Khan, Nawab and Ray, Ram and Kassem, Hazem and Ihtisham, Muhammad and Abdullah, . and Asongu, Simplice and Ansah, Stephen and Zhang, Shemei (2021): Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset. Forthcoming in: Land MDPI
Preview |
PDF
MPRA_paper_110849.pdf Download (1MB) | Preview |
Abstract
Increasing agricultural production and optimizing inorganic fertilizer (IF) use are imperative for agricultural and environmental sustainability. Mobile phone usage (MPU) has the potential to reduce IF application while ensuring environmental and agricultural sustainability goals. The main objectives of this study were to assess MPU, mobile phone promotion policy, and whether the mediation role of human capital can help reduce IF use. This study used baseline regression analysis and propensity score matching, difference-in-differences (PSM-DID) to assess the impact of MPU on IF usage. However, the two-stage instrumental variables method (IVM) was used to study the effects of mobile phone promotion policy on IF usage. This study used a national dataset from 7,987 rural households in Afghanistan to investigate the impacts of MPU and associated promotion policies on IF application. The baseline regression outcomes showed that the MPU significantly reduced IF usage. The evaluation mechanism revealed that mobile phones help reduce IF application by improving the human capital of farmers. Besides, evidence from the DID technique showed that mobile phone promotion policies lowered IF application. These results remained robust after applying the PSM-DID method and two-stage IVM to control endogenous decisions of rural households. This study results imply that enhancing the accessibility of wideband in remote areas, promoting MPU, and increasing investment in information communication technologies (ICTs) infrastructure can help decrease the IF application in agriculture. Thus, the government should invest in remote areas to facilitate access to ICTs, such as having a telephone and access to a cellular and internet network to provide an environment and facility to apply IF effectively. Further, particular policy support must focus on how vulnerable populations access the internet and mobile phone technologies.
Item Type: | MPRA Paper |
---|---|
Original Title: | Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset |
English Title: | Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset |
Language: | English |
Keywords: | mobile phone usage; propensity score matching; difference-in-difference; inorganic fertilizer usage; human capital; sustainable development; Afghanistan |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q50 - General |
Item ID: | 110849 |
Depositing User: | Simplice Asongu |
Date Deposited: | 28 Nov 2021 14:08 |
Last Modified: | 28 Nov 2021 14:08 |
References: | 1. Navarro, E.; Costa, N.; Pereira, A. A systematic review of IoT solutions for smart farming. Sensors 2020, 20, 4231. 2. Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. 3. Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 1–8. 4. Tang, K.; Hailu, A.; Kragt, M.E.; Ma, C. The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives. Agric. Syst. 2018, 160, 11–20. 5. Wu, J.; Ma, C.; Tang, K. The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities. Energy 2019, 178, 685–694. 6. Tang, K.; Hailu, A.; Yang, Y. Agricultural chemical oxygen demand mitigation under various policies in China: A scenario analysis. J. Clean. Prod. 2020, 250, 119513. 7. Khan, N.; Siddiqui, B.N.; Khan, N.; Khan, F.; Ullah, N.; Ihtisham, M.; Ullah, R.; Ismail, S.; Muhammad, S. Analyzing mobile phone usage in agricultural modernization and rural development. Int. J. Agric. Ext. 2020, 8, 139–147. 8. United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100; United Nations: New York, NY, USA, 2017. 9. Xydis, G.A.; Liaros, S.; Avgoustaki, D.-D. Small scale Plant factories with artificial lighting and wind energy microgeneration: A multiple revenue stream approach. J. Clean. Prod. 2020, 255, 120227. 