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Abstract

Crude oil is considered a key commodity in all the economies around the world. This
study forecasts the oil volatility index (OVX), which is the market’s expectation of fu-
ture oil volatility, by incorporating information fromother asset classes. The literature
does not extensively test the longmemory of the targeted volatility. Thus, we estimate
the Hurst exponent implementing a rolling window rescaled analysis. We provide ev-
idence for a strong long memory in the implied volatility (IV) indices which justifies
the use of theHARmodel in obtainingmultiple days aheadOVX forecasts. We also de-
fine a dynamic model averaging (DMA) structure in the HAR model in order to allow
for IV indices from other asset classes to be applicable at different time periods. The
implementation of the DMA-HAR models informs forecasters to focus on the major
stockmarket IV indices, andmore specifically on the DJIA Volatility Index. Our results
lead us to the conclusion that accurate OVX forecasts are obtained for short- andmid-
run forecasting horizons. The evaluation framework is not limited to statistical loss
functions but also embodies an options straddle trading strategy.
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1. Introduction

In recent years, many studies have focused on oil uncertainty due to the fact that
oil price fluctuations can have large impact, not only on the global economy, but also
on the stock market because of its financialization. Moreover, they focus on crude
oil since it is considered one of the major inputs in the economy and more specifi-
cally because oil uncertainty could reflect sudden changes in global economic growth.
Ferderer (1996) concludes that oil price volatility helps to forecast aggregate output
movements in the U.S. Moreover, he provides empirical evidence that there is strong
relationship between oil price changes and output growth, which can be explained by
the economy’s response to oil price volatility. This strong relationship is also investi-
gated by Elder and Serletis (2010), who find a significant effect of oil price volatility on
aggregate output.

Volatility, in general, has triggered the attention of investors, portfolio managers
and policy makers. As far as we are concerned, the most important reasons are the
following:

• Future volatility is considered an important component for pricing derivative
products, such as option contracts.

• Investors are interested in future volatility predictions, since they want to es-
timate the limit they are willing to accept in order to make the most optimal
portfolio decisions.

• The implied volatility (IV) indices allow for measuring the expectations of the
financial and energy markets, which provide useful information about the out-
come of the monetary policy decisions that have been made.

Recent studies that focus on volatility forecasting use realized volatility as a volatility
measure. According toAndersenandBollerslev (1998), the realizedvolatility is defined
as the sum of the squared intraday returns. It has been widely used in many studies
that investigate howuncertainty can bemodelled accurately (Buncic andGisler, 2016;
Degiannakis and Filis, 2017; Lyócsa andMolnár, 2018; Delis et al., 2020). Nevertheless,
IV indices are considered in many studies1 as accurate predictors of future volatility
and have been known to provide information about investor sentiment. In this paper,
we investigate the dynamics of the oil volatility index (OVX), which is constructed in
order to provide information on the crude oil market during volatile periods. More
specifically, OVXmeasures themarket’s expectationof the 30-day volatility of crude oil

1For further details see Fleming et al. (1995), Busch et al. (2011), Gong and Lin (2018) and Lv (2018).
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prices extracting information from the options on the United States Oil Fund (USO)
for a wide range of strike prices.

With regard to the information which the different volatility measures provide,
there are papers that have compared the forecasting ability of different models in-
cluding these measures as explanatory variables. According to Blair et al. (2001), the
IV index helps to obtain more accurate conditional volatility forecasts compared to
the models including either the interday volatility or the intraday realized volatility.
Koopman et al. (2005) confirmed that models using interday volatility as an explana-
tory variable have been outperformed by those using IV index. Furthermore, there
are studies2, which conclude that IV provides higher predictive information when we
generate conditional volatility forecasts.

Apart from the aforementioned studies which investigate the predictive ability of
the different volatilitymeasures, including IV index on conditional volatility; there are
studies that implement various modelling frameworks in order to directly forecast IV
indices. For example, Degiannakis (2008) uses intraday data and conditional volatility
estimates to forecast theVIX index3. Hedraws the conclusion that the entire predictive
information is provided by VIX itself and that neither interday nor intraday volatility
estimates offer incremental forecasting ability on forecasts of VIX. This leads to the
conclusion that IV indices are not highly connected to volatility of the underlying as-
set. Furthermore, Dunis et al. (2013) investigate the predictability of intraday EUR-
USD IV by exploiting intraday seasonalities such as overnight effects and they found
that IV can be useful in predictions for shorter horizons, within a given day. In this
paper, the main objective is to investigate whether the various modelling frameworks
applied to realized volatility can offer forecasting gains in OVX, since our attention is
focused on crude oil, and on which characteristics should be considered.

Methodologically, in recent years, variousmodels havebeen implemented inorder
to generate volatility forecasts. A well-known model that has been used for this pur-
pose is the fractionally integrated autoregressive moving average (ARFIMA) model,
which captures the property of long memory in the volatility series and is considered
suitable for estimating and forecasting the logarithmic transformation of volatility. In
addition to the ARFIMAmodel, the HARmodel, proposed by Corsi (2009), and its ex-
tensions are parsimoniousmodel frameworks and capture longmemory, as well. Sévi
(2014) uses various HAR model specifications in order to come to a conclusion con-

2For example see Fleming et al. (1995), Christensen and Prabhala (1998), Giot (2003) and Frijns et al.
(2010)

3VIX measures the market’s expectation of the 30-day volatility deriving from the prices of various
S&P500 options.
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cerning which components provide additional predictive information in crude oil re-
alized volatility forecasts.

The limited literature on forecasting IV indices consists of studies that have imple-
mented not only univariate but also multivariate models. For instance, Konstantinidi
et al. (2008) study the impact of certain economic variables on forecasting European
and U.S. IV indices under a univariate modelling framework. In the latter study, VAR
models are also implemented, which outperform the competing models. This result
confirms the IV connectedness among various markets. In this regard, Awartani et al.
(2016) provide evidence that volatility transmission from oil to equities, in case of IV
indices, is significant and, in general, the transmission from oil to other markets has
increased, since the oil price collapse in July 2014. However, the volatility transmission
from all the other markets to oil is not so strong. According to Chatziantoniou et al.
(2020), there is a transmission of shocks from OVX to VIX but the spillover effects be-
tweenOVXandVIXdonot contain significant predictive informationwhengenerating
out-of-sample forecasts of OVX. In contrast, Liu et al. (2020) find that there is signifi-
cant bidirectional IV spillover between the crude oil and stockmarkets and they draw
the conclusion that there is significant positive time-varying correlation between oil
and stock IV indices.

