARCH formulations for
which the moment conditions are not so explicit. Moreover, it does not allow to handle non
even-order moments, in particular non-integer power moments.

1.1 Augmented GARCH
We consider the class of augmented GARCH processes (see e.g. Aue et al. (2006)), defined

as
€t = O, (1)
o) = wmp-1)+ a(n—1)o}_,

where (7:):>0 is a sequence of independent and identically distributed (iid) random variables
with zero mean and unit variance, 0 is a positive constant, and the functions w(-) and
a(-) satisfy w : R — [w, +00) and a : R — [a, +00), for some w > 0 and a > 0. This class,
introduced by He and Terésvirta (1999), encompasses most GARCH-type models introduced
in the literature.



1.2 Two characterizations of the existence of moments

Under appropriate conditions, the model admits a strictly stationary solution (€;) which has
a moment of order ud, for u > 0, if and only if E|n,|* < oo and E(0) < oo. The latter
condition can be formulated as follows (see Ling and McAleer (2002) and Aue et al. (2006))

E(0") < o0 & Ela"(m)] <1 and FElw"(n)] < oc. (2)

The behaviour of the function u +— Ela*(n;)], which will be called throughout Moment
Generating Function (MGEF) of Model (1) is thus crucial for the existence of moments. In
general, the MGF cannot be expressed as a function of moments of 7;, making the approach
developed in Francq and Zakoian (2021a) inapplicable in this framework.

Under mild conditions discussed below, there exists a unique uy > 0 such that E[a" (n;)] =
1 and the moment condition can be written

E(0™) < o0 & u < Up. (3)

Following the terminology of Berkes et al. (2003), who proposed an estimator of the coeffi-
cient for standard GARCH(1,1) models, the coefficient uy will be referred to as the Mazimal
Moment Exponent (MME). Under mild additional assumptions, this coefficient will be related
to the tail index of the distribution of ¢,.

1.3 Testing the existence of moments

Our main contribution in this paper is to propose tests for the existence of moment of
any (positive) order, based on empirical versions of the MGF and MME. Relying on a
semi-parametric version of Model (1), in which the functions @ and w depend on a finite-
dimensional parameter 6y but the distribution of 7; is left unspecified, we will provide con-
ditions for the consistency and asymptotic normality of the empirical MGF and MME

n

1 ~
St — — Za“(ﬁt; 0,), {, = sup{u > 0; S™ < 1}, (4)
n
t=1
where én denotes any consistent estimator of 8y, and 7;,t = 1,...,n denote the residuals.

Building on this, we will derive tests for the existence of moments. Introducing the test
statistics based on the empirical MGF and MME;,

()
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where 02 and @2 denote consistent estimators of the asymptotic variances of S,(l") and i,
respectively, tests of the moment condition E(c’) < oo are defined by the rejection regions
Cp) ={T" > @7 (1-a)} and C ={UM > 7' (1-a)},

where ® is the A(0,1) cumulative distribution function. Assuming that 7, has a known

density f, or a parametric density f(-;v), parametric versions Vn(”) and Wéu) of the statistic
U will also be introduced.



1.4 Contributions of the paper

For the semi-parametric version of Model (1), we study the aforementioned tests for the
existence of moments. The model being semi-parametric we will not rely on the Maximum
Likelihood (ML) estimation method or any specific method of estimation for the parame-
ter Op. Our conditions allow for general consistent estimators admitting a Bahadur-type
expansion, some of our results being particularized for the QML and ML methods.

Our main contributions are as follows:

a) we discuss the existence and uniqueness of a solution to the parametric SRE associated
with Model (1); conditions for the existence of a unique MME are provided;

b) we establish the weak convergence of the empirical MGF process, from which we deduce
the asymptotic distribution of the estimator of the MME /tail index;

¢) we propose new tests of the moment condition;
d) cases where the errors density is either known or parameterized are discussed,;

e) we provide power comparisons of the semi-parametric and parametric tests under local
alternatives or using the Bahadur approach.

1.5 Organisation of the paper

In Section 2, we develop the asymptotic theory for the empirical MGF. Section 3 derives the
test based on the MGF, while Section 4 derives the test based on the MME. Comparisons
based on local alternatives are studied in Section 5. The case where the power J is unknown is
studied in Section 6. An empirical illustration is displayed in Section 7. Section 8 concludes.
Finally, in appendix we present the proofs of our results, additional properties and Monte-
Carlo experiments.

2 Estimating the MGF of the augmented GARCH

Consider a semi-parametric version of Model (1) defined by the equations

€t = Ut(e[l)nta
{‘7?(90) = w(ntfl;eo)+a(77t71;90)0'?71(00) (5)

where § > 0 is given (see Section 6 for an extension) and 8y € R? is a vector of parameters.
Let @ denote a generic value of the parameter, which is assumed to belong to a compact
parameter set © C R%. Assume that, for any 8 € O, the functions w(-;0) and a(-; 0) satisfy
w(;0):R = [w,+00) and a(+;0) : R — [a, +00).

The second equation in (5) has the form of a stochastic recurrence equation (SRE) which
enables to study its probability properties. Let (¢;) denote the strictly stationary, non-

anticipative1 and ergodic solution of Model (5) (under Assumption A1 in Appendix A). Given

1i.e. €+ € F, the o-field generated by (n:, ne—1, .. .)
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observations €, ..., €,, and arbitrary initial values €y and 6y > 0 we define, fort =1,...,n
and any 0 belonging to O,

-5 €t—1 €t—1 ~5
5,(0) =w | = ;0 4—(1(~ ;0)0_ 7]
t( ) (Utl(e) ) at,l(O) t 1( )

where 4(6) = 69 and ¢y = €. The above SRE raises the question of the invertibility of the
model, which holds only if 5(8) does not depend asymptotically on the initialization (see
Straumann and Mikosch (2006), Blasques et al. (2018)). Under condition A3 below, the
sequence (59(0));>0 can be approximated by a stationary ergodic process (¢9(8)) solution of
the SRE

o20) = w (0;_'51‘(10);9) +a (m%_(lo)? e) ot (0), tel (6)

Lemma 1 in appendix provides conditions for the existence of a strictly stationary solution
to the previous SRE. Assume that for some s > 0, E[a®(n1;0))] < co. For 0 < u < s,
consider the estimator S\ defined in (4) of the MGF 5% := E[a®(n,; 8,)] where 8,, denotes
any strongly consistent estimator of 8y € O, 7, = ¢,/6;, with &, = &t(an)- To simplify
the presentation, precise assumptions, labelled A1-A10 are relegated to Appendix A. In
particular, a moment assumption on a(n;, 8y) is required. This assumption is in general much
weaker than the corresponding assumption for the observed process. In some models, the
moment assumption on a(n;, 8y) is inocuous (as in the Beta-t-GARCH of Harvey (2013) and
Creal et al. (2013) where the variables a(n;, 8y) are bounded). In general, this assumption
can be assessed using the filtered variables a(ﬁt,an) and by applying the nonparametric
approach of Hill (2015).
The following result provides the asymptotic distribution of the empirical MGF S,

Theorem 1 Under A1-A6 and A7 (u) with 0 < u < s/2, we have

V{80 — SV 5 N (0,02 = g, g, + tu + 20,€.) , (7)

where X = E(AYA}), 1, = Varla"(m; 00)], &, = AE[V (n)a" (1 00)], g, = E (g.,,) where

Gus = [(%a“{nt(O);H}]e:eo. Moreover v2 > 0 whenever Var{a“(n:;0o) + g, A 1V (n)} >
2

0.

The asymptotic variance of the empirical MGF has a more explicit form in the case of
the GARCH(1,1) (6 = 2) for two important estimation methods: the Gaussian QML and
the ML.

Corollary 1 (GARCH(1,1)) For the standard GARCH(1,1), under the assumptions of
Theorem 1, letting M,,, = E[n?*(aon? + Bo0)Y], =,y € R, and

O—E (Ut%m 80:295900)) 7 J—E <%8a§9€0) 80523/90)) | (8)

’A sufficient condition is the positive-definiteness of the covariance matrix of the vector
{a*(ne:60), V' (m)}-



we ﬁnd that g,=u {mu - a/OMl,u—IQ} ) where m, = (07 Ml,u—h MO,u—l)/a and
vl = cu’ {m;J_lmu - 04(2)M12,u—1} + Mo2u — M&u, (9)

where ¢, = k4 — 1 with kg = En} for the QMLE, and ¢, = 4/u; for the MLE, where
v= [{1+yf' )/ fW)Y f(y)duly) is the Fisher information for scale.”

An example of model of the form (1) is the APARCH (Asymmetric Power ARCH) of
Ding et al. (1993) defined by w(n) = w, a(n) = ay|n]° 1,50 + a_|n|°1,<o + B. For APARCH
estimated by QML, the assumptions of Theorem 1 can be considerably reduced.

Corollary 2 (APARCH model) Under the following assumptions: i) P(n, > 0) € (0,1),
the support of the distribution of 1, contains at least three points, and E(|n,|*°) < oo with

s6 > 4; 1) © C |w,00) X (0, 00)° x [0,1) is compact and Oy €O, iii) Eloga(n,8) < 0, the
conclusions of Theorem 1 hold for the QML estimator and u < s/2.

3 Testing the existence of moments of given order using
the MGF

For u > 0, consider the ud-th order moments testing problems

Hy,: E(le|™) <oo against Hi,: E(|e]™) = oo, (10)
and
Hy, E(|e]") = 0o against HY ., : E(le]") < oo. (11)
Note that by (2), under the conditions
Elm[* < oo, Blw"(m)] < oo, (12)

the testing problem can be equivalently written as
H,,: FE{a“(n)} <1 against H,,: FE{a“(n)}>1, (13)
and similarly for Hy . Let the test statistic based on the empirical MGEF
NG {Sé“) . 1}

T — _ . where 02 =g,3g, + + 20,4,

provided 02 > 0, with

2
; 1<~ 0 € A\ D , 1 O € AN\ IR ¢t a\.n
= — —a" —(6,);0, y Yu — — 2 _0n70n Y ! _0”70”

t=1

and fu and 3 strongly consistent estimators of &, and X.

