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Abstract

Is growth ultimately fully endogenous or semi-endogenous? Three decades of the-
oretical and empirical growth economics have kept both possibilities open. Here, R &
D-driven growth is a general combination of both semi-endogenous and fully endoge-
nous mechanisms.
I demonstrate that if the semi-endogenous growth component is indispensable to

the actual growth mechanism, the long-run growth rate follows the semi-endogenous
growth predictions. Conversely, if the semi-endogenous growth is non-essential and the
world population experiences slow growth, the fully endogenous growth mechanism
could dictate the long run, even if it is not essential.
If no other (third) growth mechanism exists, a criterion su¢cient to ascertain the

essentiality of semi-endogenous growth is that reduced research consistently leads to
fewer innovations.
If an unknown third growth engine exists, the steady state remains semi-endogenous,

provided the essentiality criterion is met. Regardless of how this third factor impacts
short-term growth, semi-endogenous growth will prevail in the long run.
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1 Introduction

The worldwide population keeps growing. How shall we design an R&D-driven growth
model in the presence of non-zero population growth? Ignoring population growth could be
an option for some speci�c microeconomic theoretical questions, but it would make a growth
model unable to match macroeconomic data. Consequently, the design of any data-consistent
growth model imposes an excruciating choice between two approaches with diverging long-
run policy implications: shall growth be eventually endogenous or semi-endogenous? This
question has haunted the modern growth theory at least since Jones� (1995b) path-breaking
article. After more than a quarter-century of debate and one Nobel Prize, both growth
approaches pervade macroeconomics.
Consequently, it is safe to say that the actual aggregate growth process is either semi-

endogenous or fully endogenous, or a combination of the two. No other growth mechanism
exists, according to current R&D-driven growth theory.
The semi-endogenous growth theory keeps the door open to the very non-rivalry of ideas

in the innovation process: any individual researcher�s stock of cumulated ideas can facili-
tate new ideas. Nevertheless, in Romer (1990), as in Grossman and Helpman (1991) and
Aghion and Howitt�s (1992) "creative destruction" version, this implied a strong scale e¤ect1

(Jones, 2005) that con�icted with data, as Jones (1995a and b) has highlighted. This �nding
motivated Jones (1995b), Kortum (1997), and Segerstrom (1998) semi-endogenous growth
variant: the knowledge of the existing stock of existing ideas facilitates innovation but with
decreasing returns. An important implication of such a solution is that per-capita GDP
could only grow with a growing population. Key to this solution is the idea that R&D�s
(TFP impact-adjusted) productivity declines the more knowledge accumulates, as recently
empirically con�rmed by Bloom, Jones, Van Reenen, and Webb (2020).2

A di¤erent group of scholars, such as Smulders and Van de Klundert (1995), Dinopoulous
and Thompson (1998), Peretto (1998), Young (1998), and Howitt (1999), have proposed
another class of endogenous growth models, immune to the "strong scale e¤ect", despite
dynamic returns to ideas to be constant. In these models, it is not the single researcher
that matters, but research as a fraction of the population (Jones, 1999 and 2005). Several
microfoundations exist for this solution to the scale e¤ect problem. Still, the basic structure is
common to all: by diluting the individual research contribution on a more signi�cant labour
force, a larger population reduces the e¤ect of their research e¤ort in proportion. This idea
stresses the industrial dynamics and cross-sector dilution of innovation, with population
partitioning and specializing innovative e¤orts.3

Both theories are well-motivated, illuminating essential aspects of the innovative process.
The importance of cross-sectoral non-rivalry - which characterized semi-endogenous growth
- is undeniable, as is the concept of an increase in specialization accompanying population
growth - which marks the endogenous growth dilution approach. In this paper, I study the
consequence of assuming that both aspects are essential to the innovation process: the TFP

1Which counterfactually predicted that the steady-state per-capita GDP growth rate would increase with
the economy�s population size.

2Also see Venturini (2012).
3For recent evidence favouring scale-free endogenous growth theory, see Minniti and Venturini (2017).