10. Tang, K.; He, C.; Ma, C.; Wang, D. Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China. Aust. J. Agric. Resour. Econ. 2019, 63, 575–592. 11. Xiang, T.; Malik, T.H.; Nielsen, K. The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation. Technol. Forecast. Soc. Chang. 2020, 152, 119895. 12. Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. 13. Scarpare, F.V.; Hernandes, T.A.D.; Ruiz-Corrêa, S.T.; Kolln, O.T.; de Castro Gava, G.J.; dos Santos, L.N.S.; Victoria, R.L. Sugarcane water footprint under different management practices in Brazil: Tietê/Jacaré watershed assessment. J. Clean. Prod. 2016, 112, 4576–4584. 14. Huang, J.; Xu, C.-C.; Ridoutt, B.G.; Wang, X.-C.; Ren, P.-A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. 15. Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. 16. Kelishadi, R. Environmental Pollution: Health Effects and Operational Implications for Pollutants Removal; Hindawi: London, UK, 2012. 17. Smith, P.; Ashmore, M.R.; Black, H.I.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. 18. Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. 19. Hakami, B.A. Impacts of soil and water pollution on food safety and health risks. Technology 2015, 6, 32–38. 20. Savci, S. Investigation of effect of chemical fertilizers on environment. Apcbee Procedia 2012, 1, 287–292. 21. Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. 22. Rahman, K.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. 23. Tang, K.; Hailu, A. Smallholder farms’ adaptation to the impacts of climate change: Evidence from China’s Loess Plateau. Land Use Policy 2020, 91, 104353. 24. Tang, K.; Kragt, M.E.; Hailu, A.; Ma, C. Carbon farming economics: What have we learned? J. Environ. Manag. 2016, 172, 49–57. 25. Poole, N.; Echavez, C.; Rowland, D. Are agriculture and nutrition policies and practice coherent? Stakeholder evidence from Afghanistan. Food Secur. 2018, 10, 1577–1601. 26. Faiz, A.; Gangadharappa, N.; Malang, N. Information communication technologies (ICTS) effect in improving of sustainable pistachio forest management in Aibak District of Smamangan Province, Afghanistan. J. Glob. Commun. 2016, 9, 205–214. 27. Saba, D.S. Afghanistan: Environmental degradation in a fragile ecological setting. Int. J. Sustain. Dev. World Ecol. 2001, 8, 279–289. 28. FAO. Current World Fertilizer Trends and Outlook to 2015; Agriculture Organization of the United Nations: Rome, Italy,2011. 29. Liu, T.; Wu, G. Does agricultural cooperative membership help reduce the overuse of chemical fertilizers and pesticides? Evidence from rural China. Environ. Sci. Pollut. Res. 2021, 1–12, doi:10.1007/s11356-021-16277-0. 30. Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh-Kharazi, H. Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J. Civ. Eng. 2017, 21, 134–140. 31. Savari, M.; Gharechaee, H. Utilizing the theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. 32. Gao, Y.; Qian, H.; Ren, W.; Wang, H.; Liu, F.; Yang, F. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean. Prod. 2020, 260, 121006. 33. Asadi, E.; Isazadeh, M.; Samadianfard, S.; Ramli, M.F.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Hajnal, E.; Chau, K.-W. Groundwater quality assessment for sustainable drinking and irrigation. Sustainability 2020, 12, 177. 34. Huq, M.E.; Fahad, S.; Shao, Z.; Sarven, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; ur Rahman, M.H.; Khan, I.A.; Alam, M.; Saeed, M. High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. J. Environ. Manag. 2019, 242, 199–209. 35. Khan, N.; Siddiqui, B.N.; Khan, N.; Ullah, N.; Ismail, S.; Ali, S.; Hussain, S.; Abbas, K.; Javed, H.H.; Ahmad, Z. Impact of newspaper and radio in promoting agricultural information among farmers. A case study of Pakistan. Int. J. Adv. Res. Biol. Sci. 2020, 7, 192–198. 36. Bai, X.; Wang, Y.; Huo, X.; Salim, R.; Bloch, H.; Zhang, H. Assessing fertilizer use efficiency and its determinants for apple production in China. Ecol. Indic. 2019, 104, 268–278. 