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Abstract

European industries are under pressure regarding their envi-
ronmental performance and productivity growth. The current
energy crisis offsets governments efforts to achieve carbon neu-
trality while removing significant degrees of freedom in terms of
firm’s competitiveness. This paper studies environmental produc-
tivity and its components at a European industrial level using a
dataset of 13 industries of the manufacturing sector from 27 Eu-
ropean countries over the 1995-2014 period. Our results point
out that industrial environmental productivity has deteriorated
across Europe with best practice change being the main contribu-
tor. In addition, referring to the technological leaders in Europe,
the findings point out that low tend to follow the middle-high
technology industries. Finally, the non-convergence hypothesis
and the creation of discrete clubs for the productivity index case
and its components are supported.
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1 Introduction & Motivation

Productivity amelioration is considered as the main driver of economic
growth. Nonetheless, the extensive industrial rapid growth has caused
unequivocal environmental problems because of the pollutant emissions
augmentation (IPCC, 2021). European Commission (EUCOM) has re-
peatedly stated its aim to be in the frontline of tackling climate change
and become a greenhouse neutral continent by 2050. To meet the com-
mitments made by the Paris Accord, EU members have implemented
an exemplary shift from an adaptive abatement to a proactive promo-
tion of a climate neutral economy (EUCOM, 2018, 2019, among others).
The European Green Deal (EUCOM, 2019) sets unique standards for
climate protection, ensuring both energy security and dependence and
strengthening European economy (Skjærseth, 2021). Consequently, cli-
mate protection with a sustainable energy transition not only reduces
geopolitical fragmentation, but also creates economic opportunities es-
pecially in the manufacturing sector exploiting environmental friendly
and innovative technologies and improving its productivity.

The manufacturing sector is considered as an essential factor of em-
ployment and prosperity, and thus, it constitutes a cornerstone towards
a strong European economy (EUCOM, 2020). In the last decades, the
necessity of green transition, the impending structural changes of the
sector, moving to a wider development of a sustainable or green econ-
omy, and the bet of achieving the goal of green growth creates a new mix
that affects manufacturing sector’s productivity. In this sense, European
Union (EU) puts a great emphasis on the twin, namely the ecological
and digital, transition and the creation of environmentally innovative
non-polluting technologies (EUCOM, 2020). However, many European
firms are rather skeptical to participate in this paradigm shift due to the
cost increases in international trade and energy transition, the price sys-
tem that does not reflect the true cost of using environmental resources,
the requirement of large, uncertain private investments and the lack of
efficacious public funding on new technologies. Furthermore, a possi-
ble crowd out effect is in presence where emissions-intensive companies
might leave the EU because of its high emission prices and relocate to
places with significantly lower or no emission prices (carbon leakage)
(Aichele and Felbermayr, 2015). Finally, the current energy crisis seems
to further impede the efforts on investing in innovative technologies in
order to meet the target of a carbon neutral economy.

National and international authorities have recognized the poten-
tial positive impact of the development of alternative clean energy re-
sources, energy conservation (Stergiou and Kounetas, 2021a) and the
implementation of green technologies (Maskus, 2010). Thus, technologi-
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cal improvement and structural change have encouraged economies and
especially industries of the manufacturing sector in boosting their eco-
nomic growth by simultaneously decreasing carbon emissions (Haščič et
al., 2010; Nikzad and Sedigh, 2017). Nevertheless, the economic growth-
environmental degradation nexus is considered as a continuous long-
lasting challenge. Due to different systemic, social, institutional, techno-
logical and cultural characteristics, the productivity levels vary between
industries and countries. For the successful formation and implemen-
tation of energy and environmental policies, it is of great importance
to investigate the convergence conditions of environmental productivity
across the manufacturing industries of European countries. The exis-
tence of convergence, or otherwise, would help to determine in which
direction actions are necessary and whether current implemented poli-
cies have been effective.

In literature, there have been a lot of studies that examine produc-
tivity growth of economies. In most cases, the Malmquist productiv-
ity index is employed to evaluate the productivity change over time
(Malmquist, 1953).The non-parametric Data Envelopment Analysis (DEA)
Malmquist index measures Total Factor Productivity (TFP) growth by
estimating the distance functions and reflects both the efficiency change
and frontier technology shift (Färe et al., 2008). Nevertheless, tradi-
tional Malmquist indices can’t assess the impact of bad outputs of the
production process on productivity and, hence, may lead to biased pro-
ductivity estimations. To fill this gap, the Malmquist-Luenberger (ML)
index was introduced by Chung et al. (1997). The Directional Distance
Function (DDF) is utilized in the computation of the ML index which
considers the harmful by-products as outputs.1 Thus, it seeks for the
largest feasible increase in desirable outputs and reduction in undesir-
able outputs. A great number of studies have employed the ML index
to examine productivity growth by incorporating environmental aspects
(Färe et al., 2001; Weber and Domazlicky, 2001; Kumar, 2006; Pasurka,
2006; Mahlberg and Sahoo, 2011, among others).

Although the ML index has been extensively used in environmental
studies, it does not take into account the heterogeneity that may ex-
ist among groups. To overcome the different production environments,
Oh (2010) suggested the Metafrontier ML (MML) index, a combination
of the conventional ML index and the concept of metafrontier (Battese
and Rao, 2002), as a more accurate method to estimate productivity
growth by considering the group heterogeneity. Compared to the ML

1Before the introduction of the ML index, undesirable outputs were often used as
inputs. However, the treatment of bad outputs as inputs is not consistent with the
materials balance approach.
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index, the studies utilizing the MML index are evident to a lesser extent
(i.e. Chen et al., 2011; Chiu et al., 2012; Lin et al, 2013). Nonetheless,
the integration of the metafrontier framework, albeit it constitutes a
stepping stone to heterogeneity’s presence, it does not actually give any
information on whether these differences are eliminated and the various
industries converge in the long-term. The convergence analysis is a new
approach that is mostly used in energy and emission studies (Camarero
et al., 2014; Brännlund et al., 2015; Haider and Akram, 2019; Stergiou
and Kounetas, 2021b, among others). In this regard, it may provide ev-
idence concerning the convergence at the European level and point out
possible groups of economies in which specific policies should be imple-
mented diversely.

This study contributes to the field by evaluating the environmental
productivity growth of 13 industries of the manufacturing sector with
different levels of technologies, technical skills, energy and CO2 intensi-
ties from 27 European countries from 1995 to 2014. To our knowledge,
no previous empirical study has been carried out for the entire set of
manufacturing industries in a European level, since most of them focus
on the estimation of scores for every industry individually. Firstly, we
employ a non-radial directional distance function (DDF) approach to
measure productivity growth and its components under a metatechnol-
ogy framework. The incorporation of the metatechnology concept allows
us to reveal at hand possible differences at national and European tech-
nologies and investigate technological heterogeneity. Thus, we are able
to compute the industrial productivity scores both within each European
country and Europe in general. At the same time, we make use of the
industry classification provided by Eurostat in order to examine if dif-
ferent technology groups affect productivity growth disproportionately.
Secondly, through the convergence analysis, our purpose is to provide
an insight into the convergence of environmental productivity and its
components across the European manufacturing industries for the first
time.

