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Abstract

This paper discusses Bayesian inference for stochastic volatility models

based on continuous superpositions of Ornstein-Uhlenbeck processes. These

processes represent an alternative to the previously considered discrete su-

perpositions. An interesting class of continuous superpositions is defined by

a Gamma mixing distribution which can define long memory processes. We

develop efficient Markov chain Monte Carlo methods which allow the esti-

mation of such models with leverage effects. This model is compared with

a two-component superposition on the daily Standard and Poor’s 500 index

from 1980 to 2000.
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1 Introduction

Continuous-time stochastic volatility models have been shown to be success-

ful in modelling the behaviour of financial time series, such as stock prices and

exchange rates. They also have nice properties. Volatility can be consistently

modelled at different observational frequencies and option pricing formulae

can sometimes be derived. Such models have a separate stochastic process

driving the instantaneous latent volatility of the observables. Let us assume

we are modelling the log of an asset price or index y(t), where t indicates time.

A common modelling specification is through the stochastic differential equa-

tion

d y(t) = {µ + β σ2(t)} dt + σ(t) dB(t), (1)

where σ2(t) is the instantaneous volatility, independently distributed from

B(t), which is Brownian motion, and µ and β are drift and risk premium pa-

rameters, respectively. Aggregate returns over a time interval of length ∆, say,

defined as yn =
∫ n∆
(n−1)∆ dy(t) and observed at times n = 1, . . . , N are then

Normally distributed as

yn ∼ N(µ∆ + βσ2
n, σ2

n),

given the discrete or “actual” volatility σ2
n =

∫ n∆
(n−1)∆ σ2(u)du. Most models in

the literature assume a stochastic process for the instantaneous volatility based

on Brownian motion. Following Barndorff-Nielsen and Shephard (2001) we

consider, instead, a non-Gaussian Ornstein-Uhlenbeck volatility process. One

advantage of the latter is that it often facilitates analytic option pricing (see

Nicolato and Venardos, 2003).

Other studies that have considered Bayesian inference with similar volatil-

ity processes are Roberts et al. (2004), Griffin and Steel (2006), Gander and

Stephens (2007a,b) and Frühwirth-Schnatter and Söger (2008).

In this paper, we model the instantaneous volatility with a continuous su-

perposition of Ornstein-Uhlenbeck processes. Using, for example, a Gamma

mixing distribution this can lead to long memory properties. Alternatively,

long memory can be introduced directly into the asset price equation (1), as

in Gander and Stephens (2007a). In addition, we propose efficient inference

methods for asset models with risk premium and leverage effects, using such

continuous superpositions as volatility processes. Standard Markov chain

Monte Carlo (MCMC) methods usually perform poorly for this class of mod-
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els and specific techniques need to be developed. We use an easily controlled

approximation to the volatility process to reduce the computational cost, and

we implement the retrospective method of Roberts et al. (2004) as well as a

modification of the dependent thinning sampler of Griffin and Steel (2006) for

inference with these models.

The paper is organised as follows: Section 2 describes the specification of

the Ornstein-Uhlenbeck volatility processes, and Section 3 defines continuous

superpositions of such processes. An asset price model extended to include

leverage effects is briefly described in Section 4, and the following section com-

ments on the priors used. Inference methods based on Markov chain Monte

Carlo samplers are described in some detail in Section 6. An application to

the S&P 500 stock price index is provided in Section 7. Finally, the last section

contains some concluding remarks.

2 Ornstein-Uhlenbeck processes

The non-Gaussian Ornstein-Uhlenbeck (OU) process (Barndorff-Nielsen and

Shephard, 2001) for modelling stochastic volatility is defined by the stochastic

differential equation

dσ2(t) = −λσ2(t) + dz(λt).

where λ > 0 is a scalar decay parameter and z(t) is a non-decreasing Lévy

process (i.e. a subordinator), called the background driving Lévy process or

BDLP. The equation has the strong solution

σ2(t) = exp{−λt}σ2(0) +

∫ t

0
exp{−λ(t − s)}dz(λs).

This form implies that the autocorrelation function of σ2(t) will decay expo-

nentially with rate λ. The appearance of λ in the timing of the Lévy processes

implies that the marginal distribution of σ2(t) does not depend on λ. There is

also a simple functional relationship between the Lévy density of σ2(t) (which

will be called u) and the Lévy density of z(t) (which will be called w).

w(x) = −u(x) − xu′(x).

This allows us to define the marginal distribution of σ2(t) and to derive the

appropriate BDLP. The tail mass integral W+(x) =
∫ ∞
x w(y) dy and its inverse
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W−1 are important functions for the simulation of Lévy processes (see e.g. Fer-

guson and Klass, 1972, Rosinski, 2001). There is also a functional relationship

between W+ and u

W+(x) = xu(x).

This allows us to specify z by choosing the marginal distribution of σ2(t) and

deriving the Lévy density of z. Several classes of marginal distribution for

σ2(t) have been consider in the literature (see Gander and Stephens, 2007a,b).

