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Abstract: Probability distributions with identical shape factor asymptotic limit formulas are defined 7 

as asymptotic equivalent distributions. The GB1, GB2, and Generalized Gamma distributions are 8 

examples of asymptotic equivalent distributions, which have similar fitting capabilities to data 9 

distribution with comparable parameters values. These example families are also asymptotic 10 

equivalent to Kumaraswamy, Weibull, Beta, ExpGamma, Normal, and LogNormal distributions at 11 

various parameters boundaries. The asymptotic analysis that motivated the asymptotic equivalent 12 

distributions definition is further generalized to contour analysis, with contours not necessarily parallel 13 

to the axis. Detailed contour analysis is conducted for GB1 and GB2 distributions for various contours 14 

of interest. Methods combing induction and symbolic deduction are crafted to resolve the dilemma 15 

over conflicting symbolic asymptotic limit results. From contour analysis build on graphical and 16 

analytical reasoning, we find that the upper bound of the GB2 distribution family, having the 17 

maximum shape factor for given skewness, is the Double Pareto distribution. 18 
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This is the continuation of the study in Wang (2020) for shape factor, which is defined in Wang 33 

(2019a) with a plan of addressing probability distribution fitting validation and explanation problem 34 

by examining shape factor global and conditional minimum or maximum formulas or curves, to other 35 

distribution families. The problems include, to name a few, why it is not able to fit a data distribution 36 

by some distribution families, and why different distribution families can fit a data distribution almost 37 

as good as each other while their PDF or even distribution domains are very different. The resolution is 38 

the asymptotic equivalent distribution, a concept arrived at while studying shape factor asymptotic 39 

limit, which delineate that distribution PDF shapes or ultimate tendencies, as well as relevant 40 

distribution parameters, are determined uniquely per each asymptotic equivalent distribution class. 41 

The same symbolic and graphical techniques, as used in Wang (2020), will be applied to GB1 in 42 

this paper, THT distribution (defined in Wang (2019b)), GH distribution and other families later, for 43 

getting the boundary forms of the shape factor. The global minimum value of the shape factor will 44 

serve as the limit or bound of the conditional minimum value of the shape factor for some given 45 

parameters while keep other parameters unchanged. The limit form will act as the target or guide, and 46 

at many times possess analytical explicit and simpler formulas. A more delicate combined use of the 47 

induction and symbolic analysis, algebraic manipulation strategy of division and divide as well as 48 

transform, enable us to resolve a dilemma left of GB2 in Wang (2020) section 6.3.  49 

We will refer freely on contents of Wang (2019a, 2020) rather than repeat it here, to avoid 50 

self-copying. Distributions definitions and parameter assumptions will refer to Marichev and Trott 51 

(2013). Background on GB1 and GB2 can be found in McDonald (1984), McDonald et al. (2011), GH 52 

and its sub-families such as VG and NIG can refer to the citations in Wang (2018b), THT and the like 53 

distributions in Wang (2019b). 54 

 Before we start our immense study of GB1 and GB2 shape factor, we will correct an error in 55 

Wang (2020) section 3.1 about limit of shape factor along skewness contour for Kumaraswamy 56 

distribution. We need to exchange the words maximum and minimum in paragraph two of its section 57 

3.1, i.e., the conclusion should be the minimum shape factor is at the top boundary and the maximum 58 

shape factor is at the left boundary. In its paragraph three and Figure 3 the word maximum should be 59 

read as minimum. 60 

2. Results 61 

2.1. GB1 distribution asymptotic analysis 62 

2.1.1. Shape factor boundary and conditional minimum values when β→∞ for fixed parameter α or 63 

γ 64 

As a generalization of the Kumaraswamy distribution, the GB1 distribution 65 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑒𝑡𝑎𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐼[𝛼, 𝛽, 𝛾, 1], is in “duality” with the GB2 distributions 66 𝐵𝑒𝑡𝑎𝑃𝑟𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛[𝑝,𝑞,𝛼,1] with the parameters correspondence (𝛼, 𝛽, 𝛾) ↔ (𝑝, 𝑞, 𝛼), or in 67 

our terminology, they are asymptotically equivalent distributions, a typical scenario of a pair of very 68 

different distributions with identical shape factor. We will see soon that their boundary shape factor 69 

forms are the same and the curve of the location of shape factor conditional minimum in the parameters 70 

space are coinciding. 71 
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The trick in equation (12) of Wang (2020) can be used to find whether an asymptotic limit of 72 

power function exist, and if exist, what the power order is. 73 

We used the following formula in Wang (2020) section 6.3 for GB2, and it will be used for GB1 74 

as well: 75 𝑙𝑖𝑚𝑝→∞(𝑝 + 𝑧𝛼)−𝑜+𝑛(𝑝+𝑧𝛼)~𝑒𝑛𝑧𝛼 𝑝−𝑜+𝑛(𝑝+𝑧𝛼) (1) 76 𝑙𝑖𝑚𝛼→0(𝑝 + 𝑧𝛼)−𝑜+𝑛(𝑝+𝑧𝛼)~𝑒𝑝𝑛(𝑧𝛼)−𝑜+𝑛(𝑝+𝑧𝛼) (2) 77 

First, we have the central moment formula for GB1 when 𝛽 → ∞: 78 

𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐶𝑀[2] ~ (𝛼 + 𝛽)−2 𝛾⁄ (−𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]2 + 𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾])𝐺𝑎𝑚𝑚𝑎[𝛼]2 (3) 79 

𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐶𝑀[3] ~ (𝛼 + 𝛽)−3 𝛾⁄ (2𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]3 − 3𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾] + 𝐺𝑎𝑚𝑚𝑎[𝛼]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 3𝛾])𝐺𝑎𝑚𝑚𝑎[𝛼]3 (4) 80 

𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐶𝑀[4] ~ (𝛼 + 𝛽)−4 𝛾⁄𝐺𝑎𝑚𝑚𝑎[𝛼]4 (−3𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]4 + 6𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾]−4𝐺𝑎𝑚𝑚𝑎[𝛼]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]𝐺𝑎𝑚𝑚𝑎[𝛼 + 3𝛾] + 𝐺𝑎𝑚𝑚𝑎[𝛼]3𝐺𝑎𝑚𝑚𝑎[𝛼 + 4𝛾]) (5) 81 

From them we get the boundary values: 82 

𝑙𝑖𝑚𝑖𝑡𝛼→0  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆𝐹 = 𝐺𝑎𝑚𝑚𝑎[2𝛾]𝐺𝑎𝑚𝑚𝑎[4𝛾]𝐺𝑎𝑚𝑚𝑎[3𝛾]2 (6) 83 

𝑙𝑖𝑚𝑖𝑡𝛾→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆𝐹 =  𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[1, 𝛼](3𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[1, 𝛼]2 + 𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[3, 𝛼])𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[2, 𝛼]2 (7) 84 

𝑙𝑖𝑚𝑖𝑡𝛾→0  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆𝐹 ~ (89)𝛼−12(1024729 )1𝛾 (8) 85 

𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆𝐹 ~ 3𝛼𝛾2(−3 + 𝛾)2 (9) 86 

To get equation (9) we divide the shape factor into three parts, for each of them use derivative of 87 

their log function to find the power order, and then confirm the power function asymptotic expression 88 

by taking symbolic limit of their quotient, for example, 89 

Limit[2Gamma[𝛼+1𝛾]3−3Gamma[𝛼]Gamma[𝛼+1𝛾]Gamma[𝛼+2𝛾]+Gamma[𝛼]2Gamma[𝛼+3𝛾]Gamma[𝛼]2Gamma[𝛼+3𝛾]3−𝛾𝛼2𝛾4 , 𝛼 → ∞,Direction →90 "FromBelow", Assumptions → 𝛼 > 0&&𝛾 > 0] =1; and use equation (1) to simplify the gamma 91 

function expansion: Limit[Gamma[𝛼+2𝛾]Gamma[𝛼+4𝛾]Gamma[𝛼+3𝛾]2(𝛼+2𝛾)𝛼+2𝛾−12(𝛼+4𝛾)𝛼+4𝛾−12(𝛼+3𝛾)2𝛼+6𝛾−1
, 𝛼 → ∞,Direction →92 
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"FromBelow", Assumptions → 𝛼 > 0&&𝛾 > 0]=1, Limit[ ⅇ
2𝛾(𝛼)𝛼+2𝛾−12ⅇ4𝛾(𝛼)𝛼+4𝛾−12ⅇ6𝛾(𝛼)2𝛼+6𝛾−1(𝛼+2𝛾)𝛼+2𝛾−12(𝛼+4𝛾)𝛼+4𝛾−12(𝛼+3𝛾)2𝛼+6𝛾−1

, 𝛼 → ∞,Direction →93 

"FromBelow", Assumptions → 𝛼 > 0&&𝛾 > 0]=1. 94 

Here another trick of dividing by the largest term or highest asymptotic order term in a sum 95 

expression instead of working on the sum expression directly is used, which enable us to overcome the 96 

indecisive results if we use serial expansion (Wang (2020) section 6.3). 97 

 With the substitution of parameters (𝛼, 𝛽, 𝛾) ↔ (𝑝, 𝑞, 𝛼), from equation (9) we also get the 98 

boundary value of GB2 distribution: 99 𝑙𝑖𝑚𝑖𝑡𝑝→∞  𝑙𝑖𝑚𝑖𝑡𝑞→∞  𝐺𝐵2𝑆𝐹 ~ 3𝑝𝛼2(−3 + 𝛼)2 (10) 100 