3assuming that 7, has a density f with respect to some o-finite measure u. Conditions for the existence
of vy are provided in Assumptions B1-B2 of Appendix A.
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Proposition 1 Under the assumptions of Theorem 1 with v, > 0 and under (12), a test of
H,, [resp. Hy, [ at the asymptotic level o € (0,1) is defined by the rejection region

Cf) = {TM > 37 (1 —a)},  [resp. {T[Y <& ' (a)}]. (14)

This result provides an extension of a test studied by Francq and Zakoian (2021a) in the
case where u is even and (¢;) follows a standard GARCH. In this framework, the moment
condition is an explicit function of 8y, and moments of 7,. The test statistic is thus computed
differently, but is equivalent to T,S“), as the next example illustrates.

Example 1 (2nd-order stationarity testing (v = 1) in standard GARCH (§ = 2))
We have a(n,0) = an® + 3. When the model is estimated by Gaussian QML we have, by
Corollary 1, v? = (kg — 1)efd ey + (ap + Bo)? — 1, where e = (0,1,1). Thus under Hy 1,

S7(ll) - Z &”ﬁ? + Bn OAén + Bn + OP(1>7 U% = (’%4 - 1)66‘]_160'

We retrieve the Wald-type test statistic for testing second-order stationarity,

Ay 4 B, — 1
Tél) = \/ﬁ (C(n—i_ﬁTi 1 ) ‘l‘OP(l)
{(R1— ey eo}1s?

4 Estimating the MME and alternative tests

In the next proposition, we gather existing results on the existence of a finite MME.

Proposition 2 Suppose v = Eloga(n;) < 0.
i) If Pla(n) < 1] = 1: for all u > 0, E[a%(m)] < 1, and E(c) < oo if Elw(n)] < oo.
i) If Pla(m) < 1] <1 and 1 < Ela®(m)] < oo for some s > 0: there exists a unique
up > 0 such that Ela" (n,)] = 1.
Moreover, if E[a"(n)] < 1 and E[a"(n)] > 1 for 0 <u < v then ug € (u,v). In addition, if
E[w"o(n)] < oo, then E(o™) < oo for all u < ug, and E(c"®) = oo for u > uy.
If i1) holds, the law of log a(ny) is nonarithmetic, and if Ea(n;)" log™ a(n) < oo, there ex-
ists ¢ > 0 such that P(o; > x) ~ cx™°% and P(|e;| > x) ~ E|n,|*"P(0; > x), asx — oc.

Remark 1 When a(n,) has unbounded support and admits moments at any order m, such
moments tend to infinity when m increases and the condition 1 < Ela®(n1)] < oo for some
s > 0 s satisfied. More generally, for most classical distributions with unbounded support
the condition s satisfied. Howewver, the following example shows that the condition is non
trivial: suppose that the density g of a(ny) is such that g(z) “~° K(z*log?2)~'. Then we
have Ela®(m)] = oo for any s > 1 but Ela(m)] < oo (if, for instance, g is bounded). It is
clear that the latter expectation can be made smaller than 1 by scaling the function a. For
such distributions, ug does not exist.
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Figure 1: MGF for the standard GARCH(1,1) model with ag = 0.10, 8y = 0.85 and for Student
errors with v degrees of freedom. Values of the MME wug are displayed over the horizontal axis.

Remark 2 The tail properties in this proposition—established in the case of standard GARCH
by Mikosch and Starica (2000) and for augmented GARCH by Zhang and Ling (2015)-show
that, under mild additional assumptions, the coefficient dug is also the tail index of the aug-
mented GARCH process. Conditions for the existence of a tail index for general SRE were
derived by Basrak et al. (2002), and Kesten (1973) characterized this coefficient as the so-
lution of an equation taking the form E[a" (m)] = 1 in the case of augmented GARCH(1,1)
Processes.

Proposition 2 is illustrated in Figure 1 for Student distributions with v = 10, 15 and 20.
We will now investigate the estimation of the MME ug and the corresponding test under
three different settings.



4.1 Semi-parametric estimation of the MME

The following result is the sample counterpart of Proposition 2.

Proposition 3 Suppose v, := 1 31" | log a(7; 5n) < 0.
If a(ﬁt;an) <1 forall1 <t <n, then S <, for all u > 0.

Conversely, if a(n;0,) > 1 for at least one 1 <t < n, then there erists a unique u, > 0
such that S8 = 1. Moreover, if SY < 1 and S&) > 1 for 0 < u < v then u, € (u,v).

Letting @, = sup{u > 0; St < 1}, we have 4, = co when a(ﬁt;an) <lforalll<t<n,
and @,, = u, (of Proposition 3) in the opposite case. We will show the strong consistency of
Uy, -

Theorem 2 Suppose v = E{a(n)} < 0, with a(n) = a(n;0y). Under A1-A4, A6 and
E supgey (g,) | % log a(e:/a¢(8); 0)|| < oo, we have v, — 7, a.s. Moreover, if

i) Pla(m) < 1] =1, then u,, — 00, a.s.

i) Pla(m) > 1] >0, and 1 < Ela*(m)] < oo for some s > 0, then 4, — ug, a.s., where
ug > 0 is such that E[a"(n)] = 1.

In order to obtain the asymptotic distribution of u,,, we will now show the following functional
extension of Theorem 1. For u; < uy, let Cluy, us] denote the space of continuous functions on
[uq, us], and let = denote weak convergence on the space C equipped with uniform distance.

Theorem 3 [f A1-A6 and A7 (uz) hold, for [ui,us] C (0,s/2)

Vi {S(0 — s} L () (15)

where I'(u) stands for a Gaussian process with ET'(u) = 0 and Cov{I'(u),T'(v)} = ¢, Xg, +
wum + g;gv + g;ﬁu where ¢u,v = CO’U{CLU(T/H 00), av(nl; 00)}

Let D&Y = Ela*(m; 0y) log{a(mn; 60)}| the first-order derivative of the MGF u — S8 which
is well-defined for u < s under Al. Note that D% is positive (in view of the convexity of
the MGF). The asymptotic distribution of the MME was derived in the standard GARCH
case by Mikosch and Starica (2000) and Berkes et al. (2003), for Double AR(1) models by
Chan et al. (2013), and for both models using a least absolute deviation estimator by Zhang
et al. (2019). For the augmented GARCH, we have the following result.

Theorem 4 Under the assumptions of Theorem 3, if Assumption ii) of Theorem 2 holds,
with uy € (0,us), we have

V(i —ug) S N (0,w2, := {D{} 202 ).

uo

This result allows to build asymptotic confidence intervals (CI) for the MME wuq and also, by
Proposition 2, for the tail index of the distribution of ¢,. Hill’s estimator of the tail index has
been studied for time series models under different dependence assumptions (as for instance

9



in Drees (2000) or Resnick and Staricd (1998)). However, this estimator crucially depends
on the choice of the fraction of sample on which it is computed (see for instance Figure 1
in Zhu and Ling (2011)). Moreover, Back, Pipiras, Wendt and Abry (2009) showed that
the Hill estimator is extremely biased for estimating the tail index of ARCH-type models.
Even for iid data and very large samples, estimating the tail index using Hill’s estimator is
very challenging unless the underlying data comes from a Pareto distribution” (see below
experiments in the numerical section using Student distributions). The derivation of CI for
the tail index using Hill’s estimator is even more challenging. By Theorem 4 one can estimate
the tail index of an augmented GARCH at a parametric rate, instead of resorting to extreme
value statistics. A similar situation occurs for the estimation of the density of a GARCH(1,1)
since, by exploiting the dynamic structure of the model, Delaigle et al. (2016) managed to
provide a root-n consistent estimator. Trapani (2016) also noted that Hill’s estimation of the
tail index "is fraught with difficulties" and proposed a randomised testing procedure applied
on sample moments for testing for (in)finite moments in a general nonparametric framework.

Now consider testing (10) for a given u > 0. Note that the null assumption can be
equivalently written Hg, : u < ug. Let the test statistic,

-2
— 4 1 — ~ ~
AL Gl L) S I {—Zaumt;en)log{a(m;0n>}} o2,
n

Wa, t=1

Proposition 4 Under the assumptions of Theorem j with wio >0, and (12), a test of Hy,,
[resp. Hy | at the asymptotic level o € (0,1) is defined by the rejection region

C = (U > (1—a)},  [resp. {U®M <& M)}, (16)

and an asymptotic 100(1 — a) % CI for ug is @, £n~ 20711 — a)w,

n*

We will now consider situations where the errors have a density which is either known, or
known up to a finite-dimensional parameter which is estimated, yielding alternative estima-
tors of the MME.

4.2 Purely parametric estimators of the MME

In this section, we assume that 7, has a density f which is positive everywhere, with third-
order derivatives and satisfying some regularity assumptions displayed in Appendix A. These
regularity conditions are satisfied for numerous distributions, including the Gaussian distri-
bution, and entail the existence of the Fisher information for scale ¢y introduced in Corol-
lary 1.

4According to Drees et al. (2000), "One would have to be paranormal to discern with confidence the true
value from the Hill plot."
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4.2.1 When the errors density is known

When the density f of n; is known, under the assumption ii) of Theorem 2, given 6 the
maximal moment exponent uy = ug ;(6) can be obtained by solving the implicit equation

/a“o(:z:; 0)f(z)dx = 1.

Under B3 this solution satisfies, by the implicit function theorem,

auo’f(eo) — _1 p— a (UO) —_ upg—1 . aa’(nt700)
80 — Dggo) Iru07 Iruo T aBSoo - E Upa (nt700) 80 .

For the classical GARCH(1,1), we have r,, = upm,,, where m,, is defined in Corollary 1.
Let @, ; = ug, f(0n,n1) where 0, 1, is the MLE of 6y, that is, the estimator of ug obtained
by solving

/aﬂ"vf(x; amML)f(a:)dx =1.

Note that 4, ¢ is the ML estimator of uy (by the functional invariance of the ML estimator)
which is not the case of 4, (even when §n is the ML estimator of ).