Moreover, Liu et al. (2013) investigate the short- and long-run cross-market volatil-
ity transmission impliedbyOVXandother important volatility indices in an in-sample
analysis. The results indicate that the uncertainty transmission between the oil mar-
ket and othermarkets is short-lived. Another conclusion of the study is the significant
uncertainty in transmission from the stockmarket to the crude oil market, which is in
line with Bašta and Molnár (2018), who conclude that the stock market IV leads the
oil market IV. This could be considered of major importance for those who are inter-
ested in OVX and suggests that they should take note changes in VIX or other volatility
indices of the stockmarket. Our paper takes into consideration the above-mentioned
results and fills the gap in the literature by investigating the impact of other market IV
indices onOVX in an out-of-sample forecasting framework. Moreover, the outcome of
this studymayprovide greater evidence on the consideration of the financialization of
the crude oil market. Moreover, there will be an answer on which IV indices enhance
the forecasting accuracy of OVX.

Moreover, there are studies which incorporate exogenous variables as predictors
in themodels implemented in order to findpotential incremental additional informa-
tion on IV indices. For example, Fernandes et al. (2014) investigate the impact of a list
of predictors including somemacro-finance variables, such as the S&P500 return, the
first difference of the logarithmic volume of the S&P500 index, the oil return and other
variables related to the US macro-finance environment. They provide evidence that
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some of the exogenous variables containing mainly information from the S&P500 in-
dex seem to have large impact on VIX. However, as per the out-of-sample forecasting
results, they conclude that the simple HAR model performs really well and it is diffi-
cult even for complicated model specifications to surpass it. This is justified by the
fact that the persistent nature of IV indices is very strong. Moreover, they conclude
that persistence is almost the only feature that matters when generating short-run
forecasts. Our study focuses on the impact of IV indices of other markets on the OVX
under an out-of-sample forecasting investigation. In our study, we enhance the fore-
casting performance of the HAR models by incorporating information coming from
IV indices of other asset classes, which is considered an extension of the simple HAR
model. So far, there is only one study that investigates the impact of realized volatility
from several asset classes for providing forecasts of oil price realized volatility, which is
the paper of Degiannakis and Filis (2017). According to the study, HARmodels which
include multiple asset class volatility measures outperform all the remaining models
on all forecasting horizons. This result holds true not only under a statistical eval-
uation framework but also under trading strategies that have been implemented for
comparison reasons. Moreover, it is important to note here that the aforementioned
study extends the previous studies4, which provide evidence that the HAR-RV model
outperforms the competing forecasting models in the case of crude oil. Therefore,
according to Degiannakis and Filis (2017) there is evidence that the impact of other
markets’ realized volatility on oil price realized volatility is significant. We take this
into account in this study by using the HAR model specifications and include the IV
indices from other asset classes.

All these studies leadus to the conclusion that forecasting IV indices remain a topic
that still needs further investigation. One of the contributions of this paper is the ex-
tensive investigation of the features that are important for generating out-of-sample
forecasts of OVX. In this regard, we suggest that academics and forecasters take into
account the strong existence of longmemory in the time series of IV indices, andmore
particularly of OVX, which justifies the use of the HAR model. The fact that the DMA
approach can efficiently extract information fromother asset classes and that it allows
for parameters to change over time, which is crucial during the last decades that struc-
tural breaks occur more frequently, allow it to provide forecasters with more accurate
out-of-sample forecasts of OVX.

The second contribution of this paper is to provide a detailed answer concerning
which of the IV indices from other asset classes enhance the accuracy of the OVX fore-
casts. Moreover, the evaluation of the OVX forecasts consists of statistical loss func-

4For example, see Haugom et al. (2014) and Prokopczuk et al. (2016).
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tions and an options straddle trading strategy. The results show that the inclusion of
DJIA Volatility Index in the modelling framework is considered of major significance
andenhances thepredictive ability of themodels implementedon short- andmid-run
forecasting horizons. For longer horizons, the Energy Sector ETF Volatility Index ap-
pears to have predictive information on OVX, which is explained by the fact that both
focus on energy related uncertainty. Moreover, we have concluded that the predictive
ability of the HARmodels is statistically significant in short- and mid-run forecasting
horizons.

The remainder of the paper consists of the following sections. Section 2 gives a de-
tailed description of the IV indices and provides further information about the dataset
used. Moreover, it covers the section in which the long memory of the IV indices has
been tested. In Section 3 the modelling framework has been presented maintaining
both the estimation and forecasting frameworks. In Section 4 the evaluation of the
generated forecasts has been analytically described, and in Section 5 we provide the
results of the statistical and economic evaluation frameworks. Finally, Section 6 con-
cludes the study.

2. Implied volatility indices

2.1. Data description

It is vital to start with a description of how IV indices are calculated. This will be
useful for differentiating the different volatility measures, namely realized volatility
and IV. As we have already mentioned, realized volatility reflects the actual volatility
of an underlying asset in contrastwith IV,which is considered bymany studies a better
prediction of future volatility.

In this study, we focus on the estimate of the expected 30-day volatility of crude
oil as priced by USO, which is called OVX. The Chicago board of options exchange
(CBOE)Volatility Indexmethodology,whichhasbeenapplied to theOVX,usesoptions
on USO, an ETF that is designed to track the price of West Texas Intermediate (WTI)
crude oil, with awide range of strike prices. Inmore detail and according to the CBOE,
OVX is calculated by interpolating between two weighted sums of option midquote
values 5. OVX is therefore obtained by annualizing the interpolated value, taking its
square root and expressing the result in percentage points. All the other IV indices
used in this study are calculated in a similar fashion.

