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ABSTRACT

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental vari-

ables to decide whether the ordinary least squares or the two-stage least squares (2SLS) method is appro-

priate. Guggenberger (2010) shows that the second-stage t-test – based on the outcome of a Durbin-Wu-

Hausman type pretest for exogeneity in the first stage – has extreme size distortion with asymptotic size

equal to 1 when the standard asymptotic critical values are used. In this paper, we first show that both con-

ditional and unconditional on the data, the standard wild bootstrap procedures are invalid for the two-stage

testing and a closely related shrinkage method, and therefore are not viable solutions to such size-distortion

problem. Then, we propose a novel size-corrected wild bootstrap approach, which combines certain wild

bootstrap critical values along with an appropriate size-correction method. We establish uniform validity of

this procedure under either conditional heteroskedasticity or clustering in the sense that the resulting tests

achieve correct asymptotic size. Monte Carlo simulations confirm our theoretical findings. In particular,

our proposed method has remarkable power gains over the standard 2SLS-based t-test in many settings,

especially when the identification is not strong.
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1. Introduction

Inference after data-driven model selection is widely studied in both statistical and econometric

literature. For instance, see Hansen (2005), Leeb and Pötscher (2005), who provide an overview

of the importance and difficulty of conducting valid inference after model selection. In particular,

it is now well known that widely used model-selection practices such as pretesting may have large

impact on the size properties of two-stage procedures and thus invalidate inference on parameter

of interest in the second stage. For the classical linear regression model with exogenous covariates,

Kabaila (1995) and Leeb and Pötscher (2005) show that confidence intervals (CIs) based on consis-

tent model selection have serious problem of under-coverage, while Andrews and Guggenberger

(2009b) show that such CIs have asymptotic confidence size equal to 0. Furthermore, Andrews

and Guggenberger (2009a) find extreme size distortion for the two-stage test after “conservative"

model selection and propose various least favourable critical values (CVs).

In comparison, the literature on models that contain endogenous covariates, such as widely

used instrumental variable (IV) regression models, remains relatively sparse. The uniform validity

of post-selection inference for structural parameters in linear IV models with homoskedastic errors

was studied by Guggenberger (2010a), who advised not to use Hausman-type pretesting to select

between ordinary least squares (OLS) and two-stage least squares (2SLS)-based t-tests because

such two-stage procedure can be extremely over-sized with asymptotic CVs.1 Instead, Guggen-

berger (2010a) recommended to use the standard 2SLS-based t-test. However, it is well known

that the 2SLS-based t-test itself may have undesirable finite-sample size properties when IVs are

not strong enough. As such, in the quest for statistical power, many empirical practitioners still use

pretesting in IV applications despite the important concern raised by Guggenberger (2010a).2

Recently, Young (2020) analyzes a sample of 1359 empirical applications involving IV regres-

sions in 31 papers published in the American Economic Association (AEA): 16 in AER, 6 in AEJ:

A.Econ., 4 in AEJ: E.Policy, and 5 in AEJ: Macro. He highlights that the IVs often do not ap-

pear to be strong in these papers, so that inference methods based-on standard normal CVs can

be unreliable, especially in the case with heteroskedastic or clustered errors, and he advocates for

the usage of bootstrap methods to improve the quality of inference. Furthermore, he argues that

in these papers IV confidence intervals almost always include OLS point estimates and there is

little statistical evidence of endogeneity and evidence that OLS is seriously biased, based on the

low rejection rates of Hausman-type tests in his data. In his simulations based upon the published

regressions (Table XIV), the rejection frequencies can be as low as 0.237 and 0.386 for 1% and

5% significance levels, respectively, for asymptotic Hausman tests, and even as low as 0.105 and

1Similar concerns were also raised by Guggenberger and Kumar (2012) about pretesting the instrument exogeneity

using a test of overidentifying restrictions, and by Guggenberger (2010b) about pretesting for the presence of random

effects before inference on the parameters of interest in panel data models.
2Their motivation of implementing the pretesting procedure also lies in the fact that valid IVs (i.e., exogenous IVs)

found in practice are often rather uninformative, while strong IVs are typically more or less invalid and such deviation

from IV exogeneity may also lead to serious size distortion in the 2SLS-based t-test; e.g., see Conley, Hansen and

Rossi (2012), Guggenberger (2012), Andrews, Gentzkow and Shapiro (2017).
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0.208, respectively, for bootstrap Hausman tests.3

However, Young (2020)’s finding from the AEA data that OLS estimates seem to be not very

different from 2SLS estimates may be attributed to the fact that the used IVs are not strong so that

2SLS may be biased towards OLS, and Hausman-type tests also have low power in this case [e.g.,

see Doko Tchatoka and Dufour (2018, 2020)]. In particular, as shown by Guggenberger (2010a),

the Hausman test is not able to reject the null hypothesis of exogeneity in situations where there is

only a small degree of endogeneity, i.e., local endogeneity. Then, OLS-based inference is selected

in the second stage with high probability. However, the OLS-based t-statistic often takes on very

large values even under such local endogeneity, causing extreme size distortions in the two-stage

test. Indeed, Guggenberger (2010a) shows that the asymptotic size of this procedure equals 1 even

with homoskedastic errors. Such issue with pretesting for exogeneity is highly relevant to empirical

practice as endogeneity is mild in many IV applications. For example, Hansen, Hausman and

Newey (2008) report that the median, 75th quantile, and 90th quantile of estimated endogeneity

parameters are only 0.279, 0.466, and 0.555, respectively, in their investigated AER, JPE, and QJE

papers. Angrist and Kolesár (2021) investigate three influential just-identified IV applicaitions:

Angrist and Krueger (1991), Angrist and Evans (1998), Angrist and Lavy (1999), and find that

the estimated endogeneity is no more than 0.175, 0.075, and 0.460 for different specifications and

samples in these papers, respectively [see Section 3.1 and Table 1 in Angrist and Kolesár (2021)].

Motivated by these issues, we study in this paper the possibility of proposing uniformly valid

method for the above two-stage testing procedure and a closely related Stein-type shrinkage pro-

cedure proposed by Hansen (2017), and we consider an asymptotic framework under conditional

heteroskedasticity or clustering, as allowing for non-homoskedastic errors is paramount for the

methodology to be useful in practice. Given Young (2020)’s recommendation of using bootstrap,

we first study the validity of bootstrapping the two procedures by obtaining the null limiting dis-

tributions of the bootstrap statistics and their associated asymptotic null rejection probabilities.

Such (unconditional) asymptotic null rejection results are useful for the study of bootstrap validity

because even if the bootstrap cannot consistently estimate the distribution of interest conditional

on the data (i.e., bootstrap invalidity in the usual sense), it may still be possible that the bootstrap

test controls the asymptotic size and thus is valid unconditionally; e.g., see Cavaliere and Georgiev

(2020) and the references therein. Here, we find that the standard wild bootstrap procedures are

invalid both conditionally and unconditionally for the two-stage and shrinkage procedures even un-

der strong IVs.4 In particular, the usual intuition for bootstrapping Durbin-Wu-Hausman (DWH)

tests is that one should restrict the bootstrap data generating process (DGP) under exogeneity of

the regressors. However, we find that such bootstrap DGP can result in extreme size distortion

with asymptotic null rejection probabilities close to 1 in some settings, while the bootstrap DGP

3Similarly, Keane and Neal (2021, Section 8) argue that a rather strong IV is necessary to give high confidence that

2SLS will outperform OLS (e.g., with a first-stage F higher than 50, which is well above the industry standard of 10).
4For the case with weak IVs in the sense of Staiger and Stock (1997), it is well documented in the literature that

resampling methods such as bootstrap and subsampling can be inconsistent (i.e., invalid conditional on the data); see

e.g., Andrews and Guggenberger (2010b), Wang and Doko Tchatoka (2018) and Wang (2020).
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without such restriction typically has much smaller asymptotic size distortions.5

To address such bootstrap failure, we then propose a novel size-corrected wild bootstrap proce-

dure, which combines certain standard wild bootstrap CVs with an appropriate Bonferroni-based

size-correction method, following the lead of McCloskey (2017). We first show that the result-

ing CVs are uniformly valid with heteroskedastic errors in the sense that they yield two-stage and

shrinkage tests with correct asymptotic size. In particular, since standard wild bootstrap proce-

dures cannot mimic well the key localized endogeneity parameter, particular attention is taken on

this parameter when designing bootstrap DGP, and a Bonferroni-based size-correction technique

is implemented to deal with the presence of this localization parameter in the limiting distributions

of interest. Different from the conventional Bonferroni bound, which may lead to conservative test

with asymptotic size strictly less than the nominal level, the size-correction procedure always leads

to desirable asymptotic size. Then, we extend the uniform validity result to clustered samples, in

which case the rate of convergence of the estimators depends on the regressor, the instruments, the

relative cluster size and the intra-cluster correlation structure in a complicated way.

In terms of practical usage of our method, following the aforementioned studies by Hansen

et al. (2008), Young (2020), and Angrist and Kolesár (2021), we are particularly interested in the

IV applications where the values of endogeneity parameters are relatively small. These are the

cases where the pretest would not reject exogeneity and the naive two-stage procedure would lead

to extreme size distortion. On the other hand, as the problem of size distortion is circumvented

by our method, we may take advantage of the power superiority of the OLS-based t-test over its

2SLS counterpart. In addition, Hansen (2017) shows that his shrinkage estimator has substantially

reduced median squared error relative to 2SLS, and Doko Tchatoka and Dufour (2020) show that

their pretest estimators based on DWH tests can outperform both OLS and 2SLS estimators in

terms of mean squared error if identification is not very strong, even with moderate endogeneity.

As such, our proposed method is also attractive from the viewpoint of providing valid inference

method for the shrinkage or pretesting estimator. Monte Carlo experiments confirm that our size-

corrected bootstrap procedure is able to achieve reliable size correction and remarkable power

gains over the 2SLS-based t-test, especially when the identification is not strong. We also note that

the size-corrected Hansen-type shrinkage procedure has superior finite-sample power performance

than its Hausman-type counterpart in many cases.

Our size-correction procedure follows closely the seminal study by McCloskey (2017), who

proposed Bonferroni-based size-correction procedures for general nonstandard testing problems,

and McCloskey (2020) applied this method to inference in linear regression model after consistent

model selection. Additionally, Han and McCloskey (2019) applied it to inference in moment con-

dition models where the estimating function may exhibit mixed identification strength and a nearly

singular Jacobian, and Wang and Doko Tchatoka (2018) applied it to weak-identification-robust

5These results are in contrast to the case of bootstrapping the DWH tests only (without the second-stage t-test),

which achieves higher-order refinement under strong IVs and remains first-order valid even under weak IVs; e.g., see

Doko Tchatoka (2015).
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subvector inference in linear IV models. Different from our size-corrected bootstrap procedures,

these procedures are based on simulations from null limiting distributions. The motivation of us-

ing bootstrap in the current testing problem originates from a growing literature illustrating that

when applied to IV regressions, well designed bootstrap procedures typically have superior finite-

sample performance than asymptotic approximations; see, e.g., Davidson and MacKinnon (2008,

2010), Wang and Kaffo (2016), Finlay and Magnusson (2019), Young (2020), and Wang and Zhang

(2021). Furthermore, we are motivated by the growing literature showing the excellent perfor-

mance of wild bootstrap methods with heteroskedastic or clustered errors, among them Davidson

and Flachaire (2008), Cameron, Gelbach and Miller (2008), MacKinnon and Webb (2017), and

Djogbenou, MacKinnon and Nielsen (2019).

The remainder of this paper is organized as follows. Section 2 presents the setting, test statis-

tics, and parameter space of interest. Section 3 presents the main results of both standard and

size-corrected wild bootstrap methods. Section 4 investigates the finite sample power performance

of our methods using simulations. Conclusions are drawn in Section 5. The proofs and further

simulation results are provided in the Appendix and Supplementary Material.

Throughout the paper, for any positive integers n and m, In and 0n×m stand for the n × n

identity matrix and n × m zero matrix, respectively. For any full-column rank n × m matrix

A, PA = A(A′A)−1A′ is the projection matrix on the space spanned by the columns of A, and

MA = In −PA. The notation vec(A) is the nm×1 dimensional column vectorization of A. λ min(A)

denote the minimum eigenvalue of a square matrix A. ‖U‖ denotes the usual Euclidean or Frobe-

nius norm for a matrix U. The usual orders of magnitude are denoted by OP(.) and oP(.), →P

stands for convergence in probability, while →d stands for convergence in distribution. We write

P∗ to denote the probability measure induced by a bootstrap procedure conditional on the data, and

E∗ and Var∗ to denote the expected value and variance with respect to P∗. For any bootstrap statis-

tic T ∗ we write T ∗ →P∗
0 in probability P if for any δ > 0, ε > 0, limn→∞P[P∗(|T ∗|> δ )> ε] = 0,

i.e., P∗(|T ∗|> δ ) = oP(1); e.g., see Gonçalves and White (2004). Also, we write T ∗ = OP∗(nϕ) in

probability P if and only if for any δ > 0 there exists a Mδ < ∞ such that limn→∞P[P∗(|n−ϕT ∗|>
Mδ ) > δ ] = 0, i.e., for any δ > 0 there exists a Mδ < ∞ such that P∗(|n−ϕT ∗| > Mδ ) = oP(1).