Under regularity assumptions (derived by Berkes and Horvath (2004) in the case of the
standard GARCH(p, ¢) model), the MLE of 6, satisfies an expansion displayed in B4 (see
Appendix A). Let the test statistic

v _ Vn(u — iy, f)

n Ja )

af
49 1oug | /2 1 4 1 1/2
A . . . _ [ 4 0u 7—10uo — 2 -
where 7 is a consistent estimator of oy = (Lf s ae) = 0 {Lf Tuod ruo} .

Proposition 5 Let Assumption ii) of Theorem 2, (12), Assumptions B1-B4 hold, and let
T 7# 0. Then, a test of Ho, [resp. Hy,[| at the asymptotic level o € (0,1) is defined by
the rejection region

O = VW > (1-a)},  [resp. {V <@ Ya)}], (17)

and an asymptotic 100(1 — o) % CI for ug is U,y +n"2d7 11 — a)5;.

4.2.2 When the error density is parametrized

In practical situations, assuming that the density f of n; is known is not realistic. Alterna-
tively, the density can be supposed to be known up to some finite parameter: f(-) = f(-,v)
where vy € R™ for m € N. Let ¢, = (05, v}) and assume ¢ € ® C R™*, Given ¢, the
MME, when it exists, is now the solution uy = ug () of

/a“o(x; 0) f(z, v)dz — 1.

11



Under B5, we have

dug f(Soo) —1 dug f(‘Po) —1 1 Of (me;v0)
: = uo ; = ugs Sug T E 1o ;6 .
00 Do) T oy o) Fuor 8 @™ (1; 6o) Ffave) ov

Let u, ; = uOJ(@n, v,) where (5n, U,) is the MLE of ¢, which can be obtained by solving

/ a™ni(z;0,) f(x,D,)de = 1. (18)

The asymptotic properties of the ML estimator of ¢, were established by Straumann (Chap-
ter 6, 2005). For the sake of brevity, we defer to this reference for precise assumptions under

which such properties rely. We assume that the MLE satisfies the expansion in B6. Let the
_ Vn(u—i, ;)

test statistic Wéu) = where ¢ is a consistent estimator of

— Qug Jug\ ~ 1 (Oug Oug / 1/2_ 1 DU NG e
gf_{(W’aw)" (60”@)} _@{("“"0’8"0)" (rs)}

Proposition 6 Let Assumption ii) of Theorem 2, (12), Assumptions B1-B2 with f(-) re-
placed by f(-;vo), B5-B6 hold, and let (v, ,s,,) # 0. Then, a test of Ho, [resp. Hy [ at

up? “up

the asymptotic level a € (0,1) is defined by the rejection region

O = (W > o7 (1-a)},  [resp. (WM <3 Y(a)}], (19)

and an asymptotic 100(1 — a)% CI for ug is 1, ; + n~12¢71(1 — )3y

5 Asymptotic power comparisons

To compare the tests of H, we first note that, under the assumptions of Theorem 4 and
from the proof of this theorem,

Ulw) = 7o) 4 55(1). (20)

n n

Thus the statistics are equivalent at the frontier of the null assumption and, from the Le Cam
theory, they are also equivalent under local alternatives. In this section, we will compare
these tests with the parametric ones and also provide non-local comparisons.

5.1 Asymptotic power under local alternatives

Conditional on ¢, and oy, the density of the observations (e, ..., €,) satisfying (5) is given
by Lnr(60) = ITi_y o0 (80) f {0 " (Bo)er } -

Around 6, 6(2), let a sequence of local parameters of the form
en = 90 + T/\/ﬁ7 (21)

12



where 7 € R%. We denote by P, (resp. Pp) the distribution of the observations when the
parameter is 6,, (resp. 8y). Under the assumptions ii) of Theorem 2, for given f and 6,
there exists a unique ug := ug(8y, f) such that E{a"(n;)} = 1. Without loss of generality,
assume that n is sufficiently large so that 8,, € ©. Note that, under appropriate assumptions
on T, the parameter 8,, belongs to the alternative for testing H,,.

Drost and Klaassen (1997) showed that for standard GARCH, the log-likelihood ratio
Ay, ¢(0,,00) =log L, £(6,)/L, ¢(0y) satisfies the LAN property

1
Ayt (0,,00) = T'A,, £(00) — §T,jf7- + op,, (1), (22)

where

-1 160
Ay p(0o) = Zglma t(60)

d 1 80}5(00) 60}(00)
— 0,7 Jr=uE|—=

. N(0.3p), Fr =y <a§ 90 00
under Py, as n — oo. Note that the so-called central sequence A,, ((6y) is conditional on
the initial values. It is shown in Drost et al. (1997) and Ling and McAleer (2003) that (22)
continues to hold in more general frameworks. Lee and Taniguchi (2005) showed that the
initial values have no influence on the LAN property. Together with Le Cam’s third lemma,

the LAN property allows us to derive the Local Asymptotic Powers (LAP) of our tests.

Proposition 7 Under Assumptions B1-B2, (22) and the assumptions of Propositions 1
and /4, respectively, the LAP of the tests of Hy,, defined in (14) and (16) are given by

lim P (CF7) = i Por (CEV) = @ {cpum(@) -7 0 -a)} (29

where, using g1(y) =1+ QT/(?J);

/

cron(®0) = = £ (L2200 a0} + B (- 2500 gl A ) EViann)

Vuyg O¢ ¢ 00

For instance, in the standard GARCH(1,1) model estimated by QML or by ML, computations
reported in appendix show that, with obvious notation,

ML Uog U

T muo < Cf U (00) T/mu()’ (24)

Vuo,QML Vug,ML

where the denominators are displayed in (9). It can be noted that the tests are locally
asymptotically unbiased (i.e. ¢y, > 0) whenever 73/7 > o/ .

In the usual case where the power uy decreases when the parameter increases in a given
direction e € R?, we are able to derive the power of asymptotically locally Uniformly Most
Powerful Unbiased (UMPU) tests and give conditions for the tests 7" and U to be optimal
in this sense.

13



Proposition 8 Assume that ug(60y + f,f) < up(By, f) for n large enough and any € > 0.
Then, under the assumptions of Proposition 7, any asymptotically locally UMPU test for
testing Ho, @ uo(Bo, f) > w against Hyp, @ u(Bg + f,f) < u has asymptotic power
bounded by
12 ,

lim Py, , . (C)=1-0{0 " (1-a)—c}, uwith c:éﬂ

n—00 Lnu - <t © Qm
For the standard GARCH(1,1) with ug = 1 and e = (0, 1,1)’, the tests C’C(Fl) and C'(Ul) obtained
by QML/ML estimation are optimal if and only if the density of n, has the form

a® 2 OO
=——e Y|y, a>0, I(a :/ t* e tdt. 26
f(y) I(a) [y (a) i (26)

The assumption on the MME of the proposition is satisfied for any commonly used GARCH-

type model where the volatility increases when any component of the parameter increases.
The following result gives the LAP of the test assuming the density is known.

Proposition 9 Under the assumptions of Propositions 5 and 7, the LAP of the test of H
defined in (17) is given by

(25)

lim P (CF) = ® {dg, (60) = @7 (1= )} where  d,,(80) = T (27)
n— 0o ;U0 ;U0 4 ’r/ J_l,r,
Lf U0 uo

Under the assumptions of Proposition 8, the test C‘(/“O) is optimal if the vectors r,, and e
are collinear.
Next, we turn to the case of Section 4.2.2 where the errors density is parametrized and

estimated. Around ¢, = (0;,v}) €®, we now consider a sequence of local parameters of
the form

0,=00+T71/Vn, v,=vy+T2/V/n, (28)
where 7; € R?, 75 € R™. We still denote by P, + (resp. B) the distribution of the obser-
vations when the parameter is ¢, = (0 + 7 /\/n, vy + Th//n) = @y + 7/v/1 (resp. @,).
Let the log-likelihood ratio A, (g + 7/v/n, @y) =108 Ly £(@,)/ L.t (¥0)-

The LAN property (22) holds when the density f can be treated as an infinite-dimensional
nuisance parameter. In Francq and Zakoian (2021b), we show that the LAN property also
holds in the parametric framework of this section: a Taylor expansion around ¢, of the
log-likelihood ratio yields

[
Mg (s p0) = 7' B s (o) = 5T Inl@0)T + 0py, (1), (29)
where J,,(¢,) is a consistent estimator of ¥ and, under P,
/
1 o (6o) 1 af (e, vo) d
A, Vo) — ’ N(0,3).
sl = <\/_Zgl " Ut 00 \/_ Z f(ne,vo) OV — N(0.3)

(30)
The next result provides the LAP of the test .
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Proposition 10 Under Assumptions B1-B2, (29)-(30), and the assumptions of Proposition
6, the LAP of the test of Hy,, defined in (19) is given by

/ /
TuT1 + Sy T2

e 5) 37 (P50,

Under the assumptions of Proposition 8, the test C(Wu(’) is optimal if the vectors (r;O, s&o)
and 7’ are colinear.