A practically interesting example is a Gamma distribution, i.e. σ2(t) ∼ Ga(ν, γ)

with probability density function

p(x) =
γν

Γ(ν)
xν−1 exp{−γx}

which has Lévy density

u(x) = νx−1 exp{−γx}

and so w(x) = γν exp{−γx} and W+(x) = ν exp{−γx}. The Lévy density has

finite integral which implies that the BDLP is a compound Poisson process and

the resulting Gamma OU process can be represented as a shot-noise process

(Bondesson, 1988) in the following way

σ2(t) =
∞

∑

i=1

I(τi < t)Ji exp{−λ(t − τi)} (2)

where (τ, J) follow a Poisson process with intensity νλγ exp{−γJ}. We can

interpret J as jump sizes and τ as jump times. For many other choices of the

marginal process, the BDLP will be a Lévy process with infinite rather than

finite activity. For infinite activity processes we can use a series representation

of the Lévy process with jumps truncated to be above a small value ǫ (see

e.g. Gander and Stephens, 2007a, for more details) and the intensity of the

resulting Poisson process will be λI(J > ǫ)w(J).

Barndorff-Nielsen and Shephard (2001) comment that actual financial time

series will often be fit better by combining independent OU processes with

different rate parameters λ. For example, a two-component model is given by

σ2(t) = σ2
1(t) + σ2

2(t),

where each component process is an independent OU process as defined above

with a Ga(νj , γ) distribution and rate parameter λj , j = 1, 2. Then we retain a
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Gamma marginal distribution for σ2(t) but the autocorrelation function takes

the more general form

ρ(s) = w exp(−λ1|s|)) + (1 − w) exp(−λ2|s|),

with the weight w = ν1/{ν1 + ν2}, the ratio of the component variances. The

use of such superpositions was shown to behave better than single component

OU processes in Barndorff-Nielsen and Shephard (2001) and Griffin and Steel

(2006).

In this paper we will focus on OU processes with Gamma marginals. For

S&P 500 data (as used here) Gander and Stephens (2007a) provide some evi-

dence that the choice of a Gamma marginal is sensible, but extensions to OU

processes with other marginal distributions can be considered (for example,

using the methods of Gander and Stephens, 2007a).

3 Continuous superpositions of OU processes

Let σ2
λ(t) be a non-Gaussian OU process with decay parameter λ. The contin-

uous superposition model assumes that the instantaneous volatility process is

given by

σ2(t) =

∫

σ2
λ(t) dF (λ),

where F is a distribution function, which will be termed the mixing distri-

bution. The properties of this model are studied by Barndorff-Nielsen (2001).

The autocorrelation function of the superposed process is

ρ(s) =

∫

exp{−λ|s|} dF (λ).

Different choices of F lead to different shapes of autocorrelation function. As

a special case, we can find the two-component model of the previous section

by simply using a two-point discrete distribution for F . Generally, the form of

the autocorrelation function is given by the moment generating function of F

which provides a simple way to find the autocorrelation function for any cho-

sen distribution and also for finding the F that leads to a particular autocorre-

lation function. An interesting choice, suggested in Barndorff-Nielsen (2001),

is the Gamma distribution with shape α and scale φ which leads to an auto-

correlation function of the form

ρ(s) =

(

1 +
|s|

φ

)−α

,
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corresponding to long memory with Hurst coefficient 1 − α
2 if α < 1.

We can use the results of Barndorff-Nielsen (2001) to derive a useful rep-

resentation of the process which extends the shot-noise representation of the

OU process given in equation (2). If F has a density f , the continuous super-

position model can be represented as

σ2(t) =

∞
∑

i=1

I(τi < t)Ji exp{−λi(t − τi)}, (3)

where (τ, J, λ) follow a Poisson process with intensity νλf(λ)γ exp{−γJ}. The

model differs from (2) by introducting a jump-specific decay parameter (λi),

which allows for extra flexibility. In statistical terms, we have moved from

the decay parameter being a fixed effect to a random effect. The integrated

volatility, σ2 ⋆(t) =
∫ t
0 σ2(u) du has the form

σ2 ⋆(t) =
∞

∑

i=1

I(0 < τi < t)
Ji

λi
(1 − exp{−λi(t − τi)})

+

∞
∑

i=1

I(τi < 0)
Ji

λi
exp{λiτi} (1 − exp{−λit}) ,

and the increment (the actual volatility as in Section 1) σ2
n = σ2 ⋆(n∆)−σ2 ⋆((n−

1)∆) has the form

σ2
n =

∞
∑

i=1

I((n − 1)∆ < τi < n∆)
Ji

λi
(1 − exp{−λi(n∆ − τi)})

+
∞

∑

i=1

I(τi < (n − 1)∆)
Ji

λi
(1 − exp{−λi∆}) exp{−λi((n − 1)∆ − τi)}.

(4)

A single OU process σ2(t) has an integrated volality which can be expressed

as Aσ2(0)+Bt where A is a constant depending on the decay parameter λ and

Bt is the integrated process restricted to jumps that occur in the region (0, t).