Our dataset consists of 14 IV indices including OVX. Starting from the major stock
market’s IV indices,weuse themost representative indices, namely theS&P500Volatil-

5See https://www.cboe.com for further details.
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ity Index (VIX), the S&P100Volatility Index (VXO), theVXDand theNasdaq 100Volatil-
ity Index (VXN). Apart from the major IV indices of the stock market, we investigated
the impact of other IV indices, which represent different asset classes and are the fol-
lowing: the Euro Currency Volatility (EVZ), the Gold Volatility Index (GVZ), the Sil-
ver ETF Volatility Index (VXSLV), the Energy Sector ETF Volatility Index (VXXLE), the
GoldMiners ETF Volatility Index (VXGDX), the British Pound Volatility Index (BPVIX),
the Euro Volatility Index (EUVIX), the Yen Volatility Index (JYVIX) and the 10 Year U.S.
TreasuryNote Volatility Index (TYVIX). Regarding the sample and the frequency of the
dataset, weusedata from the 16th ofMarch, 2011up to the 1st ofOctober, 2019 and the
frequency of the data is daily. The source of the data for all implied volatility indices
that are used in this study is CBOE.

Figure 1 shows the evolutionofOVXand the remaining IV indices used in this study
over the whole sample. With regard to OVX, it is obvious that high values are observed
betweenmid-2014 and early 2016, whichwas a periodwhen the global economy faced
one of the largest oil price declines. Another drop in oil prices in 2018, due to the
trade war between the U.S. and China, resulted in high OVX values. Moreover, from
the descriptive statistics of the entire dataset, which are reported in Table 1, it can be
observed that almost all the IV indices present high values of variation, which is shown
by the coefficient of variation (CV).

[TABLE 1 HERE]

[FIGURE 1 HERE]

2.2. Testing for long memory

One of the main features of IV indices is strong persistence, which is not investi-
gated in depth in recently published papers (e.g. Degiannakis et al., 2018) which use
models relying on this property. For example, not only the ARFIMA model but also
the HARmodel need to justify their use by providing evidence of strong longmemory,
which is missing from the relevant studies. In general, the statistical investigations
that are performed to test long memory in time series have become a source of ma-
jor controversies. In this paper, we apply the so-called rescaled range analysis, which
is proposed by Mandelbrot and Wallis (1969) and used in a large number of studies,
such as Weron (2002) and Sánchez Granero et al. (2008). The rescaled range analysis
is the most well-known method to estimate the Hurst exponent H , which measures
the intensity of long-range dependence in a time series.

The procedure can be described as follows. Let us first note that the targeted IV
time series of length N is divided into a number of d time series (Xi ,z) of length n each
and for each sub series z = 1, . . . ,d :
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1. Calculate the average (Az) and the standard deviation (Sz) of each sub series.

2. Calculate the mean-adjusted series Zi ,z = Xi ,z ´ AVz for i = 1, . . . ,n.

3. Calculate the cumulative series Yi ,z =
ři

j=1 Z j ,z for i = 1, . . . ,n.

4. Compute the range Rz = max{Y1,z , . . . ,Yn,z} ´ mi n{Y1,z , . . . ,Yn,z}.

5. Compute the range (Rz/Sz).

6. Calculate the average of the rescaled range ((R/S)n) for all sub series of length n.

TheHurst exponent H is therefore estimated by running a simple linear regression
over a sample of increasing time horizons log(R/S)n = logc +H logn. There is a range
of values that the Hurst exponent takes, which ranges from 0 to 1. For values greater
than 0.5, the volatility time series is considered persistent and for values less than 0.5,
the corresponding volatility time series is anti-persistent.

However, it should be mentioned that for small n the deviation from the 0.5 slope
can be significant. In this line Anis and Lloyd (1976) proposed a new formulation to
enhance the performance when referring to small n. Weron (2002) shows that the
Hurst exponent should be calculated as 0.5 plus the slope of R/Sn ´ E(R/S)n , where
E(R/S)n values are approximated by

E(R/S)n =
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where Γ is the Euler gamma function.
In this study, we estimate theHurst exponent by applying a rollingwindow in order

to observe the range of values that the Hurst exponent takes over the sample. More-
over, the rolling window has a fixed length of 1000 observations, whichmeans that the
first Hurst exponent is estimated by using information up to the time t = 1000. From
Figure 2, whichportrays theHurst exponent values in a histogram,weobserve that the
Hurst exponent takes values from0.8 to 1 for approximately all IV indiceswithOVXbe-
ing one of themost persistent time series, since the Hurst exponent takes values from
approximately 0.9 to 1. This indicates that the used IV time series present a long-term
positive autocorrelation.

[FIGURE 2 HERE]
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3. Modelling framework

3.1. Näive models

As the simplestmodel, we use RandomWalk (RW)without a drift, which is written
as follows:

log (OV X t ) = log (OV X t´1)+εt , (2)

whereOV X t is the oil volatility index at day t and εt is a white noise.
Apart fromtheRW,wewill also estimate theAR(1), which represents themostnäive

specification of the ARIMAmodelling category and it is written as:

log (OV X t ) = â(t )
0 + â(t )

1 log (OV X t´1)+εt . (3)

It should be noted that we use these two simple models in order to compare them
with the most complicated models, which take into account properties and charac-
teristics of the targeted time series, check whether OVX can be accurately predicted,
and if so, for which forecasting horizons the näive are significantly outperformed.

3.2. HARmodel specifications

As far as we are concerned, most of the papers that forecast volatility time series
use a HAR model specification, which is proposed by Corsi (2009) and is capable of
capturing features of financialmarket volatility such as long range dependencewhich
is also known as long memory. Therefore, we can justifiably use the HAR model for
predicting the time series of OVX, which is indicated to be a persistent time series with
evidence of strong long-term positive autocorrelation.

The simplest and most widely used HARmodel specification is the following:

log (OV X t ) = â(t )
0 + â(t )

1 log (OV X (d)
t´1)+ â(t )

2 log (OV X (w)
t´1)

+ â(t )
3 log (OV X (m)

t´1)+εt ,
(4)

where εt is the error term and â(t )
0 , â(t )

1 , â(t )
2 , â(t )

3 are the estimated parameters. It is also
important to note that the explanatory variables used in this HARmodel specification

are calculatedas: l og (OV X (d)
t´1) = l og (OV X t´1); log (OV X (w)

t´1) =
(

5´1
ř5

k=1 log (OV X t´k )
)

;

log (OV X (m)
t´1) =

(

22´1
ř22

k=1 l og (OV X t´k )
)

, which is in linewith Corsi and Renò (2012).
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As it is observed, the index vector of the lag components is i = (1,5,22)1. However,
there are studies such as Fernandes et al. (2014) that also include the biweekly (10
days) and quarterly components (66 days) in the index vector of the lag components
i = (1,5,10,22,66)1. We run theHARmodels under this structure andwe conclude that
the biweekly and quarterly components do not provide any additional information
in the models and also cannot beat the näive model’s structure with the daily, weekly
and monthly lag components. Therefore, the simple index vector i = (1,5,22)1 is used
in the HARmodels of this paper.