Equation (10) solved the puzzle we left in Wang (2020): it says the limit is positive infinite rather 101 

than the asymptotic expansion results of 𝑙𝑖𝑚𝑖𝑡𝑝→∞  𝑆𝐹𝐵 ~ 43. It cautions about the use of asymptotic 102 

series expansions or unsuspicious confidence in symbolic limit (see also 103 

https://web.archive.org/web/20190425210704/https://www.linkedin.com/pulse/pitfall-symbolic-limit104 

-wang-frank/). It also cautions about innocent trust in numerical results, for example the calculated 105 

zero values or negative values of the shape factor for huge p in packages such as MPMATH (many of 106 

the wrong results like this can be easily spotted out from the simple property that K>1, SF>1, and 107 

K>S). 108 

It merits to emphasize the possible error generated through simplification using asymptotic 109 

equivalent expressions to substitute terms in a sum expression, for instance by using equation (1) or 110 

(2). The reason for the error is that when the largest order terms in the expansion cancel out each other, 111 

the less significant terms that have been ignored become the dominant terms, which then lead to 112 

contradictory results through different substitutions or algebraic manipulations. Thus show the 4/3 113 

puzzle. Therefore, the symbolic analysis should not be used alone to derive formulas. It should be 114 

combined with numerical experiment to correct errors of each other. The symbolic analysis can be 115 

used as exploration tool to provide candidate formulas for empirical study, or as verification of the 116 

empirical formulas. In case the exploration gives absurd results (such as negative or less than one K 117 

and SF), contradictory or uncertain results, there is a remedy of calculating the formula for specific 118 

parameter values without using any of such asymptotic equivalent substitutions. Generally, if 119 

deduction get us into quagmire, we can try induction instead. In summary, with no simplification, we 120 

get no results, but with simplification, we may get wrong results. Nevertheless, we will still use 121 

symbolic deductions extensively, only be alert of the possibility of overturn of the symbolic results if 122 

they have not yet been confirmed through diverse routes. 123 

Since the uncertainty in symbolic analysis, similar to the uncertainty in numerical analysis (Wang 124 

(2019b) section 2.3 and 2.5), gives us much dilemmas, we will expound on this problem and the 125 

induction solution further by example in later section 2.2.1.     126 

We have similar to GB2 formulas for skewness, kurtosis, and shape factor of GB1 distribution 127 

when 𝛽 → ∞: 128 
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𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆 ~ 2𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]3 − 3𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾] + 𝐺𝑎𝑚𝑚𝑎[𝛼]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 3𝛾](−𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]2 + 𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾])3 2⁄ (11) 129 

𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐾 ~ − 1(𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]2 − 𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾])2 (−3𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]4 + 6𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾]−4𝐺𝑎𝑚𝑚𝑎[𝛼]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]𝐺𝑎𝑚𝑚𝑎[𝛼 + 3𝛾] + 𝐺𝑎𝑚𝑚𝑎[𝛼]3𝐺𝑎𝑚𝑚𝑎[𝛼 + 4𝛾]) (12) 130 

𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆𝐹 ~ 𝐺𝑎𝑚𝑚𝑎 [𝛼 + 1𝛾]2 − 𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎 [𝛼 + 2𝛾](2𝐺𝑎𝑚𝑚𝑎 [𝛼 + 1𝛾]3 − 3𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎 [𝛼 + 1𝛾]𝐺𝑎𝑚𝑚𝑎 [𝛼 + 2𝛾] + 𝐺𝑎𝑚𝑚𝑎[𝛼]2𝐺𝑎𝑚𝑚𝑎 [𝛼 + 3𝛾])2 (3𝐺𝑎𝑚𝑚𝑎 [𝛼 +
1𝛾]4 −

6𝐺𝑎𝑚𝑚𝑎[𝛼]𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 2𝛾] + 4𝐺𝑎𝑚𝑚𝑎[𝛼]2𝐺𝑎𝑚𝑚𝑎[𝛼 + 1𝛾]𝐺𝑎𝑚𝑚𝑎[𝛼 + 3𝛾] −𝐺𝑎𝑚𝑚𝑎[𝛼]3𝐺𝑎𝑚𝑚𝑎[𝛼 + 4𝛾]) (13)
 131 

The 3D plot of the equation (11) and (13) is in Figure 1-2. 132 

 133 

Figure 1. GB1 Skewness 3D contour plot at β=∞. 134 
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 135 

Figure 2. GB1 shape factor 3D contour plot at β=∞. 136 

The conditional minimum shape factor plot for given α or for given γ is in Figure 3-4. 137 

 138 

Figure 3. GB1 minimum SF plot for given α, get from asymptotic expression when β→∞. 139 
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 140 

Figure 4. GB1 minimum SF plot when β→∞ for given γ, get from SF zero derivative point 141 

value (in red) or boundary value when α→0 (in blue). 142 

These plots of GB1 are identical to the corresponding plots of GB2. Since Figure 3-4 will give 143 

relative good parameter estimation when matching given shape factor, shifted GB1 and GB2 144 

distribution will have approximately identical parameters for their best fit to given data distribution. 145 

Fitting practice confirmed that the best fitted shifted GB1 and GB2 distributions 146 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑒𝑡𝑎𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐼[𝛼, 𝛽, 𝛾, 𝑏]  and 𝐵𝑒𝑡𝑎𝑃𝑟𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜n[𝑝,𝑞,𝛼,𝛽] shape 147 

parameters under the correspondence (𝛼, 𝛾) ↔ (𝑝, 𝛼) are very close, with the differences mainly on 148 

the fourth or scale parameters b and β respectively, which are shape factor independent. This appears 149 

to contradict the results that the GB2 shape factor have higher range than GB1 as shown by Figure 1 in 150 

McDonald et al. (2011). What it exactly saying is that the conditional minimum of the shape factor 151 

along different contour, or different directional minimum of the shape factor, behaves differently, 152 

similar to the characteristic number of GB2 that we discussed in Wang (2020) (the characteristic 153 

number conclusion is also valid for GB1 through the parameters transformation (𝛼, 𝛾) ↔ (𝑝, 𝛼)). We 154 

will confirm this in later subsections 2.3.1, 2.4.2, and 2.5.1, by the analysis of the conditional minimum 155 

of the shape factor for given skewness, a different type of the contour. 156 

Even though GB1 and GB2 have almost identical fitting capability and fitted parameters as we 157 

mentioned, experience indicates that GB1 is easier to use with fewer technical problems in numerical 158 
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optimization performed by the fitting, and is easier for validation using risk measures that involves 159 

numerical integration (Wang, 2019b). This relatively easier assertion is generally true for finite range 160 

distributions vs. infinite range distributions.  161 

2.1.2. Asymptotic equivalent distributions of GB1 162 

In Wang (2020) section 5.2, we call distributions with identical SF boundary value formulas 163 

asymptotically equivalent distributions. In this sense we see that GB1, GB2, and Generalized Gamma 164 

Distribution (GG) are asymptotic equivalent, denoting by 165 

GeneralizedBetaDistributionI[α,∞,γ,1]~BetaPrimeDistribution[α,∞,γ,1]~GammaDistribution[α,1,γ,0166 

]. Their PDF do not converge to each other, or even do not have the same domain. Their central 167 

moments do not have the same formula either, but their S, K, and SF have the same asymptotic formula 168 

when β→∞ or q→∞. Asymptotic equivalent distributions will have similar fitting capabilities and 169 

fitted parameters, in justification of our observation that in practice when Beta distribution do not fit 170 

well all the distributions in these families will not fit well. In the asymptotic equivalent notation, when 171 

β→∞, in the parameters space of α and γ, Beta distribution is the GB1 distribution at γ=1: 172 

GeneralizedBetaDistributionI[α,∞,1,1]~BetaDistribution[α,∞]. We can similarly summarize our 173 

finding in Wang (2020) about Kumaraswamy distribution and Weibull distribution by saying that they 174 

are the GB1 distribution at α=1: 175 

GeneralizedBetaDistributionI[1,∞,γ,1]~WeibullDistribution[γ,1]~KumaraswamyDistribution[γ, ∞].  176 

Similar to the equations (6)-(9) of the shape factor of GB1 at the boundary of the parameters space 177 

of α and γ, we can get the S and K boundary values as well from equation (11) and (12): 178 

𝑙𝑖𝑚𝑖𝑡𝛼→0  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆 ~ Gamma[𝛼]12Gamma[3𝛾]Gamma[2𝛾]32 , 𝑙𝑖𝑚𝑖𝑡𝛼→0  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐾 ~ Gamma[𝛼]Gamma[4𝛾]Gamma[2𝛾]2 (14) 179 