The findings of the study indicate that, overall, environmental pro-
ductivity has declined from 1995 to 2014 for the European industries.
Decomposing the productivity into technical change, best practice change
and technical gap change, it becomes clear that industrial productivity
is affected mostly by the innovation of industries within their national
frontiers. Moreover, after 2010 the majority of industries undergoes
a drastic deterioration of their productivity levels, implying a notable
consequence of the financial crisis occurred in 2008 while the middle-low
technology industries lag behind in terms of innovation leadership. In ad-
dition, the convergence analysis presents a rather complex classification
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of industries across European countries for the productivity index and
its decomposition factors as distinct numbers of clubs are being formed.
Therefore, the existence of various growth patterns suggests that uni-
versal common environmental policies in Europe would not present the
expected positive outcomes for the entire set of industries and countries
in the long run.

The rest of the paper is organized as follows. Section 2 describes the
methodology employed in the analysis and Section 3 presents the data
and the variables. Empirical results are discussed in Section 4 while
Section 5 concludes the study.

2 Methodological Framework

2.1 Metafrontier Malmquist Luenberger index

European industries are called upon to meet the simultaneous goal of
sustainable development and growth. Let us assume a set of industries
i=1,2,. . . ,I existing in t=1,. . . ,T time periods. Further we assume that
all industries use a set of inputs N, such that x ∈ RN

+ in order to produce
M desirable outputs, y ∈ RM

+ and J undesirable outputs, b ∈ RJ
+. The

aforementioned analogy can be represented by the production techonol-
ogy set (P) which can be expressed as follows:

P={(x, y, b): x can produce (y, b)} (1)

which is a multi-output production technology with desirable (final
product) and undesirable outputs (emissions). Production technology T
requires the standard axioms of Oh (2010) in order to be valid. More
specifically, the first axiom explains that reducing undesirable outputs
can not be achieved without a cost. The reduction of undesirable out-
puts presupposes the simultaneous reduction of desirable outputs. As
a result, potential resources are employed on the abatement of undesir-
able output rather than the expansion of desirable output. The second
axiom depicts the strong disposability. In other words, the reduction
of desirable outputs does not necessarily drive to a depletion in unde-
sirable output. In order to achieve a reduction in undesirable outputs,
technological innovation is needed. The adoption of new innovative tech-
nologies will manage to limit the quantity of undesirable outputs. The
third axiom of null-jointness certifies that even a minimum quantity of
undesirable output will produced in order to produce some desirable.
The last axiom originates from the law of physics that dictate that per-
fect combustion is almost impossible to be achieved, thus toxic emissions
are produced (Wielgosiński, 2012).
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The existence of different European industrial sectors provides the
presence of heterogeneity in energy consumption and CO2 emissions
releases. Hence, we adopt the metafrontier framework (Stergiou and
Kounetas, 2021a) which is based on the concept of metafrontier intro-
duced by Battese and Rao (2002) and was first used and introduced by
Oh (2010) and since then has significant recognition (Beltrán-Esteve et
al., 2019; Lee, 2021; Chung et al., 2015). The concept of MML requires
its’ decomposition in three definitions of benchmark technology sets: a
contemporaneous benchmark technology, an intertemporal benchmark
technology and a global benchmark technology. In order to further ex-
plain the MML index we need to define the following concepts:

Contemporaneous (C) benchmark technology is defined as a reference
production set made from observations (industries in our case) at one
time only for a specific group (Tulkens and Eeckaut, 1995). The contem-
poraneous benchmark technology is given by P t

Rh
= (xt, yt, bt) : xtcanproduce(yt, bt),

where Rh depicts a group, h=1,....,H and t = 1, ..., T . In our research,
each of the 27 countries is considered as the contemporaneous group of
reference for the examined set of industries.

Intertemporal (I) benchmark technology takes into consideration the
observations of the whole time period concerning a specific group (Tulkens
and Eeckaut, 1995). The number of intertemporal benchmark tech-
nology sets is equal to the number of groups and is given by P I

Rh
=

P 1
Rh

∪ P 2
Rh

∪ ... ∪ P T
Rh

. Research at hand covers a 20 years period of
time (1995-2014). The intertemporal benchmark group includes the in-
dustries of each country for a 20 year span.

Finally, the Global (G) benchmark technology is a single reference
production set which is constructed from observations throughout the
entire time period and for all groups (Tulkens and Eeckaut, 1995). It can
be more easily understood as the benchmark technology that envelops
all intertemporal benchmarks. It is defined as follows: PG = P I

R1
∪P I

R2
∪

... ∪ P I
RH

. The global benchmark technology group customized to our
data is a single group with observations from all countries and all years.

We further continue with the decomposition of the MML index into
productivity growth components. Namely these components are effi-
ciency change (EC), best practice gap change (BPC) and technical gap
change (TGC). Using the distances of the benchmark technologies the
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MML index is created as follows:

MML(xt, yt, bt, xt+1, yt+1, bt+1) =
1 +

−→
DG(xt, yt, bt)

1 +
−→
DG(xt+1, yt+1, bt+1)

=

1 +
−→
D t(xt, yt, bt)

1 +
−→
D t+1(xt+1, yt+1, bt+1)

×
(1 +

−→
D I(xt, yt, bt))/(1 +

−→
D t(xt, yt, bt)

(1 +
−→
D I(xt+1, yt+1, bt+1))/(1 +

−→
D t+1(xt+1, yt+1, bt+1))

×
(1 +

−→
DG(xt, yt, bt))/(1 +

−→
D I(xt, yt, bt)

(1 +
−→
DG(xt+1, yt+1, bt+1))/(1 +

−→
D I(xt+1, yt+1, bt+1))

=
TEt+1

TEt
×

BPRt+1

BPRt
×

TGRt+1

TGRt
= EC × BPC × TGC

(2)

In the equation above we note that EC describes how close (or farther
away) a DMU moves towards the contemporaneous benchmark technol-
ogy when comparing period t+1 to period t. Hence, EC > 1 is in-
terpreted as an efficiency improvement relative to the contemporaneous
benchmark technology frontier. On the contrary, when facing EC < 1,
the DMU is lagged behind. The BPC measures the alteration of the con-
temporaneous benchmark technology frontier compared to the intertem-
poral benchmark technology frontier during two periods. Hence, BPC
> 1 suggests that the contemporaneous benchmark technology frontier
moves closer to the intertemporal benchmark technology frontier, while
BPC < 1 suggests that the first moves farther away from the latter.
Having in mind that we deal with desirable and undesirable outputs,
BPC can be explained as the innovation effect deriving from the reduc-
tion of undesirable and the increase of desirable output. TGC gauges
the alteration between the intertemporal benchmark technology fron-
tier and the global benchmark technology frontier during two periods.
TGC > 1 suggests that the gap between the intertemporal benchmark
technology frontier and the the global benchmark technology frontier is
decreased between two periods for a DMU and captures the technical
leadership effect. Finally, MML > 1 corresponds to productivity gains,
while MML< 1 corresponds to productivity losses.