Furthermore, we focus on the impact of the different IV indices on OVX. In order
to investigate this, we first implement individual HARmodels by adding each IV index
per model in the already defined simple HARmodel specification. Let us then denote
as E X the vector of the exogenous variables of HAR-EX model, which is written as
follows:

log (OV X t ) = â(t )
0 + â(t )

1 log (OV X (d)
t´1)+ â(t )

2 log (OV X (w)
t´1)

+ â(t )
3 log (OV X (m)

t´1)+ β̂(t )
1 log (E X t´1)+εt ,

(5)

where log (E X t´1) is the one lagged IV index used in eachmodel in logarithmic trans-
formation. We implement 13 individual HAR-EX models with E X being a different IV
index in each one of the 13 models.

Finally, we will implement the HAR-ALLmodel, which includes the entire E X vec-
tor of IV indices as predictors of the OVX in order to investigate whether including all
of them in onemodel specification enhances the predictive ability of the HARmodel.

Before moving to the next part, which allows existing HARmodelling structures to
apply different set of IV indices and not to be limited to one each time, we consider
it more convenient to represent the models in a more general way. In this regard, we
define xt=

[

1 log (OV X (d)
t´1) log (OV X (w)

t´1) log (OV X (m)
t´1)

]

as the (1 ˆ 4) vector of lag
components of the simplest HARmodel and yt = log (OV X t ) the dependent variable.
Therefore, the simple HARmodel can be written as follows:

yt = x tαt +εt , (6)

where αt =
[

a(t )
0 a(t )

1 a(t )
2 a(t )

3

]1 is the vector of parameters. Regarding the individual
HAR-EXmodels, we can replace Eq. (5) with the following equation:

yt = x tαt +E X tβt +εt , (7)
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whereβt is the parameter reflecting the impact of each IV index included in themodel
specification.

After having estimated the parameters of different HAR models, we now imple-
ment the forecasting framework for generating point forecasts of OVX. These forecasts
have been generated by using a direct approach, which is themost commonapproach
when forecasting multiple periods ahead. Using the direct approach, the regression
of the HARmodel can be defined as:

yt+h = x tα
(h)

+εt+h . (8)

More specifically, when referring to thebenchmarkHARmodel, theOVX forecast is
x t α̂

(h)
t
, where α̂(h)

t
is an estimate ofα(h) that only relies on data up to period t . There-

fore, the obtained forecast of OVX can be equal to e yt+h 6, since the logarithmic trans-
formation is used for the dependent variable yt+h . Moreover, we use the samemethod
for generating forecasts of OVX from the individual HAR-EX models by incorporating
the corresponding IV index in Eq. (8).

3.3. Dynamic model averaging (DMA)

Apart from the use of the individual models, we also use a different modelling ap-
proach, which gives flexibility to themodel used at eachpoint in time. The first advan-
tage of thismethodology is the fact that potential structural breaks can be detected by
assuming time varying parameters. In recent decades, structural breaks have become
more frequent and the use of time variation in the vector of parameters providesmore
accurate forecasting results, which is why we implemented this modelling approach.
Another advantage of the DMA approach is the fact that the set of predictors used in a
HARmodel does not remain constant over time. This gives us the ability to allow for K

models, which use different sets of explanatory variables to be applicable at different
time periods. Thus, we can say that this approach allows for time variation in both
the vector of parameters and the set of predictors. The DMA approach, based on the
structure of the simple HAR model7. It requires the following two equations in order
to be implemented:

yt = x
(k)
t
α

(k)
t

+ε(k)
t for ε(k)

t „ N (0, H (k)
t ), (9)

6The error variance term 0.5σ2
ε should be incorporated in the forecasting, but its impact is almost

zero on the out-of-sample results.
7The DMA methodology works in the same way for models that include different set of predictors

such as IV indices, in our case.
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α
(k)
t

=α
(k)

t´1
+u

(k)
t

for u
(k)
t

„ N (04ˆ1,Σ(k)
ut

). (10)

where k = 1, . . . ,K , α(k)
t

are the parameters of the HAR model specification and the

errors ε(k)
t and u

(k)
t

are assumed to bemutually independent. Moreover, if there are m

predictors in x
(k)
t
, the number of possible combinations of these predictors is K = 2m .

In the case of using the HAR-ALLmodel specification, we have K = 217 combinations.
Thismodel is estimated by using the self-perturbed Kalman filter8 proposed by Grassi
et al. (2017) and also applied by Delis et al. (2020) in the case of crude oil volatility
forecasting.

In this section, ourpurpose is to investigate the impactofdifferent IV indices among
asset classes on forecasts of OVX. Furthermore, it is important tomention that we im-
plement a DMA model including all the IV indices in the set of predictors. In addi-
tion, we also implement a separate DMA-STOmodel, which includes, apart from the
constant term and the 3 lag components of OVX, only the 4 major IV indices of stock
market, namely VIX, VXO, VXD, and VXN. The purpose of this section is the investiga-
tion of the predictive information that each IV index provides when forecasting OVX
multiple horizons.

Figure 3 shows the probabilities of the IV indices derived by theDMAmethodology
through theHAR-DMA-ALLmodel. First of all, we can observe that the relative impor-
tance of each of the main IV indices is time varying. More specifically, the probability
of VXD spans between 0% and 100% with the lower values occurring from mid- 2017
to mid- 2018. However, we can easily observe that the probability to be included in
the best model is high enough for almost the entire out-of-sample period, which also
holds true for the case of VIX. This canbe explaineddue to the fact that the commodity
market financialization seems tobe really strong in recent years. Moreover, a plausible
explanation is that a large number of investors take a speculating positionwith regard
to crude oil market and therefore the stock market’s IV indices could affect their de-
cisions. The probabilities of the rest of the IV indices remain relatively constant with
corresponding values of approximately 50% during the entire out-of-sample period.