𝑙𝑖𝑚𝑖𝑡𝛾→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆 =  𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[2, 𝛼]𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[1, 𝛼]3 2⁄ , 𝑙𝑖𝑚𝑖𝑡𝛾→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐾 =  3 + 𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[3, 𝛼]𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[1, 𝛼]2 (15) 180 

𝑙𝑖𝑚𝑖𝑡𝛾→0  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆~𝛾𝛼2−14 (278 )1𝛾 (98)𝛼2 (2𝐺𝑎𝑚𝑚𝑎[𝛼]3 )12 𝜋−14, 𝑙𝑖𝑚𝑖𝑡𝛾→0  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐾~ 𝛾𝛼−12161𝛾𝐺𝑎𝑚𝑚𝑎[𝛼]√2𝜋 (16) 181 

𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆 ~ 3 − 𝛾𝛾√𝛼 , 𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐾 ~ 3 (17) 182 

From equation (7) and (15), at the upper boundary γ→∞, when α increase from 0 to ∞, GB1 S 183 

monotonically increase from -2 to 0, K monotonically decrease from 9 to 3, and SF monotonically 184 

increase from 9/4 to ∞. These are exactly formulas for ExpGammaDistribution[α,θ,µ] (called Log 185 

gamma in McDonald et al. (2011)), i.e., GeneralizedBetaDistributionI[α,∞,∞,1]~ 186 

ExpGammaDistribution[α,θ,µ].  187 

From equation (9) and (17), at the right boundary α→∞, GB1 S→0, K→3, and SF→∞, i.e., 188 

GeneralizedBetaDistributionI[∞,∞, γ,1]~NormalDistribution[µ,σ]. 189 

From equation (8) and (16), at the lower boundary γ→0, GB1 S→∞, K→∞, and SF→∞.  190 

From equation (6) and (14), at the left boundary α→0, GB1 S→∞, K→∞, and SF monotonically 191 

decrease from ∞ to 1.125 when γ increase from 0 to ∞. GB1 SF is discontinuous at the top left corner of 192 

the α and γ parameters space.  193 



9 

SF at the left boundary α→0 attain minimum at γ→∞, and at the top boundary γ→∞ attain 194 

minimum at α→0: the top left corner is the SF minimum point. From Wang (2020) Figure 13 and 195 

similar plots when zoom in to higher γ portion (which is also plots for GB1 since GB2 and GB1 are 196 

asymptotic equivalent), we see that the conditional minimum point for given α converge to the top left 197 

corner, in GB1. In the positive skewness region, the conditional minimum point for given γ converge 198 

to the left boundary, and then converge to the top left corner along the left boundary. In the negative 199 

skewness region, the conditional minimum point for given γ converge to the top left corner directly.  200 

This conditional minimum point converge to boundary minimum point is also seen in distribution 201 

where the boundary shape factor has interior minimum point. For example, the Kumaraswamy 202 

distribution (a sub class of GB1) and its upper boundary asymptotic equivalent Weibull distribution 203 

have similar plot in Figure 5, where the horizontal minimum SF points converge to α=0.6411, the 204 

minimum SF point of the Weibull distribution at the upper boundary (Wang (2020) Figure 7 in section 205 

5.3 and section 5.1 for SF values discussion). The vertical minimum SF points converge to α=0.8552 at 206 

the upper boundary. When α<0.8552, the vertical minimum SF attains at finite β.  When α>0.8552, 207 

the vertical minimum SF attains at the upper boundary where β=∞, which is obvious from the contour 208 

plot of the β derivative of SF, or from the vertical minimum SF (Wang (2020) Figure 8) and the 209 

Weibull distribution SF plot together, Figure 6. 210 



10 

 211 

Figure 5. Kumaraswamy distribution SF derivatives D[SF,β] (in red) and D[SFB,α] (in blue) 0 212 

contour plot. 213 
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 214 

Figure 6. Kumaraswamy distribution vertical minimum SF (in red) and Weibull distribution 215 

SF plot (in blue). 216 

GB1 SF is continuous at the top right and the bottom left corner of the α and γ parameters space, 217 

which always converges to ∞ no matter what route or contour we take to approach these corners. We 218 

will see later in section 2.2.1 that similar to the top left corner, the bottom right corner is also a singular 219 

point, in the sense that when we approach it from different contours we can get different (including 220 

both finite and infinite) limit values. This contour limit or contour analysis can be viewed as a 221 

generalization of the asymptotic analysis, which simply used vertical or horizontal lines as contours.  222 

In deducting these limit formulas, we see that some obvious asymptotic order comparison of the 223 

terms in the S, K, SF formulas can be slightly generalized, which may be of interest by them own. 224 

When all other variables are positive and finite: 225 𝑙𝑖𝑚𝑖𝑡 𝛼→∞ Gamma[𝛼 + 𝑎]𝑚Gamma[𝛼 + 𝑏]𝑛Gamma[𝛼 + 𝑚𝑎 + 𝑛𝑏𝑚 + 𝑛 ]𝑚+𝑛  =  1 (18) 226 

𝑙𝑖𝑚𝑖𝑡 𝛾→0 𝐺𝑎𝑚𝑚𝑎 [𝛼 + 𝑎𝛾]𝑚 𝐺𝑎𝑚𝑚𝑎 [𝛼 + 𝑏𝛾]𝑛𝐺𝑎𝑚𝑚𝑎[𝛼 + 𝑚𝑎 + 𝑛𝑏𝛾 (𝑚 + 𝑛)]𝑚+𝑛 ~( 𝑎𝑚𝑏𝑛(𝑚𝑎 + 𝑛𝑏𝑚 + 𝑛 )𝑚+𝑛)𝛼−12( 𝑎𝑚𝑎𝑏𝑛𝑏(𝑚𝑎 + 𝑛𝑏𝑚 + 𝑛 )𝑚𝑎+𝑛𝑏)
1𝛾 (19) 227 

𝑎𝑚𝑏𝑛(𝑚𝑎 + 𝑛𝑏𝑚 + 𝑛 )𝑚+𝑛 < 1 𝑠𝑖𝑛𝑐𝑒 𝑙𝑜𝑔 𝑥 𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑎𝑛𝑐𝑎𝑣𝑒 (20)
 228 



12 𝑎𝑚𝑎𝑏𝑛𝑏(𝑚𝑎 + 𝑛𝑏𝑚 + 𝑛 )𝑚𝑎+𝑛𝑏 > 1 𝑠𝑖𝑛𝑐𝑒 𝑥 𝑙𝑜𝑔 𝑥 𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 (21)
 229 

Equation (18) says that when α→∞ the product factors in GB1 SF converge to 0 and are amenable 230 

to the derivative of log function trick (Wang (2020) equation (12)) for calculating asymptotic power 231 

order and finally give us the asymptotic formula (9) and (17). 232 

Equation (19) says that when γ→0 the terms in the summation expression inside the product 233 

factors in GB1 SF have dominant terms that have the largest power order coefficients of 1/γ, all other 234 

terms can be ignored. Together with the simplification by equation (2), we then get formula (8) and 235 

(16). 236 

2.1.3. Minimum shape factor for given skewness 237 

As discussed in Wang (2020) section 3.1, we can utilize the ratio of the tangent of the contour of 238 

the skewness and the tangent of the contour of the kurtosis. The shape factor for given skewness has 239 

interior minimum/maximum in the parameters space only if the ratio of the tangent equals 1 240 

(alternatively the differences of the tangent equals 0), or geometrically the contours tangent to each 241 

other at that point. Conversely, the minimum/maximum shape factor will only be attained at the 242 

parameters space boundaries. An alternative way to check this is by examining the intersections of the 243 

skewness and kurtosis contours, interior extreme value cannot exist if we cannot find a pair of contours 244 

from the two families that have two intersections. 245 

The ratio contour plot is in Figure 7 and the intersection plot is in Figure 8. 246 
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 247 

Figure 7. GB1 distribution ratio of tangent of skewness contour to kurtosis contour plot. 248 
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 249 

Figure 8. GB1 distribution skewness contour (in red) and kurtosis contour plots. 250 

From Figure 7 and 8 and similar plots zooming to different regions of the parameters space that 251 

the ratio will never be 1 and we always see 1 intersection point, we can conclude that the shape factor 252 

condition on given skewness will have extreme values on the parameters boundary. The maximum will 253 

be on the top right, bottom right, or right boundary where α→∞, and the minimum will be on the top 254 

left boundary where γ→∞ and α→0. To confirm this prediction, we plot the contour of SF against S 255 

and α in Figure 9, which shows clearly the monotonically increasing of SF vs α for given S along the 256 

horizontal lines. Combining with the plots in Figure 1 and 2, we see that for given positive skewness, 257 

the minimum SF will be on the top left corner and the maximum SF will be on the bottom right corner. 258 

We will study these corner limits in the next section. 259 
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 260 

Figure 9. GB1 distribution SF contour against skewness and α plot. 261 

2.2. GB1 contour analysis part one 262 

2.2.1. GB1 β→∞ α→∞ and γ→0 263 

As maintained in the last section, the bottom right corner of the α and γ parameters space of GB1 264 

is a singular point, we need to use contour analysis (contour limit and contour minimum or maximum) 265 

to study its S, K, and SF properties. The simplest form of the contour is via power function: 𝛾 = 𝑘 𝛼𝑎⁄ . 266 