37. Yang, L.; Tang, K.; Wang, Z.; An, H.; Fang, W. Regional eco-efficiency and pollutants’ marginal abatement costs in China: A parametric approach. J. Clean. Prod. 2017, 167, 619–629. 38. Fan, L.; Yuan, Y.; Ying, Z.; Lam, S.K.; Liu, L.; Zhang, X.; Liu, H.; Gu, B. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 464–472. 39. Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. 40. Mendes, J.; Pinho, T.M.; Neves dos Santos, F.; Sousa, J.J.; Peres, E.; Boaventura-Cunha, J.; Cunha, M.; Morais, R. Smartphone applications targeting precision agriculture practices—A systematic review. Agronomy 2020, 10, 855. 41. Perito, R.M. U.S. Experience with Provincial Reconstruction Teams in Afghanistan: Lessons Identified; DIANE Publishing: Collingdale, PA, USA, 2009. 42. Mayzelle, M.; Santibañez, M.-P.; Schweiger, J.; Jallo, C. Assessment of Information and Communication Technologies in Afghan Agricultural Extension; 2015. Available online: https://pdf.usaid.gov/pdf_docs/PA00XT8R.pdf (accessed on 28 September 2021). 43. Wentz, L.K.; Karen, E. Analysis of an Intervention: Lessons from US Advisory Work in Afghanistan’s Information and Communications Technology Sector; National Defense University: Washington, DC, USA, 2017. 44. Razaque, A.; Sallah, M. The use of mobile phone among farmers for agriculture development. Int. J. Sci. Res 2013, 2, 95–98. 45. Fabregas, R.; Kremer, M.; Schilbach, F. Realizing the potential of digital development: The case of agricultural advice. Science 2019, 366, 6471. 46. Nie, P.; Ma, W.; Sousa-Poza, A. The relationship between smartphone use and subjective well-being in rural China. Electron. Commer. Res. 2020, 1–27, doi:10.1007/s10660-020-09397-1. 47. Zhao, Q.; Pan, Y.; Xia, X. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environ. Sci. Pollut. Res. 2021, 28, 2063–2073. 48. Haile, M.G.; Wossen, T.; Kalkuhl, M. Access to information, price expectations and welfare: The role of mobile phone adoption in Ethiopia. Technol. Forecast. Soc. Chang. 2019, 145, 82–92. 49. Singh, R.K.; Luthra, S.; Mangla, S.K.; Uniyal, S. Applications of information and communication technology for sustainable growth of SMEs in India food industry. Resour. Conserv. Recycl. 2019, 147, 10–18. 50. Sekabira, H.; Qaim, M. Mobile money, agricultural marketing, and off-farm income in Uganda. Agric. Econ. 2017, 48, 597–611. 51. Rehman, A.; Jingdong, L.; Khatoon, R.; Hussain, I.; Iqbal, M.S. Modern agricultural technology adoption its importance, role and usage for the improvement of agriculture. Life Sci. J. 2016, 14, 70–74. 52. Yuan, F.; Tang, K.; Shi, Q. Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environ. Sci. Pollut. Res. 2020, 28, 6005–6017. 53. Tesfaye, A.; Hansen, J.; Kassie, G.T.; Radeny, M.; Solomon, D. Estimating the economic value of climate services for strengthening resilience of smallholder farmers to climate risks in Ethiopia: A choice experiment approach. Ecol. Econ. 2019, 162, 157–168. 54. Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. 55. Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet use on economic well-being of rural households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. 56. Matassa, S.; Batstone, D.J.; Hülsen, T.; Schnoor, J.; Verstraete, W. Can Direct Conversion of Used Nitrogen to New Feed and Protein Help Feed the World? ACS Publications: Washington, DC, USA, 2015. 57. Khan, N.; Siddiqui, B.N.; Khan, N.; Ismail, S. The Internet of thing in sustainable agriculture. Artech J. Res. Stud. Agric. Sci 2020, 2, 12–15. 58. Kaila, H.; Tarp, F. Can the internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. 59. Hou, J.; Huo, X.; Yin, R. Does computer usage change farmers’ production and consumption? Evidence from China. China Agric. Econ. Rev. 2019. 60. Fan, Q.; Salas Garcia, V.B. Information access and smallholder farmers’ market participation in Peru. J. Agric. Econ. 2018, 69, 476–494. 61. Omerkhil, N.; Chand, T.; Valente, D.; Alatalo, J.M.; Pandey, R. Climate change vulnerability and adaptation strategies for smallholder farmers in YangiQala District, Takhar, Afghanistan. Ecol. Indic. 2020, 110, 105863. 