3.4. Forecasting settings

The settings regarding themodelling framework are defined as follows. First of all,
the initial sample period isT0=1043 days, sinceweneed 22 days from the time series of

8More details for each step of the estimation of the implemented DMA model can be found in the
Appendix.
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OVX in order to construct themaximum of the lag components, which is themonthly
oneandmax(h)´1days for implementingdirect forecasting approach. The remaining
1000 days of the initial sample period T0 is the fixed length that we use for the rolling
window estimation. A more detailed description of the sample that we use for esti-
mating our models and obtaining OVX forecasts is that we choose data from the 1st

to the 1000th . We estimate the parameters of the relevantmodel and we construct the
forecasts afterwards, then we re-estimate the parameters using data from the 2nd to
the 1001st andwe implement the forecastingmethodology again. The remaining out-
of-sample period is used for evaluating the forecasts of OVX and is defined as TOOS .

4. Evaluation framework

4.1. Loss functions and the model confidence set

This section consists of two evaluation techniques, namely the loss functions and
themodel confidence set (MCS). The first category utilizes two well-known loss func-
tions, theMean Squared Predicted Error (MSPE) and theMean Absolute Error (MAE),
which are defined as:

MSPE (h)
=

1

TOOS

TOOS
ÿ

t=1

(OV X t+h|t ´OV X t+h)2, (11)

and

M AE (h)
=

1

TOOS

TOOS
ÿ

t=1

| OV X t+h|t ´OV X t+h |, (12)

where OVXt+h|t is the h-days-ahead forecast of OVX, OVXt+h is the OVX at time t +h

and TOOS is the number of the out-of-sample data points.
However, the two statistical loss functions are not adequate to draw conclusions as

to whether the forecasts of OVX from a model are more accurate than those of other
models. Therefore, we also use theMCS test proposed byHansen et al. (2011) in order
to further evaluate our predictions. This specific procedure identifies the set of the
best models, as these are defined in terms of a specific statistical loss function, which
is MSPE in our study 9.

9We also implemented this procedure by usingMAE as a loss function, which provides qualitatively
similar results.
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The target of the MCS test is to investigate which set of models remain until the
end, under an elimination algorithm, at a predefined level of significance a. At the
beginning of the process, the full set of models M = M0 = {1, . . . ,m0} is used and the
following null hypothesis of equal predictive ability is repeatedly tested:

H0,M : E(di ,i ˚,t ) = 0, @ i , i ˚ P M , (13)

where di ,i ˚,t =Ψi ,t ´Ψi ˚,t is defined as the evaluation differential for i , i ˚ P M0 and
Ψi ,t = (OV X t+h|t ´OV X t+h)2, whereOV X t+h|t is the h-days-ahead forecast of OVX ob-
tainedby the i th model. This process is repeateduntil the null is not rejected anymore.
We define the level of significance as a = 0.1. Another predefined setting of the MCS
procedure is the block bootstrap with 10,000 bootstrap replications10.

4.2. Option straddles trading strategy

Apart from the statistical evaluation of the obtained forecasts, which is based on
the loss functions,wealso investigate the forecastingperformanceof theappliedmod-
elsbyusinga trading strategyas aneconomic criterion. As far asweare concerned, this
options straddle trading strategy has been used by Angelidis and Degiannakis (2008),
Andrada-Félix et al. (2016) and Degiannakis and Filis (2017) and under this trading
strategy we allow investors to go long (short) in a straddle when the forecast of OVX at
time t +h is higher than OVX at time t .

Moreover, this trading strategy, which relies on the purchase (or sale) of both a
call and a put option with the same day of maturity is implemented. Therefore, the
straddle holder’s rate of return is affected only by the volatility changes and not by the
changes in the underlying asset price.

In detail, the computation of the expected price of a straddle on a $1 share of the
USO on the next trading daywith h days tomaturity and $1 exercise price comes from
the following equation:

St+1|t = 2N

(

r ft

?
h

OV X t+h|t

+
OV X t+h|t

?
h

2

)

´ 2e´r ft h N

(

r ft

?
h

OV X t+h|t

´ OV X t+h|t

?
h

2

)

+e´r ft h ´ 1,

(14)

whereN(.) denotes thecumulativenormaldistribution function,OV X t+h|t =
1

h´1

řh
i=1

(

OV X t+i |t?
252

)

is the average forecast of OVX during the life of the option and r ft is the risk-free

10For further details see Hansen et al. (2011).
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interest rate. The daily profit from holding the straddle is then calculated as πt+1 =

max(e yt+1 ´ er ft+1 ,er ft+1 ´ e yt+1 ), for yt denoting the USO daily returns in logarithmic
transformation.

Let us say that three investors are assumed to trade according to their forecasts.
Each investor i prices the straddles, S(i )

t+1|t
, every day of the out-of-sample period. A

trade between two investors, i and j , is executed at the average of their forecasting
prices, yielding to the investors i a profit of:

π
(i , j )
t =















πt+1 ´ (S(i )
t+1|t

+S
( j )

t+1|t
), if S(i )

t+1|t
> S

( j )

t+1|t

(S(i )
t+1|t

+S
( j )

t+1|t
) ´πt+1, if S(i )

t+1|t
< S

( j )

t+1|t

(15)

We finally define the cumulative returns as π=
1
2

řTOOS

t=1

ř2
j=1π

(i , j )
t in order to eval-

uate the OVX forecasts.

5. Empirical findings

5.1. Loss functions results

The results of the two statistical loss functions that are used, namely theMSPE and
MAE, can be found in Tables 2 and 3, respectively. First of all, regarding the MSPE re-
sults, we observe that the two näive models are outperformed by models including
all IV indices, such as the HAR-ALL, HAR-DMA-STO and HAR-DMA-ALL, with HAR-
DMA-STOmodel the one with the smallest MSPE values, for short-run horizons. It is
noteworthy that the HAR-VXD model from the individual model specifications out-
performs all the remaining models including only one IV index and presents results
comparable to models that have the entire set of IV indices as exogenous variables.
This provides us with evidence that DJIA Volatility Index significantly affects OVX,
when referring to a 1-day ahead forecasting horizon. The results are also considered
qualitatively similar in the case of MAE loss function.