Also, see Madsen (2008).
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growth rate would be zero if one were absent. I will show that endogenous growth essentiality
does not dictate the long-run growth endogeneity property. Instead, the semi-endogenous
growth essentiality is the key to a long-term prediction.
I will also propose a simple rule to determine which growth rate will eventually win in

the steady state. If a reduction in the number of researchers always reduces the growth rate,
semi-endogenous growth has to be essential and dictate the long run.
Both theories are highly credited in growth economics. Hence, the time has come to settle

this divide and get used to the idea that both approaches coexist in a unique framework.
Given the importance of this issue, this paper claims that long-term predictions should be
robust against much more general aggregations. It will show that signi�cant results do not
rely on any speci�c functional form. Therefore, only natural aggregation properties will be
assumed to get striking long-term results analytically. I here prove that all that matters for
our long-run results is what happens at the origin: when one of the growth engines turns o¤.
For example, what happens to the growth rates if the semi-endogenous growth mechanism
tends to zero? If the resulting growth rate tends to zero, we say that the semi-endogenous
part is "essential": a little bit of it is needed for a positive growth rate.
Scarce studies in the literature intertwined these growth theories, asserting that both

are instrumental to innovation. Cozzi (2017a and b) and Chu and Wang (2020) are notable
exceptions. However, these studies have only run parametric exercises, postulating that the
real-world technology growth rate aggregates the semi-endogenous and the fully endogenous
solution linearly (in Cozzi, 2017a), with a CES (in Cozzi, 2017b) or with a Cobb-Douglas
function (in Chu and Wang, 2020). Yet, these functions are adopted from well-known con-
stant returns to scale production functions linking material inputs to outputs. However, why
should a general research and innovation process, with all its thought process complexities,
follow any of these o¤-the-shelf functions inherited from manufacturing production mod-
elling? By embracing the coexistence of both approaches, this paper seeks to bridge the
divide and show that long-term predictions can be derived from natural aggregation prop-
erties, sidestepping speci�c functional forms. We ground our �ndings in the fundamental
question: What transpires when one of the growth engines is deactivated?
Our general growth aggregation always implies that innovative ideas are getting harder

to �nd, consistent with Bloom et al. (2020) evidence. However, while the observation of
decreasing research productivity is often associated only with the semi-endogenous mecha-
nism, this paper quali�es this argument. Declining research productivity implies the pres-
ence of semi-endogenous growth. However, while research becomes increasingly demanding,
long-term productivity growth could eventually be fully endogenous. Hence, the general
theoretical results of this paper help avoid misleading interpretations of the empirical results
of declining R&D productivity.
Last but not least, what would happen if there was a third source of growth, neither

semi-endogenous nor fully endogenous? What if this still unknown growth source a¤ected
the general growth process of the economy with the other two in a general way? Would our
main result still hold? The last part of this paper develops such a case. Indeed, this paper�s
Proposition 3 shows that if a steady state exists and the semi-endogenous growth component
is essential, it will prevail in the long run. This result is of the highest importance because
it renders our results immune to future theory.
Section 2 sets up the general model. Section 3 will show that if the semi-endogenous
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growth engine is essential, the steady state will only follow the semi-endogenous growth
part. This result holds regardless of whether fully endogenous growth is essential. This case
is helpful because, for example, no CES aggregator allows the essentiality of only one input.
Section 4 proves that if semi-endogenous growth is not essential, growth will eventually

be fully endogenous if the population growth rate is low enough. Section 5 extends the result
to the existence of a third growth paradigm. Section 6 concludes.
The Appendix nests our general steady-state result into a standard textbook Romer

(1990) model for illustrative purposes.

2 Growth Mechanics

Let us assume the following aggregate production function:

Yt = AtLY t, (1)

where Yt is output at time t, At is total factor productivity, and LY t is labor employed in
manufacturing. By de�nition, LY t is a fraction 0 < sY t < 1 of the total labour force Lt, which
in turn grows at the - possibly negative - constant net rate n. The complementary fraction
sAt = 1� sY t of the labour force denotes the R&D labour share. Total R&D employment is
then LAt = sAtLt.
I assume that the manufacturing total factor productivity, At, grows according to the

following general function:

At � At�1

At�1
� gAt = F (gsemt; gendt), (2)

where
gsemt = (At�1)

'�1 (sAtLt�1)
�A1

is the semi-endogenous growth rate (Jones, 1995b), while

gendt = s
�A2
At

is the fully endogenous growth rate without scale e¤ects (Smulders and Van de Klundert,
1995).
Following Jones (1995b), in the steady state:

gsem = (1 + n)
�

1�� � 1 '
�A1 n

1� '
, if n � 0 and

gsem = 0, if n < 0 .