Propositions 7,9 and 10 (with 79 = 0) are illustrated in Figure 2 for Student distributions
with v = 5,20,30 and oco. In the GARCH(1,1) case the LAPs of the tests T, U,V and W
depend on 7 through m; 7, which is thus reported in the horizontal axis. As expected,
the test V is locally asymptotically more efficient than the other tests, especially when wy is
small for the equivalent tests 7" and U. The latter two tests are also dominated by the test
w.

lim P, - <C'(Wu°)> =0 {ef’uo(Qo) — o N1 - g)} . €fuy(B0) =

n—oo

5.2 Comparisons based on Bahadur slopes

To be able to distinguish the tests 7" and U, we turn to the Bahadur approach. We will
also compare them with the tests V' and W requiring knowledge or estimation of the density.
Recall that the Bahadur slope is defined as the almost sure limit of —2/n times the logarithm

of the p-value of the test. The statistics T\, U and W) are A” (0, 1) distributed under the
null. The p-values of the tests based on T3 and U™ are thus 1 — ® <T7§u)> and 1—® ( 7(11‘))
respectively. Under the alternative H,, : u > ug we have, almost surely, as n — oo,

VST V1) Vi) Ve )

() —
" {}u Uy ’ " W4y, Wy
VW — vl — an,f) N vn(u — u) W — vn(u— ﬁo,f) N Vn(u — up)

af af Sf Sf

It can be shown that log{l — ®(z)} ~ —2?/2 as * — +oo. The asymptotic slopes of the
tests are thus

2 2 2
Ceoly = L oy = I g () = L
qu Uf §f

In the Bahadur sense, the test 7" is more efficient than UL if and only if

o) {S¥ -1} o2

uo

cw(u)  {u—up}? {Ela"(ni;00)log{al(n;b)}]}?v2

> 1,
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a=0.1, =0.85,v=00, Uy =4.536 a=0.1, =0.85, v= 30, up=4.119

1.0

0.6

0.4

0.2
1

1.0

0.4

Figure 2: LAPs of the test 7" and U (blue line) based on the Gaussian QML, the test V' (dotted
red line), and the test W (dotted orange line) as functions of m;, 7, for the standard GARCH(1,1)
model with ag = 0.10, 8y = 0.85 and for Student errors with v degrees of freedom.
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a=0.1, B=0.86 a=0.09,p=0.8

0.0012
|

— cr(u)
cu(u) 4

= o) ]

!
-~
0.0008
!
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|
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|

~
0.0004
|

Figure 3: Asymptotic slopes of the tests T,U and V for Gaussian errors and the standard
GARCH(1,1) models.

and the test W\ is more efficient than U™ if and only if

ow (1) = 1)20 (r’ s )3_1 (7" s ), > 1.

up? T ug ug? T ug

Note that the latter condition does not depend on u, i.e. on the alternative.

Examples of asymptotic slopes in the standard GARCH(1,1) case with Gaussian errors are
displayed in Figure 3. It is clear from these graphs that, for the alternative Hy, : u > o,
the test U based on the MME is more efficient than the test 7" based on the GMF, and that
the ratio cy(u)/cr(u) increases as u departs from ug. On the contrary, for the alternative
H7i, : wu < ug, the asymptotic slopes are in favor of the test T. The test V has always
better power than U, but may be outperformed by 7" in the left-hand side of ug. Interestingly,
the left panel shows that the slope of the test T' may decrease for large values of u, which
can be explained by the fact that the numerator and denominator of this ratio both tend
to infinity as u increases. On the other hand, for small values of u the moment condition
u < s/2 required for the validity of the test T" can be satisfied while the condition ug < s/2,
required for the validity of the test U, might be violated. Similar graphs for Student errors
are reported in appendix.

Monte-Carlo experiments displayed in appendix illustrate the lack of power of the test
T, compared to its competitors, in agreement with Figure 3.
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6 Selecting 0

In practice, estimating 6 > 0 is very challenging. Even if the asymptotic normality of the
joint QML estimator of § and 8 has been established, the value of  can be extremely difficult
to identify in finite sample (see Hamadeh and Zakoian (2011)). The quasi-likelihood being
very flat in the direction of 9, estimating this coefficient may entail considerable numerical
difficulties and result in poor accuracy. For this reason, instead of treating ¢ as a real-valued
parameter, practitioners tend to select ¢ from a finite set of values corresponding to well-
known models such as the standard or GJIR-GARCH (6 = 2) or the T-GARCH (6 = 1). To
reflect the existence of several candidates for §, assume that the true value dy belongs to a
finite set,
50€D:{51,...,5d}, 0; >0, i=1,...,d.

For the sake of illustration, we focus on the APARCH model and the QML estimator.

Write the vector of parameters as ¥ = (6,0') and assume ¥ € D x © where O is
a compact subset of (0,00) x [0,00)® x [0,1). The true parameters value is denoted by
Yo = (0o, 0,)’. In order to define the QMLE of 9, we define recursively ,, for ¢ > 1, by

. _ N 5
50 = 5u(9) = (w-+ o () + () + 5ol) .
A QMLE of 9 is defined as any measurable solution @fML = (6QML, oM )" of

~QML

n

=arg minL,(9), L@ =n"Y 0, =008 = 5+ 5k
t=1

YveDxO o
Let a(n, 9) = ay|nl*Tyso + a7 Ty<o + 8 and let S3 = L3771 a*(iy; 9,).
Proposition 11 Under the following assumptions: i) n, has a positive density on some
neighborhood of zero, E(|n:|*®) < oo with séy > 4; ii) 6y €O, and i) Eloga(n,¥y) < 0,

we have B\SML = dg for n large enough and the conclusions of Theorems 1 and 3 hold. If n,
has a positive density over the real line, the conclusion of Theorem 4 holds.

As a consequence, the tests of the previous sections can be applied without modification for
this model.

7 Empirical application

Davis and Mikosch (2009) noted that "In applications to real-life data one often observes that
the sum of the estimated parameters +Bl 18 close to 1 implying that moments slightly larger
than two might not exist for a fitted GARCH process.” Francq and Zakoian (2021a) made a
first attempt to check this intuition by considering the returns of the French energy company
Total SA, one of the main constituents of the CAC40 index, over the period 2001-07-16 to
2018-09-21. On this series, they fitted a standard GARCH(1,1) model and, using T for

18



testing the existence of even-order moments, found strong evidence for the existence of the
second order marginal moment and suspicions of non existence of the 8-th order moment.
Given that (i) tests based on 71" often turn out to be much less powerful than those based
on UL and W"; (ii) we are able to test finiteness of any real-order moment, and (iii) our
analysis is not restricted to the standard GARCH model, there is hope to improve the results
obtained in Francq and Zakolan (2021a).

We thus reconsidered the same series and estimated APARCH(1,1) models, by using the
QMLE for tests 7., UL and V,(* (the QMLE is actually the Gaussian MLE in the latter
case) and the MLE, assuming a standardized Student distribution with v degrees of freedom
for the iid innovations, for the W, test. We searched § € {0.5,1,1.5,2}, and estimated the
optimal value 6 = 1 with both the QML and ML estimators. The volatility model estimated
by QML is

7 = 0.037 + 0.018ler 1 [Tei0 + 0 1320er-1 [ _y<o + 0.01607
(0.006)  (0.010) (0.009)

where the estimated standard deviations are given into brackets. The model estimated by
Student-ML is

=0.033+0.016 1. O 126 1. 0. 922 , ~St(11.1
(0007)4—(0010)!@ e, 50 + ‘Gt e, 1<0+( Oi—1, Mt <(1_7))

where St(v) denotes the standardized Student with v degrees of freedom. Note that the
volatilities estimated by QML and ML are almost the same. Results displayed in appendix
show that the QMLE and MLE residuals do not show any sign of dependence and that
the distribution of the residuals is better represented by the Student than by the Gaussian
distribution (in particular the empirical kurtosis of the QMLE and MLE residuals are respec-
tively 3.807 and 3.816, which is much closer to the kurtosis of the fitted Student distribution,
which is 3 +6/(v — 4) = 3.848, than the Gausian kurtosis). Table 1 shows that the tests
based on U and W, give s1m11ar results and are much more conclusive than the test
based on 7). The test based on V") does not seem reliable since we have seen that the
empirical distribution of the residuals is far from the Gaussian. The estimated maximum
moment order is Ty = 7.9 with the U™ statistic, and @y = 7.8 with the W, statistic. At the
asymptotic confidence level 95%, an estimated CI for uq is [4.5,11.3] with the U™ statistic
and [5.9,9.6] with the W\" statistic. The empirical MGF S{ is drawn in red in Figure 5.
This curve crosses the horizontal line y = 1 at uy = 7.9, the estimated value of uy based on
U™, To have an idea of the variability of this estimator without relying on the asymptotic
theory, we simulated APARCH(1,1) models with parameter 8,,~the QMLE computed on the
Total series—and a noise whose distribution is that of the QML residuals. The MGF com-
puted on the first 20 replications of this bootstrap simulation are plotted in Figure 5. Using
10000 bootstrap replications, an empirical 95% CI for ug is [5.7,9.8], which is quite similar
to the estimates obtained from the asymptotic theory. The two estimation methods based
on U™ and W therefore glve a similar estimated tail index but, as expected, the fully
parametric method based on Wi prov1des a tighter CI. We thus ﬁnd strong evidence for
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Table 1: Test statistics TT(L“), U,(L"), A% (assuming Gaussian innovations), wiw (assuming Student inno-
vations) based on a APARCH(1,1) model for the Total return series.

u 1 2 3 4 5 6 7 8 9 10 11 12
T 471 418 -350 -2.72 -191 -1.15 -0.49 0.04 0.46 0.76 0.97 1.11
M 394 -337 -280 -2.23 -1.66 -1.09 -0.52 0.05 0.62 1.19 1.76 2.33
v 725 623 -521 -419 -3.18 -2.16 -1.14 -0.12 0.89 1.91 293 3.95
W 68 -58 -4.81 -3.82 -281 -1.79 -0.77 025 126 228 3.30 4.32

the existence of finite moments of order 5 or 6, which makes it possible to validate certain
statistical procedures, such as the construction of confidence intervals for the prediction of
the squared returns over a long horizon. By contrast, as can be seen in Figure 4, the usual
Hill estimator does not seem to be informative on the value of the tail index, both on the
Total series (left graph) and on a simulation of the model for which we know that ug = 7.8
is maximum moment order. Note that Figure 4 is in perfect agreement with Figures 2 and
3 of Baek et al. (2009).

From this study we draw the conclusions that: 1) the tests proposed here are much more
effective than the Hill estimator to assess the value of the tail index of a GARCH-type model;
2) estimating the maximum moment order is a difficult problem (since the CI remain large,
even in a fully parametric framework); 3) at least for the Total series, moments seem to exist
at an order much larger than two, which leads to relativize the overly pessimistic statement
quoted at the beginning of this section.

8 Conclusion

In this paper we introduced statistics for testing the existence of moments of given order
based on the MGF and MME of augmented GARCH processes. The tests are amenable to
different parametric or semi-parametric estimators of the model parameter. We provided
local and non-local asymptotic comparisons of the tests and illutrated their usefulness on
a real financial series. Estimation of the MME offers an interesting alternative to Hill’s
estimator of the tail index which is often non informative in practice.