Symbolic limit using general 𝑎 with asymptotic expansion of the Gamma function used in S, K, and 267 

SF at infinite do not work. This difficult can be addressed by experiments with specific values of 𝑎. It 268 

is found that when a>1/2, the terms in the sum expression inside the product factors of SF have 269 

dominant term; and when a<1/2, the terms are asymptotic equivalent; but when a=1/2, the terms are 270 

asymptotic proportional to each other with their limit ratio not necessarily 1. 271 

When a=1, we can utilize the following heuristic trick:  272 
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 273 

𝑖𝑓 𝑑𝑙𝑜𝑔(𝑓(𝑥))𝑑𝑥𝑥 → 𝐴, 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑓(𝑥)~𝑥𝐵𝑒𝐴𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑥 → ∞ (22) 274 

We then get the asymptotic formula for contour 𝛾 = 𝑘 𝛼⁄ : 275 

𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆 ~ 𝑒𝛼(𝑘𝐿𝑜𝑔[𝑘]−3(2+𝑘)𝐿𝑜𝑔[2+𝑘]+2(3+𝑘)𝐿𝑜𝑔[3+𝑘])2𝑘 (2 + 𝑘)3 4⁄𝑘1 4⁄ √3 + 𝑘 (23) 276 

𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝐾 ~ 𝑒𝛼(𝑘𝐿𝑜𝑔[𝑘]−2(2+𝑘)𝐿𝑜𝑔[2+𝑘]+(4+𝑘)𝐿𝑜𝑔[4+𝑘])𝑘 (2 + 𝑘)√𝑘(4 + 𝑘) (24) 277 

𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  𝑆𝐹 ~ 𝑒𝛼((2+𝑘)𝐿𝑜𝑔[2+𝑘]−2(3+𝑘)𝐿𝑜𝑔[3+𝑘]+(4+𝑘)𝐿𝑜𝑔[4+𝑘])𝑘 (3 + 𝑘)√(2 + 𝑘)(4 + 𝑘) (25) 278 

The coefficients of α in equations (23)-(25) are all positive when k is positive, therefore S, K, 279 

SF→∞. This is also true when taking symbolic limit for contours with 1/2<a<1 or a>1. 280 

At the critical value a=1/2 we get the asymptotic formula for contour 𝛾 = 𝑘 𝛼12⁄ : 281 

𝑙𝑖𝑚𝑖𝑡𝛼→∞  𝑙𝑖𝑚𝑖𝑡𝛽→∞  {𝑆, 𝐾, 𝑆𝐹}~{√−1 + 𝑒 1𝑘2(2 + 𝑒 1𝑘2), −3 + 3𝑒 2𝑘2 + 2𝑒 3𝑘2 + 𝑒 4𝑘2 , −3 + 𝑒 2𝑘2(3 + 𝑒 1𝑘2(2 + 𝑒 1𝑘2))(−1 + 𝑒 1𝑘2)(2 + 𝑒 1𝑘2)2 } (26) 282 

The equation (26) is also the formula for LogNormalDistribution[µ,1/k], i.e., when α→∞, 283 

GeneralizedBetaDistributionI[α,∞,k/√α,1]~LogNormalDistribution[µ,1/k]. This contour limit gives 284 

the upper bound of the shape factor for given positive skewness for GB1 and GG distribution that is 285 

lower than the upper bound of GB2 (McDonald et al. (2011) figure 1 and 2). Solve (26) we get: 286 𝑤ℎ𝑒𝑛 𝑆 = 𝑥 > 0, 𝑆𝐹 =−3 + (−1 + 21 3⁄(2 + 𝑥(𝑥 + √4 + 𝑥2))1 3⁄ + (2 + 𝑥(𝑥 + √4 + 𝑥2))1 3⁄21 3⁄ )2(4 + 22 3⁄(2 + 𝑥(𝑥 + √4 + 𝑥2))2 3⁄ + (2 + 𝑥(𝑥 + √4 + 𝑥2))2 3⁄22 3⁄ )
(−2 + 21 3⁄(2 + 𝑥(𝑥 + √4 + 𝑥2))1 3⁄ + (2 + 𝑥(𝑥 + √4 + 𝑥2))1 3⁄21 3⁄ )(1 + 21 3⁄(2 + 𝑥(𝑥 + √4 + 𝑥2))1 3⁄ + (2 + 𝑥(𝑥 + √4 + 𝑥2))1 3⁄21 3⁄ )2 (27) 287 

The plot of (27) together with the Pade-approximation of the GB2 upper bound (McDonald et al. 288 

(2011) appendix) are in Figure 10. 289 
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 290 

Figure 10. GB1 (in red) and GB2 (in blue) distribution maximum shape factor with respect to 291 

skewness plot. 292 

Along the contour 𝛾 = 𝑘 𝛼𝑎⁄  when a<1/2, we cannot obtain general symbolic limit results. But 293 

for a=1/4 or 1/3, we will get S→-∞, K→∞, and SF→4/3, by using the second order asymptotic 294 

expansion of the product Gamma function 
ⅇ𝑧Gamma[𝑧]√2𝜋𝑧−12+𝑧  at infinite, and using the following 295 

simplification (the condition in it is a clue for why ½ is the critical value): 296 (𝑠 + 𝑙)−𝑜+𝑛(𝑠+𝑙)~𝑒𝑠𝑛𝑙−𝑜+𝑛(𝑠+𝑙) 𝑤ℎ𝑒𝑛 𝑠𝑙 → 0 𝑎𝑛𝑑 𝑠2𝑙 → 0 (28) 297 

The equation (28) is an example where simplification can bring about as many problems as 298 

producing conclusions, if not more. Without using (28), for a=1/4 or 1/3, and using the first, second, 299 

third, or even fourth order expansion of 
ⅇ𝑧Gamma[𝑧]√2𝜋𝑧−12+𝑧 , we get SF→∞ if we take the symbolic limit 300 

directly. 301 

In a different manipulation without using (28), but using second order expansion of 302 Gamma[𝑤]ℎGamma[𝑥]Gamma[𝑧]𝑘  so that the exponential and higher order factors will cancel out and the remaining 303 

part are only power functions, we get SF→∞ when a<1/4, SF→4/3+k^4/4608 when a=1/4, SF→4/3 304 

when 1/4<a<1/2. But if we use third order expansion of 
Gamma[𝑤]ℎGamma[𝑥]Gamma[𝑧]𝑘 , we get SF→∞ when 305 

a<1/4, SF→4/3+59 k^4/69120 when a=1/4, SF→4/3 when 1/4<a<1/2. 306 

Whether it is 4/3 or it is ∞, it is the problem. 307 
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For more exploration, using first order expansion of  
ⅇ𝑧Gamma[𝑧]√2𝜋𝑧−12+𝑧  and (28), and using Wang 308 

(2020) equation (12)’s calculation of limit of x*dlogf(x)/dx to estimate the power function power 309 

order, and followed by symbolic quotient calculation for estimating the coefficients, we get SF ~ 5 k^3 310 

α^(2-3a) when a<1/4. But if we use the second order expansion of 
ⅇ𝑧Gamma[𝑧]√2𝜋𝑧−12+𝑧  instead, we get SF ~ 16 311 

α^(-2+a)/(243k), which unlike the first order expansion conclusion, is obviously wrong since it 312 

converges to 0 when a<2. 313 

The final resolution of all these confusions is through induction with sample values of a and k, 314 

and through the following observation: when x→∞ and f(x)→∞, the usual infiniteness magnitude or 315 

form of f(x) is either logarithmic, power, exponential, or exponential of power. We can then write f(x) 316 

~ log(x) ^ G * x ^ B * ℮ ^ (A * x ^ K). And we can use the limit of log(log(f(x))) /log(x) to estimate K, 317 

the limit of log(f(x)) /x^K to estimate A, the limit of log(f(x)) /log(x) to estimate B when K<=1, lastly 318 

the limit of log(f(x)) /log(log(x)) to estimate G when K<=0 and B=0. Using derivatives such as 319 

x*d(log(f(x)))/dx may also be able to estimate B, and using d(log(f(x)))/dx may be able to estimate A 320 

when K=1, but they do not work in our case. And in cases both methods work, they are slower than the 321 

log(f(x)) /log(x) or log(f(x)) /x limits method. 322 

We first fix a=1/4, and for various values of k, take the symbolic limit of Log[(Gamma [𝛼 +323 