3 Semi-Endogenous Essentiality Matters

In this section, I will show that if the semi-endogenous R&D-driven growth mechanism
must be at work for the economy to grow, then the steady-state growth rate will be semi-
endogenous.
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Let us make the following two assumptions:

Assumption 1. Function F is non-negative, continuous, and strictly increasing in both

its arguments for all possible (gsemt; gendt) 2 R
2
++

4

This assumption is very general and natural. Given the R&D fraction of the labour force,
it posits that growth will be higher in a more populated economy. Assumption 1 captures
the focus on population size well that semi-endogenous growth theory has inherited from
Romer�s fully endogenous growth framework. Humans produce ideas, and these are non-
rival inputs in the production of new ideas. Hence, the economy�s scale matters in levels,
even though the "strong scale e¤ect" (Jones, 2005) in growth disappears.
At the same time, Assumption 1 shows that given the scale of the economy, the higher the

fraction of it engaged in R&D, the higher the resulting growth rate. This way, it captures the
fully endogenous growth element inherited from Romer (1990) but purged from the strong
scale e¤ect.
Assumption 2. Function F is zero if gsemt is zero, that is:

F (gsemt; gendt) > 0; 8gendt 2 R+; if gsemt > 0; and

F (gsemt; gendt) = 0; 8gendt 2 R+; if gsemt = 0.

Notice that Assumption 2 posits that the semi-endogenous growth mechanism is essential:
no growth will occur if it is missing. The economy�s scale cannot reach zero while still creating
a signi�cant growth rate of ideas. It leaves the door open to the fully endogenous growth
mechanism to be or not to be essential. That is, a large economy with a negligible fraction
of people or GDP involved in R&D may or may not generate signi�cant growth.
As Jones (1995b), I am not describing a one-country economy exchanging ideas with the

rest of the world because the imported innovation will spur growth. Instead, I am considering
the growth rate of the whole world. Viewed this way, a negligible number in the function�s
variable would re�ect quite a complex world, undoubtedly unable to display any meaningful
growth performance. Hence, Assumption 2 is quite natural too.
The two general assumptions above are enough for us to prove our main result:
Proposition 1. The steady-state growth rate, gA, if it exists, is always semi-endogenous.

Proof. In a steady state, the growth rate and R&D fraction of the labour force is
constant, that is, sAt = sA and gAt = gA. Hence we can rewrite (2) as:

gA = F
h
(At�1)

'�1 (sALt�1)
�A1 ; s

�A2
A

i
(3)

If the population is non-increasing, n � 0 and the semi-endogenous growth part will tend

to zero. In fact, (At�1)
'�1 (sALt�1)

�A1 tends to zero as Lt�1 ! 0 or if At�1 !1. If the pop-

ulation is increasing, that is n > 0, the growth rate function F
h
(At�1)

'�1 (sALt�1)
�A1 ; s

�A2
A

i

is a positive constant if and only if both of its arguments are positive constants. Since s
�A2
A is

4With R2++, I mean the set of ordered pairs of strictly positive real numbers. Instead, R
2
+ means the set

of ordered pairs of non-negative real numbers.
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by construction a positive, only (At�1)
'�1 (sALt�1)

�A1 has to be a positive constant. But this

happens if and only if the growth rate of (At�1)
'�1 is equal to the growth rate of (Lt�1)

�A1 ,

that is, if and only if gsem =
�A1 n

1�'
. QED

Proposition 1 showed that if the semi-endogenous growth mechanism is essential to the
growth process, the only steady state possible is the semi-endogenous steady state.
Remark. No CES function F allows the essentiality of only one of its inputs. If the

elasticity of substitutions is less than or equal to one, both inputs are essential, while if
it is higher than one, no input is essential. Hence, the results of Proposition 1 would be
impossible to obtain in the CES case analyzed by Cozzi (2017b).

3.1 A Microfoundation of Semi-endogenous Growth Essentiality

This section gives a simple, testable condition for semi-endogenous growth to be essential.
In particular, I will make the following general assumption:
Assumption 3. For each positive level of the stock of ideas, At, fewer researchers always

imply fewer new ideas.

We can now prove the following:
Lemma 1. Under Assumptions 1 and 3, semi-endogenous growth is essential.

Proof. Suppose that the semi-endogenous growth mechanism was not essential. Then
LAt
Lt
> 0 implies

gendt = F
�
0; s

�A2
A

�
= F

"

0;

�
LAt

Lt

��A2
#

> 0. (4)

Let the population drop in half while maintaining sA constant. Now, the number of re-
searchers, following population, will be halved:

LAt0 = 0:5LAt, t > t0.