Furthermore, the fact that there is short-term impact of the used IV indices onOVX
can be justified due to the strong financialization of crude oil. The largest short-term
impact comes from themajor IV indices of theU.S. stockmarket, namely theVIX, VXO,
VXD and VXN. We can also conclude, under the statistical loss functions of the eval-
uation framework, that the DMA methodology is of major importance for retrieving
predictive information from a high number of IV indices in forecasting OVX with its
contribution limited to short-run horizons.

With regard to mid-run horizons, we observe that the difference of loss functions
among competing models is not so high, which means that the impact of the exoge-
nous variables, namely IV indices, has been reduced. However, the HAR-VXD and
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HAR-DMA-STO seem to perform better when compared to the rest of the models but
with a lower impact for both 5 and 10 days ahead. It is important to mention that
the simple HAR model, which is widely used not only for obtaining realized volatility
forecasts but also IV forecasts, does not perform well and it is even outperformed by
an AR(1) model specification. As has beenmentioned in a previous section of the pa-
per, we also implement a HAR model with a different structure by incorporating the
biweekly and the quarterly components but the results are qualitatively similar 11.

Finally, regarding the longest forecasting horizon (22-days ahead), it is shown that
for both theMSPE and theMAE loss functions there is no impact of IV indices on OVX
and the simple AR(1) outperforms all the competing models, which can be consid-
ered evidence for the efficientmarket hypothesis. However, the impact ofHAR-VXXLE
model on 5-, 10- and 22-days ahead forecasts is noteworthy. From MSPE and MAE
results, we observe that the corresponding values of HAR-VXXLE model are slightly
lower than thoseof theAR(1) and theHARmodels. This provides evidence thatVXXLE,
which estimates the expected 30-day volatility of the price of the Energy Sector ETF,
has a small effect on OVX for mid- and long-run horizons.

5.2. Model Confidence Set procedure results

Apart from the loss functions, another test has been applied in order to evaluate
the OVX forecasts. This is the so called MCS test and the results for the entire set of
models that have been implemented can be found in Table 4. From this table, first
of all, we observe that from the individual models, only HAR-VXD belongs to the set
of the best models for all forecasting horizons, which is in line with results of the two
loss functions presented in the previous section. Regardingmodels that include all IV
indices as exogenous variables, only the HAR-DMA-STO model, which includes only
themajor IV indices capturing themainmovements of the U.S. stockmarket, belongs
to the set of the best models for all forecasting horizons.

The DMA models belong to the set of the best models, especially for short- and
mid-run forecasting horizons, contrary to the simple AR(1) and HARmodels that be-
long to the set of the bestmodels atmid- and long-run forecasting horizons. This pro-
vides evidence that more complicated models can be used for generating short-term
forecasts and that it is difficult to surpass näive model specification for longer-run
forecasting horizons. The latter could be considered extra evidence for efficient mar-
ket hypothesis. Finally, the results of theMCS test are in linewith the results of the two
loss functions and we draw the conclusion that the impact of the most representative
IV indices, andmore particularly the predictive information of VXD onOVX, is limited

11These results can be shared upon request.
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to short-run forecasting horizons. In contrast to the short-run impact, VXXLE seems
to have predictive information for mid- and long-run forecasting horizons, which is
further investigated in the trading strategy that is implemented in order to evaluate
the forecasts of OVX from an economic point of view.

5.3. Trading strategy results

As an additional evaluation method of the generated out-of-sample forecasts of
OVX, we use an options straddle trading strategy, which is used as an economic crite-
rion. The results of this trading strategy are the cumulative returns coming from the
profit holding the straddle and the trade between the investors.

From Figure 4 we observe thatmodels, including all IV indices, perform really well
and offer positive returns for almost the entire out-of-sample period, which is con-
sistent with the results of the statistical evaluation framework. The median of their
cumulative returns is approximately 40% with a large number of outliers12, mainly
positive in the case of HAR-DMA-ALL model. It is noteworthy the fact that HAR-VXD
is one of the models providing high values of cumulative returns with the median of
the cumulative returns to be more than 60%, which explains the predictive informa-
tion that VXD provides to OVX in short-run forecasting horizons.

With regard to themid-run forecasting horizons, andmore specifically referring to
Figures 5 and 6, the results are qualitatively similar to those extracted by the statistical
loss functions. The forecasts generated by HAR-VXD offer the highest cumulative re-
turns compared to the remainingmodels. We also observe that cumulative returns are
always positive, the median value is approximately 50% and the highest approaches
80% of predictive gains coming from the options straddle trading strategy. The per-
formance of the remaining models, apart from the HAR-VXXLE and HAR-DMA-STO
models, is worse when compared to the cumulative returns of RW or a simple AR(1)
with most of the median values being negative. This means that there is no impact of
IV indices, apart fromVXD and VXXLE, on OVXwhen referring tomid-run forecasting
horizons, namely 5- and 10-days ahead.

Finally, from Figure 7, we see that only forecasts obtained by the HAR-VXXLE and
HAR-DMA-STO models offer the highest predictive gains from the options straddle
trading strategy. Themedian value of cumulative returns coming from the use of fore-
casts of the aforementioned models is approximately 40%. These results are consis-
tent with those of the statistical evaluation with the only exception the performance
of the simple AR(1) model, which does not outperform the rest of the models in the
longest-run forecasting horizon (22-days ahead).

12An outlier is considered a data point, which is 1.5 times outside the interquartile range.
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6. Conclusion

In this paper, we focused primarily on how OVX could be predicted more accu-
rately. More specifically,we investigate the impactof IV indices that representdifferent
asset classes on the crude oil IV index. In this regard, we fill in the gap in the existing
literature by extending themodelling frameworkwith an out-of-sample investigation.
There is a number of studies that draw conclusions relying only on in sample analysis
for identifying relations between oil and other markets (e.g. volatility spillovers and
causality). However, in this study, we investigate the predictive information of IV in-
dices from other asset classes to OVX when generating out-of-sample forecasts up to
22-days ahead. The evaluation of the obtained forecasts has been done by applying
not only statistical loss functions but also an option straddle trading strategy.