Finally, we write T ∗ →d∗
T in probability P if, conditional on the data, T ∗ weakly converges to T

under P∗, for all samples contained in a set with probability approaching one.

2. Framework

2.1. Model and test statistics

We consider the following linear IV model

y = Xθ +u, X = Zπ + v, (2.1)
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where y ∈ R
n and X ∈ R

n are vectors of dependent and endogenous variables, respectively, Z ∈
R

n×k is a matrix of instruments (k ≥ 1), (θ ,π ′)′ ∈ R
k+1 are unknown parameters, and n is the

sample size. Denote by ui, vi, yi, Xi, and Zi the i-th rows of u, v, y, X , and Z respectively, written

as column vectors or scalars. Assume that {(ui,vi,Zi) : i ≤ n} are i.i.d. with distribution F . For

notational simplicity, also assume that the other exogenous variables have been partialled out.

The object of inferential interest is the structural parameter θ and we consider the problem of

testing the null hypothesis H0 : θ = θ 0. We study the two-stage testing procedure for assessing H0,

where an exogeneity test is undertaken in the first stage to decide whether a t-test based on the OLS

or 2SLS estimator is appropriate for testing H0 in the second stage. Assume that the instruments

Z are exogenous, i.e., EF [uiZi] = 0, where EF denotes expectation under the distribution F. Under

this orthogonality condition of the instruments, X is endogenous in (2.1) if and only if v and u are

correlated. Consider the following linear projection of u on v:

u = va+ e, a = (EF [v
2
i ])

−1EF [viui], (2.2)

where e is uncorrelated with v. Notice that the exogeneity of X in (2.1) can be assessed by testing

the null hypothesis Ha : a = 0 in (2.2). Substituting (2.2) into (2.1), we obtain

y = Xθ + va+ e, (2.3)

where X and v are uncorrelated with e. Therefore, the null hypothesis of exogeneity Ha : a = 0 can

be assessed using a standard Wald statistic in the extended regression (2.3) [e.g., see Doko Tcha-

toka and Dufour (2014)]. To account for possible conditional heteroskedasticity, we consider the

following control function-based Wald statistic:6

Hn = â2/V̂a, (2.4)

where â = (ṽ′ṽ)−1ṽ′y, V̂a = (n−1ṽ′ṽ)−1
(

n−2 ∑
n
i=1 ṽ2

i ê2
i

)

(n−1ṽ′ṽ)−1 is the Eicker-White

heteroskedasticity-robust estimator of the variance of â, ṽ = MX v̂, v̂ = MZX , and ê = M[X :v̂]y. Note

that ê is the residual vector from the OLS regression of y on X and v̂. If θ is strongly identified (Z

being strong instruments) and X is exogenous, Hn follows a χ2
1 distribution asymptotically. The

pretest rejects the null hypothesis that X is exogenous in (2.1) if Hn > χ2
1,1−β , where χ2

1,1−β is the

(1−β )-th quantile of χ2
1-distributed random variable for some β ∈ (0,1).

In addition, let θ̂ 2sls = (X
′
PZX)−1X

′
PZy, and θ̂ ols = (X

′
X)−1X

′
y be the 2SLS and OLS estima-

tors of θ in (2.1), respectively. Also, define their corresponding variance estimators as

V̂2sls =
(

n−1X
′
PZX

)−1
π̂ ′
(

n−2
n

∑
i=1

ZiZ
′
i û

2
i (θ̂ 2sls)

)

π̂
(

n−1X
′
PZX

)−1
,

6Alternative formulations of this exogeneity statistic are given in Hahn, Ham and Moon (2010), Doko Tchatoka

and Dufour (2018, 2020) but the Wald version considered in (2.4) easily accommodates conditional heteroskedasticity

or clustering, so we shall use this formulation.
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V̂ols =
(

n−1X
′
X
)−1

(

n−2
n

∑
i=1

XiX
′
i û2

i (θ̂ ols)

)

(

n−1X
′
X
)−1

, (2.5)

where ûi(θ̂ 2sls) = yi −Xiθ̂ 2sls, ûi(θ̂ ols) = yi −Xiθ̂ ols, and π̂ = (Z′Z)−1Z′X . Then, the two-stage

test statistic associated with the Hn-based pretest of exogeneity in the first stage is given by

T̄1,n(θ 0) = Tols(θ 0)1(Hn ≤ χ2
1,1−β )+T2sls(θ 0)1(Hn > χ2

1,1−β ), (2.6)

where Tols(θ) and T2sls(θ) are the t-statistics with 2SLS and OLS estimates, respectively, i.e.,

T2sls(θ) = (θ̂ 2sls −θ)/V̂
1/2
2sls , and Tols(θ) = (θ̂ ols −θ)/V̂

1/2
ols . (2.7)

Related to the two-stage procedure, Hansen (2017) proposed a Stein-like shrinkage approach in the

context of IV regressions. His estimator follows Maasoumi (1978) in taking a weighted average

of the 2SLS and OLS estimators, with the weight depending inversely on the test statistic for

exogeneity, and the proposed shrinkage estimator is found to have substantially reduced finite-

sample median squared error relative to the 2SLS estimator. Following Hansen (2017)’s approach,

we define the Stein-like shrinkage test statistic as follows:

T̄2,n(θ 0) = Tols(θ 0)w(Hn)+T2sls(θ 0)(1−w(Hn)), (2.8)

where the weight function takes the form w(Hn) =







τ/Hn if Hn ≥ τ

1 if Hn < τ
, and τ is a shrinkage

parameter chosen by the researcher. The shrinkage statistic has a relatively smooth transition be-

tween the OLS and 2SLS test statistics. In Section 4, we evaluate the performance of the shrinkage

procedure with different choices of τ . Additionally, denote Tl,n(θ 0) as ±T̄l,n(θ 0) or |T̄l,n(θ 0)| for

l ∈ {1,2}, depending on whether the test is a lower/upper one-sided or a symmetric two-sided test.

The nominal size α test with a standard normal CV rejects H0 : θ = θ 0 if Tl,n(θ 0) > c∞(1−α),

where c∞(1−α) = z1−α for the one-sided test and z1−α/2 for the symmetric two-sided test, respec-

tively, and z1−α is the (1−α)-th quantile of a standard normal distribution. For the conciseness

of the paper, in the following sections we will focus on the case with symmetric two-sided test but

our results can be extended directly to the one-sided case.

2.2. Parameter space and asymptotic size

To characterize the asymptotic size of the two-stage and shrinkage tests, we define the parameter

space Γ of the nuisance parameter vector γ following the seminal studies by Andrews and Guggen-

berger (2009, 2010a, 2010b), Guggenberger (2012), and Guggenberger and Kumar (2012). For the
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current testing problem, define the vector of nuisance parameters γ = (γ1,γ2,γ3) by

γ1 = a, γ2 = (γ21,γ22,γ23,γ24,γ25), γ3 = F, (2.9)

where a is defined in (2.2), γ21 = π, γ22 = EFe2
i ZiZ

′
i , γ23 = EFe2

i v2
i , γ24 = EFZiZ

′
i , and γ25 = EFv2

i .

Here, γ1 measures the degree of endogeneity of X and is the key parameter in the current testing

problem as it determines the point of discontinuity of the null limiting distributions of the two-stage

and shrinkage test statistics. For the parameter space, let

Γ1 = R, Γ2 =
{

(γ21,γ22,γ23,γ24,γ25) : γ21 = π ∈ R
k,γ22 = EFe2

i ZiZ
′
i ∈ R

k×k,

γ23 = EFe2
i v2

i ∈ R,γ24 = EFZiZ
′
i ∈ R

k×k,γ25 = EFv2
i ∈ R,

s.t. ‖γ21‖ ≥ κ,λ min(γ22)≥ κ,γ23 > 0,λ min(γ24)≥ κ, and γ25 > 0
}

, (2.10)

for some κ > 0 that does not depend on n. As ‖γ21‖ ≥ κ > 0, Staiger and Stock (1997)’s weak IV

asymptotics is ruled out of the scope of this paper.7 In addition, Γ3(γ1,γ2) is defined as follows:

Γ3(γ1,γ2) =
{

F : EFeivi = EFeiZi = EFviZi = 0, EFe2
i viZi = EFeiv

2
i Zi = EFeiviZiZ

′
i = 0,

EFv2
i ZiZ

′
i ∈ R

k×k with λ min(EFv2
i ZiZ

′
i)≥ M−1, (2.11)

∥

∥

∥

∥

EF

(

||Ziei||2+ξ , ||Zivi||2+ξ , |viei|2+ξ , ||ZiZ
′
i ||2+ξ , |Xi|2(2+ξ )

)′
∥

∥

∥

∥

≤ M
}

,

for some constant ξ > 0 and M < ∞. We then define the whole nuisance parameter space Γ of γ as

Γ = {γ = (γ1,γ2,γ3) : γ1 ∈ Γ1,γ2 ∈ Γ2,γ3 ∈ Γ3(γ1,γ2)}, (2.12)

where Γj, j = 1,2,3 are given in (2.10) and (2.11). This nuisance parameter space extends the

one defined in Guggenberger (2010a) to allows for conditional heteroskedasticity and is similar to

those defined in Guggenberger (2012) and Guggenberger and Kumar (2012), which also allow for

heteroskedastic errors. In Section 3.3, we further extend analysis to the case with clustered data

and show that our size-corrected wild bootstrap is also uniformly valid in that case. The condition

that EFe2
i viZi = EFeiv

2
i Zi = EFeiviZiZ

′
i = 0 in (2.11) is similar to that imposed for Γ3(γ1,γ2) in

Guggenberger (2010a) [see (A.2) in the Appendix of his paper for related discussions]. This con-

dition simplifies the limiting distributions and its sufficient condition is, for example, independence

between (vi,ei) and Zi.

Now we define the asymptotic size. Let cn denote a (possibly data-dependent) CV being used

7As pointed out by a referee, empirical researchers often use first-stage F statistics to detect instrument weakness.

While pretesting instrument weakness is intuitively reasonable, it can also result in substantial size distortions [e.g., see

Section 4.1 of Andrews, Stock and Sun (2019)]. Therefore, proposing valid testing and inference methods after such

pretesting is an important issue. We leave this direction of investigation for further research in the future. However,

the simulations in Section 4 and Appendix SA.3 suggest that our proposed tests perform well even with weak IV.
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for the two-stage testing or shrinkage procedure. The finite sample null rejection probability (NRP)

of the test statistic of interest evaluated at γ ∈ Γ is given by Pθ 0,γ

[

Tl,n(θ 0)> cn

]

for l ∈ {1,2},

where Pθ 0,γ [En] denotes the probability of event En given γ. Then, the asymptotic NRP of the test

evaluated at γ ∈ Γ is given by limsup
n→∞

Pθ 0,γ

[

Tl,n(θ 0)> cn

]

, while the asymptotic size is given by

AsySz[cn] = limsup
n→∞

sup
γ∈Γ

Pθ 0,γ

[

Tl,n(θ 0)> cn

]

. (2.13)

In general, asymptotic NRP evaluated at a given γ ∈ Γ is not equal to the asymptotic size of the

test. To control the asymptotic size, one needs to control the null limiting behaviour of Tl,n(θ 0)

under drifting parameter sequences {γn : n ≥ 1} indexed by the sample size; e.g., see Andrews and

Guggenberger (2009, 2010a, 2010b), Guggenberger (2012), and Guggenberger and Kumar (2012).