A potential extension of our tests would concern higher-order GARCH volatilities of the
form

Uf = w(nt—h s 777t—k) + a(nt—la S 777t—k)0—?—k

where k& > 1. This extension is left for future investigations.
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Figure 4: Hill plots of the absolute value of the Total return series (right graph) and of a simulation
of an APARCH model with tail index 7.8 (left graph).
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Figure 5: Empirical MGF for the APARCH(1,1) model fitted on the Total return series (red full
line), MGF of 20 bootstrap replications (blue dotted line), and 95% bootstrap interval (delimited
by vertical dotted lines) over 10000 bootstrap replications.
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A

Appendix

Assumptions

The next assumptions are used in the semi-parametric framework of Sections 2, 3 and 4.1.

Al:
A2:

A3:

A4:

Ab:

AG6:

Elw*(n1,00)] < 0o, Eloga(n,0) < 0and E[a*(n,60y)] < oo for some ¢ > 0 and s > 0.

For any @ € O, there exists zy > w such that

Elogtw %;0 +log*t a %;0 < 00, Elogsup

0 €t ) €¢ )
o 521 (50) +a(5m0) )
The F;_i-measurable function 8 — (04(0),5,(0)) is a.s. twice continuously differen-

8(’5—(2‘9) 8“’5(0)‘ < K;p' where K; € F;_4

tiable. Moreover, supgeg |0:(0) — +(0)| +
and sup, F(K}) < oo for some r > 0.

There exists a neighborhood V' (6) of 8y such that £ <Supeev(90) Ut((go))>’” < oo and
E supgey oy 100:(6)/06]” < co.

0, belongs to the interior é of © and the following Bahadur expansion holds
—~ 1 <
0,0 ) - —_5NAV 1),
V(8. =60) = =3 AcVin) +or()

where V(-) is a measurable function, V' : R + R¥ for some positive integer k, and
A, ; is a F;_j-measurable d x k matrix, (A;) being stationary. The variables A; and
V (n;) belong to L? with EV (n;) =0, var{V(n,)} = Y is nonsingular and EA; = A

is full row rank.

For almost all ¢, the function (o,0) — a(%;8) is twice differentiable over [w, +00) X

V(6y) and there exist C, 7 > 0 such that, for any (¢,0,0) € R x [w, +00) x V(8y),
€ dloga(%;0)| [0*loga(< 810ga 9*loga(<;0)
max < a (—; 0> , i ,

o 802

do 3060

< ef(5) 1}

Let 1:(0) = €;/04(0). For any u > 0, we introduce the following assumption.

AT(u):

There exist p,q > 0 such that % + % =1 and
0l 0);:0)|
E sup (a“p(m(O); 0) + H 08 agz( ):0) + '

0eV (60)

0*log a(1:(0); 0)
9600’

q/2
< Q.
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Assumption A1 ensures the existence of a strictly stationary and ergodic solution (&) to
Model (5), while A2 ensures the existence of strictly stationary and ergodic solution to the
SRE (6) by Lemma 1. Assumption A3 is introduced to control the effect of the initial values
on the statistics under study as the sample size increases. A5 is a mild assumption which is
fulfilled by commonly used estimators of volatility parameters, as illustrated in Corollary 1.
The other assumptions reduce considerably for particular specifications of the MGF, see for
instance Corollary 2.
The next assumptions are used for the fully-parametric framework of Section 4.2.

B1:
B2:

B3:

B4:

B5:

B6:

C

hm\yl%oo yf(y) =0 and lim‘y|ﬁoo y2f'(y) = 0.

For some positive constants K and ¢,

Lo|+2|(5) @+ |(£) wsxarim. Eme <o

The function 6 — [ a“(z;0)f(z)dx is continuously differentiable under the integral
sign.

Y]

Letting ¢1(y) = 1+ yfTI(y) we have

Vi 2 Z
n,ML — Lf\/_

The functions 0 — [ a“(z;0)f(z,v)dz, v+ [a"(z;0)f(z,v)ds are continuously
differentiable under the integral signs.

1 80

—|— OP(l).

We have
1 Zn 1 Gat
. o - 57 36 9101)
\/ﬁ((lon,ML - (PO) = ' ( _21\F n = 1 808f(77t ;20) > + 0P<1)7
NG Zt:l f(nevo)  Ov
where
L _g1(mt) 9f(mesvo)
3 _ 4 J QE < f(ne;vo) ov’ >
nt) Of(ne;v0) / 1 Of (me;vo) Of (e5v0)
E < N¢;V0) ov ) O K <f2(17t;uo) ov ov'’ )

Examples of augmented GARCH models

Conditions for the existence of a strictly stationary
solution to the SRE (6)

Lemma 1 Let (X;) be a stationary and ergodic process. Suppose that for some differentiable
functions w : R — [w, +00) and a : R — [a, +00), where w > 0 and a > 0, and for 6 > 0,

X X
Flog™® w( 1/6)+Elog a( 1/t5) < oo, Flogsup

0 X Xy
awm%—amz <0,

22w
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Table 2: Examples of models satisfying (5) (with * = max(z,0),2~ = max(—=z,0))

Model 0,9 a(n, )

GARCH! (w,a,f),2 an? + 3

Taylor model? (w,a, B),1 aln| +

TGARCH? (w,ay,a_,B),1 ant+a_n +p3
GJR-GARCH? (w,ay,a_,3),2 ant+an?+p
APARCH® (w,a,&,B),6 w+ alln] —&n)’ + B
Beta-t-GARCH® (w,, B,v),2 B+ g‘jﬁjﬁj’;ﬁ

Lol =w+ae | + Bol, Tol=w+are +a_e + Poi,
201 =w+ale_1| + Bor S0l =w+ afle1| — &e1)° + Bo?d
Soy=wHare  +ae |+ Boi 602 =w+ B |+ a%

for some zy > w. Then there exists a stationary and ergodic solution (Z;), Z; € [w,0), to

the SRE
X, X
7= w <+/;> +a <%> Zi, tEL
Zt—l Zt—l

D.1 Proof of Lemma 1

We provide a direct proof of this result, which could be obtained as a consequence of the
much more general (but non-explicit) result of (Straumann and Mikosch (2006), Theorem
2.8). For alln € Nyn > 0 let

X X
Lip =W (Zl/;—l> +a (t—1> Zi—in-1 = (X1, Zt—1n-1), t €,

1/6
t—1,n—1 thl,nfl

D Proofs

where Z, o = 2. For fixed n, the sequence (Z;,); is stationary and ergodic. By the mean-
value theorem,

(X, 2) — p(Xy, Z)

zZ—Z

< A;:= sup

2€[w,00)

sup
2#Z,2NZ>w

690(Xt7 Z)
0z )

It follows that
| Zt — Zin—1| < Mc1|Zi—in1 — Zi—a—o| < MpcaNio oo M| (Xi—n, 20) — 0]

Thus, for n < m,

m—n—1

’Zt,m - Zt,n| S Z |Zt,m—k - Zt,m—k—1|
k=0
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< Z At—l R At—j+1’<)0<Xt—j; Zo) — Z(]| —0 a.s. as n — Q.

The latter convergence follows from the Cauchy rule applied to the infinite sum, using
Flog™ \; < oo and Elog A\, < 0. We have shown that, a.s., (Z;,)nen is a Cauchy sequence.
The conclusion follows by standard arguments.

D.2 Proof of Theorem 1

It will be useful to consider the theoretical quantities defined for 8 € © by

S(0) == S a" n(0):6), 50(0) = - > a"{i(0); 6.

where 7,(0) = e,5, ().
Noting that S = 57(1“)(9”), a Taylor expansion of S,S“)(en) around @y yields

05:"(8%) 955" (6,)

Vi {si - s} = ﬁ{55"><@n>—55“><5n>}+[ V@, ~ 60)

00’ 00’
(u) .
+%B—9('00)\/ﬁ<0n —00) + V{5 (60) - SL'} (31

where 0 is between én and 0.

Write a($;0) = b(e,0;0) where b : R x RT x @ — R*. Under A6, for such function b
or logh, V, (resp. Vg) denotes the partial derivative with respect to o (resp. ), and V2
(resp. V?2,) denotes the unmixed (resp. mixed) second-order partial derivative with respect
to o (resp. o and 0).5 With this notation, we can write for instance

0 0 0

a—ea(m(é’); 9) = a_eb(ﬁtaat(9)§ 9) = Veb(Gt,Ut(9)§9) + Vab(etao-t(e);e) %Ut(e)-

The proof of the theorem will be a consequence of the following lemmas whose proofs are
provided below.

Lemma 2 If the conditions of Theorem 1 are satisfied, then

sup n|S™(0) — S,g“)(O)) =0(1) a.s. (32)
0V (00)
PFor instance in the standard GARCH(1,1) model with 6 = (w,«, 3)’, we have b(e,0;0) = « (§)2 + B,
Q)= =2 a(e)? P a2 ) )
Vo logh(e,7:0) = =& ¢ (£)* and Vg logb(e, o3 0) = e (0, (£) ,1) . In the ARCH(1) case, with

0 = (w,a)’, we have b(e,0;0) = « (§)2, thus V, logb(e, 0;0) = _72 and Vglogb(e, 0;60) = (0 1)/.

e
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Lemma 3 If the conditions of Theorem 1 are satisfied, then

(u) (u)
051(0,) _ 051 (00) _
00 96

a.s. as n — oo, for any sequence (0,,) such that 6, — 6 a.s.

Lemma 4 If the conditions of Theorem 1 are satisfied, then

855" (6,)

J . .
50 E {%a {nt(O),H}] ,  @.S. asm — 00.

0=0y

Now we complete the proof of Theorem 1. In view of (31), the strong consistency of én and
the previous lemmas, we have

V{8 — SO = n {81 (60) — S} + g,,v/n(B,, — 60) + 0p(1). (33)
The asymptotic distribution in (7) follows from A5 and the CLT for stationary second-order

martingale differences of (6).