2.2 Non-radial Directional Distance Function

The traditional DDF method aims on the decrease of inputs and bad
outputs and the simultaneous increase of good outputs at the same rate,
overestimating the efficiency when slack are present. To overcome this
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limitation, (Zhou et al., 2012) proposed the non-radial approach which
can be expressed as follows:

−→
DP (x,y,b;g) = sup

{

wPβ : ((x,y,b) + diag(β) ∗ g)ǫ P
}

(3)

where diag represents the matrices, wP = (wx, wy, wb)P describes a
normalised weight vector relevant to the number of inputs and outputs,
g = (−x, y,−b) is the directional vector and β = (βx, βy, βb)

P ≥ 0 rep-
resents the scaling vector denoting the individual inefficiency measures
for the employed variables.2

The non-radial DDF measure of the inefficiency can be estimated by
solving the following linear programming problem:

−→
D cond(x

q, yq, bq; g) = max wx
nβ

x
n + wy

mβ
y
m + wb

jβ
b
j (4)

s.t
∑

cond

I
∑

i=1

λq
ix

q
in ≤ x′

n − βx
ngxn, n = 1, ......, N

∑

cond

I
∑

i=1

λq
iy

q
im ≥ y′m + βy

mgym, m = 1, ......,M

∑

cond

I
∑

i=1

λq
i b

q
ij = b′j − βb

jgbj, j = 1, ......, J

λq
i ≥ 0 i = 1, 2, ...., I, βx

n, β
y
m, β

b
j ≥ 0

where the cond represents the condition for constructing the three
environmental production technologies, namely contemporaneous, in-
tertemporal and global technologies. To estimate and decompose the

MML, we solve six different linear problems:
−→
DC(x,y,b),

−→
D I(x,y,b)

and
−→
DG(x,y,b) for q = t, t+ 1.

2.3 Convergence Analysis in terms of MML and its

components

The hypothesis of convergence among manufacturing industries across
Europe is tested under the technique proposed by Phillips and Sul (2007).
The specific approach identifies groups of individuals in a panel that
share similar patterns of convergence even if there is no full convergence
for the entire panel. In this sense, the major advantage of this method

2If
−→
D is equal to zero, the evaluated industry will be efficient and will be located

along the best-practice frontier in the g direction.
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is that it discloses the existence of multiple convergence clubs and in-
dividuals that diverge. The regression-based test is combined with a
clustering procedure in order to provide manifold equilibrium points of
convergence accounting for the heterogeneity of individuals. Let Yit be
the industrial productivity and its three decomposed factors.Yit can be
decomposed as:

Yit = δiµt + ǫit (5)

where δi measures the idiosyncratic distance between the common factor
µt and the systematic part of Yit, µt represents the aggregated common
behavior of the dependent variable Yit, a common variable variable of
influence on the individual (industry) behavior and ǫit the error term.

PS extended Eq.(5) allowing δi to have a random component that
absorbs the error term uit and permitting possible convergence behavior
in δit over time to the common factor µt, both of which are time-varying.
Therefore, the new model is written as follows:

Yit = δitµt (6)

In order to eliminate the common component and test whether δit
converges to a constant δ, they defined the relative transition parameter
hit as:

hit =
Yit

1

N

N
∑

i=1

Yit

=
δit

1

N

N
∑

i=1

δit

(7)

which measures how the variable of interest for individual i evolves in
relation to the panel average. Thus, if the factor loading coefficients
converge to δ, the relative transition parameters hit converge to unity
and the cross-sectional variance (Ht) converges to zero as t → ∞.

Ht =
1

N

N
∑

i=1

(hit − 1)2 → 0, as t → ∞ (8)

The null hypothesis of the test can be formulated through a semipara-
metric model for δit:

δit = δi +
σiξit
L(t)ta

(9)

where ξit ∼ iid(0,1) across i, α denotes the speed of convergence (the rate
at which the cross-sectional variation decays to zero) and L(t) is a slowly
varying function such as log(t) for which L(t)→ ∞ as t→ ∞. Hence, δit
converges to δi for all positive values of α or when the parameter is zero.
The null hypothesis of convergence is:

9



H0 : δi = δ and α � 0

against the alternative hypothesis

HA : δi 6= δ for some i and/or α ≺ 0

The null hypothesis implies convergence for all economies, while the
alternative implies no convergence for some of them. The null hypothesis
is tested by utilizing the following log t regression:

log(H1/Ht)− 2logL(t) = ĉ+ b̂logt+ ut, t = [rT],...,T (10)

where L(t)= log(t+1) and b̂ = 2â, where α is the estimate of speed
convergence in H0. Full panel convergence exists when b̂ > 0 while
higher values of b̂ will indicate faster rate of convergence. The null
hypothesis is rejected when t-statistic tb < -1.65. PS suggested starting
the regression at point t = [rT], where [rT] is the integer part of rt and r
= 0.3. At this point it is worth mentioning that the rejection of the null
hypothesis only indicates that there is not full convergence in the panel;
there might be a variety of subgroups that display distinct convergence
patterns. To do so, the utilization of the clustering algorithm provides
the identification of the number of convergence clubs within the panel
dataset and the members/individuals that form each club.3

3 Data and Variables

In order to examine the issues surrounding our main research question,
we devised a unique balanced dataset that integrates information on
both input and output variables. As shown in Table A1, the dataset in-
cludes thirteen industries of the manufacturing sector from twenty-seven
European countries over the 1995-2014 period.4 The sample period and
industries of the study have been selected with reference to the availabil-
ity of complete and comparable data at the industry level. Hence, the
employed dataset consists of 7020 observations on a panel dimension.

For the computation of productivity growth, capital stock (K), Labor
(L), Intermediate Inputs (II) and Energy use (E) are employed as inputs
whilst Gross Value Added (GVA) and carbon dioxide emissions (CO2)
as the desirable and undesirable outputs respectively. More specifically,
capital is measured in million Euros, labor is captured by the total hours
worked by employees, expenditure on intermediate inputs (II) in million
Euros and the total energy use (E) in Terajoules. For the output set,
GVA is expressed in million Euros and CO2 emissions in kilotons. All

3See Appendix C for more details regarding the clustering algorithm.
4Data on 2-digit manufacturing industries have been employed according to the

International Standard Industrial Classification (ISIC) (Kounetas et al., 2012).
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monetary variables have been deflated and are expressed in Euros in
constant 1995 prices. Data for the entire set of variables were collected
through the World Input Output Database (WIOD), with the only ex-
ception of carbon dioxide emissions that were drawn from European
Commission-EU Science Hub. Tables 1 and 2 present the descriptive
statistics and the mean values for the variables of each industry. Over-
all, 5 out of 13 industries (38%) exceed the total average of capital,
labor and emissions, 6 out of 13 (46%) of intermediate inputs, 2 out of
13 (15%) of energy use and 7 out of 13 (54%) of value added. More
specifically, the industry of Food, Beverages and Tobacco (FBT) dis-
plays the highest values of capital, labor and intermediate inputs while
in terms of energy consumption the industry of Coke, Refined Petroleum
Products (CRP). Turning our attention on the outcomes of the indus-
trial production activities, the Electrical and Optical Equipment (ELO)
and the Basic Metals and Fabricated Metal Products (BMF) industries
demonstrate the largest values regarding the desirable and the undesir-
able output respectively.