Following the arguments used in these papers, to derive AsySz[cn] we can study the asymptotic

NRP along certain parameter sequences of the type {γn,h} (defined below) for some h ∈H , as the

highest asymptotic NRP is materialized under such sequence, where

H =

{

h = (h1,h
′
21,vec(h22)

′,h23,vec(h24)
′,h25)

′ ∈ R
2k2+k+3
∞ : ∃{γn = (γn,1,γn,2,γn,3) ∈ Γ : n ≥ 1}

s.t. n1/2γn,1 → h1 ∈ R∞, γn,2 → h2 = (h21,h22,h23,h24,h25), ‖h21‖ ≥ κ, λ min(A)≥ κ

for A ∈ {h22,h24}, h23 > 0, h25 > 0

}

≡ H1 ×H21 ×H22 ×H23 ×H24 ×H25, (2.14)

for some κ > 0 and R∞ = R∪ {±∞}. Then, for h ∈ H , the relevant sequence of parameters

{γn,h} ⊂ Γ is defined following Guggenberger (2010a) as γn,h = (γn,h,1,γn,h,2,γn,h,3) where

γn,h,1 = (EFn
[v2

i ])
−1EFn

[viui], γn,h,2 = (γn,h,21,γn,h,22,γn,h,23,γn,h,24,γn,h,25), (2.15)

with γn,h,21 = πn, γn,h,22 = EFn
e2

i ZiZ
′
i , γn,h,23 = EFn

e2
i v2

i , γn,h,24 = EFn
ZiZ

′
i , γn,h,25 = EFn

v2
i , s.t.

n1/2γn,h,1 → h1, γn,h,2 → h2, and γn,h,3 = Fn ∈ Γ3(γn,h,1,γn,h,2). (2.16)

More specifically, under {γn,h} satisfying (2.16) with |h1| = ∞ (i.e., strong endogeneity),

Hn →P ∞, and the two-stage and shrinkage test statistics are asymptotically equivalent to the

2SLS-based t-statistic. On the other hand, under {γn,h} satisfying (2.16) with |h1| < ∞ (i.e., local

endogeneity), the following joint convergence results hold for T2SLS(θ 0), TOLS(θ 0), Hn, and the

two-stage and shrinkage statistics Tl,n(θ 0) for l ∈ {1,2}:







T2sls(θ 0)

Tols(θ 0)

Hn






→d







η1,h

η2,h

η3,h






=









(h′21h22h21)
−1/2

h′21ψZe

(h′21h22h21 +h23)
−1/2 (h′21ψZe +ψve +h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1 (
−(h′21h24h21)

−1h′21ψZe +h−1
25 ψve +h1

)2









,
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T1,n(θ 0) →d T̃1,h =
∣

∣

∣
η2,h1(η3,h ≤ χ2

1,1−β )+η1,h1(η3,h > χ2
1,1−β )

∣

∣

∣
,

T2,n(θ 0) →d T̃2,h =
∣

∣η2,hw(η3,h)+η1,h(1−w(η3,h))
∣

∣ , (2.17)

where η1,h ∼ N(0,1), η2,h ∼ N
(

(h′21h22h21 + h23)
−1/2h25h1,1

)

, η3,h ∼ χ2
1

(

( h′21h22h21

(h′21h24h21)2 +

h23h−2
25

)−1
h2

1

)

, w(η3,h) = τ/η3,h if η3,h ≥ τ , and w(η3,h) = 1 if η3,h < τ .

We notice that under conditional homoskedasticity, the formula of the limiting distribution of

T1,n(θ 0) in (2.17) will be simplified and equal to that derived in Guggenberger (2010a) for the two-

stage test with Hausman pretest, whose asymptotic size is equal to 1 with the standard normal CV

c∞(1−α). Therefore, in the general heteroskedastic case, the asymptotic size of the T1,n(θ 0)-based

two-stage test with c∞(1−α) is also equal to 1. Similar results can be shown for the T2,n(θ 0)-based

shrinkage test. In the next section, we will study the asymptotic behaviours of the two-stage and

shrinkage tests under alternative data-dependent CVs.

3. Main Results

3.1. Standard wild bootstrap

In this section, we study the asymptotic behaviour of the standard wild bootstrap for the two-stage

testing and shrinkage procedures. As mentioned in Section 2.1, we focus on the symmetric two-

sided tests to simplify exposition, but our results can be extended to one-sided tests.

Wild Bootstrap Algorithm:

1. Compute the (null-restricted) residuals from the first-stage and structural equations: v̂ =

X −Zπ̂ , û(θ 0) = y−Xθ 0, where π̂ = (Z′Z)−1Z′X denotes the least squares estimator of π .

2. Generate the bootstrap pseudo-data following X∗ = Zπ̂ + v∗, y∗ = X∗θ 0 + u∗, where there

are two options to generate the bootstrap disturbances:

(a) v∗ and u∗ are generated independently from each other. Specifically, in the cur-

rent case with heteroskedastic data, we set for each observation i: v∗i = v̂iω
∗
1i, and

u∗i = ûi(θ 0)ω
∗
2i, where ω∗

1i and ω∗
2i are two random variables with mean 0 and vari-

ance 1, i.e., E∗ [ω∗
1i

]

= E∗ [ω∗
2i

]

= 0 and Var∗
[

ω∗
1i

]

= Var∗
[

ω∗
2i

]

= 1, and they are

independent from the data and independent from each other.

(b) v∗ and u∗ are drawn dependently from each other. We set for each observation i: v∗i =

v̂iω
∗
1i, and u∗i = ûi(θ 0)ω

∗
1i.

Following Young (2020), we refer to (a) as independent transformation of disturbances and

(b) as dependent transformation of disturbances.8

8For the purpose of better size control, it is often recommended that for bootstrap exogeneity tests, (u∗,v∗) should
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3. Compute the bootstrap analogues of the two-stage and shrinkage test statistics:

T ∗
1,n(θ 0) =

∣

∣

∣
T ∗

ols(θ 0)1(H
∗
n ≤ χ2

1,1−β )+T ∗
2sls(θ 0)1(H

∗
n > χ2

1,1−β )
∣

∣

∣
,

T ∗
2,n(θ 0) = |T ∗

ols(θ 0)w(H
∗
n )+T ∗

2sls(θ 0)(1−w(H∗
n ))| , (3.1)

where w(H∗
n ) =







τ/H∗
n if H∗

n ≥ τ

1 if H∗
n < τ

, T ∗
ols(θ 0), T ∗

2sls(θ 0) and H∗
n are the bootstrap ana-

logues of Tols(θ 0), T2sls(θ 0) and Hn, respectively, which are obtained from the bootstrap

samples generated in Step 2.

4. For l ∈ {1,2}, repeat Steps 2-3 B times and obtain {T
∗(b)

l,n (θ 0),b = 1, ...,B}. The boot-

strap test with the test statistic Tl(θ 0) rejects H0 if the corresponding bootstrap p-value
1
B ∑

B
b=11

[

T ∗(b)
l,n (θ 0)> Tl,n(θ 0)

]

is less than the nominal level α.

Following the standard arguments for bootstrap validity, to check whether (conditional on the

data) the bootstrap is able to consistently estimate the distribution of the two-stage or shrinkage test

statistic, one needs to check whether under H0 and both cases of strong endogeneity (|h1|= ∞) and

local endogeneity (|h1| < ∞), supx∈R

∣

∣

∣
P∗
(

T ∗
l,n(θ 0)≤ x

)

−P
(

Tl,n(θ 0)≤ x
)

∣

∣

∣
→P 0, for l ∈ {1,2}.

However, we notice below that neither bootstrap procedure is able to consistently estimate the

distribution of interest under local endogeneity.

More specifically, it holds for the bootstrap statistics with dependent or independent transfor-

mation (for the dependent transformation, we further require E∗ [ω∗3
1i

]

= 0 and E∗ [ω∗4
1i

]

= 1; see

Lemma A.4 in the Appendix for details) that

n−1/2

(

Z
′
u∗

(

u∗
′
v∗−E∗[u∗

′
v∗]
)

)

→d∗
(

ψ∗
Ze

ψ∗
ve

)

, (3.2)

in probability P, where the bootstrap (conditional) weak limit (ψ∗′
Ze,ψ

∗
ve)

′ is the same as

(ψ ′
Ze,ψve)

′, i.e., the weak limit of n−1/2 ((Z′u)′,(u′v−EF [u
′v]))′. Therefore, the bootstrap pro-

cedures do replicate well the randomness in the original sample.

On the other hand, under local endogeneity the standard wild bootstraps are not able to mimic

well the key localization parameter h1, thus resulting in the discrepancy between the original and

bootstrap samples (see Theorem A.5 in the Appendix for details). In particular, let hb
1 denote the

localization parameter of endogeneity in the bootstrap world, then hb
1 = 0 for the bootstrap with

independent transformation, while hb
1 = h1 + h−1

25 ψve for the one with dependent transformation,

where ψve ∼N(0,h23). That is, while the bootstrap with dependent transformation is able to mimic

the situation of local endogeneity in the original sample (hb
1 is finite with probability approaching

be generated using the independent transformation scheme, so that the bootstrap samples are obtained under the null

hypothesis of exogeneity. However, as we will see below, this is not necessarily the case for the bootstrap two-stage

or shrinkage test statistic.
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one when h1 is finite), the approximation is imprecise and results in an extra error term h−1
25 ψve,

whose value depends on the actual realization of the sample.

However, even if the bootstrap is inconsistent conditional on the data, it may still be valid in

the unconditional sense; e.g., see Cavaliere and Georgiev (2020) and the references therein. More

precisely, the bootstrap might still be able to provide a valid test in the current context if its asymp-

totic NRP does not exceed the nominal level α under any parameter sequence {γn,h} in (2.16). To

further shed light on the behaviour of the bootstrap statistics with dependent transformation, we

apply the results in (2.17) and Theorem A.5 to plot the quantiles of the null limiting distributions

of the original and bootstrap test statistics for the case of conditional homoskedasticity studied in

Guggenberger (2010a). The limiting distributions of both two-stage and shrinkage test statistics are

substantially simplified in this case and only depend on two scalar parameters, say, h1,ho and h2,ho.

h1,ho captures the degree of local endogeneity and h2,ho captures the IV strength, respectively.9

Figure 1 reports the 95% quantiles of T̃l,h and its bootstrap counterpart T̃ ∗
l,h for l ∈ {1,2}, as a

function of h1,ho with h2,ho ∈ {.5,1,2}, β = .05 for the two-stage test statistic, and τ ∈ {0.25,1}
for the shrinkage test statistic. The results are based on 1,000,000 simulation replications.

We highlight some findings below. First, we observe that the quantiles of T̃ ∗
l,h for the depen-

dent bootstrap turn out to be rather close to those of T̃l,h across various values of h1,ho and h2,ho.

However, the figure suggests that this bootstrap procedure may have over-rejection when the quan-

tiles of T̃l,h are relatively high (e.g., when h2,ho = .5 and h1,ho is between 5 and 6). In addition,

we note that the quantiles of T̃ ∗
l,h for the dependent bootstrap converge in each sub-figure to the

standard normal CV when the value of h1,ho increases: when |h1,ho| is large, the Hausman pretest

rejects with high probability and the weight w(Hn) shrinks toward zero, so that both two-stage

and shrinkage tests become the 2SLS-based t-test, and the dependent bootstrap does mimic well

such behaviour. Furthermore, the quantiles corresponding to the shrinkage test statistics and their

bootstrap analogues (i.e., T̃2,h and T̃ ∗
2,h) have smoother shapes than their two-stage counterparts

(i.e., T̃1,h and T̃ ∗
1,h), and this may be due to the fact that the two-stage test statistic uses an abrupt

transition between the OLS and 2SLS-based t-statistics.

Also based on (2.17) and Theorem A.5, we report in Table 1 below the asymptotic null re-

jection probabilities of the (symmetric) two-stage and shrinkage tests under the standard nor-

mal CV, the independent bootstrap CV, and the dependent bootstrap CV for the homoskedastic

case, with α = .05 for κho ∈ {.001, .1, .5,1,2,10}, where κho denotes the lower bound of h2,ho,

β ∈ {.05, .1, .2, .5} for the two-stage test, and τ ∈ {.1, .25, .5,1} for the shrinkage test. The values

of α , β , and κho are set to be the same as those in Table 1 of Guggenberger (2010a). First, we note

that both standard normal CVs and independent bootstrap CVs have asymptotic rejection probabili-

ties much larger than .05; e.g., when κho = .001, the probabilities are 100%,95.0%,85.1%,55.1%

and 97.6%,92.7%,82.9%,53.5%, respectively. Second, although the dependent bootstrap CVs

result in asymptotic size distortions much smaller than the standard normal CVs and independent

9See (9) in Section 2.3 and (12) in Section 2.4 of Guggenberger (2010a) for detailed definition; we note that in

Guggenberger (2010a), the parameters h1,ho and h2,ho are denoted as h1 and h2, respectively.
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Figure 1. 95% quantiles of T̃l,h and T̃ ∗
l,h under homoskedasticity
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Note: “Hausman", “Hansen(0.25)", and “Hansen(1)" denote the Hausman-type two-stage test statistic, and Hansen

(2017)’s shrinkage test statistic with τ = 0.25 and τ = 1, respectively. ‘Hausman-BS", “Hansen(0.25)-BS", and

“Hansen(1)-BS" denote their wild bootstrap analogues with the dependent transformation. The results are based on

1,000,000 simulation replications.

bootstrap CVs, in general they are also unable to achieve uniform size control. As the heteroskedas-

tic case nests the homoskedastic case, these results could be regarded as the lower bounds of the

asymptotic size distortions under heteroskedasticity. Also notice that the size distortions decrease

with the value of β while increase with the value of τ . Furthermore, as pointed out by a referee,

the independent and dependent bootstrap CVs are asymptotically equivalent to the asymptotic CVs

drawn from the (1−α)-th quantile of (2.17) after setting h1 = 0 and h1 = ĥ
n,1 , respectively. This

implies that there also exist size distortions when these asymptotic CVs are used.