Therefore, calculation of σ2
n only depends on jumps before time 0 through

σ2(0). This is not true for the continuous superpositions. The contribution

of jumps before time 0 is given by the second sum in equation (4). The num-

ber of terms is infinite even if the BDLP is a finite activity Lévy process (as in

the Gamma case) and so some truncation of this sum will be needed. We will
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use the approximation

σ2
n =

∞
∑

i=1

I((n − 1)∆ < τi < n∆)
Ji

λi
(1 − exp{−λi(n∆ − τi)})

+
∞

∑

i=1

I(B < τi < (n − 1)∆)
Ji

λi
(1 − exp{−λi∆}) exp{−λi((n − 1)∆ − τi)}.

where B is chosen to be smaller than zero and such that we avoid a noticeable

truncation error in the actual volatility. The same effect was noted by Gander

and Stephens (2007b) for their models, who explain why the form of the OU

process leads to a simplified form of the integrated volatility.

To be specific, we will focus on Gamma mixing in the rest of the paper, but

the ideas in the sampler are essentially unchanged if we use a different mixing

distribution.

4 Modelling leverage effects

Leverage effects refer to the negative correlation between returns and volatil-

ity, which was first considered by Black (1976). Models with a return process

and volatility process driven by Brownian motions usually include leverage

by introducing correlation between these processes. An analogous approach

for volatility models driven by a non-Gaussian Lévy process was introduced

by Barndorff-Nielsen and Shephard (2001) who suggest changing the drift in

equation (1) so that the asset price follows

d y(t) = {µ + β σ2(t) + ρ(z(t) − E[z(t)])} dt + σ(t) dB(t),

which implies that the returns y1, . . . , yN are modelled by

yn ∼ N
(

µ∆ + βσ2
n + ρ(zn − E[zn]), σ2

n

)

,

where σ2
n is the actual volatility as defined in Section 1 and zn =

∫ n∆
(n−1)∆ z(s) ds.

Negative values for the leverage coefficient ρ will associate drops in returns

with jumps in volatility and allow different effects of negative and positive

price changes.

5 Priors

We parameterise both the Gamma marginal distribution and Gamma mixing

distribution in terms of their mean and shape parameter. Independent priors
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are placed on all these parameters. The parameters of the marginal distribu-

tion of σ2(t) are given vague priors: ν ∼ Ga(1, 0.001) and ν/γ ∼ IG(1, 0.001).

Informative priors are chosen for the parameters of the mixing distribution.

The shape parameter of the mixing distribution α is given an inverted Gamma

prior with shape parameter 1 and mean 1/ log 2 which places half of its mass

on long memory processes and half of its mass on short memory processes.

The choice of an inverted Gamma distribution places some mass at values

much larger than 1. The mean parameter ξ = α/φ is given an exponential

distribution with mean 1/ξ0. This stops the prior placing mass on very large

values of the mean. The parameters of the drift µ, the risk premium β and the

leverage effect ρ are given independent vague zero-mean prior distributions

with a standard deviation of 100.

6 Markov chain Monte Carlo inference meth-

ods

The representation of the continuous superposition model (3) is expressed in

terms of a Poisson process on (τ, λ, J) with intensity νλf(λ)γ exp{−γJ}. If the

mean of F is finite, it is useful for simulation methods to think of the process

as a marked Poisson process. In that case, the jump times τ follow a Poisson

process with intensity νE[λ] and the jumps sizes, J , and decay rates, λ, are

marks. The jumps are independent and exponentially distributed with mean

1/γ and the decay rates are independent and their distribution has the density

f⋆(λ) ∝ λf(λ). If the mixing distribution is Ga(α, φ) then f⋆ is the density of

a Ga(α + 1, φ) distribution.

Markov chain Monte Carlo (MCMC) methods for OU processes have been

developed by Roberts et al (2004) and Griffin and Steel (2006). Standard MCMC

methods are difficult to apply due to slow mixing of λ and ν. This problem

can be addressed by jointly updating the process z jointly with λ or ν. Roberts

et al. (2004) propose a method of retrospective sampling of z and Griffin and

Steel (2006) suggest “dependent thinning”. Whereas Roberts et al. (2004) sug-

gest the use of a reparameterisation to reduce the correlation between the data

and the process, the dependent thinning of Griffin and Steel (2006) restricts the

changes in the proposed process to relatively small jumps. We will consider

extending both of these methods to the continuous superposition case.
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6.1 An approximate process

The superposed process can be approximated in the following way. The effect

of the i-th jump at time t is Ji exp{−λi(t − τi)} and the contribution to the

integrated volatility after time si is

∫ ∞

si

Ji exp{−λi(t − τi)} dt =
Ji

λi
exp{−λi(si − τi)}.

Choosing a small fraction d (where 0 < d < 1) allows us to define an approxi-

mate version of the effect of the i-th jump. In particular, let

si = τi −
1

λi
log d

and define an approximation to the effect of the jump to be JiI(τi < t <

si) exp{−λi(t − τi)}. The actual volatility σ2
n is now expressed as

σ2
n =

∞
∑

i=1

Ei Ji

∫ min{n∆,si}

max{(n−1)∆,τi}
exp{−λi(u − τi)} du

=
∞

∑

i=1

Ei Ji [exp{−λi(max((n − 1)∆ − τi, 0)} − exp{−λi(min(n∆ − τi, si − τi)}] ,

where Ei = I(τi < n∆ and (n− 1)∆ < si). In this manner, we only disregard a

fraction 0 < d < 1 of the total effect of each jump. Usually d is taken to be very

small. The main point of the approximation is to avoid lots of computational

effort by carrying along very small residual effects of jumps. More formally,

to calculate σ2
n the expected number of elements in the sum (i.e. the number of

jumps) is (n∆−B)να/φ whereas using the truncation the expected number is

−ν log d + ν

[

ξΓ

(

α + 1,−
α

ξ

log d

n∆ − B

)

+ log dΓ

(

α,−
α

ξ

log d

n∆ − B

)]

where Γ(α, x) = 1
Γ(α)

∫ x
0 uα−1 exp{−u} du. For small d and large n, the ex-

pected number will be bounded above by −ν log d. It follows that calculation

of the log-likelihood involves O(n2) terms without truncation but O(n) terms

with truncation. This difference in computational complexity makes an im-

portant difference to speed of execution when we have a long time series.