𝛼𝑎𝑘 ]2 − Gamma[𝛼]Gamma[𝛼 + 2𝛼𝑎𝑘 ]) 324 

(3Gamma [𝛼 + 𝛼𝑎𝑘 ]4 − 6Gamma[𝛼]Gamma [𝛼 + 𝛼𝑎𝑘 ]2 Gamma [𝛼 + 2𝛼𝑎𝑘 ]331 

+ 4Gamma[𝛼]2Gamma [𝛼 + 𝛼𝑎𝑘 ] Gamma [𝛼 + 3𝛼𝑎𝑘 ]332 

− Gamma[𝛼]3Gamma [𝛼 + 4𝛼𝑎𝑘 ]) 333 

/ (2Gamma [𝛼 + 𝛼𝑎𝑘 ]3 − 3Gamma[𝛼]Gamma [𝛼 + 𝛼𝑎𝑘 ] Gamma [𝛼 + 2𝛼𝑎𝑘 ] +325 Gamma[𝛼]2Gamma [𝛼 + 3𝛼𝑎𝑘 ])2 //. {𝑎 → 1 4⁄ , 𝑘 → 2}//Evaluate]/Log[𝛼] , i.e., using the SF 326 

formula without any series expansion. We find that the limit is always 1/2 no matter what values of the 327 

k we take. Henceforth we fix k=1 in the explorations for other values of a. For various values of a in the 328 

interval [0,1/2], we calculate all their power orders, and find that it is of the form 1-2a. Similar 329 

experiments are done for other intervals. The results are summarized in equation (29). 330 
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𝑆𝐹 ≍
{  
   
   
  𝛼 −1 ≤ 𝑎 ≤ 0𝛼1−2𝑎 0 < 𝑎 < 12−3 + 3𝑒2 + 2𝑒3 + 𝑒4(−1 + 𝑒)(2 + 𝑒)2 𝑎 == 12𝑒𝛼−1+2𝑎 12 < 𝑎 < 1(8437565536)𝛼 𝑎 ==  1(1024729 )𝛼𝑎 1 < 𝑎

(29) 334 

When a<-1, such as when a=-2, we are not able to get the symbolic limit. But for a in [-1, 1/2), 335 

from equation (29) we know SF→∞ not the 4/3, resolved our quandary. Equation (29) become (9) 336 

when a=0, (25) when a=1, and (26) when a=1/2.  337 

Our solution methodology is more of mixed nature from induction and deduction, not purely 338 

induction. For a purely induction way, using a sequence of selected and fixed a, we can calculate the 339 

numerical SF value for α up to 10.^5 using machine accuracy numbers, and for α up to 10^7 using 340 

arbitrary accuracy numbers, then we may want to find the tendency. But the subsequent power 341 

function fitting by NonlinearModelFit cannot find any decisive results, perhaps due to not higher 342 

enough α can be calculated. Consequently, the symbolic limit with α→∞ is employed.     343 

In summary, at the bottom right corner of the α and γ parameters space of GB1, when we 344 

approach it along different contours of 𝛾 = 𝑘 𝛼𝑎⁄  for different 𝑎, the S, K, and SF behave differently. 345 

Only at 𝑎 = 1/2, the asymptotically LogNormalDistribution[µ,1/k] case, do we have all finite S, K, 346 

and SF. In such a case, S and K monotonically decrease with respect to k, but SF has an interior 347 

minimum, Figure 11. The contour analysis with our induction and deduction tricks is a viable tool for 348 

singularity analysis approaching either the parameters space boundaries or corners: it can help us find 349 

formulas or patterns out of irregularities and identify various critical points. 350 
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 351 

Figure 11. GB1 S (in red) K (in blue) SF (in magenta) when 𝛾 = 𝑘 √𝛼⁄  and α→∞ plot. 352 

We guess why the power function form of contours have non-trivial finite limit of S, K, and SF 353 

has some relationship with the S zero contour shape. Through two points fitting we know the GB1 S=0 354 

contour almost seamlessly match with the curve 𝛾 = 3 + 49𝛼 when α>100, indicating that the S zero 355 

contour is approximately of power function form. Other distribution contour analysis can likewise get 356 

inspiration from their skewness zero-contour function form.    357 

2.2.2. GB1 β→∞ α→0 and γ→∞  358 

The top left corner is similar to the bottom right corner, taking symbolic limit for arbitrary a 359 

would not work, but for specific values or small intervals of a, the symbolic limit will do the trick. 360 

Using the same mixed induction method, along the contour 𝛾 = 𝑘 𝛼𝑎⁄ , when α→0 we get the 361 

following contour limit for the whole range of real 𝑎 leading to left boundary or corners: 362 

{𝑆, 𝐾, 𝑆𝐹}~
{  
   
   
  {∞,∞,∞} 𝑎 < 0{∞,∞, 𝐺𝑎𝑚𝑚𝑎[2𝑘]𝐺𝑎𝑚𝑚𝑎[4𝑘]𝐺𝑎𝑚𝑚𝑎[3𝑘]2 } 𝑎 == 0

{∞,∞, 98} 0 < 𝑎 < 1
{−2(−1 + 𝑘)√2 + 𝑘𝑘3 + 𝑘 , 3(4 + 5𝑘2 + 3𝑘3)𝑘(3 + 𝑘)(4 + 𝑘) , 3(3 + 𝑘)(2 − 𝑘 + 3𝑘2)4(−1 + 𝑘)2(4 + 𝑘) } 𝑎 ==  1{−2,9, 94} 1 < 𝑎

(30) 363 
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The piecewise function formula (30) is bridged at the ends of the different a intervals, 364 

extrapolated with respect to the variable k whose two end points 0 or ∞ limits converge to the above or 365 

below adjacent formulas in this list. When a=1, the limit is identical to S, K, and SF of 366 

BetaDistribution[k,1], i.e., GeneralizedBetaDistributionI[α,∞,k/α,1]~BetaDistribution[k,1]. This 367 

distribution is called power function or PF distribution in McDonald et al. (2011), where it is shown to 368 

be the lower bound of GB2 and GG. Its SF plot is in Figure 12.  369 

 370 

Figure 12. GB1 shape factor value when α→0 along the contour γ=k/α. 371 

The curve in Figure 12 is slightly higher than Wang (2018b) Figure 27; especially when k is 372 

positioned at the middle range around 1 to 10. The reason for this differences is that the contour limit is 373 

not the contour minimum, which take place in interior α values, as indicated by the zero contour plot of 374 

the α derivative of the SF along the contour γ=k/α in Figure 13. 375 
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 376 

Figure 13. GB1 along γ=k/α shape factor α derivative zero contour plot. 377 

The SF at these interior minimum is in Figure 14, which is more close to Wang (2018b) Figure 27, 378 

ignoring their numerical noises produced from Mathematica FindRoot function. 379 



23 

 380 

Figure 14. GB1 along γ=k/α minimum shape factor value for given k. 381 

In summary, the contour analysis through contour family 𝛾 = 𝑘 𝛼𝑎⁄ reveals abundant 382 

information of GB1 SF at the top left and the bottom right corner in the parameter space of α and γ. 383 

Some values of a, specifically 1 and 1/2 respectively, give finite S, K, and SF, or yield distribution 384 

asymptotic equivalent to PF or LogNormal distribution. This knowledge are of practical values for 385 

parameter range estimation or validation in distribution fitting.  386 

2.3. GB1 shape factor global minimum 387 

2.3.1. When β→0 388 

From Figure 2-4 and Wang (2020) section 6 we know GB1, as well as GB2 and GG, have 389 

minimum SF 1.125 when β→∞, arrived at the top left corner. However, this is not the global minimum 390 

SF of GB1. If we turn to the opposite direction of β→∞, let β→0, using power series expansion of the 391 

expression (Gamma[𝑤+𝛽]Gamma[𝑤] )ℎ Gamma[𝑥]Gamma[𝑥+𝛽] ( Gamma[𝑧]Gamma[𝑧+𝛽])𝑘  and (Gamma[𝑤+𝛽]Gamma[𝑤] )ℎ( Gamma[𝑧]Gamma[𝑧+𝛽])𝑘  at β=0 for 392 

various combinations of w, x, z, h, and k that represent summation terms in GB1 S, K, and SF, we get: 393 
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 𝑙𝑖𝑚𝑖𝑡𝛽→0  {𝑆, 𝐾, 𝑆𝐹}~{∞,∞, (𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼] − 2𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎 [0, 𝛼 + 1𝛾] + 𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎 [0, 𝛼 + 2𝛾]) ∗(𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼] − 4𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 1𝛾] +6𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 2𝛾] − 4𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 3𝛾] + 𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 4𝛾])/(𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼] − 3𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 1𝛾] + 3𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 2𝛾] − 𝑃𝑜𝑙𝑦𝐺𝑎𝑚𝑚𝑎[0, 𝛼 + 3𝛾])2} (31)
 394 

The Equation (31) is verified by both the first and the fourth order power expansion. The SF 395 

formula in Equation (31) converges to 1, the greatest lower bound of SF, at the bottom left corner of the 396 

parameter space of α and γ.  397 

2.4. GB2 contour analysis 398 

2.4.1. When q→0? 399 

Similar to the study of GB1 for β→0, we want to know GB2 SF when q→0. Unlike GB1 whose 400 

SF always exist, the GB2 must have qα>4 to guarantee SF existing. Therefore, when q→0, we need to 401 

request α→∞. In this case, the asymptotic limit of q→0 while fixing α will give wrong results: the 402 

contour limit must be engaged.   403 

To find where GB2 attain SF maximum, we select example value of α=4, explore the S and SF 404 

contour family, find that given S, the maximum of SF is at interior point of the parameter space, Figure 405 