3.2. Size-corrected wild bootstrap

As the standard wild bootstrap procedures are not able to provide uniform size control, in this

section we propose Bonferroni-based size-correction methods for the two-stage testing and shrink-

age procedures, following the seminal study by McCloskey (2017). As explained in McCloskey

(2017), the idea behind such size-correction is to construct CVs that use the data to determine how

far the key nuisance parameter (i.e., the endogeneity parameter in the current testing problem) is

from the point that causes the discontinuity in the limiting distributions of the test statistics. Al-

though the key nuisance parameter cannot be consistently estimated under the drifting sequences

in (2.16), it is still possible to construct an asymptotically valid confidence set for it and then

construct adaptive CVs that control the asymptotic size.
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Table 1. Asymptotic rejection probabilities (in %) for α = .05 under homoskedasticity.

T1 Std Normal CV BS-independent BS-dependent

κho \ β .05 .1 .2 .5 .05 .1 .2 .5 .05 .1 .2 .5

.001 100 95.0 85.1 55.1 97.6 92.7 82.9 53.5 6.6 6.6 6.6 6.5

.1 95.5 90.4 80.2 50.8 93.9 88.3 77.5 48.9 6.6 6.6 6.6 6.5

.5 60.1 50.3 39.0 22.3 55.8 45.4 34.3 19.4 6.6 6.6 6.6 6.5

1 27.6 21.8 16.1 9.7 24.7 18.4 12.9 7.7 6.6 6.6 6.5 5.9

2 10.8 9.1 7.7 6.1 10.0 8.2 6.6 5.1 6.0 5.9 5.6 5.2

10 5.3 5.2 5.1 5.1 5.3 5.1 5.1 5.1 5.1 5.1 5.1 5.1

T2 Std Normal CV BS-independent BS-dependent

κho \ τ 1 .5 .25 .1 1 .5 .25 .1 1 .5 .25 .1

.001 96.2 90.7 83.8 63.3 96.1 90.4 83.4 60.7 6.3 6.3 6.3 6.2

.1 83.1 71.5 61.2 48.3 82.6 70.8 60.2 47.1 6.3 6.3 6.3 6.2

.5 38.3 28.5 22.2 16.8 36.3 26.1 20.0 15.2 6.3 6.3 6.3 6.2

1 15.9 12.0 9.8 8.1 14.5 10.3 8.2 6.9 6.1 6.0 5.8 5.6

2 7.7 6.6 6.1 5.7 7.1 6.0 5.5 5.2 5.5 5.4 5.2 5.2

10 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1

Note: “T1” and “T2” denote the Hausman-type two-stage test statistic and Hansen (2017)’s shrinkage test statistic,

respectively. The results are based on 1,000,000 simulation replications.

First, we will construct a size-corrected wild bootstrap CV by using the wild bootstrap CVs

with the independent transformation and Bonferroni bounds. Note that although the localization

parameter h1 cannot be consistently estimated, we may still construct an asymptotically valid con-

fidence set for h1 by defining ĥn,1 = n1/2â, where â = (ṽ′ṽ)−1
ṽ′y. A confidence set of h1 can be

constructed by using the fact that under the drifting parameter sequences,

ĥn,1 →d h̃1 ∼ N
(

h1,
(

h′21h24h21

)−2
h′21h22h21 +h−2

25 h23

)

. (3.3)

Then, uniformly valid size-corrected bootstrap CVs for testing H0 : θ = θ 0 under the two-

stage or shrinkage procedure can be constructed by using Bonferroni bounds: we may con-

struct a 1− (α − δ ) level first-stage confidence set for h1, and then take the maximal (1− δ )-

th quantile of appropriately generated bootstrap statistics over the first-stage confidence set.

Specifically, let ĥn,2 =
(

ĥ′n,21,vec(ĥn,22)
′, ĥn,23,vec(ĥn,24)

′, ĥn,25

)′
be a consistent estimator of

h2 = (h′21,vec(h22)
′,h23,vec(h24)

′,h25)
′
, and define the 1− (α − δ ) level confidence set of h1 for

some 0 < δ ≤ α < 1 as CI
α−δ

(ĥ
n,1) =

[

ĥn,1 − z1−(α−δ )/2 ·
(

nV̂a

)1/2
, ĥn,1 + z1−(α−δ )/2 ·

(

nV̂a

)1/2
]

,

where V̂a is defined in (2.4). The bootstrap simple Bonferroni critical value (SBCV) is defined as

cB−S
l (α,α −δ , ĥn,1, ĥn,2) = sup

h1∈CI
α−δ

(ĥn,1)

c∗
l,(h1,ĥn,2)

(1−δ ), (3.4)

for l ∈ {1,2}, where c∗
l,(h1,ĥ2)

(1−δ ) is the (1−δ )-th quantile of the distribution of T ∗
l,n,(h1,ĥn,2)

(θ 0),
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i.e., the distribution of the bootstrap analogue of Tl,n(θ 0) generated under the value of localization

parameter equal to h1.

As we have seen in the previous section, the standard wild bootstrap procedures cannot mimic

well the localization parameter h1, no matter with independent or dependent transformation. There-

fore, attention has to be taken when considering the bootstrap DGP. In particular, we propose to

generate the bootstrap statistics under the localization parameter h1 as follows:

T ∗
1,n,(h1,ĥn,2)

(θ 0) =
∣

∣

∣
T ∗

ols,(h1,ĥn,2)
(θ 0)1

(

H∗
n,(h1,ĥn,2)

≤ χ2
1,1−β

)

+T ∗
2sls(θ 0)1

(

H∗
n,(h1,ĥn,2)

> χ2
1,1−β

)∣

∣

∣
,

T ∗
2,n,(h1,ĥn,2)

(θ 0) =
∣

∣

∣
T ∗

ols,(h1,ĥn,2)
(θ 0)w

(

H∗
n,(h1,ĥn,2)

)

+T ∗
2sls(θ 0)

(

1−w
(

H∗
n,(h1,ĥn,2)

))∣

∣

∣
, (3.5)

where T ∗
ols,(h1,ĥn,2)

(θ 0) and H∗
n,(h1,ĥn,2)

are the bootstrap analogues of Tols(θ 0) and Hn, respectively,

evaluated at the value of localization parameter equal to h1. More precisely, to obtain these boot-

strap analogues, we first generate the bootstrap counterparts of the OLS and regression endogeneity

parameter estimators under h1:

θ̂
∗
ols,(h1,ĥn,2)

= θ̂
∗
ols +

(

ĥ′n,21ĥn,24ĥn,21 + ĥn,25

)−1
ĥn,25

(

n−1/2h1

)

, â∗
(h1,ĥn,2)

= â∗+n−1/2h1, (3.6)

where θ̂
∗
ols and â∗ are generated by the standard wild bootstrap procedure in Section 3.1 with in-

dependent transformation of disturbances, so that θ̂
∗
ols and â∗ have localization parameter equal to

zero in the bootstrap world. By doing so,
√

n
(

θ̂
∗
ols,(h1,ĥn,2)

−θ 0

)

and
√

nâ∗
(h1,ĥn,2)

have appropriate

null limiting distribution conditional on the data. Then, we obtain

T ∗
ols,(h1,ĥn,2)

(θ 0) = (θ̂
∗
ols,(h1,ĥn,2)

−θ 0)/V̂
∗1/2
ols , H∗

n,(h1,ĥn,2)
= â∗

2

(h1,ĥn,2)
/V̂ ∗

a , (3.7)

and we can show that the following (conditional) convergence in distribution holds:





T ∗
ols,(h1,ĥn,2)

(θ 0)

H∗
n,(h1,ĥn,2)



→d∗





(h′21h22h21 +h23)
−1/2 (h′21ψ∗

Ze +ψ∗
ve +h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1 (
−(h′21h24h21)

−1h′21ψ∗
Ze +h−1

25 ψ∗
ve +h1

)2



 ,

in probability P, where ψ∗
Ze and ψ∗

ve are the bootstrap analogues of ψZe and ψve, respectively.

This implies that T ∗
1,n,(h1,ĥn,2)

(θ 0) and T ∗
2,n,(h1,ĥn,2)

(θ 0), the resulting bootstrap counterparts of the

two-stage and shrinkage test statistics, have the desired null limiting distributions evaluated at the

value of localization parameter equal to h1 (different from the results obtained in Theorem A.5).

As seen from (3.4), the bootstrap SBCV equals the maximal quantile c∗
l,(h1,ĥn,2)

(1− δ ) over

the values of the localization parameter h1 in the set CI
α−δ

(ĥn,1). We can now state the following

asymptotic size result for cB−S
l (α,α −δ , ĥn,1, ĥn,2), where l ∈ {1,2}.

Theorem 3.1 Suppose that H0 holds, then we have for any 0 < δ ≤ α < 1 and for l ∈ {1,2},

AsySz
[

cB−S
l (α,α −δ , ĥn,1, ĥn,2)

]

≤ α.
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Theorem 3.1 states that tests based on cB−S
l (α,α −δ , ĥn,1, ĥn,2) control the asymptotic size. In

practice, cB−S
l (α,α −δ , ĥn,1, ĥn,2) can be obtained by using the following algorithm.

Wild Bootstrap Algorithm for cccB-S
lll

(((α,,,α −−−δ ,,, ĥhh
n,1
,,, ĥhh

n,2
))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
ols , θ̂

∗(b)
2sls , â

∗(b),V̂ ∗(b)
ols ,V̂

∗(b)
2sls ,V̂

∗(b)
a

}

,b = 1, ...,B, using

the standard wild bootstrap procedure with independent transformation of disturbances.

2. Choose α , δ , and compute CI
α−δ

(ĥn,1). Create a fine grid for CI
α−δ

(ĥn,1) and call it C grid
α−δ

.

3. For l ∈ {1,2} and for h1 ∈ C grid
α−δ

, generate T
∗(b)

l,n,(h1,ĥn,2)
(θ 0), b = 1, ...,B, using the bootstrap

statistics generated in Step 1. The same set of
{

θ̂
∗(b)
ols , θ̂

∗(b)
2sls , â

∗(b),V̂ ∗(b)
ols ,V̂

∗(b)
2sls ,V̂

∗(b)
a

}

,b =

1, ...,B, can be used repeatedly for each h1.

4. Compute c∗
l,(h1,ĥn,2)

(1−δ ), the (1−δ )-th quantile of the distribution of T ∗
l,n,(h1,ĥ2)

(θ 0) from

these B draws of bootstrap samples.

5. Find cB−S
l (α,α −δ , ĥ

n,1 , ĥn,2) = sup
h1∈C

grid

α−δ

c∗
l,(h1,ĥn,2)

(1−δ ).

Note that as shown in Theorem 3.1, although controlling the asymptotic size, the bootstrap

SBCV may yield a conservative test whose asymptotic size does not reach its nominal level. For

further refinement on the Bonferroni bounds, we propose a size-adjustment method to adjust the

bootstrap SBCV so that the resulting test is not conservative with asymptotic size exactly equal to

α . Specifically, for l ∈ {1,2}, the size-adjustment factor for the bootstrap SBCV is defined as:

η̂ l,n = inf

{

η : sup
h1∈H1

P∗
[

T ∗
l,n,(h1,ĥn,2)

(θ 0)> cB−S
l (α,α −δ , ĥ∗n,1(h1), ĥn,2)+η

]

≤ α

}

, (3.8)

where ĥ∗n,1(h1) denotes the bootstrap analogue of ĥn,1 with localization parameter equal to h1 and

is generated by the same bootstrap samples as those for T ∗
n,(h1,ĥn,2)

(θ 0). More precisely, we define

ĥ∗n,1(h1) = ĥ∗n,1 +h1, (3.9)

where ĥ∗n,1 = n1/2â∗ =
(

v̂∗′MX∗ v̂∗
)−1

v̂∗′MX∗y∗, v̂∗ = MZX∗, is generated by the standard wild boot-

strap procedure with independent transformation so that the localization parameter equals zero in

the bootstrap world. Notice that we have the following convergence in distribution (jointly with the

other bootstrap statistics), ĥ∗n,1(h1) →d∗
N
(

h1,
(

h′21h24h21

)−2
h′21h22h21 + h−2

25 h23

)

, in probability

P, i.e., the same limiting distribution as that of ĥn,1 in (3.3).

The goal of the size-adjustment method is to decrease the bootstrap SBCV as much as possible

by using the factor η while not violating the inequality in (3.8), so that the asymptotic size of the
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resulting tests can be controlled. Then, the bootstrap size-adjusted CV (BACV) can be defined as

cB−A
l (α,α −δ , ĥn,1, ĥn,2) = cB−S

l (α,α −δ , ĥn,1, ĥn,2)+ η̂ l,n for l ∈ {1,2}, (3.10)

and one can expect that relatively small η̂ l,n results in relatively less conservative (and more power-

ful) test. Under a proper algorithm for the size-adjustment method, and given some fixed α ∈ (0,1)

and δ ∈ (0,α], the size-adjustment factor η̂ l,n(·) is continuous as a function of ĥ∗n,1(h1). Further-

more, we notice that the bootstrap-based size-adjustment method in (3.10) is in the same spirit

as the adjusted Bonferroni CV proposed in McCloskey (2017, Section 3.2), which is based on

adjusting the quantile level of the underlying localized quantile in the simple Bonferroni CV.