D.3 Proof of lemma 2
A Taylor expansion shows that for 8 € V(6y)

a*{7:(0); 0} — a"{n:(0); 0} = 0"{e1,5:(0); 0} — b"{er, 0,(0); 0}
= ub"{e,07;0}V,logb(e,0;;0){5:(0) —or(0)} (34)

where o} is between 7,(0) and o04(0).
Then, using A3, A6 and the ¢, inequality, we deduce

7(u+1)
0" {77(0); 0} — a"{n,(60);0}| < u2ucu+1{('i;') +1}Ktpt.

Oy

The r.h.s. of the above inequality is bounded by a variable of the form X, p" where X; admits
a small moment, uniformly in ¢, using A3-A4 and noting that

|€t| o¢(609) 0t<9) ( Ktpt) a(6o)
- = — < 14 sup )
O e oi(0) o} i w 0cV (8o) o1(0)

Thus
n|306) - s < 3 X <> X,
t=1 t=1

where the latter sum admits a small moment and thus is finite a.s.
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D.4 Proof of lemma 3
We have

2 () n
9°5n"(0)  _ %ZubU(et,at(e);a){ﬁmb(et,at(e) 0)-2

9606’ 06 o 18l 01(0);6)

2

—i—mlogb(et,atw);@)}.

From Holder inequality and A7 (u)

5255 (0)
sup ||————=|| =0(1), a.s.
0cV (6o) 0606’ ( )
By a Taylor expansion of 85"8( n) around 6, the conclusion follows.

D.5 Proof of lemma 4
Noting that

0S(8,) 1 0
_T%QZEZ¥W%Q%NM%b@@WW@%)

the result is a straightforward consequence of Holder inequality, A7(u) and the ergodic
theorem.

D.6 Proof of Corollary 1
i) When the model is estimated by QML we have

1 05%(0y)
o} 00

Vi) =n-1, A, =J"=

thus X = (k4 — 1)J ', It follows that

U2 = UZ(I@L — 1) {m;J_lmu + Oé(2]M12,u71 - 2040M1,u_1m;J_1ﬂ}
+M0,2u — M&u + Qu(Ml,u — MO,u) {m;J_IQ — OCOMl,ufl} .

Noting that J~'Q = (wp, ap,0)’ (see Francq and Zakoian (2013b)), we obtain g,¢, = 0 and
the formula for v? follows.
ii) If the model is estimated by ML we have

4 1 95%(0y)
S=—J" V()= A= 2J7 :
Iy 1 (1) = g1(me), t—1 't Otg BT

Y
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where g1(y) =1+ yf%(y) Noting that

Ea(n; 0)g1(n:) = a+ B+ /(04952 + B)xf (z)de = a+ 3 — /(304952 + B8) f(x)dx = —2a,

we have, using 2'J 'Q = 1 (see Remark 3 in Francq and Zakoian (2013b)) and J 'Q =
(w07 Qo, 0)/7

2 __ u
g.&, = u{m,—agM QY L—J 'QEa" () g1 () = 0
f

and

. 4u? P 4u? ;-1 2172
guEgu = 7 {mu — Oé()Ml’u,lQ} J {mu — aOMl,ule} = 7 {muJ m, — aOMl,u—l} .
Thus

4 2
O ey R SRV
f

The MLE is more efficient than the QMLE since x4 —1 > 4/1; and, by the Cauchy-Schwarz

inequality,

m,J 'm,—ofM;,_, =m,J 'm,—(m, Q) > mJ 'm,—(m,J 'm,) (YT Q) = 0.

D.7 Proof of Corollary 2

The consistency and asymptotic normality of the QMLE were established by Hamadeh and
Zakoian (2011). The fact that Assumptions A1 and A3-A5 hold true can be found in the
proof of their Theorems 2.1 and 2.2. In particular, Assumption A5 holds with

§ ., 1 000(60) o

V(nt) = Tlf -1, A= 5‘]6 0—? 50 A — 5.]5_1957

where Q5 = E(D,), J; = E(D,D)) with D, = D,(0,) and D.(0) = 0,°(8)00%(8)/08.
Noting that the strictly stationary solution admits a small-order moment, and that the
derivative in A2 is equal to 3, this assumption is obviously satisfied. Hamadeh and Zakoian
showed that

d

< oo, FE sup
0V (00)

1 90%(6) !

od(@) 00

1 9%9(0)

E
i 73(0) 9000’

0cV (6o)

for any integer d (by (5.20) in the aforementioned paper). Noting that b(e, 0,0) = E—f(mr Teso+
a_l.o) + B the last two conditions of A7(u) are thus satisfied for any ¢ > 0, while the first
condition is satisfied for p close enough to 1 since u < s. Assumption A6 is satisfied for
T=9.
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D.8 Proof of Proposition 1

a(u) p ~
Noting that g, = 85"8659"), Lemmas 3, 4 and 5 below, together with the consistency of 6,

entail that g, is a consistent estimator of g,,.

Lemma 5 If the conditions of Theorem 1 are satisfied, then

05 (e)  ast(8)

ST — 0, in probability as n — oc.

sup
0cV (0o)

The estimator of ¢, can be handled similarly. Using also the consistency of fu and ﬁl, it
follows that 0, is a consistent estimator of v,,. Now we have

Prz (CF) = P, [0,V {810 =1} > @71 (1 — )]
= Pu,, [0,V {S =5} + @‘1\/_{5(“) — S > 71— a)]
< Py, [0, 'Vn {8 —5SW} > o7 (1 - a)]

which tends to a as n — oo by Theorem 1.

D.9 Proof of lemma 5

We have
255"(8) 951" (0)
00 00
1« 3 w do,(0)
= ﬁZu{b (€:,0:(0);0) — b"(e:,5:(0);0)} < V, log b(er, 0:(0); 0) 20 + Vo logb(et, 04(0); 0)
. do (0
4= Zub €,5:(0);0) {V, logb(e,, 0,(0);8) — V, log b(e,, 5,(6); 0)} ‘gé)

+ = Zub €1,04(0);0)V, logb(ey, 54(0);0) (80529) _ 35(;?))

+— ZUb €t,01(0);6) {Velogb(er,041(0);0) — Vg logb(e;, 54(0); 0)}
First consider Ay, (6). By the proof of Lemma 2 we have

sup [b" (e, 04(0); 0) — b" (e, 50(8); 0)] < Xpf
0cV(6o)

where X, admits a small moment. By A4 and A6, the other summands involved in A; also
admit small moments. It follows that supgey (g, [A1(0)] — 0, in probability as n — oo.
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Now we turn to Ag,. Another Taylor expansion yields
V. logb(e, 04(0);0) — Vi, logb(e,, 5,(0);0) = V2 _logh(e,or;0){5,(0) — 0,(0)},

where o} is between 6,(0) and 04(0). The same arguments show that supgey(g,) [A2.(0)] — 0,
in probability as n — oco. The last two terms can be handled similarly.

D.10 Proof of Proposition 2

The proof is given for convenience, but very similar results have been established in the
articles already cited.

The i) is obvious in view of (2): the condition Pla(n;) < 1] = 1 entails Efa*(m)] < 1
and the inequality is strict because v < 0.
Now suppose Pla(n) < 1] < 1 and let ¢ > 0 such that Pla(np) > 1+ ¢ > 0. Then
S = Ela*(m)] > (1 + €)“Pla(m) > 1 + €] — 00 as u — oco. For any n > 0, the function
u +— a"(n) is convex. Thus u +— FEfa"(n)] is convex on (0,s]. We consider two cases: a)
when Pla(n) = 0] = p > 0 we have SU =1 —p < SY =1. In view of the convexity and
the fact S& > 1, the conclusion follows; b) when Pla(n;) = 0] = 0, the right derivative of
u S in a neighborhood of 0 is negative. Thus there exists 0 < sq < s such that the
function u — E[a"(m)] decreases over (0,sg) and increases over (sg,s]. Since S > 1, i
follows that there is the unique u > 0 such that E[a"(n;)] = 1. Finally, by (2), moments
of oy do not exist at any order: E(0) < oo for all u < ug such that E[w“(n;)] < oo, and
E(0) = oo for u > ugy. The proof of ii) follows.

The tail result on oy is established using Theorem 4.1 in (21). The tail result on ¢, follows
by the arguments given by Mikosch and Starica (2000) in the proof of their Theorem 2.1.

D.11 Proof of Proposition 3

We apply Proposition 2 substituting the empirical distribution on {a(7; En) ct=1,...,n}
for the theoretical distribution of a(n;). The condition on the existence of s > 0 vanishes
because moments exist at any order for the empirical distribution.

D.12 Proof of Theorem 2

Similar to (34) we have
log b(et, 04(0);0) — logb(e;, 4(0);0) = V,logh(e,0;;0){5:(0) — 04(0)}, (35)

thus, by arguments already used, v, = £ )" | log b(e;, 04(0,);0,,) + 0(1), a.s. Moreover,

0
log b(e;, 04(0);0) —logb(e;, 04(00); 09) = % log b(e;, 04(0%);07)(0 — 6y), (36)
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for 8" between 0 and 6,. Using the consistency of gn we conclude that

1 n
=— Z log b(€r, 0(60); 00) + o(1), a.s.
[
The a.s. convergence of v, follows by the ergodic theorem.
By the same arguments, and those of the proofs of Lemmas 2, 3 and 4,
S 5 8w g5 for any u such that S < co. (37)

Now, we turn to case i). We have S <1 by Proposition 2, thus S™ <1 for n large
enough by (37). It follows, by Proposition 3, that @, > u for all u and n large enough.
Turning to case ii), we note that, for ¢ € (0, max{ug, s — u,}),

lim a.s. S u0—e) — Sggo—f) <1, lim a.s. SfL“OJFE) = Sgoﬁ) > 1,

n—oo n—0o0

thus the consistency of ,.