The first contribution of this paper lies in the preliminary analysis that is imple-
mented, namely the rolling estimation of the Hurst exponent, which justifies the use
of theHARmodel. The results of the rescaled range analysis show that there is a strong
existence of long memory in the implied volatility time series, especially in the time
series of OVX. Moreover, regarding the modelling framework, we conclude that fore-
casters should consider using theDMAapproachwhich enhances the performance of
HARmodels by allowing not only for parameters to change over time but also for dif-
ferent set of predictors to be applied over time. These are the features that anyonewho
is interested in generating out-of-sample forecasts of OVX should take into account.
However, we found that even if the DMA methodology can offer predictive gains for
short- andmid-run forecasting horizons, this is not the case for a forecasting horizon
22-days ahead.

Regarding the inclusion of IV indices that represent other asset classes in the HAR
model, this paper makes the following contributions. First of all, from both the sta-
tistical and the economic results, we conclude that the HAR models including VXD,
outperform the remaining ones for short- and mid-run forecasting horizons. From
the evaluation of the 22-days ahead forecasts of OVX, we conclude that there is no
significant predictive information of IV indices. The only exception is that of VXXLE,
which seems to provide higher predictive information compared tomodels including
other IV indices. The latter statement can be justified by the high cumulative returns
coming from the options straddle trading strategy but not from the statistical evalua-
tion results. These results provide further evidence for justifying the efficient market
hypothesis and more particularly the fact that it is impossible to "beat the market"
consistently on a risk-adjusted basis since market prices should only react to new in-
formation.

The results of this paper might be considered inspiring for both academics and
investors and open new avenues for further research. More trading strategies could
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be implemented in order to evaluate the corresponding volatility forecasts generated
by different models. Finally, a MIDAS modelling framework could be used with its
main purpose the investigation of the impact of several policy uncertainty indicators
on IV indices.
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OVX VIX VXO VXD VXN EVZ GVZ

Mean 33.19 16.25 15.75 15.60 18.45 9.38 16.67
Median 31.35 14.82 14.41 14.37 17.08 8.73 16.01
Maximum 78.97 48.00 50.13 41.45 46.61 19.87 39.95
Minimum 14.50 9.14 6.32 7.58 10.31 4.69 8.88
Std. Dev. 10.80 5.40 5.78 4.69 5.19 2.82 4.91
Skewness 0.82 2.05 1.80 1.99 1.75 0.91 1.17
Kurtosis 3.53 8.46 7.50 8.10 6.84 3.48 5.07
CV 0.33 0.33 0.37 0.30 0.28 0.30 0.29

VXSLV VXXLE VXGDX BPVIX EUVIX JYVIX TYVIX

Mean 28.83 22.85 36.06 8.93 9.23 9.91 5.23
Median 27.26 20.97 34.13 8.38 8.59 9.47 5.07
Maximum 80.64 57.47 63.95 29.10 20.25 18.37 9.57
Minimum 14.89 11.71 15.40 4.33 3.99 4.29 3.16
Std. Dev. 9.83 6.95 9.38 2.64 2.79 2.51 1.16
Skewness 1.45 1.49 0.41 2.22 0.91 0.50 0.89
Kurtosis 6.14 5.54 2.24 13.70 3.58 2.78 3.57
CV 0.34 0.30 0.26 0.30 0.30 0.25 0.22

Table 1: This table presents the descriptive statistics of the IV indices including the targeted variable,
namely the OVX.
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MSPE

Days ahead 1 5 10 22

RW 3.907 15.707 29.950 56.433
AR(1) 3.877 15.289 28.576 52.314
HAR 3.880 15.515 29.026 53.073
HAR-VIX 3.869 15.522 29.633 56.222
HAR-VXO 3.866 15.551 29.772 56.608
HAR-VXD 3.771 15.053 28.733 55.275
HAR-VXN 3.887 15.715 30.136 56.129
HAR-EVZ 3.887 15.637 29.370 53.929
HAR-GVZ 3.891 15.686 29.353 53.950
HAR-VXSLV 3.890 15.573 29.051 53.136
HAR-VXXLE 3.862 15.399 28.456 53.036
HAR-VXGDX 3.889 15.656 29.093 52.473
HAR-BPVIX 3.886 15.565 29.055 53.713
HAR-EUVIX 3.889 15.677 29.376 53.417
HAR-JYVIX 3.890 15.623 29.517 55.072
HAR-TYVIX 3.889 15.593 29.235 54.387
HAR-ALL 3.724 16.081 32.657 59.656
HAR-DMA-STO 3.658 15.089 28.566 55.413
HAR-DMA-ALL 3.681 15.887 39.518 72.181

Table 2: The results of the MSPE loss function for different forecasting horizons.
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MAE

Days ahead 1 5 10 22

RW 1.274 2.697 3.778 5.147
AR(1) 1.271 2.670 3.743 4.950
HAR 1.268 2.709 3.777 4.962
HAR-VIX 1.271 2.726 3.826 5.197
HAR-VXO 1.271 2.734 3.841 5.236
HAR-VXD 1.269 2.712 3.778 5.098
HAR-VXN 1.276 2.739 3.864 5.164
HAR-EVZ 1.266 2.706 3.779 4.946
HAR-GVZ 1.265 2.719 3.787 5.080
HAR-VXSLV 1.260 2.690 3.719 4.937
HAR-VXXLE 1.265 2.705 3.727 5.004
HAR-VXGDX 1.261 2.688 3.701 4.900
HAR-BPVIX 1.267 2.704 3.763 5.000
HAR-EUVIX 1.267 2.710 3.774 4.940
HAR-JYVIX 1.276 2.740 3.829 5.107
HAR-TYVIX 1.269 2.734 3.855 5.159
HAR-ALL 1.241 2.761 3.952 5.279
HAR-DMA-STO 1.231 2.654 3.707 5.119
HAR-DMA-ALL 1.226 2.681 4.176 5.948

Table 3: The results of the MAE loss function for different forecasting horizons.
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MCS