15.  406 
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 407 

Figure 15. GB2 S (in black) contours and SF (in red) contours plot when α=4. 408 

This is confirmed by the ratio of the S contour tangent to the K contour tangent exploration. The 409 

curve where this tangent ratio equals one is interposed on the SF contour plot in Figure 16. 410 
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 411 

Figure 16. GB2 SF contours and the ratio of S tangent to K tangent equals one curve when α=4. 412 

From Figure 16 we see that the maximum SF location of GB2 given S is almost a line in the p and 413 

q parameter space. Map the parameter p and q to S and K we get Figure 17. 414 
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 415 

Figure 17. GB2 S and K where the ratio of S tangent to K tangent equals one(in red) when α=4. 416 

In Figure 17, we juxtaposed our α=4 max S and K plot with the McDonald Pade-approximation of 417 

the GB2 empirical upper bound (McDonald et al. (2011) appendix), which showed curve shape 418 

similarity. 419 

Experiment with various α: 2, 8, 16, and 32, we see that when α→∞, the max S and K plot 420 

converges toward McDonald’s empirical formula plot. 421 

Using induction method on α, and guided by the numerical results of McDonald et al. (2011), we 422 

are lead to study on limit toward a different direction than q, the α direction.  423 

Taking second order power series expansion of the expression 424 (Gamma[𝑧+𝑥]Gamma[𝑧] )ℎ Gamma[𝑧+𝑦]Gamma[𝑧] (Gamma[𝑢+𝑣]Gamma[𝑢] )𝑘 Gamma[𝑢+𝑤]Gamma[𝑢]  and (Gamma[𝑧+𝑥]Gamma[𝑧] )ℎ(Gamma[𝑢+𝑣]Gamma[𝑢] )𝑘 at x, y, v, and 425 

w=0 for various combinations of z, u, x, h, y, v, k, and w that represent summation terms in GB2 S, K, 426 

and SF, we can obtain GB2 ratio of S tangent to K tangent formula and contour plot. The ratio equals 427 

one plot is just p=q, which hint at that the maximum SF given S is at the p-q space bottom left corner 428 

with p proportional to q. Therefore, we will try the simplest such contour in the next subsection.  429 

2.4.2. When α→∞ and p=m/α, q=n/α 430 

Using the same second order power series expansion, but now remove the incorrect assumption 431 

that p and q is fixed, let p=m/α, q=n/α, and α→∞, we get the contour limit formula for GB2 S, K, and 432 
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SF, Equation (32)-(34). Later we deduct the same formula without using the series expansion, in 433 

Figure 18. 434 

 𝑙𝑖𝑚𝑖𝑡𝛼→∞,𝑝=𝑚𝛼 ,𝑞=𝑛𝛼 𝑆 ~ 𝑚𝑛(
1(3 + 𝑚)(−3 + 𝑛) + 𝑚𝑛( 2𝑚𝑛(1 + 𝑚)3(−1 + 𝑛)3 − 3(2 + 3𝑚 +𝑚2)(2 − 3𝑛 + 𝑛2)))(𝑚𝑛( 1(2 + 𝑚)(−2 + 𝑛) − 𝑚𝑛(1 + 𝑚)2(−1 + 𝑛)2))3 2⁄ (32) 435 

 𝑙𝑖𝑚𝑖𝑡𝛼→∞,𝑝=𝑚𝛼 ,𝑞=𝑛𝛼 𝐾 ~ 
1𝑚(4 + 𝑚)(−4 + 𝑛)𝑛 + 6𝑚𝑛(1 +𝑚)2(2 +𝑚)(−2 + 𝑛)(−1 + 𝑛)2 − 3𝑚2𝑛2(1 +𝑚)4(−1 + 𝑛)4 − 4(3 + 4𝑚 +𝑚2)(3 − 4𝑛 + 𝑛2)( 1(2 +𝑚)(−2 + 𝑛) − 𝑚𝑛(1 +𝑚)2(−1 + 𝑛)2)2 (33) 436 

 𝑙𝑖𝑚𝑖𝑡𝛼→∞,𝑝=𝑚𝛼 ,𝑞=𝑛𝛼𝑆𝐹~ (
1(2 +𝑚)(−2 + 𝑛) − 𝑚𝑛(1 + 𝑚)2(−1 + 𝑛)2)( 1(4 +𝑚)(−4 + 𝑛) +𝑚𝑛(3𝑚𝑛(2(1 + 𝑚)2(−1 + 𝑛)2(2 + 𝑚)(−2 + 𝑛) − 𝑚𝑛)(1 +𝑚)4(−1 + 𝑛)4 − 4(3 + 4𝑚 + 𝑚2)(3 − 4𝑛 + 𝑛2)))( 1(3 + 𝑚)(−3 + 𝑛) + 𝑚𝑛( 2𝑚𝑛(1 +𝑚)3(−1 + 𝑛)3 − 3(2 + 3𝑚 + 𝑚2)(2 − 3𝑛 + 𝑛2)))2 (34) 437 

 438 

Figure 18. GB2 S, K, SF limit formula deduction when α→∞ and p=m/α, q=n/α. 439 

This limit of GB2 realize maximum SF for given S at interior point of the m-n space, as seen from 440 

the contours plot of S and K that have two pairwise intersections in the bottom part in Figure 19. 441 
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 442 

Figure 19. GB2 S contours (in black) and K contours (in red) plot when α→∞ and p=m/α, 443 

q=n/α. 444 

We then use the ratio of the S contour tangent to the K contour tangent to locate the interior 445 

maximum position of GB2 SF given S. The ratio equals one is equivalent to the ratio expression 446 

numerator equals denominator, which in turn equivalent to the difference of the numerator with 447 

denominator equals zero. Factor out other positive parts we get the location of the SF maximum by 448 

Equation 35. Together with the constraint of CM[2]>0, CM[4]>0, K>1, and SF>1, we get the explicit 449 

solution of Equation 35 by Equation 36 and Equation 37. The deduction can also be done via the 450 

difference of S contour tangent to the K contour tangent equals zero route. 451 6 + 23𝑚 + 34𝑚2 + 24𝑚3 + 8𝑚4 +𝑚5 − 23𝑛 + 6𝑚𝑛 + 10𝑚2𝑛 + 6𝑚3𝑛 +𝑚4𝑛 +34𝑛2 − 10𝑚𝑛2 − 24𝑛3 + 6𝑚𝑛3 + 8𝑛4 −𝑚𝑛4 − 𝑛5 = 0 (35) 452 𝑚 > 0.6366164911641596 &&  𝑛 == 𝑅𝑜𝑜𝑡[−6 − 23𝑚 − 34𝑚2 − 24𝑚3 − 8𝑚4 −𝑚5 + (23 − 6𝑚 − 10𝑚2 − 6𝑚3 −𝑚4)#1 + (−34 + 10𝑚)#12 + (24 − 6𝑚)#13 +(−8 +𝑚)#14 + #15 & , 1] (36) 453 



30 

𝑛 > 4 &&  𝑚 == 𝑅𝑜𝑜𝑡[6 − 23𝑛 + 34𝑛2 − 24𝑛3 + 8𝑛4 − 𝑛5 + (23 + 6𝑛 − 10𝑛2 + 6𝑛3 − 𝑛4)#1 +(34 + 10𝑛)#12 + (24 + 6𝑛)#13 + (8 + 𝑛)#14 + #15 & , 3] (37) 454 

The S contour and the maximum SF location curve by Equation 35 plot is Figure 20.  455 

 456 

Figure 20. GB2 S contours and maximum SF location curve plot when α→∞ and p=m/α, 457 

q=n/α. 458 

The maximum K given S as calculated by Equation 36, and the McDonald Pade-approximation of 459 

the GB2 upper bound (McDonald et al. (2011) appendix), are in Figure 21. 460 
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 461 

Figure 21. GB2 maximum K given S plot (in red) when α→∞ and p=m/α, q=n/α. 462 

When n increase from 4 to infinity, Equation 32-34 and 37 say that S decrease from 2.30337 to 463 

zero, K decrease from infinity to 6, SF decrease from infinity to the minimum value 9.8414 when 464 

n=4.79175 and m=1.3619, with S=1.33373, K=17.5064, and then increase to infinity. The maximum S 465 

is 2.30337 (McDonald et al. (2011) A.2 put a value 2.3037, possibly a typo). The minimum K is 6, 466 

which can be deduced from the limit of the solution m in Equation 37 divided by n converges to one 467 

when n turns to infinity. 468 

From Figure 21 and similar plots zooming to different S ranges, we see that our maximum K is 469 

higher than McDonald et al. (2011)’s empirical formula when S<0.25, lower than it when 0.25<S<1, 470 

indistinguishable from it when 1<S<2.2, and lower than it when 2.2<S<2.3. The Pade approximation 471 

of McDonald et al. (2011) is 0 when S=0.0600673 and is ∞ when S=0.0600951, which may be the 472 

reason of its singular behavior near S=0 and the wrong maximum K value less than 6. 473 