D.13 Proof of Theorem 3
Let T, (u) = \/ﬁ{S,(lu) - Sg.f)} and, in view of (33), let

( \/—{S(u 90 }—f—gu\/—ZAt 1V 77t

We will show that

9T sup D) — T ()] = op(1). (38)

u€(u1,u2)

By the Cramér-Wold device, and by arguments used in the proof of Theorem 1, it can be
established that the finite-dimensional distributions of I'Y converge to those of I'. By showing
that

the sequence {I'%(u;)} is tight (39)
and, for some constant K > 0,
E[Ty(u) = T ()" < K(u—v)*, (40)

the tightness of the sequence {I'?} will be established, according to Theorem 12.3 of Billings-
ley (1968). The weak convergence in (38) will follow from Theorem 8.1 of Billingsley (1968).
The convergence in distribution of {T'% (u;)} entails (39).
We have

IO(u) ~T9() = % S {80} — Ela*{m; 00}] — a* {; 60} + Ela {ni; 60}
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1 n
— — A,V
+(9, — 9,) \/ﬁ; -1V ()
Ap 1 (u,v) + Ay o(u,v).
Note that

EAZ (u,v) = Var{a"(n;) —a"(n:)}
< (u—0)’E ({a® () + a® () H{log a(m)}?) < K(u —v)?.

Now

?
9y — 9, = E <auagzb {€t7 Ut(0)7 0} gzgoyu:uf> (U - U)

where the u} belong to (u,v) and the existence of the expectation follows from A7 (us).
Moreover Var <\/Lﬁ S, At,lV(nt)> = 3. Tt follows that EA?,(u,v) < K(u — v)®. This
completes the proof of the weak convergence in (38).

We will now show the convergence in probability in (38). We have, for 8" between 0.
and 6,

L) - T = VA{S - 0@} + 5D [ o))~ g, ] VG, )

t=1

+g., {\/ﬁ@n —60) — % > AHV(’”)}

= le(U) + Rn72(U) + Rnyg(U).
We have, by A3, with o} (0) between 6,(0) and 04(0)

n

1
[Rui(w)] < —=) " sup ub*{e,0;(0);0}|V,logb(e;, 07(8);0)| Kyp' = op(1),
V= ocv (o)
uniformly in u, noting that, by A6, the supremum admits a small-order moment. The
second term, R, s(u), can be handled by a Taylor expansion of %b“{et7 0,(07); 0"} around
0y. The third term, R, 3(u), is an op(1l) uniformly in v by A5 and using the fact that

Supue(ul,ug) ||guH < o0.

D.14 Proof of Theorem 4

Writing
0= St — §luo) = glim) _ glim) 4 glin) _ Gluo)

oo o0 Y

we deduce, by the mean-value theorem,

1 ; ; 1
h— - (i) _ qlan)y — __~ T (4
V(i — u) = DL Vn (Sn Sso ) = DL L ()
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where v is between 1, and uo By continuity of DC>Q we have D( N D( ) in probability
(and also a.s.), and T, () 5 I'(up). Indeed, for ¢,¢" > 0,

Pl (t,) >z] < P[u(t,) > x, |, —ug| < <]+ Pl|t, — ug| > ]
< P[] sup I'y(u)> x|+ P[|t, — ug| > <]
[u—ug|<¢
< Pllu(w) >z =<+ P[ sup |Tp(u) — Tplug)| > <]+ P[|t, — uol > <.

lu—uo|<s

Using the tightness property and the a.s. convergence of u,, the last two probabilities can
be made arbitrarily small for n sufficiently large and ¢ small enough. The other probability
converges to P[I"(ug) > x — '] which is arbitrarily close to P[I"(ug) > x| for ¢ small enough.
A similar upper bound can be obtained for P[I',,(%,) < 2| from which the conclusion follows.

D.15 Proof of Proposition 4

The arguments are the same as in the proof of Proposition 1, using the asymptotic normality
of \/n(t, — ug) established in Theorem 4.

D.16 Proof of Proposition 5

By the delta method we have,

8u0

W\/ﬁ(b\n,ML —0o) +op(1) LN (0,0%).

\/ﬁ(an,f —up) =

In view of B4 and the consistency of ¢, we deduce

(wo) _ V(o — lnyg) Ouo ;1 0o}
Vn 6f Ufo\/_ Z 00’ 2 00 91(7715) + OP(]-> (41)

from which the conclusion follows.

D.17 Proof of Proposition 6

The proof is similar to that of Proposition 5, relying on B6 and the Taylor expansion

Vn(ug — tg ;) —1 /0u ~ ou ~
Oéf . < (a_e(')ﬁ(e” = 00) + V(P - "0)) +orll)

n 8(7
-1 {% 6u0} 3! ( #Zt 1 012 36 91(1h)
- / Of (ne;v
s 08" OV Zt 17 n,lyo (ZL °

34



D.18 Proof of Proposition 7 and inequality (24)

In the proof of Theorem 1 we have seen that

T = % ; au(n;i— 1 vu\/_ ZAt V() + op(1), (43)

where the first term is centered only for u = ug. By (22), it follows that under Py

T3 d 1 qmww)}
( An,f(OO‘i“T/\/ﬁ, 00) ) —>N{( _%T jf’T ) ’ ( Cfﬂm(e()) T/jfT )

Le Cam’s third lemma (see e.g. van der Vaart, 1998, page 90) shows that

Té“(’) LN N (¢fue(00),1), under P, ..

The conclusion of Proposition 7 easily follows for the two tests using (20).
With the notations used in the proof of Corollary 1, for the standard GARCH(1,1)
estimated by QML we have

1 0oy(6y) , 1 0oy (6 , 1
o ( (t?(O 0) oAt1> =k (_%O)At—lguo) B §gUO’ E{V(nl)gl(nl)} - _2’

O O

while with the ML we have

1 0o(0y) |, 1 004(0) -1
E (— 500 gqut_l) - FE (— :390 Al_g, | = T E{V(n)g(m)} = ¢;

O¢ Ot
Moreover,
%Ea?o {1 + 77tf7/(17t)} + OéouoEm a;’” !
:% +%/auo(x):rf'(x)dx+a0u0/x2au0 Ha) f(a)dx
1 1
5+ [ @ @ar @)ds + 0 (2) 3 ()

- /a“o(:v) (@ + gf’(x)) dz = 0,

Thus, in the standard GARCH(1,1) case,

’7'/ Uo

1
Cruo(B0) = —— kQE{a“O(m)gl(m)} — tp (Muyy — M1y, 1) | = —T'mMy,.

Uuo UUO

where the formulas for v,, are displayed in (9) for the ML and QML estimators.
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D.19 Proof of Proposition 8
Relation (22) implies that

1
Ap (80 +7/v/n, 60) LN <_§T/jf7',7'/jf7'> under P,

which is the distribution of the log-likelihood ratio in the statistical model A/ (T,’JJIl) of
parameter 7. In other words, denoting by 7 a subset of R? containing a neighborhood
of 0, the so-called local experiments {L, (6o + 7/v/n), ™ € T} converge to the gaussian
experiment {N (7,3;'),7 € T}.

Under the assumption of the proposition on u (8o, f), for given u, testing Hy,, : u(8y, f) >
w against Hy, : u(6y, f) < u, amounts to testing H, : 7 = 0 against H, : 7 = ce for
e > 0 in the limiting experiment. The UMPU test based on X ~ N (7', 3;1) is the test of
rejection region

C= {e’X/ eJIile> o1 —g)} :

This UMPU test has the power given in (25).
For 7 = cey, € > 0, in the case of the standard GARCH(1,1),

cege

\/%ng_leo + ad (m —1- %)

ceye

QML
C 9 =
O e DT e

< C%L(GO) =

1/2

8—
>~ Cg — )
2v/ehJ ey

by the Cauchy-Schwarz inequality, with equality only when ¢;(y) = K(1 — y?), that is if
and only if the density of 7, has the form (26) (see Francq and Zakoian (2013a), Proposition
5.5)).

D.20 Proof of Proposition 9
By the arguments of the proof of Proposition 7, using (41), we obtain

ou /
i@uT: —5T _ T T
o508’ 4 Ou y—10u Ly Jolp
Ly 00’ 00 Lf uo uo

D.21 Proof of Proposition 10

Follows by the arguments of the proof of Proposition 7, using (42) and the LAN property
(29)-(30).

dﬁuo (00) = =
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D.22 Proof of Proposition 11

The strong consistency of 13,?]\“ follows from Theorem 3.1 in Hamadeh and Zakoian (2011).
Because D is discrete, it follows that SSML = Jp for sufficiently large n. By Corollary 2,
the assumptions required for Theorems 1 and 3 are satisfied for n large enough when ¢ is
replaced by 09ML. If 5, has a positive density over the real line, Assumption ii) of Theorem
2 holds and the conclusion follows.

E Complement to Section 5.2

Examples of asymptotic slopes in the standard GARCH(1,1) case with Student errors are
displayed in Figure 6.

a=0.1, =0.86, v= 40 a=0.09, =0.8,v=40
<
g | ! ?0 i !
S / © l
] / . !
/ < [
2 / ? 4\ !
o — cr(u) / ) \ — cr(u)
o © cu(u @ ~ cu(u) 1
B‘ ] = cy(u) / (_% d\= o) /
(%) / 0 \
!
3 ’ =y ,
3 | ’ &
, /
N\ Up=3.79 ,’ ) u0:656,’
S  — 8
S —~ T im
o T T T T T T T 8 T T T T T T T T
2 3 4 5 6 7 8 5.5 6.5 7.5 8.5
u

Figure 6: Asymptotic slopes of the tests T, U and V for Student errors (v = 40) and the
standard GARCH(1,1) models.

F Monte Carlo experiments

We first made 10,000 simulations of a standard GARCH(1,1) with (ayg, 5y) = (0.10,0.86) and
Gaussian innovations such that ug = 4, for different sample sizes. The results are reported
in Table 3. Concerning the tests, the most striking output is the lack of power of the test
T, compared to its competitors, in agreement with Figure 3. Even for large sample sizes,
the test T' is too conservative but the levels of the tests U and V at the boundary of the
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null are correct. As expected the test V is slightly more powerful than the test U. The
CI based on the statistics @, and @, ; (lines UM and Vn(“)) are similar and, as expected,
slightly tighter with the fully parametric method (that based on u, f with f Gaussian). Note
that the coverage probabilities are excellent (i.e. very close to nominal level 1 — a) when
n = 4000 or n = 8000. Results displayed in appendix concern the test of Hj ,, for the same
experiments. In agreement with Figure 3 these results are more favorable to the test T, even
if the level is poorly controlled.