Table 1: Descriptive statistics of input and output variables

Variables Mean Std. Dev. Min Max

Inputs

K 1783.481 6172.057 0.002 122809.200

L 573.674 2840.068 0.385 85547.430

II 10251.070 21807.550 0.033 255747.400

E 18951.480 190024.700 0.001 5387029

Outputs

Desirable output

GVA 4353.254 9626.136 0.066 125754.300

Undesirable output

CO2 2913.568 6861.270 0.011 67864.280
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Table 2: Mean values of input and output variables by industry

Industry K L II E GVA CO2

BMF 2111.305 601.928 14741.080 18360.020 6663.865 9049.716

(5090.849) (1643.624) (24519.970) (81486.430) (12099.310) (12898.770)

CHM 3037.470 577.089 13709.840 32638.310 6296.234 5730.989

(10117.560) (2625.875) (23202.790) (147909.200) (10732.650) (7634.023)

CRP 1075.987 94.186 8320.517 162634.800 805.176 5753.308

(3781.465) (388.756) (16011.870) (643909.600) (1234.323) (7844.577)

ELO 1779.629 633.701 14708.750 764.191 8163.453 440.615

(4472.635) (2841.244) (25775.090) (3560.666) (16693.020) (655.544)

FBT 3969.416 1338.833 22137.810 7317.737 7013.298 2947.465

(11259.580) (4908.860) (33540.420) (29841.060) (10698.520) (4029.772)

MAC 2475.289 1221.127 12446.560 1754.294 6526.545 591.347

(10227.900) (6629.304) (26239.910) (9249.056) (14281.120) (946.249)

MAN 981.904 551.277 4312.299 809.051 2266.534 480.700

(3184.590) (2121.045) (6967.805) (3330.029) (3749.846) (1051.468)

ONM 1365.899 414.298 4285.881 8120.561 2577.305 8874.495

(3705.203) (1475.408) (6786.938) (33049.950) (4105.624) (12933.650)

PPP 1511.334 339.444 8134.268 8142.662 4390.967 1706.116

(2853.502) (894.618) (12056.470) (36955.310) (6913.431) (2217.376)

RUP 1439.307 502.245 5617.671 1868.550 2912.871 517.754

(4583.417) (2166.929) (10059.830) (9344.177) (5489.390) (917.277)

TXT 847.326 504.616 4903.745 1274.174 2333.874 751.358

(3034.681) (1745.060) (9964.843) (5865.505) (4320.070) (1795.850)

TRE 1950.683 421.297 17080.100 440.566 5344.759 687.972

(5165.857) (1400.904) (37872.970) (2270.042) (11979.870) (1198.941)

WCP 639.706 257.730 2865.447 2244.340 1297.418 344.550

(1582.777) (733.227) (3888.937) (8794.995) (1827.396) (450.852)

Note: Standard deviation in parenthesis

4 Results & Discussion

4.1 European industrial environmental productiv-

ity growth

To calculate the MML index5, we proceed with the selection of the group
frontiers, namely the contemporaneous, intetemporal and global bench-
mark technology. Figure 1 displays the average trend of environmental
productivity growth, efficiency change, technical change and technology
gap ratio throughout the sample period. On the whole, productivity
growth and best practice change present, on average, a variety of fluctu-
ations having a different behavior compared with the other two compo-
nents. For the case of productivity growth, the largest decrease occurs

5Codes in R are available upon request.
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from 2011 to 2012 during the global financial crisis, whilst the largest
increase, in absolute terms, from 2012 to 2013 denoting a short recovery
period. Technical change, namely the BPC, follows a similar path with
productivity growth, albeit with a smoother decline from 2011 to 2012.
In other words, productivity is positively affected by innovative activ-
ities concentrated on emissions mitigation and environmental security.
Conversely, the efficiency change and technology gap change reach an
average score around unity from 1996 to 2014.

Figure 1: Average industrial productivity growth and its decomposition
factors for the 2000-2014 period

Apart from the findings regarding MML index at an aggregate level,
it is interesting to examine individual industrial performance. Table
3 and Figure 2 report the empirical results of productivity growth ac-
counting for undesirable outputs and its decomposition factors for each
industry over the examined period. The average value of productivity
is 0.978 indicating a decrease by 2.2% with none of the participating
industries presenting an increase. More specifically, the entire set of in-
dustries has been through productivity deterioration on average, albeit
some of them present more severe loses (BMF, CRP, ONM, FBT and
CHM) while others move closer to unity (MAC, MAN and WCP). Indus-
tries with low productivity are considered to have the biggest changes
in environmental protection policies over the last five years.6 Prior to

6Our dataset covers the period 1995-2014, thus policy implementation is not ac-
tivated.
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that, little progress has been made while it is imperative to mention that
productivity in almost all industries has suffered big drops after the fi-
nancial crisis in 2008. Refering to the China case, the majority of studies
examining green productivity growth in specific industries of the manu-
facturing sector, have highlighted the importance of strict environmental
regulations in the improvement of environmental productivity (i.e. Chen,
2010; Zhang et al., 2011; He et al., 2013). Thus, policymakers and na-
tional/local governments should focus on the efficacious implementation
of environmental policies in firms, industries, regions and countries in
Europe.

Table 3: Average industrial productivity change, efficiency change, best
practice gap change, and technical gap ratio change
IND MML TGC BPC EC IND MML TGC BPC EC
BMF 0.959 0.996 0.994 1.005 PPP 0.979 1.006 0.998 1.002

(0.198) (0.139) (0.244) (0.159) (0.153) (0.114) (0.208) (0.129)
CHM 0.976 0.996 1.003 0.999 RUP 0.984 0.998 0.998 1.006

(0.174) (0.118) (0.213) (0.106) ( 0.146) (0.115) (0.183) (0.090)
CRP 0.958 0.981 0.998 0.996 TXT 0.987 1.003 1.002 1.000

(0.343) (0.262) (0.258) (0.104) (0.182) (0.150) (0.193) (0.088)
ELO 0.988 1.004 0.995 0.997 TRE 0.976 1.001 0.990 0.996

(0.180) (0.111) (0.180) (0.077) (0.222) (0.141) (0.203) (0.109)
FBT 0.972 0.999 1.002 0.999 WCP 0.992 1.004 0.993 1.009

(0.180) (0.120) (0.217) (0.138) (0.176) (0.136) (0.171) (0.089)
MAC 0.991 1.005 1.001 0.999 Aver. 0.978 0.999 0.998 1.000

(0.165) (0.114) (0.181) (0.092) (0.196) (0.142) (0.208) (0.112)
MAN 0.992 1.001 1.003 1.001

(0.175) (0.132) (0.188) (0.094)
ONM 0.957 1.001 0.999 0.994

(0.176) (0.132) (0.242) (0.146)
Note: Standard deviation in parentheses
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Figure 2: Productivity growth, efficiency change, technical change and
technical gap ratio for European industries from 1996 to 2014

As explained in the methodology section, MML is a productivity in-
dex composed by three other indices, namely, EC, BPC and TGC. EC
captures the move towards or away from a contemporaneous benchmark
technology. The average value of EC for all industries is almost equal
to unity, revealing neither a catching up nor a lagging behind effect has
occurred throughout the examined period. Finally, looking closer to the
EC results of each industry we detect that five of them present slightly
larger (namely, BMF, MAN, PPP, RUP and TXT) than unity values
and the rest of them less than or equal to one.