62. Ahmed, S. Agriculture-Fertilizer Interface in Asian and Pacific Region: Issue of Growth, Sustainability, and Vulnerability; Food and Fertilizer Technology Center: Taipei, Taiwan, 1994. 63. Hashimi, R.; Matsuura, E.; Komatsuzaki, M. Effects of cultivating rice and wheat with and without organic fertilizer application on greenhouse gas emissions and soil quality in Khost, Afghanistan. Sustainability 2020, 12, 6508. 64. Shuqin, J.; Fang, Z. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. 65. Iqbal, K.; Hassan, S.T.; Peng, H. Analyzing the role of information and telecommunication technology in human development: Panel data analysis. Environ. Sci. Pollut. Res. 2019, 26, 15153–15161. 66. Ihtisham, M.; Fahad, S.; Luo, T.; Larkin, R.M.; Yin, S.; Chen, L. Optimization of nitrogen, phosphorus, and potassium fertilization rates for overseeded perennial ryegrass turf on dormant bermudagrass in a transitional climate. Front. Plant Sci. 2018, 9, 487. 67. Mohmand, A.M.; Marjan, A.; Sangin, A. Developing e-government in Afghanistan. In Proceedings of the 4th International Conference on Theory and Practice of Electronic Governance, Beijing, China, 25–28 October 2010; pp. 43–48. 68. Salamzada, K.; Shukur, Z.; Bakar, M.A. A framework for cybersecurity strategy for developing countries: Case study of Afghanistan. Asia Pac. J. Inf. Technol. Multimed. 2015, 4, 1–10. 69. Fong, M.W. Digital divide between urban and rural regions in China. Electron. J. Inf. Syst. Dev. Ctries. 2009, 36, 1–12. 70. Pant, L.P.; Odame, H.H. Broadband for a sustainable digital future of rural communities: A reflexive interactive assessment. J. Rural Stud. 2017, 54, 435–450. 71. Adapa, S. Indian smart cities and cleaner production initiatives–Integrated framework and recommendations. J. Clean. Prod. 2018, 172, 3351–3366. 72. Braungart, M.; McDonough, W.; Bollinger, A. Cradle-to-cradle design: Creating healthy emissions—A strategy for eco-effective product and system design. J. Clean. Prod. 2007, 15, 1337–1348. 73. Huang, J.; Huang, Z.; Jia, X.; Hu, R.; Xiang, C. Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. 74. Sun, Y.; Hu, R.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer overuse? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 677–685. 75. WHO. WHO Country Cooperation Strategy at a Glance: Afghanistan; World Health Organization: Geneva, Switzerland, 2018. 76. Omerkhil, N.; Kumar, P.; Mallick, M.; Meru, L.B.; Chand, T.; Rawat, P.; Pandey, R. Micro-level adaptation strategies by smallholders to adapt climate change in the least developed countries (LDCs): Insights from Afghanistan. Ecol. Indic. 2020, 118, 106781. 77. Reich, D.; Pearson, C. Irrigation outreach in Afghanistan: Exposure to Afghan water security challenges. J. Contemp. Water Res. Educ. 2012, 149, 33–40. 78. Hassanzoy, N. Panorama Report of Afghanistan: A Review of Afghanistan’s Food and Agricultural Statistics System; TCP/INT/3401 Panorama Report I, Technical Report; FAO: Kabul, Afghanistan, 2013. 79. CSO. Afghanistan Living Conditions Survey 2016–17; CSO: Kabul, Afghanistan, 2018. 80. Abdul, M.; Anowar, M. Nutrition promotion and collective vegetable gardening by adolescent girls: Feasibility assessment from a pilot in Afghanistan. Asian J. Agric. Rural. Dev. 2018, 8, 40–49. 81. Ahmed, A.; Shafique, I. Perception of household in regards to water pollution: An empirical evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 8543–8551. 82. Kehinde, A.; Adeyemo, R.; Amujoyegbe, B.; Bamire, A.; Idrissou, L. Gender differentials and fertilizer adoption among small holder farmers in cocoa based farming system of Southwestern, Nigeria. Int. J. Agric. Policy Res. 2016, 4, 276–281. 83. Huang, W.; Ghimire, R.; Poudel, M. Adoption intensity of agricultural technology: Empirical evidence from smallholder maize farmers in Nepal. Int. J. Agric. Innov. Res. 2015, 4, 2319–1473. 84. Narula, S.A. Revolutionizing food supply chains of Asia through ICTs. Sustain. Chall. Agrofood Sect. 2017, 212. 