Below we state the theorem on the uniform size control of the wild bootstrap CVs based on

the size-adjustment method, and we assume a continuity condition on the NRP function, follow-

ing similar continuity assumptions in Andrews and Cheng [2012, p.2195, Assumption Rob2(i)]

and Han and McCloskey [2019, p.1052, Assumption DF2(ii)]. Define cB−S
l (α,α − δ , h̃1,h2) =

suph1∈CIα−δ (h̃1)
cl,h(1− δ ), where cl,h(1− δ ) is the (1− δ )-th quantile of T̃l,h and T̃l,h is the weak

limit of Tl,n(θ 0) under the sequence {γn,h} ⊂ Γ satisfying (2.16) for l ∈ {1,2}.

Assumption 3.2 P
[

T̃l,h = cB−S
l (α,α −δ , h̃1,h2)+η

]

= 0, ∀h1 ∈ H1 and η ∈ [−cB−S
l (α,α −

δ , h̃1,h2),0], where l ∈ {1,2}.

Theorem 3.3 Suppose that H0 and Assumption 3.2 hold, then we have for any 0 < δ ≤ α < 1 and

for l ∈ {1,2}: AsySz
[

cB−A
l (α,α −δ , ĥn,1, ĥn,2)

]

= α.

Furthermore, let CSl,n(1−α) denote the nominal level 1−α confidence set for θ constructed

by collecting all the values of θ that cannot be rejected by the corresponding size-adjusted two-

stage or shrinkage test at nominal level α .

Corollary 3.4 Suppose that Assumption 3.2 holds, then we have for any 0 < δ ≤ α < 1 and for

l ∈ {1,2}: liminfn→∞ infγ ∈ Γ P
θ ,γ

[

θ ∈CSl,n(1−α)
]

= 1−α.

Theorem 3.3 shows that cB−A
l (α,α −δ , ĥn,1, ĥn,2) yield two-stage and shrinkage tests with the

correct asymptotic size, and Corollary 3.4 states that the confidence sets constructed from inverting

these tests have correct asymptotic coverage probability.10 To implement such size-adjusted tests

in practice, we must compute cB−S
l (α,α − δ , ĥ

n,1 , ĥn,2) and η̂ l,n. These values can be computed

sequentially starting with cB−S
l (α,α − δ , ĥn,1, ĥn,2). Then the size-adjustment factor η̂ l,n can be

computed by evaluating (3.8) over a fine grid of H1 as follows.

Wild Bootstrap Algorithm for cccB-A
lll

(((α,,,α −−−δ ,,, ĥhh
n,1
,,, ĥhh

n,2
))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
ols , θ̂

∗(b)
2sls , â

∗(b),V̂ ∗(b)
ols ,V̂

∗(b)
2sls ,V̂

∗(b)
a , ĥ

∗(b)
n,1

}

,b = 1, ...,B,

using the standard wild bootstrap procedure with independent transformation.

10Also see, e.g., Section 6 in Davidson and MacKinnon (2010) and Section 3.5 in Roodman, Nielsen, MacKinnon

and Webb (2019) for detailed guidance on constructing confidence set from inverting a wild bootstrap test.
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2. For l ∈ {1,2}, let cB−S
l (α,α −δ , ĥn,1, ĥn,2) be the obtained SBCV.

3. Create a fine grid of the set H1 in (3.8) and call it H
grid

1 . For l ∈ {1,2} and

for each h1 ∈ H
grid

1 , obtain T
∗(b)

l,n,(h1,ĥn,2)
(θ 0) and cB−S

l (α,α − δ , ĥ
∗(b)
n,1 (h1), ĥn,2), b =

1, ...,B, using the bootstrap statistics generated in Step 1. Note that the same set of
{

θ̂
∗(b)
ols , θ̂

∗(b)
2sls , â

∗(b),V̂ ∗(b)
ols ,V̂

∗(b)
2sls ,V̂

∗(b)
a , ĥ

∗(b)
n,1

}

,b = 1, ...,B, can be used for each h1.

4. Create a fine grid of [−cB−S
l (α,α −δ , ĥn,1, ĥn,2), 0] and call it S

grid
.

5. Find all η ∈ S
grid

s.t. sup
h1∈H

grid
1

1
B ∑

B
b=11

[

T
∗(b)

l,n,(h1,ĥn,2)
(θ 0)> cB−S

l (α,α −δ , ĥ
∗(b)
n,1 (h1), ĥn,2)+η

]

≤

α, and set η̂ l,n equal to the smallest η .

6. The BACV is given by cB−A
l (α,α −δ , ĥn,1, ĥn,2) = cB−S

l (α,α −δ , ĥn,1, ĥn,2)+ η̂ l,n.

Remarks

1. We emphasize that ĥ∗n,1(h1) needs to be generated simultaneously with T ∗
l,n,(h1,ĥn,2)

(θ 0) using

the same bootstrap samples, so that the dependence structure between the statistics Tl,n(θ 0) and ĥn,1

is well mimicked by the bootstrap statistics. This is important for the size-adjustment procedure

to correct the conservativeness of the Bonferroni bound. Similarly, for the implementation of

the size-adjustment, one cannot replace cB−S
l (α,α − δ , ĥ∗n,1(h1), ĥn,2) in (3.8) with cB−S

l (α,α −
δ , ĥn,1, ĥn,2), as it also breaks down the dependence structure.

2. We note that the computational cost of the proposed size-corrected wild bootstrap procedures

is not very high. In particular, the same bootstrap samples can be used in the algorithms for

constructing cB−S
l (α,α − δ , ĥn,1, ĥn,2) and cB−A

l (α,α − δ , ĥn,1, ĥn,2): there is no need to generate

a new set of bootstrap samples to implement the size-correction method in (3.8). Moreover, the

same set of bootstrap statistics
{

θ̂
∗(b)
ols , θ̂

∗(b)
2sls , â

∗(b),V̂ ∗(b)
ols ,V̂

∗(b)
2sls ,V̂

∗(b)
a

}

,b = 1, ...,B, can be used

repeatedly for each value of localization parameter h1 ∈ C
grid

α−δ
when constructing the localized

quantiles c∗
l,(h1,ĥn,2)

(1− δ ) in Step 3 of the algorithm for cB−S
l (α,α − δ , ĥn,1, ĥn,2). Similarly, the

same set of bootstrap statistics can be used repeatedly for each h1 ∈ H
grid

1 when evaluating the

size-adjustment factor in Step 3 of the algorithm for cB−A
l (α,α −δ , ĥn,1, ĥn,2).

3.3. Extension to Clustered Data

Many applications in economics involve error terms that are correlated within clusters (e.g., see

Cameron and Miller (2015) and the references therein), and various studies in the literature on

cluster-robust inference recommend to use wild cluster bootstrap as a way to obtain more accurate

inference, including Cameron et al. (2008), MacKinnon and Webb (2017), Djogbenou et al. (2019),

and MacKinnon, Nielsen and Webb (2020), among others. However, by using similar arguments

as those for the IV model with heteroskedastic errors, we can show that the standard wild cluster

bootstrap is invalid in the current context for the two-stage testing and shrinkage procedures. In
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this section, we extend the size-corrected wild bootstrap procedure proposed in Section 3.2 to the

case with clustered samples.

To proceed, consider the following linear IV model with clustered data:

yg = Xgθ +ug, Xg = Zgπ + vg, (3.11)

where yg = (yg1, ...,ygng
)′, Xg = (Xg1, ...,Xgng

)′, and Zg = (Zg1, ...,Zgng
)′ denote an ng × 1 vector

of dependent variables, an ng × 1 vector of endogenous regressors, and an ng × k matrix of in-

struments for the g-th cluster. Let G denote the number of clusters and n denote the total number

of observations. Similar to the case with heteroskedastic data, we can define the extended re-

gression yg = Xgθ + vgac + eg, where ac =
(

n−1 ∑
G
g=1 EF [v

′
gvg]
)−1(

n−1 ∑
G
g=1 EF [v

′
gug]

)

, and the

corresponding cluster-robust test statistic for the null of exogeneity Hc
a : ac = 0 takes the form

Hc
n = (âc)2/V̂ c

a , (3.12)

where V̂ c
a = (n−1ṽ′ṽ)−1

(

n−2 ∑
G
g=1 ṽ′gêgê′gṽg

)

(n−1ṽ′ṽ), âc = (ṽ′ṽ)−1ṽ′y, ṽ′ṽ = ∑
G
g=1 ṽ′gṽg, and ṽ′y =

∑
G
g=1 ṽ′gyg. In addition, we define V̂ c

2sls and V̂ c
ols following those in the heteroskedastic case.11

Then, the cluster-robust t-test statistics T c
ols(θ 0), T c

2sls(θ 0), the two-stage test statistic T c
1,n(θ 0) and

the shrinkage test statistic T c
2,n(θ 0) can be defined according to the definitions in Section 2.1.

For the case with clustered data, define the vector of nuisance parameters γc = (γc
1,γ

c
2,γ

c
3) by

γc
1 = ac

(

γc′
21γc

22γc
21

(γc′
21γc

24γc
21)

2
+ γc

23γc−2
25

)−1/2

, γc
2 = (γc

21,γ
c
22,γ

c
23,γ

c
24,γ

c
25), γc

3 = F, (3.13)

and the corresponding parameter space by Γ c = {γc = (γc
1,γ

c
2,γ

c
3) : γc

1 ∈ Γ c
1 ,γ

c
2 ∈ Γ c

2 ,γ
c
3 ∈

Γ c
3 (γ

c
1,γ

c
2)}, where

Γ c
1 = R, Γ c

2 =
{

(γc
21,γ

c
22,γ

c
23,γ

c
24,γ

c
25) : γc

21 = π ∈ R
k,γc

22 = µn

(

n−2
G

∑
g=1

EFZ′
gege′gZg

)

∈ R
k×k,

γc
23 = µn

(

n−2
G

∑
g=1

EFv′gege′gvg

)

∈ R,γc
24 = n−1

G

∑
g=1

EFZ′
gZg ∈ R

k×k,γc
25 = n−1

G

∑
g=1

EFv′gvg ∈ R,

s.t. ‖γc
21‖ ≥ κ,λ min(γ

c
22)≥ κ,γc

23 > 0,λ min(γ
c
24)≥ κ, and γc

25 > 0
}

, (3.14)

for some κ > 0 that does not depend on n, and {µn} is a non-random sequence, which plays

the similar role as that used in Djogbenou et al. (2019) and is needed because different from the

11Specifically, we define V̂ c
ols = (n−1X ′X)−1

(

n−2 ∑
G
g=1 X ′

gûg(θ̂ ols)û
′
g(θ̂ ols)Xg

)

(n−1X ′X)−1, ûg

(

θ̂
c

ols

)

= yg −

Xgθ̂
c

ols, V̂ c
2sls = (n−1X ′PZX)−1π̂ ′

(

n−2 ∑
G
g=1 Z′

gûg(θ̂ 2sls)û
′
g(θ̂ 2sls)Zg

)

π̂(n−1X ′PZX)−1, ûg

(

θ̂
c

2sls

)

= yg−Xgθ̂
c

2sls, where

X ′X = ∑
G
g=1 X ′

gXg, Z′Z = ∑
G
g=1 Z′

gZg, Z′X = ∑
G
g=1 Z′

gXg and π̂ = (Z′Z)−1Z′X , with θ̂
c

2sls and θ̂
c

ols denoting the 2SLS

and OLS estimators under the clustered sample, respectively.
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model with heteroskedastic errors, the rate of convergence of the estimators θ̂
c

ols, θ̂
c

2sls, and âc

under clustering depends on various factors such as the regressor X , the instruments Z, the relative

cluster size, and the intra-cluster correlation [also see Hansen and Lee (2019, Section 4) for related

discussions]. As pointed out by Djogbenou et al. (2019), the sequence {µn} can be interpreted as

the rate at which information accumulates, and because of the studentization of the test statistics,

{µn} needs not to be known in practice, but only needs to exist. Similarly, we need to standardize

the nuisance parameter γc
1 in (3.13) so that the size-corrected wild bootstrap procedure can be

implemented under clustering without knowing {µn}.