Since
Lt0 = 0:5Lt, t > t0,

eq. (4) implies that

At0 � At0�1 = At0�1gendt = At0�1F

"

0;

�
LAt0

Lt0

��A2
#

= At0�1F

"

0;

�
0:5LAt
0:5Lt

��A2
#

= At0�1F

"

0;

�
LAt

Lt

��A2
#

= At � At�1,

that is, the same �ow of new ideas will be produced, which would violate our previous
Assumption 3. QED
Lemma 1 provides a simple rule for the essentiality of semi-endogenous growth in a world

where the only two possible growth regimes are semi-endogenous and fully endogenous.
Given Proposition 1, if Assumption 3 is satis�ed, the steady-state growth rate will be semi-
endogenous.
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4 What if Semi-Endogenous Growth were not Essen-

tial?

In this section, we will explore the case in which at least semi-endogenous growth is not
essential. By Corollary 1, this means that our previous Assumption 3 is violated. Therefore,
we will keep postulating Assumption 1 but drop both Assumptions 2 and 3. In particular,
Assumption 2 will be replaced by the following:
Assumption 4. Function F is positive if and only if the fully endogenous growth mech-

anism is positive, that is:

F (gsemt; gendt) > 0; 8gsemt 2 R+; if gendt > 0; and

F (gsemt; gendt) = 0; 8gsemt 2 R+; if gendt = 0:

Remark. Notice that the "if" part of Assumption 4 rules out that the semi-endogenous
growth mechanism is essential. Otherwise, the positivity of the gendt would not su¢ce to
make function F positive when gsemt is zero.

This result follows:

Proposition 2. Under assumptions 1 and 4, the steady-state growth rate, gA, if it exists,

is fully endogenous if and only if

n �
F
�
0; s

�A2
A

�
(1� ')

�A1
� �n. (5)

Proof. In a steady state, the growth rate and R&D fraction of the labour force is
constant, that is: sAt = sA and gAt = gA. Hence we can rewrite (2) as:

gA = F
h
(At�1)

'�1 (sALt�1)
�A1 ; s

�A2
A

i
(6)

If the population is non-increasing, n � 0 and the semi-endogenous growth part will

tend to zero. In fact, (At�1)
'�1 (sALt�1)

�A1 tends to zero as Lt�1 ! 0 or if At�1 ! 1.
Consequently:

gA ! F
�
0; s

�A2
A

�
> 0: (7)

Moreover, by Assumption 1, F
�
0; s

�A2
A

�
will increase in s

�A2
A , which means that the long-run

growth rate is fully endogenous.
If, instead, population is increasing, that is n > 0, two cases are possible:

(A) Condition (5) is satis�ed, that is: F
�
0; s

�A2
A

�
�

�A1 n

1�'
� gsem;

(B) Condition (5) is not satis�ed, that is: F
�
0; s

�A2
A

�
<

�A1 n

1�'
� gsem.
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In case (A), by Assumption 1, it must be:

gA = F
h
(At�1)

'�1 (sALt�1)
�A1 ; s

�A2
A

i
� F

�
0; s

�A2
A

�
>
�A1 n

1� '
: (8)

Consequently, (At�1)
'�1 (sALt�1)

�A1 will tend to zero and gA will tend to F
�
0; s

�A2
A

�
. This

means that the steady-state growth rate is fully endogenous.

In case (B), gA = F
�
0; s

�A2
A

�
<

�A1 n

1�'
implies that (At�1)

'�1 (sALt�1)
�A1 will tend to in�nity,

which is inconsistent with a constant level of gA. A constant level of gA is achieved if and

only if (At�1)
'�1 (sALt�1)

�A1 is a positive constant, that is if and only if gA =
�A1 n

1�'
. QED

Proposition 2 has shown that if the semi-endogenous growth mechanism is not essential
to the growth process, the steady-state growth rate will be fully endogenous, depending on
the population growth rate. However, notice that this does not constrain the essentiality of
the fully endogenous growth part, which would be impossible with a CES aggregator like in
Cozzi (2017a and b).
In light of Proposition 2, we can now generalize Cozzi�s (2017a and b) result on the

endogeneity of the threshold population growth rate, �n, below which the fully endogenous
growth mechanism will dominate the steady state. In fact, �n is a function of the R&D share
of GDP, sA, de�ned by this equation:

�n
�
s
�A2
A

�
=
F
�
0; s

�A2
A

�
(1� ')

�A1
. (9)

Consequently, the higher sA, the higher the population growth rate threshold �n, and the
more likely a fully endogenous steady-state growth rate.