6.2 Sampling algorithms

If we choose a Gamma marginal distribution then E[zn] = ν
γ ξ∆, where ξ = α/φ

is the mean of the mixing distribution. The model that we fit can then be
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expressed in the following way for each observation n = 1, . . . , N

yn ∼ N

(

µ∆ + βσ2
n + ρ

(

zn −
ν

γ
ξ∆

)

, σ2
n

)

,

with zn =

∞
∑

i=1

I((n − 1)∆ < τi < n∆)Ji and

σ2
n =

∞
∑

i=1

EiJi [exp{−λi(max((n − 1)∆ − τi, 0)} − exp{−λi(min(n∆ − τi, si − τi)}] ,

where

k ∼ Pn (νξ(n∆ − B)) , τ1, τ2, . . . , τk ∼ U([B,N∆])

J1, J2, . . . , Jk
i.i.d.
∼ Ga(1, γ), λ1, λ2, . . . λk

i.i.d.
∼ Ga

(

α + 1,
α

ξ

)

.

We write U(R) for the uniform distribution on the set R and Pn(a) denotes

the Poisson distribution with mean a. The prior distributions for all model

parameters are given in Section 5. The posterior distribution of the parameters

is proportional to

p(y|ψ)p(J |γ)p(λ|α, ξ)p(τ)p(k|ξ, ν)p(γ|ν)p(ν)p(α)p(ξ)p(µ)p(β)p(ρ),

where ψ = (J, λ, τ, µ, β, ρ, ξ, ν, γ), y = (y1, . . . , yN )′, J , τ and λ are the sets of

(J1, . . . , Jk), (τ1, . . . , τk) and (λ1, . . . , λk), respectively, for all observations and

k is the total number of jumps within the finite interval [B, N∆], which will

cover the observation times of the data. The following subsections describe

simulation methods necessary to build a Gibbs sampler for this posterior dis-

tribution. Throughout these sections, ψ′ will refer to a proposed value of ψ

where all parameters apart from those being updated are kept at their current

values.

6.2.1 Updating J

The parameters J1, J2, . . . , Jk are updated with a single-site Metropolis-Hastings

random walk sampler on the log scale, i.e. we propose J ′
i = Ji exp{ǫi} where

ǫi ∼ N(0, σ2
J), which is accepted with probability

min

{

1,
p(y|ψ′)J ′

i exp{−γJ ′
i}

p(y|ψ)Ji exp{−γJi}

}

.

The variance σ2
J is chosen to give an average acceptance rate of between 0.2

and 0.3.
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6.2.2 Updating λ

The parameters λ1, λ2, . . . , λk are updated one-at-a-time using a Metropolis-

Hastings random walk on the log scale. The proposed value, λ′
j , is accepted

with probability

min

{

1,
p(y|ψ′)λ′

j
α+1 exp{−λ′

jα/ξ}

p(y|ψ)λj
α+1 exp{−λjα/ξ}

}

The variance of the increments of the random walk is chosen to give an aver-

age acceptance rate of between 0.2 and 0.3.

6.2.3 Updating τ

The parameters τ1, τ2, . . . , τk are updated using a Metropolis-Hastings random

walk. A new τ ′
i = τi+ǫi with ǫi ∼ N(0, σ2

τ ) is proposed, which is rejected if τ ′
i >

N∆ or τ ′
i < B. Otherwise, the proposed value is accepted with probability

min

{

1,
p(y|ψ′)

p(y|ψ)

}

.

The variance στ is tuned to have an acceptance rate of between 0.35 to 0.4. We

choose a higher rate than would be standard to avoid poor mixing of larger

jumps. Smaller jumps will usually be easier to move than large jumps. A

standard value of the average acceptance rate would be lead to a much smaller

acceptance rate for large jumps.

6.2.4 Updating k

Updating the parameter k involves a change of dimension of the parameter

space and uses Reversible Jump Markov chain Monte Carlo (Green, 1995). The

sampler has two moves: k′ = k + 1 or k′ = k − 1, which are both proposed

with probability 1/2. If k′ = k + 1, we propose new vectors J ′, λ′ and τ ′

where J ′
i = Ji, λ′

i = λi and τ ′
i = τi for 1 ≤ j ≤ k and J ′

k+1 ∼ Ga(1, γ),

λ′
k+1 ∼ Ga

(

α + 1, α
ξ

)

and τ ′
k+1 ∼ U([B,N∆]). The values k′, J ′, λ′ and τ ′ are

accepted with probability

min

{

1,
p(y|ψ′)

p(y|ψ)

(N∆ − B)νξ

k′

}

.