2.4.3. PDF limit 474 
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Take symbolic limit individually for different parameter sub-intervals, or after taking logarithm 475 

and derivative, we get: 476 

 𝑙𝑖𝑚𝑖𝑡𝛼→∞  (1 + 𝑥𝛼)1𝛼 = {1 0 ≤ 𝑥 ≤ 1𝑥 𝑥 > 1 (38) 477 

 478 

The PDF of BetaPrimeDistribution[p,q,α,1] is 𝛼(1+𝑥𝛼)−𝑝−𝑞𝑥−1+𝑝𝛼Beta[𝑝,𝑞] . Use Equation 38 and 479 

Limit [ 𝛼Beta[𝑚𝛼 ,𝑛𝛼] , 𝛼 → ∞, Direction → FromBelow, Assumptions → 𝑚 > 0&&𝑛 > 4] = 𝑚𝑛𝑚+𝑛 , we 480 

find that when α→∞ and p=m/α, q=n/α, the limit of GB2 distribution PDF is: 481 

 𝑙𝑖𝑚𝑖𝑡𝛼→∞,𝑝=𝑚𝛼 ,𝑞=𝑛𝛼 𝐺𝐵2𝑃𝐷𝐹 = {
𝑚𝑛𝑚 + 𝑛 𝑥−1+𝑚 0 ≤ 𝑥 ≤ 1𝑚𝑛𝑚 + 𝑛 𝑥−1−𝑛 𝑥 > 1 (39) 482 

PDF with Equation 39 form is called Double Pareto distribution (DP) in Reed (2001), which is a 483 

very active distribution in contemporary researches. Reed (2003), Reed and Jorgensen (2004), 484 

Mitzenmacher (2004), Ribeiro et al. (2010), Faris (2011), Okamota (2013), Shin et al. (2015), Toda 485 

(2017), Pfitzinger et al. (2018), and Shriram (2018) are some of the references for DP with topics 486 

ranging from theory to multitude applications. The skewness and kurtosis of DP when m>0 and n>0 487 

are in Equation 40-41. 488 

𝐷𝑃𝑆 = 2((1 + 𝑚)3(2 + 𝑚) + (1 +𝑚)2(−7 + 𝑚(3 + 𝑚))𝑛 + 3(3 + 𝑚2)𝑛2 + 5(−1 +𝑚)𝑛3 − (−1 +𝑚)𝑛4)(3 + 𝑚)(𝑚(2 +𝑚) + (−1 + 𝑛)2)3 2⁄ (−3 + 𝑛)√ 𝑚𝑛(2 +𝑚)(−2 + 𝑛) 𝑆𝑖𝑔𝑛[−1 + 𝑛] (40)
 489 

𝐷𝑃𝐾 = 3(2 + 𝑚)(−2 + 𝑛)(2(−3 + 𝑛)(−2 + 𝑛)(−1 + 𝑛)4 −𝑚(−2 + 𝑛)(−1 + 𝑛)3(−29 + (−4 + 𝑛)𝑛) + 9𝑚5(2 + 𝑛 + 3𝑛2) + 𝑚6(2 + 𝑛 + 3𝑛2) + 2𝑚4(32 +𝑛2(48 + (−3 + 𝑛)𝑛)) + 3𝑚2(−1 + 𝑛)2(38 + 𝑛(−1 + 𝑛(17 + (−7 + 𝑛)𝑛))) +2𝑚3(58 + 𝑛(−51 + 𝑛(63 + 𝑛(−1 + 3𝑛)))))/(𝑚(3 + 𝑚)(4 + 𝑚)(𝑚(2 + 𝑚) + (−1 + 𝑛)2)2(−4 + 𝑛)(−3 + 𝑛)𝑛) (41) 490 

Using Mathematica Reduce function, we know that Equation 40 and 41 is identical to Equation 491 

32 and 33. In other words, GB2 upper bound distribution is asymptotic equivalent to DP distribution, 492 

i.e., when α→∞, BetaPrimeDistribution[m/α,n/α,α,1]~DoubleParetoDistribution[m,n]. 493 

Due to piecewise PDF, Mathematica cannot directly calculate moment of DP. But it can 494 

calculate the central moment of DP, for example, the variance, or CM[2] of DP is 495 𝑚𝑛(1+2𝑚+𝑚2−2𝑛+𝑛2)(1+𝑚)2(2+𝑚)(−2+𝑛)(−1+𝑛)2. We can then calculate the moment of DP from central moment. The M[1] 496 

to M[3] of DP is in Equation 42. 497 

{𝐷𝑃𝑀[1], 𝐷𝑃𝑀[2], 𝐷𝑃𝑀[3]} = { 𝑚𝑛(1 + 𝑚)(−1 + 𝑛) , 𝑚2𝑛2(1 + 𝑚)2(−1 + 𝑛)2 +𝑚𝑛(1 + 2𝑚 +𝑚2 − 2𝑛 + 𝑛2)(1 + 𝑚)2(2 + 𝑚)(−2 + 𝑛)(−1 + 𝑛)2 , 𝑚3𝑛3(1 + 𝑚)3(−1 + 𝑛)3 + 3𝑚2𝑛2(1 + 2𝑚 +𝑚2 − 2𝑛 + 𝑛2)(1 + 𝑚)3(2 + 𝑚)(−2 + 𝑛)(−1 + 𝑛)3 +2𝑚𝑛(2 + 7𝑚 + 9𝑚2 + 5𝑚3 +𝑚4 − 7𝑛 − 11𝑚𝑛 + 5𝑚3𝑛 + 𝑚4𝑛 + 9𝑛2 + 3𝑚2𝑛2 − 5𝑛3 + 5𝑚𝑛3 + 𝑛4 −𝑚𝑛4)(1 + 𝑚)3(2 + 𝑚)(3 + 𝑚)(−3 + 𝑛)(−2 + 𝑛)(−1 + 𝑛)3 } (42)
 498 
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In summary, the parameters transformation that is used to overcome the numerical optimization 499 

difficulties in distribution fitting Wang (2018b) reveals useful contours. The contour analysis is a 500 

form of asymptotic analysis in the transformed new parameters space. Different transformations or 501 

different contours show different properties of the distribution, some are for minimum of SF, such as 502 

Equation 31. Others are useful for locating maximum of SF, such as Equation 32-34, resembling our 503 

observation of the directional different characteristic numbers of GB2 distribution (Wang [2020] 504 

section 6.4). It is also of interest to notice that the useful contour form, such as 𝛾 = 𝑘𝛼𝑎 or 505 

p= m 
α

, q= n 
α

 , is in a format reminiscent of the shape factors construction 𝐾|𝑆|α. 506 

2.5. GB1 contour analysis part two 507 

2.5.1. When γ→∞ and α=m/γ, β=n/γ 508 

In section 2.1 and 2.2 we see GB1 when β→∞ has no difference with GB2. On the opposite, 509 

when β→0, GB1 is different from GB2 with q→0. The relevant contour analysis of GB2 expose its 510 

upper bound property to us in section 2.4. This prompt us to study the counterpart property of GB1 511 

that when γ→∞, m>0, n>0, what is GeneralizedBetaDistributionI[m/γ,n/γ,γ,1]. 512 

The GB1 PDF converges to a mixture of continuous and discrete distribution, in Equation 43 513 

(using piecewise CDF construction or MixtureDistribution in Mathematica do not work, the direct 514 

expression utilizing DiracDelta function is the solution). The S, K, and SF is calculated in Equation 515 

44-46. 516 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 [ 𝑚𝑛𝑚 + 𝑛 𝑥−1+𝑚 + 𝑚𝑚+ 𝑛𝐷𝑖𝑟𝑎𝑐𝐷𝑒𝑙𝑡𝑎[𝑥 − 1], {𝑥, 0,1}, 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠 → 𝑚 > 0&&𝑛 > 0] (43) 517 

𝑆 = −2(3𝑚3 + 3𝑚2(2 + 𝑛) − 𝑛(3 + 𝑛) + 𝑚(3 + 𝑛2))(3 + 𝑚)√ 𝑚𝑛2 +𝑚 (2 + 2𝑚 + 𝑛)3 2⁄ (44)
 518 

𝐾 = 3(2 + 𝑚)(8𝑚5 + 2𝑛2(4 + 𝑛) + 8𝑚4(3 + 2𝑛) − 𝑚𝑛(8 − 4𝑛 + 𝑛2) + 12𝑚3(2 + 2𝑛 + 𝑛2) + 𝑚2(8 + 8𝑛2 + 3𝑛3))𝑚(3 + 𝑚)(4 +𝑚)𝑛(2 + 2𝑚 + 𝑛)2 (45) 519 

𝑆𝐹 = 3(2 + 𝑚)(8𝑚5 + 2𝑛2(4 + 𝑛) + 8𝑚4(3 + 2𝑛) − 𝑚𝑛(8 − 4𝑛 + 𝑛2) + 12𝑚3(2 + 2𝑛 + 𝑛2) + 𝑚2(8 + 8𝑛2 + 3𝑛3))4(4 + 𝑚)(3𝑚3 + 3𝑚2(2 + 𝑛) − 𝑛(3 + 𝑛) + 𝑚(3 + 𝑛2))2 (46) 520 