Turning our attention to the best practice gap index (BPC) the man-
ufacturing sector is 0.998, indicating that the level of technical innova-
tion diminishes from 1995 to 2014. Thus, a shift of the contemporaneous
frontier further away from the intertemporal frontier occurs. Compared
with EC and TGC, BPC constitutes the most significant cause of envi-
ronmental productivity’s increase in the European manufacturing sector.
The industries of CHM, FBT, MAC, TXT and MAN present the highest
values consisting the champions group, whilst the industries of TRE and
WCP the lowest, suggesting technical progress and deterioration respec-
tively. Increasing concerns and policies about energy and environment
have fostered advancement in technology. However, the implementation
of new (green) technology systems, improvements in energy efficiency
and reduction of bad outputs are much harder for the heavy industries
(EEA, 2018). Similar to our results, Chen and Golley (2014) and Li and
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Lin (2016) revealed that the main contributor of environmental pro-
ductivity is technical change. Moreover, the latter indicated that energy
and emissions-intensive sectors such as chemicals, plastics, iron and steel
present lower levels of environmental productivity and technical innova-
tion in general. Regarding the time evolution of the technical change, a
similar pattern is observed for the majority of industries. More specifi-
cally, industries display a technical decrease from 2001 to 2002 and 2011
to 2012, with the exception of CRP, TXT and WCP. Conversely, from
2013 and onward there is a sharp technical increase for the former indus-
tries. Overall, the largest technical progress occurs in the ONM industry
during the 1999-2000 period.

Finally, technical gap change (TGC) average value for the 20-year
period is 0.999 indicating a very small deterioration in the technical
leadership. For example, technical leadership entails industries’ efforts
to adopt best available environmental technologies and practices (BAT)
at European level. More specifically, the gap between global and in-
tertemporal frontiers was expanded. Examining the TGC values of each
industry we detect some heterogeneity. The industries of PPP, MAC
and ELO present the highest values implying that the technology gap
between the intertemporal frontiers of those three industries and the
global frontier has diminished, on average, for all years. The industries
with the lowest average technical gap change are these of CRP, BMF and
CHM. In these cases the index is below unity, with the industry of Coke
having a 1.9% shortfall on average. In terms of time evolution, a similar
pattern can be detected for the majority of industries with the most com-
mon characteristic being a big drop of the index in the 2010-2012 period.

4.1.1 Environmental productivity growth and technology groups

performance

Our methodological framework allow us to incorporate in our estimations
technological and environmental spillover effects associated with inter-
sectoral linkages that can be generated both at national level and across
different countries and industries (Saliola and Zanfei, 2009). Thus, the
promotion of knowledge generation techniques and the transfer of scien-
tific and technological achievements could improve the technological level
of an industry. Although transmission channels of knowledge spillover
are present (Los and Verspagen, 2002) and vertical associations between
firms are in operation (Isaksson et al., 2016), phenomena of technological
isolation (Tsekouras et al., 2017), co-evolving and different environmen-
tal constraints exists (Manning et al., 2012), preventing industries of
fully exploiting the environmental available information (Constantini et
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al., 2017). Thus, since the BPC and TGC indices pinpoint the indus-
tries that exhibit technological innovation and leadership respectively,
they are utilized to identify the ”innovative industries”. In this sense,
if the values of BPC and TGC are higher than unity, it means that the
specific industry would be characterized as a group and metafrontier
innovator respectively.7 The former are characterized as champions in-
dustries into their country group and the latter are the leaders among
all industries in Europe.

Figure 3: MML, BPC and TGC rends from 1996 to 2014 for the tech-
nology groups

An ex-post classification of the manufacturing industries into technol-
ogy groups has been conducted in accordance with Eurostat to examine
whether there are any similar pattern in terms of technology progress.8

For the case of BPC, as shown in Fig. 3, it is observed that there are no
significant differences between the technology groups. The middle-low
and low group display higher values from 1999 to 2000 than the middle-
high group while the latter presents lower average values than the two
other groups from 2011 to 2012. Our results point out that industries
belonging to the low and middle-low group come closer to each other by
diminishing the distance of their frontiers. Therefore, industries of the

7See Oh (2010) for further details on innovation classification.
8See Table A1 for the technology classification of industries. In our case, there

was no industry classified in the High technology group.
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middle-high group confront great challenges in terms of mitigating their
emissions through the implementation of innovation techniques (Lee,
2021). Even though they invest huge amount of capital in knowledge
generation/innovation technologies, up to a certain point their green in-
novation technologies would not be so efficacious and the additional costs
would exceed their benefits. Conversely, the low technology industries
seem to improve their innovative activities and reach out the middle-
low ones demonstrating a positive behavior in their innovation activities
due to the knowledge and technology spillovers existing in the European
level. Indicatively, three out of six industries belonging to the former
group present a BPC value larger than unity (FBT, MAN, TXT), nar-
rowing the gap and enhancing innovation to mitigate the emissions and
support the sustainability goals.

In the case of TGC the results differ. The classification to middle-
high, middle-low and low technology industries when controlling for tech-
nical leadership discloses dissimilarity for the three groups. A great dis-
crepancy occurs during 2011-2013. At that time, middle-high and low
group have an increase in their TGC values about 6% and 4% respec-
tively whilst the middle-low group demonstrates a drop of 5%. It is
worth mentioning that the low technology group has a beneficial tech-
nical leadership (value above 1) since 2002. By taking a closer look at
Table 3, it is evident that all three technology groups in the last year
present a TGC value greater than unity. Even the middle-low technology
group faces a 1% increase, implying that the gap between the global and
the inertemporal frontier was reduced. A possible explanation for the
initial drop and the subsequent increase is that the European legislation
for CO2 emissions mitigation that was first implemented at 2011 (EU-
COM, 2013) built a wall of difficulties for technological leadership. Once
industries with middle-low technology managed to overtake this obsta-
cle they exhibited better technological leadership. Middle-high and low
technology industries did not face such difficulties but rather experienced
an enhancement in their technological leadership.

The MML classification follows a strict pattern for all groups. In ev-
ery peak or drop the three groups follow the same pattern. We observe a
40% drop at 2012 for all groups. Middle-high and low technology groups
had a positive but small TGC index while their BPC index faced a drop
which constitutes the main driver for the drop in MML. The diffusion of
green technologies and the development of fundamentally new technolo-
gies are required to transform nations into sustainable environment. In
this sense, new technologies, such as carbon capture and storage tech-
nologies in the industrial sector, are not the only measure towards the
reduction of bad outputs, but also technologies that are already avail-
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able in markets and would actually provoke changes in the institutional
management and concepts (UNIDO, 2014). As already mentioned, our
results point out that low technology industries follow a similar path
with middle high ones. Thus, it is more likely for the former to poten-
tially focus on a high level of synergies with the latter in particular parts
or the entire production process rather than investing on new technolo-
gies as their capital is insufficient for the incorporation of entirely new
systems.

4.2 Convergence analysis of environmental produc-

tivity growth

Having estimated the environmental productivity growth, we focus our
attention in the examination of convergence employing the Phillips and
Sul (2007) methodology. Table 4 presents the results for the club-
clustering of the MML productivity index. The algorithm initially clas-
sifies the European industries dataset into 9 subgroups. The point esti-
mates of γ are all significantly positive and less than 2.0. Thus, there
is strong evidence of conditional convergence but little evidence of con-
vergence level within each of these clubs. The middle panel of Table
4 reports the tests conducted to determine whether any of the original
subgroups can be merged to form larger convergence clubs. Except for
clubs 1, 2, 3, 7, 8 and 9, there is evidence to support merges of the orig-
inal groupings. The right panel of Table 4 displays the final empirical
classification from the clustering analysis into seven growth convergence
clubs of industries.