If k′ = k − 1, then a value j is drawn at random from {1, 2, . . . , k} and new

vectors J ′, λ′ and τ ′ are proposed where J ′
i = Ji, λ′

i = λi and τ ′
i = τi for
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1 ≤ i < j and J ′
i = Ji+1, λ′

i = λi+1 and τ ′
i = τi+1 for j ≤ i ≤ k′. The proposed

values are accepted with probability

min

{

1,
p(y|ψ′)

p(y|ψ)

k

(N∆ − B)νξ

}

.

6.2.5 Updating µ, β and ρ

Let θ = (µ, β, ρ)′ then the full conditional distribution of θ is

N
(

(Λ + X ′Σ−1X)−1Σ−1X ′y, (Λ + X ′Σ−1X)−1
)

where Σ is a diagonal matrix with elements Σjj = σ2
j , Λ is the prior precision

of θ and X is a N × 3-dimensional matrix with j-th row equal to

(

∆, σ2
j ,

k
∑

i=1

I((j − 1)∆ < τi < j∆)Ji −
ν

γ
ξ∆

)

.

6.2.6 Updating α

The full conditional distribution of α is proportional to

p(λ|α, ξ)p(α) ∝ α−2 exp

{

−
log 2

α

}

αkα

ξkα (Γ(α))k

(

k
∏

i=1

λi

)α

exp

{

−
α

ξ

k
∑

i=1

λi

}

.

A rejection envelope can be defined using a simplification of Stirling’s approx-

imation Γ(α) ≈ exp{−α}αα−1/2 (2π)−1/2. Putting this formula into the full

conditional above gives the following envelope

αk/2−2 exp

{

−α

[

∑k
i=1 λi

ξ
− k + k log ξ −

k
∑

i=1

log λi

]

−
log 2

α

}

.

which is the density of a Generalized Inverse Gaussian (GIG) distribution.

Efficient methods for the simulation from this distribution are described by

Devroye (1986). If we denote by f the target density and g is the rejection en-

velope, then max(f/g) = 0.4k. For large k the rejection sampler may have too

small a chance of proposing a value in a reasonable amount of time. There-

fore, we suggest that if there are more than 100 rejections, we update using

a standard random walk Metropolis-Hastings sampler tuned to obtain an ac-

ceptance rate of around 25%.
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6.2.7 Updating ξ

The full conditional distribution of ξ is proportional to

p(y|ψ)ξ−kα exp

{

−
α

ξ

k
∑

i=1

λi − ξ(ξ0 + ν(N∆ − B))

}

.

The likelihood p(y|ψ) only depend on ξ through E[zn] = ν
γ ξ∆ which is in-

cluded to model the leverage effect. This is not likely to change a lot with ξ

and so we use a Metropolis-Hastings independence sampler where values are

proposed from a density proportional to

ξ−kα exp

{

−
α

ξ

k
∑

i=1

λi − ξ(ξ0 + ν(N∆ − B))

}

.

This density is proportional to that of a GIG distribution.

6.2.8 Updating ν

We can directly apply the retrospective method of Roberts et al (2004). Sup-

pose we propose to move from ν to ν ′ using transition kernel q(ν, ν′). Then

we propose a new process in the following way. If ν ′ > ν, then simulate

m ∼ Pn((ν ′ − ν)ξ(N∆ − B)) and simulate J ′
1, J

′
2, . . . , J

′
m, τ ′

1, τ
′
2, . . . , τ

′
m and

λ′
1, λ

′
2, . . . , λ

′
m where J ′

i ∼ Ga(1, γ), τ ′
i ∼ U([B, N∆]) and λ′

i ∼ Ga
(

α + 1, α
ξ

)

.

The new process is formed by taking the superposition of the current values

(τ, J, λ) with the new values (τ ′, J ′, λ′). The acceptance probability of ν ′ is

calculated by taking the ratio

p(y|ψ′)q(ν ′, ν)

p(y|ψ)q(ν, ν ′)
(5)

If ν ′ < ν then we form the new process (τ ′, J ′, λ′) by thinning the current

states (τ, J, λ) with thinning probability ν ′/ν. The new value is accepted with

the probability in (5).

The dependent thinning method of Griffin and Steel (2006) is similar to

the retrospective method but uses a different method for proposing the new

process. Direct application of their method to the continuous superposition

model would imply that the proposed process (τ ′, J ′, λ′) is defined in the fol-

lowing way. If ν ′ > ν, they simulate m ∼ Pn((ν ′ − ν)ξ(N∆−B)) and propose

J ′
i = Ji + log(ν′

ν )/γ, τ ′
i = τi and λ′

i = λ for 1 ≤ i ≤ k and J ′
i ∼ Ga(1, γ) where

J ′
i < log

(

ν′

ν

)/

γ, τ ′
i ∼ U([B, N∆]), λ′

i ∼ Ga
(

α + 1, α
ξ

)

for k + 1 ≤ i ≤ k + m.
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If ν ′ < ν, the proposed process is J ′
i = Ji − log(ν′