The difference of S contour tangent to the K contour tangent, 𝑛(𝑚+𝑛)2(2+2𝑚+𝑛)𝑚(3+𝑚)(4+𝑚)(2𝑚2−2𝑛+𝑚(2+𝑛)), 521 

cannot equal zero. The minimum and maximum SF given S can only be at the m-n parameter space 522 

boundaries.  523 

At the upper boundary where n→∞, S is − 2(−1+𝑚)√ 𝑚2+𝑚(3+𝑚) and K is 3(2+𝑚)(2−𝑚+3𝑚2)𝑚(3+𝑚)(4+𝑚) , which looks 524 

similar to ParetoDistribution[k,m,µ] S: 
2√−2+𝑚𝑚 (1+𝑚)−3+𝑚  and K: 3(−2+𝑚)(2+𝑚+3𝑚2)(−4+𝑚)(−3+𝑚)𝑚 . But this is in reality 525 

the PF or BetaDistribution[m,1]. When S>0, the K vs S plot is lower than 526 
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LogNormalDistribution[µ,σ] plot, Figure 22. The corresponding maximum SF vs S plot is in Figure 527 

23. 528 

 529 

Figure 22. GB1 maximum K given S plot (in red) when γ→∞ and α=m/γ, β=n/γ. 530 
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 531 

Figure 23. GB1 maximum SF given S plot (in red) when γ→∞ and α=m/γ, β=n/γ. 532 

Unlike the GB2 case, this GB1 counterpart contour maximum is dwarfed by the contour β→∞ 533 

α→∞ and γ→0 results in section 2.2. One possible use of this limit is when finite range distribution 534 

with simple form are desired that are not as inclusive as GB1 but nonetheless extensive than Beta 535 

distribution. This mixture of continuous and discrete distribution bears resemblance to reinsurance 536 

loss distribution that has atom at the limit loss. 537 

The minimum SF given m is attained at interior 𝑛 = − 8(𝑚+𝑚2)−1+5𝑚 + 2√3𝑚+7𝑚2+5𝑚3+𝑚4(−1+5𝑚)2  when 538 

0<m<0.2, and at the upper boundary when m>0.2, through the S and K contour plot or the difference 539 

of S tangent to K tangent contour plot. The plot is in Figure 24, with β→0, which is simpler than 540 

Figure 12 from our section 2.2 contour analysis with β→∞, the antithesis asymptotic limit. When 541 

given n between 0 and 2, the minimum SF is also attained at interior m values, Figure 25, but it is at 542 

the negative S region and thus of less practical importance. 543 
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 544 

Figure 24. GB1 when γ→∞ and α=m/γ, β=n/γ minimum SF given m plot, in red if m<0.2, in 545 

blue if m>0.2. 546 
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547 

Figure 25. GB1 when γ→∞ and α=m/γ, β=n/γ minimum SF given n plot if n<2. 548 

2.6. GB1 and GB2 shape factor bound plots altogether 549 

By now, we finished our GB1 and GB2 shape factor bound study via our asymptotic analysis. Our 550 

shape factor concept at the first thought may be regarded as merely combining two statistics of 551 

skewness and kurtosis into one characteristics. In reality, this simplification open the way to study the 552 

bound and range of shape factor. The boundary of the range, the minimum and the maximum, defined 553 

the suitable territory of each distribution family. Additionally, the asymptotic shape factor values for 554 

given parameter reveal the intrinsic meaning of the parameter. It tell us that different distribution 555 

families may possess similar fitting capabilities, the distinctive forms of the distributions may not be as 556 

important as we generally perceived. The parameter values uniquely determined per each asymptotic 557 

equivalent distribution class have meaning that is more essential. 558 

With our exact analytical results of GB1 and GB2 shape factor bound, and of other comparison 559 

distributions bounds (to be published later) obtained using our presented methodology, we plot the 560 

shape factors bounds curves in Figure 26, and Figure 27 with log scale. Our plots are amelioration of 561 

the empirical plot of Figure 1 and 2 in McDonald et al. (2011) that are highly consulted for distribution 562 

selection. 563 
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564 

Figure 26. GB1 GB2 and other distributions shape factors lower and upper bound plot. 565 
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566 

Figure 27. GB1 GB2 and other distributions shape factors lower and upper bound in log scale. 567 
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 568 

 569 

The precise value in our Figure 26 enable us to pinpoint the most suitable distribution in practice. As 570 

an example, for the aviation arrival-delay time distribution, which has a shape factor value of 2.016 571 

and skewness 6.68, the best distribution is Weibull and THT. The latter turned out better captured the 572 

empirical distribution PDF shape near the lower endpoint. 573 

3. Conclusion and discussions 574 

While the global minimum of the shape factor can be used to filter out not suitable probability 575 

distribution families, the conditional minimum or maximum of the shape factor (as well as the 576 

skewness and kurtosis) can locate the appropriate parameter ranges for distribution fitting. The usually 577 

simpler asymptotic limit formula may be employed to find such conditional minimum or maximum 578 

when it is attainted at the parameter space boundary. The asymptotic limit need to be replaced by 579 

contour limit in case the minimum or maximum is attainted at the parameter space corner.  580 

The asymptotic or contour limit in simple cases may be obtained directly from taking symbolic 581 

limit in computer algebra system. In other cases, we can either use series expansion at various orders to 582 

simplify the expression first, or remove the subordinate terms in a sum expression, or expand the ratios 583 

of expressions by power series so that the other than power order factors can cancel out. In case there is 584 

no dominant term in a sum expression, and the series expansion of the terms in the sum expression 585 

annihilates each other and arrives at an infinitesimal result, we can try taking various logarithms and 586 

ratios to get the power or exponential order. 587 

Whereas these symbolic limit tricks can get us results, they may also get us conflicting results, 588 

with contour limit at the corner more prone to error than the asymptotic limit at the boundary. One 589 

remedy for this is using semi-numeric method: combine the induction and deduction approach together 590 

by fixing some or all parameters to a list of numbers, and study the limit patterns with respect to the 591 

remaining parameters. If the special value substituted expression limits can be derived by symbolic 592 

limit now that fewer or no arbitrary symbol are involved, then we may be able to figure out the general 593 

limit formula forms. However, similar to a purely symbolic limit method may not work for expression 594 

involving general parameters, a purely numeric method may not work either: even reasonably large 595 

argument cannot be calculated when Gamma function is involved. Our formula Equation 29 and 30 are 596 

example application of the combined induction and deduction method.  597 

When the conditional minimum or maximum of the shape factor is attained at the interior point, 598 

we can alternatively use the partial derivative contour plot or zero contour plot to locate the parameter 599 

positions, and calculate the corresponding shape factor values. The geometric or graphical analysis 600 

helps with symbolical analysis. 601 

Once all these operational difficulties are successfully handled, the asymptotic and contour 602 

analysis techniques are not only helpful for cross validation of numerical plots or empirical formulas, 603 

but also capable of discovering new relationships or formulas, by providing information of where the 604 

shape factor minimum or maximum is taken place. That the upper bound of GB2 is double Pareto 605 

distribution is such an example. We believe other distributions are also amenable to these analyses. 606 

After finished this research, in DP reference searching, we find that Higbee et al. (2019) already 607 

find that the DP is GB2 limit, in slightly generalized notation of their ALL. Other than our general 608 

framework of asymptotic analysis and induction with deduction techniques, our study contributed 609 
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additional details as well as confirming their conclusion, such as where these maximum take place, 610 

Equation 35-37. Our approach may work even if the PDF limit do not exist. Besides, Higbee et al. 611 

(2019) do not find or mention that DP is the GB2 upper bound, which is unidentified in McDonald et 612 

al. (2011).  613 

To recapitulate from another perspective, the essence of our asymptotic analysis is complexity 614 

reduction: we cannot visualize three, four, or higher dimensional shape factor topography, but we can 615 

for one or two-dimensional parameters. Fix one or two parameters or expressions such as skewness or 616 

other meaningful form, in the GB2 and GB1 case the product of parameters and their powers, 617 

maximize or minimize shape factor over the remaining variables achieves this dimension reduction 618 

naturally. The simplification effect of asymptotic or contour analysis is accomplished either by taking 619 

boundary value or by taking specifically sliced sub manifold or contour limit when the minimum or 620 

maximum does not attain at the interior, such as Equation 31-34 or Figure 3 and 22. Alternatively, by 621 

locating partial derivative zero points when at the interior, such as Figure 4, 13, 20, 24, and 25. 622 

In addition to this simplification, we believe boundary values are important because they in some 623 

sense determine interior values, as exemplified by harmonic or analytical function theories. 624 

In signal processing, there is another definition of shape factor as the root mean square divided by 625 

the mean of the absolute value, https://www.mathworks.com/help/predmaint/ug/signal-features.html. 626 

This is a variant of CV, or the square root of the SF4[2] in Wang (2019a). We studied CV in Wang 627 

(2018a) and further research lead to our higher order shape factor definition that are more intrinsic to 628 

the shape of the distribution PDF, Wang (2018b, 2019a). The CV, Gini index, and normalized 629 

skewness, defined as the natural square root of the reciprocal of the shape factor, are indeed related to 630 

each other from our empirical study, which showed that CV is almost identical to Gini index, and are 631 

the base part or lower envelope of the normalized skewness; these are topics for a different research 632 

thesis.  633 
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