85. Bellon-Maurel, V.; Peters, G.M.; Clermidy, S.; Frizarin, G.; Sinfort, C.; Ojeda, H.; Roux, P.; Short, M.D. Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies—Part II: Application to viticulture. J. Clean. Prod. 2015, 87, 119–129. 86. Zhou, D.; Liang, X.; Zhou, Y.; Tang, K. Does emission trading boost carbon productivity? Evidence from China’s pilot emission trading scheme. Int. J. Environ. Res. Public Health 2020, 17, 5522. 87. Shi, B.; Feng, C.; Qiu, M.; Ekeland, A. Innovation suppression and migration effect: The unintentional consequences of environmental regulation. China Econ. Rev. 2018, 49, 1–23. 88. Hamdard, J. The State of Telecommunications and Internet in Afghanistan. Six Years Later (2006–2012);Assistant report; MICT of Afghanistan: Kabul, Afghanistan, 2012. 89. Yang, Y.; Wu, F.; Zhang, Q.; Hong, J.; Dong, C. Is it sustainable to implement a regional payment for ecosystem service programme for 10 Years? An empirical analysis from the perspective of household livelihoods. Ecol. Econ. 2020, 176, 106746. 90. Michalek, J.; Ciaian, P.; Pokrivcak, J. The impact of producer organizations on farm performance: The case study of large farms from Slovakia☆. Food Policy 2018, 75, 80–92. 91. Smith, J.A.; Todd, P.E. Does matching overcome LaLonde’s critique of nonexperimental estimators? J. Econom. 2005, 125, 305–353. 92. Zhang, H.; Duan, M.; Deng, Z. Have China’s pilot emissions trading schemes promoted carbon emission reductions?—The evidence from industrial sub-sectors at the provincial level. J. Clean. Prod. 2019, 234, 912–924. 93. Ren, S.; Wei, W.; Sun, H.; Xu, Q.; Hu, Y.; Chen, X. Can mandatory environmental information disclosure achieve a win-win for a firm’s environmental and economic performance? J. Clean. Prod. 2020, 250, 119530. 94. Khan, M.; Mahmood, H.Z.; Damalas, C.A. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop. Prot. 2015, 67, 184–190. 95. Zhang, J.; Mishra, A.K.; Hirsch, S.; Li, X. Factors affecting farmland rental in rural China: Evidence of capitalization of grain subsidy payments. Land Use Policy 2020, 90, 104275. 96. Corrado, C.; Haltiwanger, J.; Sichel, D. Introduction to ”Measuring capital in the new economy”. In Measuring Capital in the New Economy; University of Chicago Press: Chicago, IL, USA, 2005; pp. 1–10. 97. Case, S.; Oelofse, M.; Hou, Y.; Oenema, O.; Jensen, L.S. Farmer perceptions and use of organic waste products as fertilisers—A survey study of potential benefits and barriers. Agric. Syst. 2017, 151, 84–95. 98. Aziz, M. Implementing ICT For Governance in Fragile States—A Case Study of Afghanistan; e-Governance: A Global Journey; IOS Press: Amsterdam, The Netherlands, 2012; pp. 93–106. 99. Mikheev, A.; Aleksandrova, A.; Khabib, M. The Impact of Information Technology on the GDP Growth Rate of Developing Countries. Talent Dev. Excell. 2020, 12, 1303–1313. 100. Guo, X.; Xiao, B.; Song, L. Emission reduction and energy-intensity enhancement: The expected and unexpected consequences of China’s coal consumption constraint policy. J. Clean. Prod. 2020, 271, 122691. 101. Nimruzi, A.; Ganapathy, J.; Nyborg, I.L. Can technology build trust? Community-oriented policing and ICT in Afghanistan. In Community-Oriented Policing and Technological Innovations; Springer: Cham, Switzerland, 2018; pp. 11–18. 102. Jenish, N. ICT-Driven Technological and Industrial Upgrading in Afghanistan, Kyrgyzstan and Tajikistan: Current Realities and Opportunities; University of Central Asia—Institute of Public Policy and Administration: Bishkek, Kyrgyzstan, 2018. 103. Khan, N.; Ismail, S.; Wali, A.; Kazim, R.; Azam, T. The influence of information communication technology development on income inequality. Artech J. Curr. Bus. Financ. Aff. 2020, 2, 11–18. 104. Zhang, C.; Zhou, B.; Wang, Q. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 2019, 215, 1170–1179. 105. Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does internet use help reduce rural cropland abandonment? Evidence from China. Land Use Policy 2019, 89, 104243. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/110849 |