ν )/γ, τ ′
i = τi and λ′

i = λ for

1 ≤ i ≤ k where (J ′
i , τ

′
i , λ

′
i) is only included if J ′

i > 0. Once again the accep-

tance probability is given by equation (5). In continuous superposition models

this method leads to poor mixing in the chain. It is not hard to see the rea-

son. Unlike the discrete superposition, λi differ between jumps. Jumps with

smaller values of λi will have longer-lasting effects on the integrated volatility

and more effect on the change in the likelihood value between the current and

proposed states. This problem can be addressed by allowing the change in

jumps sizes to depend on their effect on the integrated volatility (and conse-

quently the decay rates). The contribution of a jump to the integrated volatility

is Ji

λi
. This suggests, when ν ′ > ν proposing J ′

i = Ji + a⋆λi

γ (where a⋆ is cho-

sen as explained below) for 1 ≤ i ≤ k and drawing the new jumps from a

Poisson process with intensity f(λ, J, τ) = ν ′λf(λ) exp{−γJ} truncated to the

region (0,∞)× (0, a⋆λ
γ )× (B,N∆). The process can be simply simulated in the

following way:
(

if the mixing distribution is Ga
(

α, α
ξ

))

1. The number of new jumps m is Poisson distributed with mean

ν ′ξ

[

1 −

(

1 + a⋆ ξ

α

)−(α+1)
]

(N∆ − B).

2. τ ′
k+1, τ

′
k+2, . . . , τ

′
k+m

i.i.d.
∼ U([B, N∆])

3. (J ′
k+1, λ

′
k+1), (J

′
k+2, λ

′
k+2) . . . , (J ′

k+m, λ′
k+m) are independent and can be

simulated using a rejection sampler. The rejection envelope generates

λ′
i ∼ Ga

(

α + 1, α
ξ

)

and J ′
i from an Ga(1, γ) truncated to the region

(

0,
a⋆λ′

i

γ

)

.

These values are accepted with probability 1 − exp{−a⋆λ′
i}.

The acceptance probability of (ν ′, J ′, τ ′, λ′) is given by the minimum of 1 and

A
p(y|ψ′)q(ν ′, ν)

p(y|ψ)q(ν, ν ′)
.

where

A =

(

ν ′

ν

)k

exp

{

−a⋆
k

∑

i=1

λi

}

exp

{

(N∆ − B)ξ

[

ν − ν ′

(

1 + a⋆ ξ

α

)−(α+1)
]}

.

In the retrospective sampler and the original dependent thinning method A =

1. This is a useful value since it replicates the acceptance probability of a

Metropolis-Hastings random walk sampler (see Brooks et al., 2003, for a dis-

cussion of this point for general reversible jump MCMC algorithms). In this

14



case, it is hard to find a simple method for choosing a⋆ to guarantee A = 1 for

all parameter values. Therefore we choose the value of a⋆ to guarantee that

E[A] = 1 for all values of the parameters where the expectation is taken with

respect to λ1, λ2, . . . , λk. Then

E[A] =

(

ν ′

ν

)k (

1 + a⋆ ξ

α

)−k(α+1)

exp

{

(N∆ − B)ξ

[

ν − ν ′

(

1 + a⋆ ξ

α

)−(α+1)
]}

,

and E[A] = 1 when

a⋆ =
α

ξ

(

(

ν ′

ν

)1/(α+1)

− 1

)

.

6.2.9 Updating γ

The full conditional distribution of γ is proportional to

p(y|ψ)p(γ|ν)γk−1 exp

{

−γ

k
∑

i=1

λi

}

.

Once again, the likelihood p(y|ψ) only depends on γ through E[zn] = ν
γ ξ∆ and

we use a Metropolis-Hastings independence sampler with proposal density

proportional to

γk−α−2 exp

{

−γ

k
∑

i=1

λi − βν/γ

}

.

This proposal distribution is a GIG distribution.

6.3 Comparison of samplers

Both the retrospective sampler and the revised dependent thinning explained

in Subsection 6.2.8 are used in the algorithm. Figure 1 shows trace plots of

the draws for ν in the context of the application described in the next section.

The simulation show 5000 values derived from a chain of length 250,000 with

thinning to retain every 50th value. The execution times for both samplers are

similar and the acceptance rate for ν in both samplers was chosen to be close

to 0.25. It seems clear that the dependent thinning sampler mixes better in this

case.

7 Application to a stock price index

We consider daily observations of the Standard and Poor’s 500 index of the

New York Stock Exchange from June 6, 1980 to June 6, 2000. Thus, the ob-
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Figure 1: Trace plots of the draws for ν using (a) the retrospective sampler and (b) the

revised dependent thinning explained in Subsection 6.2.8
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Figure 2: Returns of the Standard and Poor’s index between June 6, 1980 and June 6, 2000

served y consists of the 5000 data points shown in Figure 2. This is almost

the same sample as used in Li et al. (2008) and extends the period covered by

Griffin and Steel (2006).

The parameter estimates for a one-component OU model, two-component

discrete superposition and continuous superposition with gamma mixing dis-

tribution are presented in Table 1. There are several trends in the results.