The first club includes 16 European industries from Basic Metals
and Fabricated Metal Products, Chemicals, Coke and Refined Petroleum
Products, Electrical and Optical Equipment, Wood and Cork Products
and Food and Beverages. Industries of the first club belong to countries
like Germany, Finland, France and Belgium. We are able to identify
heterogeneous clubs 3, 4 and 5 that include the majority of European
industries composed of all countries and manufacturing sectors. Con-
versely, clubs 6 and 7 constitute, mostly, individual countries’ coke and
refined petroleum (please see Fig.A1 for an analytical presentation of
clubs). The same information contained in Table 4 can be represented
graphically, as depicted in Fig.4, using the relative transition paths cal-
culated in relation to the average, that is, the series of hit for all the
European industries examined in our dataset.
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Table 4: Convergence club classification: Productivity

Initial classification Tests of club converging Final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [16] 0.664 Club1+2 Club 1 [16] 0.664

(0.213) -0.496* (0.213)

Club 2 [65] 0.082 (0.245) Club2+3 Club 2 [65] 0.082

(0.256) -0.485* (0.256)

Club 3 [76] 1.000 (0.222) Club3+4 Club 3 [175] 0.323

(0.226) 0.323 (0.207)

Club 4 [99] 0.878 (0.207) Club4+5 Club 4 [77] 0.005

(0.317) -0.017 (0.121)

Club 5 [51] 0.993 (0.188) Club5+6 Club 5 [11] 0.658

(0.284) 0.005 (0.605)

Club 6 [26] 1.289 (0.131) Club6+7 Club 6 [5] 1.141

(0.301) -0.117 (0.82)

Club 7 [11] 0.658 (0.2) Club7+8 Club 7 [2] 0.354

(0.605) -0.537* (0.134)

Club 8 [5] 1.141 (0.248) Club8+9

(0.82) -1.071*

Club 9 [2] 0.354 (0.235)

(0.134)

Note1: *Reject the null hypothesis of convergence at 5% level.

Note2: Number in brackets stand for the number of decision making units in a group.

Note3:The tests of club merging have as a null hypothesis that club i and Club j can be considered as a joint convergence club. The test

is distributed as a one-sided t statistic with a 5% critical value of -1.65.

A simple glance over the MML productivity relative transition path
unveils the following findings. Overall, all clubs start from the same
initial point but some diversion in the dynamics of convergence process
is present. Clubs 3, 4 and 5 behave in an identical way during the
examined period. Moreover, concerning the first cluster of European
industries, even though their relative transition starts at similar levels
with the above-mentioned clubs, it shows a completely inverse picture
after the global financial crisis. Although the majority of clubs seems to
accelerate the downward trajectory, club 1 displays an upward trend and
a significant amelioration. Last but not least, the second group (consist-
ing of 65 observations) presents a steady and very smooth improvement
after 2009.
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Figure 4: Relative transition paths in terms of productivity growth

Table 5: Convergence club classification: Efficiency Change

Initial classification Tests of club converging Final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [3] 0.262 Club1+2 Club 1 [16] 0.241

(0.317) -0.069 (0.093)

Club 2 [3] 0.210 (0.17) Club2+3 Club 2 [37] -0.198

(0.254) 0.467 (0.253)

Club 3 [7] 0.688 (0.117) Club3+4 Club 3 [219] -0.205

(2.198) 0.785 (0.327)

Club 4 [3] 0.478 (0.086) Club4+5 Club 4 [54] -0.126

(0.612) -0.482* (0.352)

Club 5 [37] -0.198 (0.252) Club5+6 Club 5 [25] 0.011

(0.253) -0.721* (0.333)

Club 6 [34] 1.163 (0.247) Club6+7

(0.266) -0.205

Club 7 [185] 0.094 (0.327) Club7+8

(0.472) -1.63*

Club 8 [54] -0.126 (0.354) Club8+9

(0.352) -1.294*

Club 9 [25] 0.011 (0.33)

(0.333)

Table 5 presents the results of club classification for the efficiency
change. Nine clubs are identified from the PS algorithm. Seven of these
subgroups form convergence clubs. Although the estimate γ is negative
for clubs 5 and 8 the t-statistic is not statistically different from zero,
suggesting convergence among these clubs. Thus, nine distinct groups
of convergence initially exist. The club merging algorithm for the indi-
vidual industries led us to some amalgamation of clubs as shown at the
right part of Table 5. As shown in Fig.A2, the most multitudinous club
is cluster 3, covering a 64% of the total observations. However, there are
four other clubs. Club 1 consists of medium-low and low industries from
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small and open economies and eastern Europe countries (with the excep-
tion of UK and Denmark). On the other hand, club 2 encompasses more
industries (8 to 12, including also two medium-high) from the majority
of countries but in this case they are scattered in a more homogeneous
set of countries. Club 4 demonstrates a more heterogeneous structure
since it contains the entire set of the examined industries and presents
a mixed behavior regarding the participating countries. Finally, club 5
consists of medium-high and low industries mainly from Scandinavian
countries and countries form the Baltic sea.

Overall, the results for the efficiency change reveal no diversion in
the dynamics of the convergence process for the 1996-2010 period, as
displayed in Fig.5. However, after 2010 it becomes clear the effect of
the global crisis and the diverse behavior of Clubs 1 & 2 compared with
clubs 4 & 5. Concerning the latter, although their relative transition
starts at similar levels with the other groups, they are placed near to
1.2 and display an upward trend and a significant improvement. Spe-
cific industries, such as BMF, ONM, WCP, CHM, CRP, TXT, PUP and
ELO of some countries behave indifferently comparing with the other
clusters. In addition, the most numerous club (club 3), starts from an
initial value of one and presents a steady behavior for the entire period.

Figure 5: Relative transition paths in terms of efficiency change
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Table 6: Convergence club classification: Best practice Change

Initial classification Tests of club converging

γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [150] -0.496 Club1+2

(0.301) -1.087*

Club 2 [97] 1.258 (0.311) Club2+3

(0.335) -0.435*

Club 3 [95] 0.263 (0.238) Club3+4

(0.215) -0.484*

Club 4 [9] 0.207 (0.146)

(0.266)

Turning our attention to the best practice change, we can notice a
stable behavior regarding the established clubs between the initial and
final classification, as displayed in Table 6. As shown in Fig. A3, the first
club includes the 42% of the total observations and consists of industries
mostly from Austria, Germany, Finland, Sweden and UK. Its relative
transition path, depicted in Fig.6, reveals no diversion in the dynamics
of the convergence process. Clubs 2 and 3 consist of significant high
number of industries from all countries. The second group includes sev-
eral countries, with the majority belonging to countries such as Greece,
Latvia and Bulgaria. In contrast, countries from South Europe (Spain,
Portugal and Malta) and from Eastern Europe (Poland, Hungary and
Slovenia) constitute the most observed countries of the club. However,
club 4 differentiates in terms of industries and countries. It consists of
nine observations from different industries9 but mainly from countries
like Cyprus, Czech Republic, Greece, Italy, Ireland, Malta and Spain.
The relative transition paths are demonstrated in Fig.6. Even though
the transition paths start at similar levels, there is a significant deterio-
ration for all of them, with the only exception of club 1. This behavior
is more intense in the case of the fourth group which shows the largest
reduction in terms of BPC.