In addition, Γ c
3 (γ

c
1,γ

c
2) is defined as follows:

Γ c
3 (γ

c
1,γ

c
2) =

{

F : EFe′gvg = EFZ′
geg = EFZ′

gvg = 0, EFZ′
gege′gvg = EFZ′

gvge′gvg = EFZ′
gegv′gZg = 0,

µn

(

n−2
G

∑
g=1

EFZ′
gvgv′gZg

)

∈ R
k×k with λ min

(

µnn−2
G

∑
g=1

EFZ′
gvgv′gZg

)

≥ κ,

∥

∥

∥

∥

∥

sup
g,i

EF

(

||Zgiegi||2+ξ , ||Zgivgi||2+ξ , |vgiegi|2+ξ , ||ZgiZ
′
gi||2+ξ , |Xgi|2(2+ξ )

)′
∥

∥

∥

∥

∥

≤ M
}

, (3.15)

for some constant κ > 0, ξ > 0, M < ∞, and {µn} is the non-random sequence defined above.

We then define the whole nuisance parameter space Γ c of γc as Γ c = {γc = (γc
1,γ

c
2,γ

c
3) : γc

1 ∈
Γ c

1 ,γ
c
2 ∈ Γ c

2 ,γ
c
3 ∈ Γ c

3 (γ
c
1,γ

c
2)}. Similar to the heteroskedastic case, to derive the asymptotic size,

it suffices to study the asymptotic NRP along certain sequence {γc
n,h} for some hc ∈ H c, γc

n,h =

(γc
n,h,1,γ

c
n,h,2,γ

c
n,h,3) satisfies:

µ1/2
n γc

n,h,1 → hc
1, γc

n,h,2 → hc
2, and γc

n,h,3 = Fn ∈ Γ c
3 (γ

c
n,h,1,γ

c
n,h,2). (3.16)

Also following Djogbenou et al. (2019, Assumption 3), we impose a condition on the number

of clusters and the extent of heterogeneity of cluster size ng (see p.396 of their paper for detailed

discussions on this condition).

Assumption 3.5 For {µn} defined in (3.14) and ξ defined in (3.15), G→∞ and µ
2+ξ

2+2ξ
n supg

ng

n
→ 0.

Now we present the algorithm of the wild cluster bootstrap procedure with the independent

transformation that will be used to construct the uniformly valid bootstrap CVs under clustering.

Wild Cluster Bootstrap Algorithm:

1. Given H0 : θ = θ 0, compute the residuals from the first-stage and structural equations: v̂g =

Xg −Zgπ̂, ûg(θ 0) = yg −Xgθ 0, where π̂ = (Z′Z)−1Z′X =
(

∑
G
g=1 Z′

gZg

)−1

∑
G
g=1 Z′

gXg.

2. Generate the cluster-level bootstrap pseudo-data following X∗
g = Zgπ̂ + v∗g, y∗g = X∗

g θ 0 +

u∗g, where v∗g = v̂gω∗
1g, and u∗g = ûg(θ 0)ω

∗
2g, for each g = 1, ...,G, where ω∗

1g and ω∗
2g are
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two random variables that has mean 0 and variance 1, are independent from the data and

independent from each other.

3. Compute
{

θ̂
c∗
ols, θ̂

c∗
2sls, â

c∗,V̂ c∗
ols,V̂

c∗
2sls,V̂

c∗
a

}

by the bootstrap samples generated in Step 2.

Then, we may generate the bootstrap test statistics under hc
1 as follows:

T c∗
ols,(hc

1,ĥ
c
n,2)

(θ 0) =
(

θ̂
c∗
ols −θ 0

)

/V̂
c∗1/2
ols +

(

ĥc′
21ĥc

24ĥc
21 + ĥc

25

)−1
ĥc

25

(

V̂ ∗
a /V̂ ∗

ols

)1/2
hc

1,

Hc∗
n,(hc

1,ĥ
c
n,2)

=
(

ĥc∗
n,1 +hc

1

)2
, (3.17)

where ĥc
n,21 =

(

∑
G
g=1 Z′

gZg

)−1

∑
G
g=1 Z′

gXg, ĥc
n,24 = n−1 ∑

G
g=1 Z′

gZg, ĥc
n,25 = n−1 ∑

G
g=1 v̂′gv̂g, and ĥc∗

n,1 =

âc∗/V̂
c∗1/2
a . T c∗

1,n,(hc
1,ĥ

c
n,2)

(θ 0) and T c∗
2,n,(hc

1,ĥ
c
n,2)

(θ 0), the bootstrap analogues of the two-stage and

shrinkage test statistics evaluated at hc
1, can be obtained subsequently. Notice that because of the

studentization, {µn} is also not needed in the procedure described by (3.17).

Now, let CI
α−δ

(ĥc
n,1) denote the 1−(α −δ ) level confidence set for hc

1 for some 0 < δ ≤ α < 1.

The SBCV for clustered data is defined as

cB−S
l (α,α −δ , ĥc

n,1, ĥ
c
n,2) = sup

hc
1∈CI

α−δ
(ĥc

n,1)

c∗
l,(hc

1,ĥ
c
n,2)

(1−δ ) for l ∈ {1,2}, (3.18)

where c∗
l,(hc

1,ĥ
c
n,2)

(1−δ ) is the (1−δ )-th quantile of the distribution of T ∗
l,n,(hc

1,ĥ
c
n,2)

(θ 0), which is the

bootstrap analogue of T c
l,n(θ 0) generated under the value of localization parameter equal to hc

1. The

specific size-corrected bootstrap algorithm for the SBCV follows closely that for heteroskedastic

data in Section 3.2 and is thus omitted for conciseness. The result for the SBCV is stated below.

Theorem 3.6 Suppose that H0 and Assumption 3.5 hold, then we have for any 0 < δ ≤ α < 1 and

for l ∈ {1,2}, AsySz
[

cB−S
l (α,α −δ , ĥc

n,1, ĥ
c
n,2)
]

≤ α.

For further refinement on the Bonferroni bound, we define the size-adjustment factor η̂c
l,n fol-

lowing (3.8). Then, the BACV for the case with clustered data can be defined as

cB−A
l (α,α −δ , ĥc

n,1, ĥ
c
n,2) = cB−S

l (α,α −δ , ĥc
n,1, ĥ

c
n,2)+ η̂c

l,n. (3.19)

Similarly, its algorithm follows closely that described in Section 3.2.

Let T̃ c
l,h denote the weak limit of T c

l,n(θ 0) under the sequence {γc
n,h} ⊂ Γ c satisfying (3.16)

and define cB−S
l (α,α − δ , h̃c

1,h2) = suphc
1∈CIα−δ (h̃

c
1)

cl,hc(1− δ ), where cl,hc(1− δ ) is the (1− δ )-

th quantile of T̃ c
l,h for l ∈ {1,2}. We assume the following continuity condition, similar to that

assumed in the heteroskedastic case, and Theorem 3.8 shows that the size-adjusted bootstrap CV

achieves correct asymptotic size with clustered samples.
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Assumption 3.7 P
[

T̃ c
l,h = cB−S

l (α,α −δ , h̃c
1,h2)+η

]

= 0, ∀hc
1 ∈ Hc

1 and η ∈ [−cB−S
l (α,α −

δ , h̃c
1,h2),0].

Theorem 3.8 Suppose that H0, Assumptions 3.5 and 3.7 hold, then we have for any 0< δ ≤α < 1

and for l ∈ {1,2}, AsySz
[

cB−A
l (α,α −δ , ĥc

n,1, ĥ
c
n,2)
]

= α.

Furthermore, let CSc
l,n(1−α) denote the 1−α confidence set constructed by collecting all the

value of θ that cannot be rejected by the corresponding test at nominal level α under clustering.

Corollary 3.9 Suppose that Assumptions 3.5 and 3.7 hold, then we have for any 0 < δ ≤ α < 1

and for l ∈ {1,2}: liminfn→∞ infγc ∈ Γ c P
θ ,γc

[

θ ∈CSc
l,n(1−α)

]

= 1−α.

4. Finite sample power performance

In this section, we study the finite-sample power performance of the size-corrected wild bootstrap

procedure by conducting simulations for the linear IV model under conditional heteroskedasticity

or clustering. For all simulations, the number of Monte Carlo replications is set at 5,000, and the

number of bootstrap replications is set at B= 599. We compare the performance of the 2SLS-based

wild bootstrap t-test (without pretest or shrinkage), the two-stage test based on the size-adjusted

wild bootstrap CVs, and the test that is based on Hansen (2017)’s shrinkage apporach and its

corresponding size-adjusted wild bootstrap CVs. We set α = .05 for the CVs of the three tests. In

addition, we set β = .05 for the nominal level of the pretest. The algorithms for the size-adjusted

wild bootstrap CVs are executed with δ = α −α/10 = .045, following the recommendation in

McCloskey (2017). As explained by McCloskey (2017, Section 3.5), this choice of δ tends to

have good power performance in both regions of the parameter space in which the key nuisance

parameter (i.e., γ1 or γc
1 in the current context) is far from zero and those in which it is close to

zero. In Section SA.3 of the Supplementary Material, we provide further simulation results with

other choices of β and δ , which show similar patterns as the results reported here. The shrinkage

parameter τ in Hansen (2017)’s procedure is set to equal 1, 0.5, or 0.25. The random weights for

the wild bootstrap are generated from the standard normal distribution throughout the simulations.

We first study the case with heteroskedastic errors. The simulation model follows the IV model

in (2.1), and the DGP is specified as

(ũi, ε̃ i)
′ ∼ i.i.d. N(0, I2), Zi ∼ i.i.d. N(0,1) and is independent from (ũi, ε̃ i)

′,

ṽi = ρ ũi +(1−ρ2)1/2ε̃ i, ui = f (Zi)ũi, and vi = f (Zi)ṽi, (4.20)

where i = 1, ...,n and f (x) = x2. The sample size is set at n = 200 for the heteroskedastic case. The

true value of θ is equal to zero, the first-stage coefficient is set at π = φ 1/2 · n−1/2, where we let

φ ∈ {2,4,16,64} to characterize different situations of identification strength for θ , and the true

values of the endogeneity parameter are set at ρ ∈ {0.01,0.05,0.1,0.2,0.4,0.6}.
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Figures 2 - 3 show the finite-sample power curves of the tests under heteroskedasticity.

The results with φ ∈ {2,4} are reported in Figures 2 and those with φ ∈ {16,64} are reported

in Figure 3, respectively. We highlight some findings below. First, it is clear that the size-

adjusted bootstrap tests have remarkable power gain over the 2SLS-based bootstrap t-test when

the IV is relatively weak (e.g., φ ∈ {2,4}) and/or when the degree of endogeneity is low (e.g.,

ρ ∈ {0.01,0.05,0.1,0.2,0.4}). Such power gain originates from the inclusion of the OLS-based

t-test in the two-stage and shrinkage test statistics. Second, we notice that the shrinkage bootstrap

tests have power advantage over the two-stage bootstrap test for distant alternative hypotheses.

Third, the shrinkage bootstrap test with τ = 1 typically has the best power performance among the

size-adjusted bootstrap tests. Fourth, when the IV is very strong (φ = 64), the 2SLS-based boot-

strap t-test begins to have power advantage over the size-adjusted bootstrap tests. Furthermore,

the 2SLS bootstrap t-test has some modest size distortions when the degree of endogeneity is high

(ρ = 0.6) and the identification is not strong, but the distortion also disappears when φ = 64. This

is in line with the results obtained in Angrist and Kolesár (2021, Section 3) for the 2SLS t-test

with one IV, which is the leading case in empirical applications [e.g., 101 out of 230 specifications

in Andrews et al. (2019)’s sample and 1,087 out of 1,359 in Young (2020)’s sample only have

one IV]. Angrist and Kolesár (2021) argue that with one IV, the asymptotic size distortions of the

2SLS t-test is typically modest unless endogeneity is very high. For example, the distortion is no

more than 5% if |ρ| < 0.76 even under weak IV. However, although its size is distorted little, its

power may also be rather low due to the weak IV, leading to relatively uninformative empirical

results. On the other hand, in such cases our proposed tests have the advantage of providing power

improvement while controlling the size.12

Then, we study the finite-sample power performance of the three tests under clustering. The

model for the clustering case follows (3.11), and the disturbances (ugi,vgi)
′ consist of idiosyncratic

errors (ũgi, ṽgi)
′ and cluster effects (d̃u,g, d̃v,g)

′, which are specified as

(ũgi, ε̃gi)
′ ∼ i.i.d. N(0, I2), (d̃u,g, d̃ε,g)

′ ∼ i.i.d. N(0, I2), Zgi ∼ i.i.d. N(0,1),

(ũgi, ε̃gi)
′,(d̃u,g, d̃ε,g)

′, and Zgi are independent from each other,

ṽgi = ρ ũgi +(1−ρ2)1/2ε̃gi, d̃v,g = ρ d̃u,g +(1−ρ2)1/2d̃ε,g,

ugi = f (Zgi)(ũgi + d̃u,g), and vgi = f (Zgi)(ṽgi + d̃v,g), (4.21)

where i = 1, ...,ng, g = 1, ...,G, and f (x) = x2. The settings for θ , π , φ , and ρ are the same as those

for the case with heteroskedastic errors. Additionally, we consider two designs with heterogenous

cluster sizes. In design (1), we let n1 = 20 with G1 = 20 (i.e., 20 clusters with cluster-level sample

size equal to 20), n2 = 15 with G2 = 20, n3 = 10 with G3 = 20, and n4 = 5 with G4 = 20, so that

the total number of clusters is G = 80 and the total number of observations is n = 1,000. In Section

SA.3 of the Supplementary Material, we further report the simulation results of design (2).