Days ahead 1 5 10 22

RW 0.005 0.401 0.218 0.015
AR(1) 0.006 0.729 0.989 1.000

HAR 0.003 0.699 0.704 0.432

HAR-VIX 0.005 0.699 0.457 0.015
HAR-VXO 0.006 0.699 0.457 0.015
HAR-VXD 0.244 1.000 0.942 0.406

HAR-VXN 0.003 0.401 0.218 0.015
HAR-EVZ 0.003 0.401 0.457 0.432

HAR-GVZ 0.005 0.401 0.704 0.432

HAR-VXSLV 0.006 0.704 0.925 0.865

HAR-VXXLE 0.014 0.704 1.000 0.910

HAR-VXGDX 0.006 0.699 0.925 0.910

HAR-BPVIX 0.005 0.699 0.853 0.432

HAR-EUVIX 0.003 0.401 0.457 0.432

HAR-JYVIX 0.003 0.401 0.457 0.206

HAR-TYVIX 0.003 0.401 0.457 0.015
HAR-ALL 0.244 0.401 0.218 0.015
HAR-DMA-STO 1.000 0.916 0.989 0.432

HAR-DMA-ALL 0.244 0.401 0.167 0.001

Table 4: The results of theMCS test for different forecasting horizons. Figures in bold denote themodel
that belongs to the confidence set of the best performing models.
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Figure 1: Evolution of the IV indices over the entire sample.
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Figure 2: This histogram shows the values of the Hurst exponent under the rolling window implemen-
tation for all the IV indices focusing on the OVX time series.

Figure 3: This figure plots the probabilities of the IV indices under the DMAmethodology over the out-
of-sample period. It is also important to mention that these probabilities are derived by forecasting
OVX 1-day ahead.
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Figure 4: This figure presents the cumulative returns for the different models with the use of box plot.
In this figure, the 1-day ahead forecasts of OVX have been used in the options straddle trading strategy.
The outliers are considered data points, which are outside 1.5 times the interquartile range above the
upper quartile and below the lower quartile.

Figure 5: This figure presents the cumulative returns for the different models with the use of box plot.
In this figure, the 5-days ahead forecasts of OVXhave been used in the options straddle trading strategy.
The outliers are considered data points, which are outside 1.5 times the interquartile range above the
upper quartile and below the lower quartile.
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Figure 6: This figurepresents the cumulative returns for thedifferentmodelswith theuse of boxplot. In
this figure, the 10-days ahead forecasts of OVX have been used in the options straddle trading strategy.
The outliers are considered data points, which are outside 1.5 times the interquartile range above the
upper quartile and below the lower quartile.

Figure 7: This figurepresents the cumulative returns for thedifferentmodelswith theuse of boxplot. In
this figure, the 22-days ahead forecasts of OVX have been used in the options straddle trading strategy.
The outliers are considered data points, which are outside 1.5 times the interquartile range above the
upper quartile and below the lower quartile.
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Appendix. DMAmethodology

In this part, we concentrate on one-step ahead forecasting procedure in order to
show theupdating steps ofDMAmethod indetail. Regardingmulti-period ahead fore-
casting, the idea is similar because the whole framework of DMA is based on Eq. (8),
which describes how the direct forecasts are generated.

The main methodological approach of the updating equations of a time varying
parameter (TVP) model is based on Kalman filter, which begins with the result:

(αt´1 | y t´1) „ N (α̂t´1,Σt´1|t´1), (A.1)

Kalman filtering process proceeds as follows:

(αt | y t´1) „ N (α̂t´1,Σt |t´1), (A.2)

where Σt |t´1 =Σt´1|t´1 +Σut
.

Since we are motivated by the proposed approach of Grassi et al. (2017), the up-
dating equation of Σt |t´1 is perturbed by a function of the squared prediction errors,
which is shown in the updating steps. At this step, we assume the following:

Σt |t´1 =Σt´1|t´1. (A.3)

At this point, we have to mention that due to the fact that we use the aforemen-
tioned approach, we no longer have to estimate Σut

. Kalman filter procedure is com-
pleted by the updating equation:

(αt | y t ) „ N (α̂t ,Σt |t ), (A.4)

where

α̂t |t = α̂t |t´1 +Σt |t´1x
111
t (Ĥt +x tΣt |t´1x

111
t )´1(yt ´ x t α̂t´1), (A.5)

and

Σt |t =Σt |t´1 ´Σt |t´1x
111
t (Ĥt +x tΣt |t´1x

111
t )´1

x tΣt |t´1 +β ¨ max
[

0,F L
( ε2

t

Ĥt

´ 1
)]

¨ I ,

(A.6)
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where εt = yt ´ x t α̂t´1 and the estimated error variance is calculated by the follow-
ing13:

Ĥt = κĤt´1 + (1 ´κ)ε2
t . (A.7)

Recursive forecasting is implemented by using the predictive distribution,

(yt | y t´1) „ N (x t α̂t´1, Ĥt +x tΣt |t´1x
111
t ). (A.8)

After having estimated each individual model of the K combinations under the
TVP modelling approach, which is explained analytically in the previous part, DMA
averages the forecasts obtained by the individual models using πt |t´1,k as weights for
k = 1, . . . ,K over the out-of-sample period. Those DMA forecasts can be expressed as:

E(yt | y t´1) =

K
ÿ

k=1

πt |t´1,k x
(k)

t´1
α̂

(k)

t´1
(A.9)

where α̂(k)

t´1
are Kalman filter estimates of the state-space model at time t ´ 1.

At this point, probability in the forecasting model has to be determined. As pro-
posed by Raftery et al. (2010), the relation between πt |t´1,k and πt´1|t´1,k is described
as:

πt |t´1,k =

πα
t´1|t´1,k

řK
l=1π

α
t´1|t´1,l

(A.10)

where 0 <αď 1 is a forgetting factor14, which is constant and smaller than 1.
The updating equation is defined as follows:

πt |t ,k =
πt |t´1,k fk (yt | y t´1)

řK
l=1πt |t´1,l fl (yt | y t´1)

(A.11)

where fk (yt | y t´1) is the predictive density ofmodel k. Themain idea of this updating
equation is that a model, which had a better forecasting performance in the past, will
receive higher weight at time t .

13The design parameters β and κ are set as 1e-10 and 0.94, respectively.
14In this study, we follow Koop and Korobilis (2012) in setting α= 0.99.
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