9It does not have any observation for the BMF, MAC, PPP and TXT industry.
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Figure 6: Relative transition paths in terms of best practice change

Table 7 shows that eight convergence subgroups are initially formed
for the technology gap change case. The first group has a fitted co-
efficient that is significantly negative, revealing evidence of divergence.
However, the t-statistic is not statistically different from zero suggesting
convergence among the members of this club. The final classification
supports the existence of seven clubs that converge which indicates sub-
stantial diversity in the performance among industries of EU and raises
the possibility of some transitioning between the groups. Our results
regarding the final classification does not support the traditional divi-
sion between North and South Europe or countries that belong to the
Eurozone area. However, a closer look reveals some interesting patterns,
as displayed in Fig.A4. The first club with all industries includes seven-
teen countries with the majority of the industries belonging in countries
such as France and Germany, but also in Malta and Bulgaria. The
second club consists of industries belonging to countries like Austria,
France, The Netherlands, UK and countries with a transition economy
like Latvia. The third group presents a more compact behavior as it
consists of central European countries. Conversely, Clubs 4 and 5 con-
sist of countries mainly from Southern Europe like Cyprus and Greece.
It is worth mentioning that for club 4, the industry of BMF and for club
5, MAN and RUP do not participate at all in the formation of each club
respectively.

Fig.7 demonstrates the transition paths of the seventh clubs and re-
veals a rather complex behavior for all cases, except for club 3, one of the
most multitudinous clubs, that remains close to unity with no signifi-
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cant fluctuations. For the rest of the clubs, different behavior and steady
states are more than obvious. Moreover, a clear distinction between the
rest of the groups exists after the crisis in 2010. Clubs 1 and 2 seems
to reveal significant improvements regarding technology gap chance pre-
senting a significant increase at 2012 whilst an inverse condition holds
for clubs 4 to 7.

Table 7: Convergence club classification: Technology gap Change

Initial classification Tests of club converging Final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [36] 0.143 Club1+2 Club 1 [36] 0.143

(0.262) -0.853* (0.262)

Club 2 [99] 0.188 (0.2) Club2+3 Club 2 [99] 0.188

(0.261) -0.769* (0.261)

Club 3 [98] 0.429 (0.232) Club3+4 Club 3 [98] 0.429

(0.3) -0.879* (0.3)

Club 4 [85] -0.418 (0.233) Club4+5 Club 4 [85] -0.418

(0.264) -1.302* (0.264)

Club 5 [20] 0.287 (0.133) Club5+6 Club 5 [20] 0.287

(0.223) -1.013* (0.223)

Club 6 [2] 1.020 (0.161) Club6+7 Club 6 [5] 1.02

(0.463) -0.172* (0.463)

Club 7 [5] 1.509 (0.097) Club7+8 Club 7 [8] 0.115

(0.446) 0.115 (0.122)

Club 8 [6] 0.798 (0.121)

(0.212)

Figure 7: Relative transition paths in terms of technology gap change

5 Concluding remarks

Industrial development can have a leading role in the achievement of
numerous social and economic objectives. However, it is vital for sus-

25



tainability reasons to counterbalance the economic with the environmen-
tal impact of industries, regions and countries. The diffusion and the
promotion of technology constitute substantial components for compet-
itiveness and long-term economic growth, especially when referring to
the manufacturing sector. Thus, the implementation of green technolo-
gies should be at the core of any industrial effort for enhancing growth
and productivity levels. This study provides new evidence for the Euro-
pean manufacturing sector by integrating the effect of environmentally
harmful byproducts in the measure of productivity. The MML index,
based on the non-radial DDF, was utilized to evaluate the environmental
productivity performance of 13 industries of the manufacturing sector
from 27 European countries over the 1995-2014 period. Our analysis
accounts for technological heterogeneity and decomposes productivity
growth into technical efficiency change, best practice gap change and
technical gap change. This gives us the opportunity to estimate the di-
rect impact within its country and the indirect one calculating the effect
of technological spillovers with the existence of inter-linkages between
different technologies across countries.

According to our results, industrial environmental productivity has
deteriorated across Europe over the study period. Best practice change
was the main contributor to this decline while both measures present
their lowest values during the period 2011-2012. This signifies that the
financial crisis occurred in 2008 had a severe impact on the implemen-
tation of new technology systems and the investment in innovation pro-
cedures for industries afterwards. This effect is evident for the majority
of industries from 2010 and onward as their productivity levels declined
substantially. Technical change and technical gap change do not exhibit
radical changes which indicates that industries neither catch up nor im-
prove their technological leadership during the 1995-2014 period. Never-
theless, when referring to the technological leaders in Europe, our results
point out that low technology industries tend to follow the middle-high
ones. Hence, distinct European governments and authorities should sup-
port the aforementioned industries in order to influence promptly more
middle-low industries through spillover effects and knowledge diffusion.
Finally, policymakers should help in the removal of barriers to adopt
eco-innovative and environmental friendly technologies.

These differences may be due to the occurrence of convergence since
various industries from different countries are capable of developing
faster and catch up with the technologically advanced industries. The
results confirm the existence of convergence among industries of Euro-
pean countries and the formation of distinct groups of industries that
converge to different points in each measure. Therefore, environmental
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policies should be revised regularly as a universal environmental policy
might not be efficacious for the industrial environmental productivity
growth due to global, regional and sectoral factors.

The findings of this study could provide policymakers credible infor-
mation for the design of better specified environmental policies. More
specifically, the advancement of green investment through the EU envi-
ronmental strategies and mechanisms might require extreme modifica-
tions and reinforcements of the current policies across European mem-
bers and their industrial structures. Notwithstanding the foregoing, pol-
icymakers should give emphasis on the integration of novel environmen-
tal technologies into industrial production process. The optimization of
cleaner production technologies, the allocation of incentives for the use
of particulate abatement equipment at industrial combustion facilities,
the knowledge-sharing and access to information channels are only some
of the possible means to support catch-up and achieve environmental
productivity growth. Lastly, the design of a stable regulatory frame-
work ensuring its stability and the generation of positive externalities
through environmental spillovers between industries in different sectors
and countries should be at the top of policy priorities.