12In the over-identified case with multiple IVs, the size distortions of the 2SLS-based bootstrap t-test become more

substantial, while our tests typically have much smaller distortions (the simulation results are available upon request).
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Figures 4 - 5 show the finite-sample power curves of the tests under clustering with design (1).

We find that when the identification is not strong and/or the degree of endogeneity is low, the size-

adjusted wild bootstrap tests also exhibit remarkable power gain over the 2SLS-based bootstrap

t-test. Overall, the simulation results show very similar patterns and suggest that our method could

be particularly attractive in the cases where the identification may not be strong so that IV-based

inference methods could suffer from low power but naively using two-stage procedure to select

between the OLS and 2SLS-based t-tests may result in extreme size distortions.

5. Conclusions

We study how to conduct uniformly valid tests for the two-stage and shrinkage procedures in the

IV model with heteroskedastic or clustered data. We first show that standard wild bootstrap pro-

cedures are invalid both conditionally and unconditionally under local endogeneity, although the

one with dependent transformation has much smaller asymptotic size distortions than the one with

independent transformation. Then, we propose a size-corrected wild bootstrap approach, which

makes use of the standard wild bootstrap with independent transformation and a Bonferroni-based

size-correction method. The size-adjustment provides refinement over the Bonferroni bounds so

that the resulting tests achieve correct asymptotic size. We show that the size-corrected wild boot-

strap is uniformly valid under both heteroskedasticity and clustering. Monte Carlo simulations

confirm that our method is able to achieve remarkable power gains over the 2SLS-based bootstrap

t-test, especially when the identification is not strong and/or when the degree of endogeneity is low.

In addition, the size-corrected wild bootstrap test based on Hansen (2017)’s shrinkage approach

has particularly good power performance.
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Figure 2(a): Power of wild bootstrap tests under heteroskedasticity with φ = 2
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Figure 2(b): Power of wild bootstrap tests under heteroskedasticity with φ = 4
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure 3(a): Power of wild bootstrap tests under heteroskedasticity with φ = 16
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Figure 3(b): Power of wild bootstrap tests under heteroskedasticity with φ = 64
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure 4(a): Power of wild bootstrap tests under clustering (design 1) with φ = 2
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Figure 4(b): Power of wild bootstrap tests under clustering (design 1) with φ = 4
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure 5(a): Power of wild bootstrap tests under clustering (design 1) with φ = 16
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Figure 5(b): Power of wild bootstrap tests under clustering (design 1) with φ = 64
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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A. Appendix

This Appendix contains the proofs of the theoretical results for the heteroskedastic case in the pa-

per, and the proofs for the clustering case are given in Section SA.2 of the Supplementary Material.

The following lemma shows that the limiting distribution of n1/2(â− γn,h,1) is the same as that

of
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

under the parameter sequence n1/2γn,h,1 → h1 ∈ R, which implies

that the asymptotic variance of n1/2(â− γn,h,1) under local endogeneity is the same as that under

exogeneity (a = 0).

Lemma A.1 Under the drift sequences of parameters {γn,h} in (2.16) with |h1|< ∞, we have:

n1/2(â− γn,h,1) =
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

+oP(1).

The following lemma gives the limiting distributions of the estimators and test statistics under

the sequences of drifting endogeneity parameter n1/2γn,h,1 → h1 ∈ R.

Lemma A.2 Under the drift sequences of parameters {γn,h} in (2.16) with |h1|< ∞, the following

results hold:

(a) Asymptotic distributions of the estimators:







n1/2â

n1/2(θ̂ ols −θ)

n1/2(θ̂ 2sls −θ)






→d







ψa

ψols

ψ2sls






=







−(h′21h24h21)
−1

h′21ψZe +h−1
25 ψve +h1

(h′21h24h21 +h25)
−1 (h′21ψZe +ψve +h25h1)

(h′21h24h21)
−1

h′21ψZe







where ψa ∼ N
(

h1,
(

h′21h24h21

)−2
h′21h22h21 + h−2

25 h23

)

, ψols ∼ N
(

h25h1/
(

h′21h24h21 +

h25

)

,(h′21h22h21 +h23)/
(

h′21h24h21 +h25

)2
)

, and ψ2sls ∼ N
(

0,
(

h′21h24h21

)−2
h′21h22h21

)

.

(b) Asymptotic distributions of the test statistics:







T2sls(θ 0)

Tols(θ 0)

Hn






→d ηh =







η1,h

η2,h

η3,h







=









(h′21h22h21)
−1/2

h′21ψZe

(h′21h22h21 +h23)
−1/2 (h′21ψZe +ψve +h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

−(h′21h24h21)
−1h′21ψZe +h−1

25 ψve +h1

)2









T1,n(θ 0) →d T̃1,h =
∣

∣

∣η2,h1(η3,h ≤ χ2
1,1−β )+η1,h1(η3,h > χ2

1,1−β )
∣

∣

∣ ,

T2,n(θ 0) →d T̃2,h =
∣

∣η2,hw(η3,h)+η1,h(1−w(η3,h))
∣

∣ ,
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where η1,h ∼ N(0,1), η2,h ∼ N
(

(h′21h22h21 + h23)
−1/2h25h1,1

)

, and η3,h ∼

χ2
1

(

( h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
h2

1

)

.

The proofs for Lemmas A.1-A.2 are given in Section SA.1 of the Supplementary Material.

Lemmas A.3-A.4 are needed for the arguments with regard to the limiting distributions of the

bootstrap analogues of the estimators and test statistics.

Lemma A.3 For the independent bootstrap, suppose that E∗[|ω∗
1i|2+ξ

]

≤C and E∗[|ω∗
2i|2+ξ

]

≤
C; for the dependent bootstrap, suppose that E∗[|ω∗

1i|2(2+ξ )
]

≤ C, for some ξ > 0 and some

large enough constant C. If further EF

[

w
2+ξ
i

]

< ∞ for all wi ∈
{

||Ziui||, ||Zivi||, ||ZiZ
′
i ||, |uivi|

}

and some ξ > 0, then under H0, n−1 ∑
n
i=1 E∗

[

||Ziu
∗
i ||2+ξ

]

, n−1 ∑
n
i=1 E∗

[

||Ziv
∗
i ||2+ξ

]

and

n−1 ∑
n
i=1 E∗

[

|u∗i v∗i |2+ξ
]

are bounded in probability.

PROOF OF LEMMA A.3

The proof is straightforward for n−1 ∑
n
i=1 E∗

[

||Ziu
∗
i ||2+ξ

]

. Indeed, we have

n−1
n

∑
i=1

E∗
[

||Ziu
∗
i ||2+ξ

]

= n−1
n

∑
i=1

E∗
[

||Ziui(θ 0)ω
∗
1i||2+ξ

]

= n−1
n

∑
i=1

E∗
[

||Ziui(θ 0)||2+ξ |ω∗
1i|2+ξ

]

= n−1
n

∑
i=1

||Ziui(θ 0)||2+ξ E∗
[

|ω∗
1i|2+ξ

]

≤Cn−1
n

∑
i=1

||Ziui(θ 0)||2+ξ = OP(1), (A.1)

where the last equality follows from θ = θ 0 under the null hypothesis, EF [||Ziui||2+ξ ] < ∞,

and n−1 ∑
n
i=1 ||Ziui||2+ξ −EF [||Ziui||2+ξ ]→P 0 by Law of Large Numbers (LLN). Now, consider

n−1 ∑
n
i=1 E∗

[

||Ziv
∗
i ||2+ξ

]

. As in (A.1) we have for j = 1 or 2,

n−1
n

∑
i=1

E∗
[

||Ziv
∗
i ||2+ξ

]

= n−1
n

∑
i=1

||Ziv̂i||2+ξ E∗
[

|ω∗
ji|2+ξ

]

≤Cn−1
n

∑
i=1

||Ziv̂i||2+ξ . (A.2)

By using Minkowski and Cauchy-Schwartz inequalities, along with v̂i = vi −Z′
i(π̂ −π), we obtain

n−1
n

∑
i=1

||Ziv̂i||2+ξ = n−1
n

∑
i=1

||Zivi −ZiZ
′
i(π̂ −π)||2+ξ

≤C1

{

n−1
n

∑
i=1

||Zivi||2+ξ + ||π̂ −π||2+ξ n−1
n

∑
i=1

||ZiZ
′
i ||2+ξ

}

= OP(1), (A.3)

where C1 denotes some large enough constant, and (A.3) holds because π̂ − π →P 0,

EF

[

||Zivi||2+ξ
]

< ∞, EF

[

||ZiZ
′
i ||2+ξ

]

< ∞, n−1 ∑
n
i=1 ||Zivi||2+ξ − EF

[

||Zivi||2+ξ
]

→P 0 and

n−1 ∑
n
i=1 ||ZiZ

′
i ||2+ξ − EF

[

||ZiZ
′
i ||2+ξ

]

→P 0 by LLN. Therefore, n−1 ∑
n
i=1 E∗

[

||Ziv
∗
i ||2+ξ

]

is

bounded in probability from (A.2)-(A.3).
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We now show that n−1 ∑
n
i=1 E∗

[

|u∗i v∗i |2+ξ
]

is bounded in probability. For j = 1 or 2, we have

n−1
n

∑
i=1

E∗
[

|u∗i v∗i |2+ξ
]

= n−1
n

∑
i=1

E∗
[

|ui(θ 0)v̂i|2+ξ |ω∗
1iω

∗
ji|2+ξ

]

= n−1
n

∑
i=1

|ui(θ 0)v̂i|2+ξ E∗[|ω∗
1iω

∗
ji|2+ξ

]

. (A.4)

Note that j = 2 for the wild bootstrap scheme with independent transformation, so that

E∗[|ω∗
1iω

∗
ji|2+ξ

]

= E∗[|ω∗
1iω

∗
2i|2+ξ

]

= E∗[|ω∗
1i|2+ξ

]

E∗[|ω∗
2i|2+ξ

]

≤ C2 for some large enough

constant C2. For the wild bootstrap scheme with dependent transformation, j = 1, and we have

E∗[|ω∗
1iω

∗
ji|2+ξ

]

= E∗[|ω∗
1i|2(2+ξ )

]

≤ C. Combining both cases into (A.4) along with the fact

that ui(θ 0)v̂i = ui(θ 0)vi −ui(θ 0)Z
′
i(π̂ −π), θ = θ 0 under the null hypothesis, EF ||Ziui||2+ξ < ∞,

EF |uivi|2+ξ < ∞, and by using the arguments with Minkowski and Cauchy-Schwartz inequalities,

we have

n−1
n

∑
i=1

E∗
[

|u∗i v∗i |2+ξ
]

≤ C3

{

n−1
n

∑
i=1

|ui(θ 0)vi|2+ξ + ||π̂ −π||2+ξ n−1
n

∑
i=1

||Ziui(θ 0)||2+ξ

}

= OP(1),

for some large enough constants C3.

Lemma A.4 Suppose that H0 holds, the conditions of Lemma A.3 are satisfied, E∗[ω∗
1i] =

E∗[ω∗
2i] = 0, and Var∗[ω∗

1i] = Var∗[ω∗
2i] = 1. For the dependent bootstrap, further suppose that

E∗[ω∗3
1i ] = 0 and E∗[ω∗4

1i ] = 1. Then, under the sequence {γn,h} defined in (2.16) with |h1|< ∞ we

have:

(

n−1/2Z
′
u∗

n−1/2
(

u∗
′
v∗−E∗

[

u∗
′
v∗
])

)

→d∗
(

ψ∗
ze

ψ∗
ve

)

∼ N

(

0,

(

h22 0

0′ h23

))

, (A.5)

in probability P.

PROOF OF LEMMA A.4

Let c1 denote k-dimensional nonzero vectors, and c2 denote a nonzero scalar. Define

U∗
n,i =

{

c′1u∗i Zi + c2 (u
∗
i v∗i −E∗[u∗i v∗i ])

}

/
√

n

=
{

c′1ω∗
1iûi(θ 0)Zi + c2

(

ûi(θ 0)v̂iω
∗
1iω

∗
ji −E∗[ûi(θ 0)v̂iω

∗
1iω

∗
ji]
)}

/
√

n, (A.6)

where j = 1 for the dependent bootstrap scheme and j = 2 for the independent bootstrap scheme.

It suffices to verify that the conditions of the Liapounov CLT hold for U∗
n,i. For brevity, we shall

focus on the proof for the case with independent transformation (i.e., j = 2). Note that the proof

for the case with dependent transformation ( j = 1) follows similar steps.