5 A Third Source of Growth

In principle, we cannot exclude that the current theory is limited and that other growth
mechanisms - yet to be discovered - drive the growth process. Is our approach robust to this
possibility? To check, let us extend the analysis to a general aggregator of semi-endogenous,
fully endogenous, and any other third source of growth. Therefore, we shall assume the
following:

Assumption 5. Function F is non-negative, continuous and strictly increasing for all

possible (gsemt; gendt; gothert) 2 R
3
++

Notice the presence of gothert, which denotes any source of growth that is neither semi-
endogenous nor fully endogenous.
Assumption 6. Function F is zero if gsemt is zero, that is:

F (gsemt; gendt; gothert) > 0; 8gendt 2 R+; if gsemt > 0; and

F (gsemt; gendt; gothert) = 0; 8gendt 2 R+; if gsemt = 0.
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Assumption 6 implies that the semi-endogenous growth mechanism is essential: no growth
will occur if it is zero.
Furthermore, now comes the new ingredient: gothert. We will make no assumption on it,

except remarking that it is constant in a steady state.
The two general assumptions above are enough for us to prove our main result:
Proposition 3. The steady-state growth rate, gA, if it exists, is always semi-endogenous.

Proof. In a steady state, the growth rate and R&D fraction of the labour force is
constant, that is, sAt = sA and gAt = gA. Hence we can rewrite (2) as:

gA = F
h
(At�1)

'�1 (sALt�1)
�A1 ; s

�A2
A ; gother

i
(10)

If the population is non-increasing, that is, n � 0, the semi-endogenous growth part

will tend to zero. In fact, (At�1)
'�1 (sALt�1)

�A1 tends to zero as Lt�1 ! 0 or if At�1 ! 1,
which implies gA = 0. If the population is increasing, that is n > 0, the growth rate

function F
h
(At�1)

'�1 (sALt�1)
�A1 ; s

�A2
A ; gother

i
is a positive constant if and only if both of

its arguments are positive constants. Since s
�A2
A is by construction a positive and gother is

constant in a steady-state, only (At�1)
'�1 (sALt�1)

�A1 has to be a positive constant. But this

happens if and only if the growth rate of (At�1)
'�1 is equal to the growth rate of (Lt�1)

�A1 ,

that is if and only if gsem =
�A1 n

1�'
. QED

Remark. Notice that Proposition 3 establishes that our main result is robust to the
presence of a third unknown source of growth. Notice that the generality of the function
implies that the third growth process could a¤ect the actual growth process in any possible
way. Therefore, whatever the empirical estimation for the transition, the steady state, if it
exists, will be semi-endogenous.

6 Conclusions

This paper has proved that if the semi-endogenous growth mechanism captures an essential
feature of the macroeconomic growth processes, the semi-endogenous growth will dictate the
economy�s steady-state growth rate. Moreover, in a world where only two growth processes
exist, either semi-endogenous or fully endogenous, the steady-state will be semi-endogenous
if the innovation stock systematically decreases as the aggregate R&D labour decreases.
Proposition 2 established that if the semi-endogenous growth part is not essential, the

growth rate will be fully endogenous if the population growth rate is not too large. This
result is independent of whether or not the fully endogenous growth mechanism is an essential
part of the growth mechanism.
The essentiality of the semi-endogenous process has e¤ects that go beyond the existence

of only two growth processes: Proposition 3 has shown that even if there exists a third,
yet unknown, growth engine, the steady-state will be semi-endogenous anyway. Therefore,
the long run will be semi-endogenous, whatever happens in the transition due to additional
growth dynamics.
Empirically, all combinations of growth frameworks studied in this paper predict that

ideas are getting harder to �nd. However, in the cases of Section 4, the long-run consequences
for growth are only sometimes semi-endogenous.

9



Appendix
A Romer (1990) Example
A large class of growth models satisfy our assumed technology represented by function

F (�; �). Our theory can apply to any R&D-driven growth model, like the prominent models
byAcemoglu and Cao (2015), Akcigit and Kerr (2018), Garcia-Macia, Hsieh and Klenow
(2019), Buera and Oberfeld (2020), Peters (2020), and Jones (2022).
While we used a constant labour share assumption to ease exposition, we could adapt our

result to an entirely microfounded case. For example, let us assume a general Romer (1990)
economy in which the introduction of new varieties (horizontal innovation) drives growth.
Each household optimizes its per capita consumption, ct, according to

max

1Z

0

e�(��n)t
c1�"t � 1

1� "
dt, with " > 0,

where � > n is the subjective rate of time preferences, and " is the inverse of the intertemporal
elasticity of substitution.
Letting rt denote the real interest rate, the Euler equation is

_ct
ct
=
rt � �

"
,

which in equilibrium implies:5

rt = �+ "gAt.