Finally, despite the numerous issues addressed in this study, we would
like to highlight some interesting topics for further examination in this
burgeoning field of research. First of all, the examination of additional
sectors of the economy and the incorporation of a wider time period and
harmful by-products, when available, would be beneficial for a further
analysis. Secondly, a more in-depth exploration and the disentanglement
of the determinants of environmental productivity or the introduction
of further assumptions on the scale properties could become a reliable
tool for policymakers and national governments.
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Appendix

Table A1: List of European Countries and Manufacturing Industries

Country (Code) Code Industry name Technology characterization

Austria (AUT) Latvia (LVA) BMF Basic Metals and Fabricated Metal Products Middle Low

Belgium (BEL) Lithuania (LTU) CHM Chemicals and Chemical Products Middle High

Bulgaria (BGR) Luxembourg (LUX) CRP Coke, Refined Petroleum Products Middle Low

Cyprus (CYP) Malta (MLT) ELO Electrical and Optical Equipment Middle High

Czech Republic (CZE) Netherlands (NLD) FBT Food, Beverages and Tobacco Low

Denmark (DNK) Poland (POL) MAC Machinery and Equipment n.e.c. Middle High

Estonia (EST) Portugal (PRT) MAN Manufacturing and Recycling Low

Finland (FIN) Romania (ROU) ONM Other Non-Metallic Mineral Products Low

France (FRA) Slovakia (SVK) PPP Pulp Paper, Paper, Printing and Publishing Low

Germany (DEU) Slovenia (SVN) RUP Rubber and Plastic Products Middle Low

Greece (GRC) Spain (ESP) TXT Textiles and Textile Products Low

Hungary (HUN) Sweden (SWE) TRE Transport Equipment Middle High

Ireland (IRL) United Kingdom (GBR) WCP Wood and Wood and Cork Products Low

Italy (ITA)

Figure A1: Final convergence clubs in terms of productivity growth
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Figure A2: Final convergence clubs in terms of efficiency change

Figure A3: Final convergence clubs in terms of best practice change
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Figure A4: Final convergence clubs in terms of technology gap change

The clustering algorithm of Phillips and Sul convergence is presented as
follows:

• Step 1 (Ordering): Order the individuals of the panel according to
the last observation.

• Step 2 (Core Group Formation): Identification of the core groups
of economies that converge. We calculate the t-statistic tk for
sequential log t regressions based on the highest k highest members
(Step 1) with 2 ≤ k≤ N. The maximum tk with tk > -1.65 will
determine the size of the group.

• Step 3 (Club membership): Selection of the members of the core
group (Step 2) by adding one at a time. Adding one member at
a time and calculating t-statistic from the beginning. If t-statistic
is greater than a chosen critical value c*,10 then the new member
satisfies the membership condition and is included in the group.
Finally, we examine if the whole new group satisfies tk > -1.65 for
convergence.

10PS set c = 0 which ensures a high confidence of accuracy.
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• Step 4 (Recursion and Stopping): The non-selected members of
Step 3, will form a complementary group. We run another log(t)
regression for these economies and if the results show convergence,
then this group of economies will become a second convergence
club. If not, Steps 1 to 3 will be repeated to uncover subgroups
of convergence. If no core group is found in Step 2 then these
members will diverge.
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Haščič, I., Johnstone, N., Watson, F., & Kaminker, C. (2010).
Climate Policy and Technological Innovation and Transfer: An
Overview of Trends and Recent Empirical Results, OECD Envi-
ronment Working Papers, No. 30, OECD Publishing, Paris.
He, F., Zhang, Q., Lei, J., Fu, W., & Xu, X. (2013). Energy effi-
ciency and productivity change of China’s iron and steel industry:
Accounting for undesirable outputs. Energy Policy, 54, 204-213.
IPCC, (2021). Summary for Policymakers. In: Climate Change
2021: The Physical Science Basis. Contribution of Working Group
I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge University Press. In Press.

33



Isaksson, O. H., Simeth, M., & Seifert, R. W. (2016). Knowledge
spillovers in the supply chain: Evidence from the high tech sectors.
Research Policy, 45(3), 699-706.
Kounetas, K., Mourtos, I., & Tsekouras, K. (2012). Is energy in-
tensity important for the productivity growth of EET adopters?.
Energy economics, 34(4), 930-941.
Kumar, S. (2006). Environmentally sensitive productivity growth: a
global analysis using Malmquist–Luenberger index. Ecological Eco-
nomics, 56(2), 280-293.
Lee, H. (2021). Is carbon neutrality feasible for Korean manufac-
turing firms?: The CO2 emissions performance of the Metafrontier
Malmquist–Luenberger index. Journal of Environmental Manage-
ment, 297, 113235.
Li, K., Impact of energy conservation policies on the green produc-
tivity in China’s manufacturing sector: Evidence from a three-stage
DEA model. Applied energy, 168, 351-363.
Lin, E. Y. Y., Chen, P. Y., & Chen, C. C. (2013). Measuring green
productivity of country: A generlized metafrontier Malmquist pro-
ductivity index approach. Energy, 55, 340-353.
Los, B., & Verspagen, B. (2002). An introduction to the analysis of
systems of innovation: scientific and technological interdependen-
cies. Economic Systems Research, 14(4), 315-322.
Mahlberg, B., & Sahoo, B. K. (2011). Radial and non-radial decom-
positions of Luenberger productivity indicator with an illustrative
application. International Journal of Production Economics, 131(2),
721-726.
Malmquist, S. (1953). Index numbers and indifference surfaces. Tra-
bajos de estad́ıstica, 4(2), 209-242.
Manning, S., Boons, F., Von Hagen, O., & Reinecke, J. (2012). Na-
tional contexts matter: The co-evolution of sustainability standards
in global value chains. Ecological Economics, 83, 197-209.
Maskus, K. (2010), Differentiated Intellectual Property Regimes
for Environmental and Climate Technologies, OECD Environment
Working Papers, No. 17, OECD Publishing, Paris, .
Nikzad, R., & Sedigh, G. (2017). Greenhouse gas emissions and
green technologies in Canada. Environmental Development, 24, 99-
108.
Oh, D. H. (2010). A metafrontier approach for measuring an en-
vironmentally sensitive productivity growth index. Energy Eco-
nomics, 32(1), 146-157.
Pasurka Jr, C. A. (2006). Decomposing electric power plant emis-
sions within a joint production framework. Energy Economics,

34



28(1), 26-43.
Phillips, P. C., & Sul, D. (2007). Transition modeling and econo-
metric convergence tests. Econometrica, 75(6), 1771-1855.
Saliola, F., & Zanfei, A. (2009). Multinational firms, global value
chains and the organization of knowledge transfer. Research policy,
38(2), 369-381.
Skjærseth, J. B. (2021). Towards a European Green Deal: The evo-
lution of EU climate and energy policy mixes. International Envi-
ronmental Agreements: Politics, Law and Economics, 21(1), 25-41.
Stergiou, E., & Kounetas, K. (2021a). European Industries’ Energy
Efficiency under Different Technological Regimes: The Role of CO2
Emissions, Climate, Path Dependence and Energy Mix. The Energy
Journal, 42(1).
Stergiou, E., & Kounetas, K. E. (2021b). Eco-efficiency convergence
and technology spillovers of European industries. Journal of Envi-
ronmental Management, 283, 111972.
Tsekouras, K., Chatzistamoulou, N., & Kounetas, K. (2017).
Productive performance, technology heterogeneity and hierarchies:
Who to compare with whom. International Journal of Production
Economics, 193, 465-478.
Tulkens, H., & Eeckaut, P. V. (1995). Non-parametric efficiency,
progress and regress measures for panel data: methodological as-
pects. European Journal of Operational Research, 80(3), 474-499.
Weber, W. L., & Domazlicky, B. (2001). Productivity growth and
pollution in state manufacturing. Review of Economics and Statis-
tics, 83(1), 195-199.
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