Firstly, the posterior median estimates of the expectation and standard de-

viation of σ2(t) increase as we move from one component to two components

and to the continuous model. The posterior median of E[λ] changes very lit-

tle between the three models. However, the width of the 95% credible in-

terval increases as we move from the one-component to the two-component

model and to the continuous model, which is in line with the increasing flex-

ibility on λ. In all models there seems to be strong evidence for a leverage

effect. The estimates of ρ also markedly change between the three models.
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one-component two-component continuous

E[σ2(t)] 0.80 (0.67, 0.98) 0.93 (0.65, 1.31) 0.99 (0.55, 1.96)

SD[σ2(t)] 0.45 (0.37, 0.56) 0.64 (0.47, 0.89) 0.70 (0.49, 1.06)

w 0.84 (0.69, 0.92)

λ1 0.016 (0.011, 0.022) 0.004 (0.002, 0.006)

λ2 0.082 (0.045, 0.150)

α 0.26 (0.12, 0.59)

E[λ] 0.016 (0.011, 0.022) 0.017 (0.011, 0.027) 0.017 (0.008, 0.037)

µ 0.006 (-0.034, 0.044) 0.013 (-0.028, 0.053) 0.012 (-0.028, 0.051)

β 0.054 (-0.003, 0.112) 0.046 (-0.013, 0.106) 0.045 (-0.012, 0.103)

ρ -4.56 (-6.03, -3.39) -3.09 (-4.36, -2.08) -2.75 (-4.00, -1.80)

Table 1: Posterior estimates of parameters in the Gamma model for one and two compo-

nents and the continuous superposition: posterior median with 95% credible interval in

brackets

The one-component model has a much larger (in absolute value) posterior me-

dian estimate of ρ than the other two models. In fact, this estimate does not

fall within the 95% credible intervals for the two-component and continuous

models. These results show that there is a trade-off in these models between

estimates of the distribution of σ2(t) and the leverage effect. The more flexible

models can have larger means and variances of σ2(t), which offers increased

mass to larger volatilities. Therefore large movement in the returns can be ex-

plained by larger volatilities and lower amounts of leverage. The continuous

model shows clear evidence in favour of long memory. The posterior median

estimate of α is 0.26 with a 95% credible interval which is far away from 1. The

posterior probability for long memory (α < 1) is virtually one in this model.

Posterior estimates of the volatility are shown in Figure 3 with both pos-

terior median and 95% credible intervals included. The inferences from the

two-component and continuous superposition models are similar. However,

there are clear differences between the inference from these models and the

one-component models. The one-component models tends to have a smaller

range of volatility estimates and the inflexibility of the dynamics leads to an

oversmoothed estimate. The differences between the three models are perhaps

most marked at times of rapid change in volatility. Such a period is illustrated

in Figure 4 which shows posterior median estimates for observations 1600 to
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Figure 3: Posterior smoothed estimates of σn for the three models (solid lines are median

values and dotted lines form point-wise 95% credible intervals)
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Figure 4: Posterior smoothed median estimates of σn for observations 1600 to 2000 for

the three different models: one-component (solid line), two-component (dashed line) and

continuous (dotted line)

2000 covering the “Black Monday” crash on October 19, 1987. In this period

there are once again clear differences between the one-component model and

the others. The one-component model has a smaller jump on that day with

a slower decay. The differences between the continuous and two-component

models are restricted to the size of the jump and the period directly after the

jump. The additional jump at about 1840 leads to estimates from the two mod-

els which are virtually indistinguishable. However, the jump with the contin-

uous model is larger and decays more slowly than the two-component model.

In fact, the two-component model introduces a second jump at about observa-

tion 1815.

The autocorrelation functions for σ2(t) are illustrated in Figure 5 and show

a large difference between the estimates. As we might expect, the continuous
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Figure 5: Posterior estimates of the autocorrelation of σ2(t) for the three models (solid

lines are median values and dotted lines form point-wise 95% credible intervals)

superposition leads to a much slower decay than is possible with the two-

component superposition. However, the shape of the autocorrelation function

seems to be different between the two models even for small values of t with

the continuous superposition giving more posterior mass to large autocorre-

lations.

We compare the models using one-step-ahead out-of-sample predictions

with the parameter values fixed at their posterior median value. In particular,

we calculate the log predictive score as

LPS = −
1

N

N
∑

n=1

log p(yn|y1, . . . , yn−1, θ̂)

where θ̂ refers to the posterior median of the parameters. The necessary condi-

tional distributions can be simply implemented using particle filtering meth-

ods (see Creal, 2008 for a discussion of the application of particle filtering

methods to discrete superposition models). We use the method introduced

by Carpenter et al (1999). The results for the three models are shown in Ta-

one-component 0.349

two-component 0.342

continuous 0.341

Table 2: Log predictive scores for the three models

ble 2. They show that both the two-component and continuous superposition

models outperform the one-component model. However, the difference be-

tween the two-component and continuous model is much less marked, mak-

ing it difficult to distinguish between them in terms of predictive performance.
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Figure 6 shows the difference between the running LPS for the continuous
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Figure 6: The difference in running LPS for the continuous and two-component superpo-

sition models

superposition and two-component superposition models. The graph clearly

shows that the two-component superposition model predicts well at the mo-

ment of the crash but at most other times the continuous superposition is out-

performing it in terms of predictive performance. Griffin and Steel (2006) com-

pare models using marginal likelihoods estimated by the modified harmonic

mean estimators of Newton and Raftery (1994) but we find that these methods

give unreliable results for the continuous superposition model.
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Figure 7: The autocorrelation of the squared returns for (a) all data and (b) all data ex-

cluding the week starting with “Black Monday”. The empirical autocorrelation function

is the solid line overplotted with the median theoretical autocorrelation associated with:

the continuous superposition (dashed line), 1 component model (dotted line) and 2 com-

ponent model (dash-dot line)