In a steady-state r = �+ "gA.
The �nal good is produced in a perfectly competitive industry, according to

Yt = L
1��
Y t

AtZ

0

x�itdi,

where At is the mass of intermediate product varieties: each intermediate product i 2
[0; At] is used in production in amount xit.
Under perfect competition, real wage equals the marginal product of labour:

wt =
@Yt

@L
= (1� �)

Yt

L
,

and the real price of each intermediate good equals its marginal product

pt =
@Yt

@xit
= �L1��x��1it ,

which can be interpreted as an inverse demand function for intermediate good i 2 [0; At].
This demand function is taken as given by the intermediate monopolist producer, i.e., by

its blueprint�s patent holder.

5In a stochastic environment, " would also measure the degree of relative risk aversion implicit in the
instantaneous CRRA utility function.
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In face, each intermediate good is produced by a monopoly, which maximizes pro�ts

�it = pitxit � xit,

where pit =
@Yt
@xit

= �L1��1t x
��1
it . Equilibrium production is

xit = LY t�
2

1�� = xt,

which is symmetric, as are the maximized pro�ts:

�it =
1� �

�
LY t�

2
1�� � �t.

In a balanced growth path, they grow at rate n, and the �rm�s present discounted value,
Vt, becomes

Vt =
(1� �)�

1+�
1��

(r � n)
(1� sA)Lt,

which equals the variety patent value.
In symmetric equilibrium,

Yt = AtL
1��
Y t x

�,

and the real wage is

wt =
@Yt

@LY t
= (1� �)AtL

��
Y t x

�
t = (1� �)�

2�
1��At. (11)

We will assume that varieties evolve according to:

_At = AtF (gsemt; gendt), (12)

where

gsemt = (At)
'�1 (sAtLt)

�A1 , and

gendt = s
�A2
At ,

and F (gsemt; gendt) has the previously stated properties. We will here add constant returns
to scale to facilitate equilibrium computation.
Let us assume an R&D subsidy rate � 2 [0; 1[ �nanced with lump-sum taxes. Free entry

(zero pro�t) into R&D implies:

_AtVt = wtLAt(1� �),

which in the steady state becomes:

AtF (gsemt; gendt)
(1� �)�

1+�
1��

r � n
(1� sA)Lt = wtsALt(1� �). (13)

Let us focus on a steady state. Using (11), eq. (13) simpli�es to
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F (gsemt; gend) =
sA(r � n)(1� �)

�(1� sA)
. (14)

Condition (14) holds only if gsemt is constant, that is if
dgsem t
dt

= 0, which only happens if

gA = gsem =
�A1 n

1�'
.

The Euler equation implies r = �+ "gsem. Remembering that

gsem = gA = F (gsem; gend);

equation (14) allows us to solve for the steady-state R&D share of the labour force:

sA =
�gsem

(�� n) (1� �) + ("+ �) gsem
.

Notice that all macroeconomic variables are obtained independently of the characteris-
tics of function F (�; �). Comparative statics implies that sA decreases with the impatience
parameter, �; and increases with the R&D subsidy rate, �.

We could here apply our theory to the simple model solved in Section 3.2, obtaining the
same results if n � �n. If instead n < �n, equation (14) in steady-state will become

F (0; s
�A2
A ) =

sA(r � n)

�(1� sA)
, (15)

which we can implicitly solve for the steady-state R&D share of the labour force:
�

(��n)(1��)

F

�
0;s

�A2
A

� + ("+ �)
� sA = 0.

Unlike in Section 3.2, here sA is not independent of the characteristics of function F (�; �).
We can still analyse the comparative statics. For example, an increase in the subjective rate
of interest, �, will imply
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�A2
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@�
=

�0
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@
(��n)(1��)
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! +("+�)

1

CC
A

2
1��
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2F2

�
0; s

�A2
A

�
� 1

< 0

which, if F2

�
0; s

�A2
A

�
< 0, implies that sA declines with impatience. Under the same

condition, we can prove that
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A
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> 0
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meaning that that sA increases with the R&D subsidy rate. While the results are qualita-
tively similar to those of Section 3.2, it is useful to notice that quantitatively speaking, the
speci�c function form of F (�; �) will matter for sA.
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