Next, we consider the class of the Beta-t-GARCH introduced in Harvey (2013) and Creal

et al. (2013), such that

(v+ 1)6?—1
(v— 2) + “3?71/0152717

2 2
o, =w+ fo,_ +a

and the rescaled innovations are Student’s ¢ distributed with degree of freedom v. This

model is of the form (1) with 6 = 2, w(n) = w and a(n) = 5+ (C:,(Z;)llzz Results obtained for

simulations of a Beta-t-GARCH model lead to similar conclusions (see the appendix).
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Table 3: For the tests T,(Lu) and U,(lu), relative frequency of rejection of Hy,, at the nominal level a%. The null hypothesis is true for u < 4
and false for u > 4. The last 3 columns concern CI for uy at the asymptotic confidence level 1 — a. The column "mean" (resp. "median")
gives the means (resp. the medians) of the CI bounds. The column "coverage" gives the empirical coverage probability, that is the proportion
of CI that contains uy among the N = 10,000 replications.

Test
T
Uy
v
T
Uy
v

T\
(u)

n

Vi

T
(w

n

Vi
T
UL
Vi
7"
UL
Vi

T\
()

n

Vi

T
(w

n

n o
1000 1%

5%

10%

4000

1%

5%

10%

8000

1%

5%

10%

u=2 u=3 u=4 u=5 u=6 u=7

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.02
0.02
0.02
0.18
0.17
0.12
0.55
0.60
0.00
0.01
0.00
0.01
0.03
0.04
0.04
0.06
0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
1.32
1.25
0.20
4.40
4.71
2.07
8.02
8.15
0.07
1.29
1.27
1.94
4.95
5.14
2.77
9.08
9.39
0.21
1.26
1.34
2.67
5.30
0.21
7.06
9.64
9.87

0.00
8.44
8.81
0.54
17.63
18.62
6.25
25.04
26.58
1.76
22.69
23.83
21.05
40.63
42.32
39.27
52.30
54.00
14.62
40.82
42.84
47.84
62.47
64.21
65.63
73.06
75.25

0.00
22.15
23.35

0.46
36.61
39.07

9.24
46.13
48.76

5.94
63.80
66.49
92.55
79.93
82.22
75.71
86.35
88.53
96.87
90.13
91.94
90.75
96.47
97.34
96.55
98.18
98.67

0.00
38.96
41.68

0.04
54.41
57.89

8.12
63.58
66.89

6.58
88.73
90.86
72.22
95.47
96.42
91.33
97.51
98.10
79.55
99.38
99.69
98.53
99.92
99.96
99.80
99.97
99.99

mean

[0.49,9.04]
[0.64,8.63]

[1.51,8.02]
[1.60,7.68]

[2.03,7.50]
[2.09,7.19]

[2.40,5.94]
[2.43,5.86]

[2.82,5.51]
[2.84,5.45]

[3.04,5.30]
[3.05,5.24]

[2.87,5.30]
[2.89,5.26]

[3.16,5.01]
[3.17,4.98]

[3.31,4.86]
[3.31,4.83]

median

[0.62,8.03]
[0.74,7.83]

[1.54,7.16]
[1.61,6.98]

[2.02,6.72]
[2.05,6.55]

[2.37,5.81]
[2.40,5.76]

[2.79,5.40]
[2.81,5.37]

[3.00,5.20]
3.01,5.16]

[2.84,5.25]
[2.87, 5.22

[3.13,4.96]
[3.15,4.93]

[3.28,4.81]
3.29,4.79)

coverage

0.99
0.99

0.97
0.97

0.95
0.95

0.99
0.99

0.95
0.96

0.91
0.91

0.99
0.99

0.95
0.95

0.90
0.90
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The results reported in Table 4 concern the test of Hy ,, for the same experiments as in
Table 3.

The results reported in Tables 5 and 6 are obtained for simulations of the Beta-t-GARCH
model:

(v + Defy
(v—2)+e€1/o7 )

2 2
€ = oy, 0y =w+ foi, +a

with errors density

v+1

1 r(H) g\
O s (1+V_2) |

with v > 2 and 0 = (w,«,3,v) which belongs to the parameter space O, a subset of
(w,00)? x [0,1) x (2,00) for some w > 0. For the chosen parameters we have ug = 3.5. Note
that for this model, even if the disturbances are t-distributed, we have s = oo, i.e. a(n)
admits moments at any order. The conclusions are similar to those drawn for Tables 3 and
4.

G A complement to Section 7

The QMLE and MLE residuals of the Total return series do not show any sign of dependence
(on Figure 7, the aucorrelations of the squared residuals are not significantly non—zero).
Moreover, it is seen that the distribution of the residuals is better represented by the Student
than by the Gaussian distribution.
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Table 4: As first part of Table 3, but for the null Hj ,, which is true for u > 4 and false for u < 4.

n o Test vu=2 u=3 u=4 u=5 u=6 u=7
1000 1% T 551 139 045 023 014 0.10
U™ 051 0.00 0.00 0.00 0.00 0.00

v 273 000 000 000 000 0.00

5% T 60.04 2345 T7.67 271  1.06 0.4l
Ul 5154 913 0.04 000 000 0.00

v 5278 12.05 043 0.00 0.00  0.00

10% T 8074 42.08 17.17 648 271  1.26
7611 30.85 7.78  1.34 0.00  0.00

v 7620 3144 822 139 003  0.00

4000 1% T 9565 3049 205 002 0.0l  0.00
9201 1643 026 0.0l 0.00 0.00

Vv 9258 1748 031 0.00 0.00 0.00

5% TV 9950 59.35 852 049 0.02 0.0l

™ 9922 49.96 433 0.07  0.01  0.00

@ 9930 51.06 4.28 0.09 0.00 0.00

10% 7Y 99.89 73.17 14.96 1.23  0.03  0.02

™ 99.85 68.10 10.93 055 0.02  0.01

v 99.90 6831 10.39 051 0.02  0.00

8000 1% T 100.00 59.40 2.16 0.00 0.00  0.00
UM 99.97  46.04 053 0.00 0.00  0.00

v 100.00 47.94 046 0.00 0.00  0.00

5% T 100.00 82.63 7.74  0.05 0.00 0.0
U™ 100.00 77.97 495 0.0l 0.00 0.00

W 100.00 78.86 4.66 0.0l  0.00  0.00

10% T 100.00 90.34 13.61 0.6 0.00 0.00

U™ 100.00 88.31 10.54 0.06 0.00 0.00

v 100.00 88.77 10.30 0.04 0.00  0.00
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Table 5: As Table 3, but for N = 1000 replications of the Beta-t-GARCH model with (wo, co, B0, %) =
(0.5,0.1,0.88,7.78). The boundary of the null corresponds to u = 3.5.

n o Test =15 wu=25 u=35 u=45 u=55 u=6.5
2000 1% T  0.00 0.00 0.00 0.00 0.00 0.10
U™ 0.00 0.00 2.10 9.80  25.40  44.30
w000 000 110 980 2820  50.10

5% T 000 000 060 380 610  7.60

U™ 0.00 0.10 520  19.40  42.00  61.10
w000 010 430 19.60  45.70  64.20

10% T 000 010 420 1170  20.70  27.60

U 000 060 860 2870 5170  68.90

W 0.00 0.60 740 2970 53.90  71.10

4000 1% T 000 000 000 050 230  3.10
U™ 000 000 140 1670 4510  69.30
w000 000 120 1840  50.90  76.40

5% T 000 0.00 210  13.60 2910  41.40
@000 000 630 3250 6140  82.90

w000 0.00 530 3360 6840  84.90

10% 7 000 000 690  27.60 52.30  69.00

™M 0.00 0.10 10.50  42.10  70.70  88.00

w000 010 930 4460  76.90  89.70

8000 1% T  0.00  0.00  0.00 560 2300  42.70
@000 000 130 2590 7020 91.70

w000 000  1.00 3230 7810  95.60

5% T 000 000 290  20.00 68.80  87.50

Ui 000 000 610  46.80  85.00  96.00

W 000 000 560 5400  89.40  98.60

0% 7 000 000  7.20  48.80  84.40  95.20

U 000 000 1030 5860  89.60  98.10

WY 000 0005 1040 6520  93.60  99.30




Table 6: As Table 5, but for the null Hy,,

n «o Test u=15 wu=25 u=35 u=45 u=55 u=6.5
2000 1% 7. 13.80 240 0.0  0.00 000  0.00
U™ 0.60 0.00 0.00 0.00 0.00 0.00
w780 0.00 000 000 000  0.00

5% T 6240 2170 640 150 050  0.10

U™ 4970 5.60 0.00 0.00 0.00 0.00
w6140  6.90 0.00 0.00 0.00 0.00

10% T 8250  39.40 1340 440 120  0.50
7650 2580 490 040  0.00  0.00
w8650  29.80  1.60  0.00  0.00  0.00

4000 1% T 6260 1050  0.90  0.00  0.00  0.00
U™ 4500 140 000  0.00 0.0  0.00
w6850 1.8  0.00  0.00  0.00  0.00

5% T 9040  36.10  6.80 0.80 0.00 0.00

W 8730 2380 240  0.00 000  0.00

W 9600  31.90  0.60 000  0.00  0.00

10% 7Y  96.00 51.80 11.90  2.80 0.20 0.00

W 9460 4370  7.80 070 0.00  0.00

W 9910 5370 6.90  0.00  0.00  0.00

8000 1% T 9620  25.90  1.30 0.00 0.00 0.00
UM 9380 1360  0.00  0.00  0.00  0.00

W 9910 23.00  0.00 000  0.00  0.00

5% TV 99.70  58.00 650 0.0  0.00  0.00

UM 99.60 4740 390  0.00  0.00  0.00

W 10000 62.60 220 000  0.00  0.00

0% 7 9970 7240 1130 0.80  0.00 0.0

Ut 9970 67.80 890  0.10  0.00  0.00

W 100.00 78.60  7.80 0.00 0.00 0.00
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Figure 7: Autocorrelations of the squares of the QML and ML residuals, and empirical distributions
of the QML and ML residuals, after fitting an APARCH on the Total return series.
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