Another measure of the fit of the models is given by the models’ ability

to reproduce the empirical properties of the data. Figure 7 shows the empiri-
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cal autocorrelation function of the squared returns and its theoretical median

value for the different models. The theoretical autocorrelations are calculated

using a Monte Carlo method at the posterior median estimates of the param-

eters. The large movements in the market on and following “Black Monday”

have a large effect on the estimated autocorrelation and a second empirical

autocorrelation function excluding that week is also shown (panel (b)). Per-

haps not surprisingly, the theoretical models seem to more closely resemble

this second estimate. The one-component model can capture the rapid decay

at short lags but cannot generate the persistent autocorrelations at longer lags.

The other models generate larger autocorrelations at shorter lags but can also

generate more persistence. The autocorrelation for the two-component model

seems to decay to zero around lag 800 where the long memory process still

retains a relatively large autocorrelation.

Mean Variance Skewness Kurtosis

Empirical 0.05 (0.05) 1.04 (0.91) -2.53 (-0.47) 59.63 (8.74)

∆ = 1 2 component 0.06 1.06 -0.46 6.93

Continuous. 0.04 0.84 -0.67 9.06

Empirical 0.24 (0.26) 4.77 (4.48) -0.83 (-0.29) 10.32 (5.95)

∆ = 5 2 component 0.28 5.27 -0.19 4.92

Continuous 0.22 4.16 -0.30 5.96

Empirical 0.97 (1.03) 17.35 (16.76) -0.59 (-0.15) 6.42 (3.64)

∆ = 20 2 component 1.12 20.95 -0.04 4.42

Continuous 0.88 16.47 -0.11 5.12

Table 3: Empirical and theoretical moments for the two-component and continuous su-

perposition models for three values of ∆. The bracketed empirical moments exclude the

week starting with “Black Monday”.

Table 3 shows the theoretical moments calculated at the posterior median

estimates of the parameters at different frequencies for the two-component

and continuous superposition models. We would hope that models could

generate values of the moments that are consistent with the empirical esti-

mates. Both models can generate values close to the empirical mean at all time

frequencies. The two-component model generates a larger variance than the

continuous superposition model. At longer time frequencies, this leads to a

value above the empirical value whereas the continuous model is able to gen-
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erate a closer fit to the empirical variance at the longest frequency. The two

empirical estimates of the higher moments are very sensitive to the effect of

the week beginning with “Black Monday” with the bracketed values show-

ing much smaller (in absolute value) estimates. At the shortest time interval

(highest frequency) the two-component model can generate a level of skew-

ness closer to the bracketed empirical estimate than the continuous. At longer

time intervals, the skewness in the two-component model decreases at a much

faster rate than the empirical values. In contrast, the continuous model gener-

ates more skewness at the higher frequencies (∆ = 5 and ∆ = 20). In the case

of kurtosis the continuous model has theoretical moments much closer to the

empirical values than the two-component model for ∆ = 1 and ∆ = 5.

The fact that the continuous model does not convincingly beat the two-

component model in terms of fit to the data is perhaps not surprising in view

of the fact that on a subset of these data, Griffin and Steel (2006) find a two-

component model to behave best among superposition models with a finite

number of components. The continuous model fits roughly the same, but pro-

vides the extra possibility to accommodate long memory (strongly supported

by the data) and does not require the specific selection of a finite number of

components.

8 Conclusion

We have examined models for stochastic volatility based on continuous super-

positions of OU processes driven by pure jump Lévy processes. Such models

are interesting as they can generate long memory, which corresponds to a sim-

ple parametric restriction on the shape parameter of the mixing distribution if

we use a Gamma mixture of the rate parameters. In addition, there is no need

to choose a finite number of components in a superposition model. The model

will naturally be adaptive to the data.

In the context of an asset returns model with risk premium and leverage,

we propose efficient MCMC methods for Bayesian inference. In order to pro-

pose efficient updates of the process, we implement both the retrospective

method of Roberts et al. (2004) and we propose a new version of the dependent

thinning methods of Griffin and Steel (2006). Applied to an S&P 500 returns

series, it appears the latter method mixes better. Comparison of a competitive

two-component model and the continuous superposition model reveals that
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both have relative strengths and weaknesses leading to roughly similar over-

all fits, but the data do strongly support the presence of long memory in the

continuous superposition model.
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driven stochastic volatility models,” Computational Statistics and Data Anal-

ysis, 52, 2863-2876.

Devroye, L. (1986): “Non-Uniform Random Variate Generation,” Springer-

Verlag: New York.

Ferguson, T. and Klass, M. J. (1972): “A representation of independent incre-

ment processes without Gaussian components. Annals of Mathematical

Statistics, 43, 1634-1643.
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