(a) We have E∗[U∗
n,i] = 0 as E

∗
[ω∗

1iûi(θ 0)Zi] = ûi(θ 0)ZiE
∗
[ω∗

1i] = 0, and E
∗
[ûi(θ 0)v̂iω

∗
1iω

∗
2i −
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E∗[ûi(θ 0)v̂iω
∗
1iω

∗
2i]] = ûi(θ 0)v̂iE

∗
[ω∗

1iω
∗
2i]− ûi(θ 0)v̂iE

∗[ω∗
1iω

∗
2i] = 0.

(b) Note that

E
∗
[u∗

2

i ZiZ
′
i ] = E

∗
[û2

i (θ 0)ω
∗2

1i ZiZ
′
i ] = û2

i (θ 0)ZiZ
′
iE

∗
[ω∗2

1i ] = û2
i (θ 0)ZiZ

′
i ,

E
∗
[u∗

2

i v∗
2

i ] = E
∗
[û2

i (θ 0)v̂
2
i ω∗2

1i ω∗2

2i ] = û2
i (θ 0)v̂

2
i E

∗
[ω∗2

1i ω∗2

2i ] = û2
i (θ 0)v̂

2
i E

∗
[ω∗2

1i ]E
∗[ω∗2

2i ] = û2
i (θ 0)v̂

2
i ,

E
∗
[u∗

2

i v∗i Zi] = E
∗
[û2

i (θ 0)v̂iZiω
∗2

1i ω∗
2i] = û2

i (θ 0)v̂iZiE
∗
[ω∗2

1i ω∗
2i] = û2

i (θ 0)v̂iZiE
∗
[ω∗2

1i ]E
∗[ω∗

2i] = 0,

which implies that under H0,

n

∑
i=1

E∗[U∗2

n,i] = c′1

(

n−1
n

∑
i=1

û2
i (θ 0)ZiZ

′
i

)

c1 + c2
2

(

n−1
n

∑
i=1

û2
i (θ 0)v̂

2
i

)

= c′1h22c1 + c2
2h23 +oP(1) = OP(1).

(A.7)

(c) We note that by Minkowski inequality, for some ξ > 0 and some large enough constant C4,

n

∑
i=1

E∗[
∣

∣U∗
n,i

∣

∣

2+ξ
]≤C4n−

ξ
2 n−1

n

∑
i=1

E∗
[

∣

∣c′1Z∗
i u∗i
∣

∣

2+ξ
+ |c2u∗i v∗i |2+ξ

]

→P 0, (A.8)

where the convergence in probability is obtained by using Lemma A.3.

From (a)-(c) above, U∗
n,i satisfies the Lyapunov CLT conditions, and the result of Lemma A.4

follows for the independent bootstrap. For the dependent bootstrap, notice that for (b),

E
∗
[u∗

2

i v∗
2

i ] = û2
i (θ 0)v̂

2
i E

∗
[ω∗4

1i ] = û2
i (θ 0)v̂

2
i , and E

∗
[u∗

2

i v∗i Zi] = û2
i (θ 0)v̂iZiE

∗
[ω∗3

1i ] = 0, (A.9)

and the desired result follows.

In the following theorem, we give the results of bootstrap inconsistency for the two-stage and

shrinkage tests under local endogeneity. For this purpose, we notice that there are two sources of

randomness in the bootstrap: the randomness from the original data and the randomness from the

bootstrap procedure (i.e., the random weights of the wild bootstrap). Specifically, take the original

sample as from the probability space (Ω ,F ,P). In addition, suppose the randomness from the

bootstrap is defined on a probability space (Λ ,G ,P∗), which is independent of (Ω ,F ,P). Then, in

the following theorem we view the bootstrap statistics as being defined on the product probability

space (Ω ,F ,P)× (Λ ,G ,P∗) = (Ω ×Λ ,F ×G ,P), where P = P×P∗. Theorem A.5 gives the

null limiting distributions of the bootstrap statistics under P. In particular, this framework is needed

to characterize the asymptotic behaviour of the bootstrap statistics generated under the dependent

transformation of disturbances.

Theorem A.5 Suppose that H0 and the conditions of Lemmas A.3 and A.4 hold. Then, under the
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sequence {γn,h} defined in (2.16) with |h1|< ∞:







T ∗
2sls(θ 0)

T ∗
ols(θ 0)

H∗
n






 η∗

h ≡







η∗
1,h

η∗
2,h

η∗
3,h






=









(h′21h22h21)
−1/2

h′21ψ∗
Ze

(h′21h22h21 +h23)
−1/2 (

h′21ψ∗
Ze +ψ∗

ve +h25hb
1

)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

−(h′21h24h21)
−1h′21ψ∗

Ze +ψ∗
ve +hb

1

)2









,

T ∗
1,n(θ 0)  T̃ ∗

1,h =
∣

∣

∣η∗
2,h1(η

∗
3,h ≤ χ2

1,1−β )+η∗
1,h1(η

∗
3,h > χ2

1,1−β )
∣

∣

∣ ,

T ∗
2,n(θ 0)  T̃ ∗

2,h =
∣

∣η∗
2,hw(η∗

3,h)+η∗
1,h(1−w(η∗

3,h))
∣

∣ ,

where hb
1 = 0 for the bootstrap based on independent transformation of disturbances, and hb

1 = h1+h−1
25 ψve

with ψve ∼ N(0,h23), for the bootstrap based on dependent transformation of disturbances, and signifies

the weak convergence under P.

PROOF OF THEOREM A.5

First, we note that

n−1X∗′PZX∗ = n−1 (Zπ̂ + v∗)′PZ (Zπ̂ + v∗) = n−1π̂ ′Z
′
Zπ̂ +n−1π̂ ′Z

′
v∗+n−1v∗

′
Zπ̂ +n−1v∗

′
PZv∗

= n−1π̂ ′Z
′
Zπ̂ +oP∗(1)→P∗

h
′
21h24h21, in probability P, (A.10)

which follows from π̂ −h21 →P 0, n−1Z′Z−h24 →P 0, and n−1Z′v∗ →P∗
0 in probability P. Using

similar arguments, we obtain

n−1X∗′X∗ →P∗
h
′
21h24h21 +h25, (A.11)

in probability P. Furthermore, using similar arguments as those for V̂a, V̂ols and V̂2sls in the proof

of Lemma A.2, we obtain

nV̂ ∗
a →P∗

(h
′
21h24h21)

−2h
′
21h22h21 +h−2

25 h23, nV̂ ∗
ols →P∗

(h
′
21h24h21 +h25)

−2
(

h
′
21h22h21 +h23

)

,

nV̂ ∗
2sls →P∗ (

h
′
21h24h21

)−2
h
′
21h22h21, (A.12)

in probability P.

Second, we note that

n−1/2X∗′PZu∗ = n−1/2 (Zπ̂ + v∗)′PZu∗ = n−1/2π̂ ′Z
′
u∗+

(

n−1v∗
′
Z
)(

n−1Z
′
Z
)−1(

n−1/2Z
′
u∗
)

= n−1/2π̂ ′Z
′
u∗+oP∗(1)→d∗

h′21ψ∗
Ze, (A.13)

in probability P, where the last equality follows from: (a) by Lemma A.4, n−1/2Z
′
u∗ = OP∗(1) in

probability P; (b) n−1Z′v∗ →P∗
0 in probability P as E∗[n−1Z′v∗] = 0; (c) n−1Z

′
Z →P h24, which

is positive definite, and therefore
(

n−1Z
′
Z
)−1

→P h−1
24 . Then, the (conditional) convergence in

distribution in (A.10) follows from Lemma A.4, along with the fact that π̂ −h21 →P 0.

Third, following the same arguments as above, we have n−1/2X∗′u∗ = n−1/2π̂ ′Z
′
u∗ +
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n−1/2
(

v∗
′
u∗−E∗[v∗

′
u∗]
)

+n−1/2E∗[v∗
′
u∗], where

n−1/2π̂ ′Z
′
u∗+n−1/2

(

v∗
′
u∗−E∗[v∗

′
u∗]
)

→d∗
h′21ψ∗

Ze +ψ∗
ve, (A.14)

in probability P. Then, for n−1/2E∗[v∗
′
u∗], we notice that it is equal to zero under the inde-

pendent transformation of disturbances. Under the dependent transformation, n−1/2E∗[v∗
′
u∗] =

n1/2
(

n−1 ∑
n
i=1 v̂iûi(θ 0)

)

, where

n1/2

(

n−1
n

∑
i=1

v̂iûi(θ 0)

)

= n1/2

(

n−1
n

∑
i=1

(viui(θ 0)−EF [viui(θ 0)])

)

+n1/2EF [viui(θ 0)]+oP(1)

→d ψve +h25h1. (A.15)

Finally, notice that the results in probability P in (A.10)-(A.14) are invariant to the original

data, so they hold under P as well. Then, by (A.15) and the Continuous Mapping Theorem, we

obtain that under H0,







n1/2â∗

n1/2(θ̂
∗
ols −θ 0)

n1/2(θ̂
∗
2sls −θ 0)






 







−(h
′
21h24h21)

−1h
′
21ψ∗

Ze +h−1
25 ψ∗

ve +hb
1

(h
′
21h24h21 +h25)

−1(h
′
21ψ∗

Ze +ψ∗
ve +h25hb

1)

(h
′
21h24h21)

−1h
′
21ψ∗

Ze






, (A.16)

and the results in the statement of Theorem A.5 follow.

PROOF OF THEOREM 3.1

First, note that by following similar arguments as those in the proofs of Theorem A.5, we can

obtain that the following (conditional) convergence in distribution holds:





T ∗
OLS,(h1,ĥn,2)

(θ 0)

H∗
n,(h1,ĥn,2)



→d∗





(h′21h22h21 +h23)
−1/2 (h′21ψ∗

Ze +ψ∗
ve +h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

−(h′21h24h21)
−1h′21ψ∗

Ze +h−1
25 ψ∗

ve +h1

)2



 (A.17)

in probability P. Then, based on the formula of T ∗
l,n,(h1,ĥn,2)

(θ 0) for l ∈ {1,2}, we conclude that

the (conditional) null limiting distribution of T ∗
l,n,(h1,ĥn,2)

(θ 0) is the same as the null limiting dis-

tribution of Tl,n(θ 0) with the value of localization parameter equal to h1, and this implies that

c∗
l,(h1,ĥn,2)

(1−δ )→P cl,(h1,h2)(1−δ ), where cl,(h1,h2)(1−δ ) denotes the (1−δ )-th quantile of T̃l,h

with h = (h1,h2).

Then, the arguments for the proof is similar to those in McCloskey (2017). We note that there

exists a “worst case sequence” γn ∈ Γ such that AsySz
[

cB−S
l (α,α −δ , ĥn,1, ĥn,2)

]

equals:

limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[

Tl,n(θ 0)> cB−S
l (α,α −δ , ĥn,1, ĥn,2)

]
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= limsup
n→∞

P
θ0,γn

[

Tl,n(θ 0)> cB−S
l (α,α −δ , ĥn,1, ĥn,2)

]

= lim
n→∞

P
θ0,γmn

[

Tl,mn
(θ 0)> cB−S

l (α,α −δ , ĥ
mn,1

, ĥ
mn,2

)
]

(A.18)

where {mn : n ≥ 1} is a subsequence of {n : n ≥ 1} and such a subsequence always exists. Further-

more, there exists a subsequence {ωn : n ≥ 1} of {mn : n ≥ 1} such that:

lim
n→∞

P
θ0,γmn

[

Tl,mn
(θ 0)> cB−S

l (α,α −δ , ĥ
mn,1

, ĥ
mn,2

)
]

= lim
n→∞

P
θ0,γωn,h

[

Tl,ωn
(θ 0)> cB−S

l (α,α −δ , ĥωn,1
, ĥωn,2

)
]

(A.19)

for some h ∈ H . But, for any h ∈ H , any subsequence {ωn : n ≥ 1} of {n : n ≥ 1}, and any

sequence {γωn,h
: n ≥ 1}, we have

(

Tl,ωn
(θ 0), ĥωn,1

)

→d
(

T̃l,h, h̃1

)

jointly. In addition, cB−S
l (α,α −

δ , ĥωn,1
, ĥωn,2

) is continuous in ĥωn,1
by the definition of the SBCV and Maximum Theorem. Hence,

the following convergence holds jointly by the Continuous Mapping Theorem:

(

Tl,ωn
(θ 0),c

B−S
l (α,α −δ , ĥωn,1

, ĥωn,2
)
)

→d
(

T̃l,h,c
B−S
l (α,α −δ , h̃

1
,h

2
)
)

(A.20)

where cB−S
l (α,α −δ , h̃

1
,h

2
) = sup

h1∈CI
α−δ

(h̃1)

cl,(h1,h2)(1−δ ). Then, (A.18)-(A.20) imply that

AsySz
[

cB−S
l (α,α −δ , ĥn,1, ĥn,2)

]

= lim
n→∞

P
θ0,γωn,h

[

Tl,ωn
(θ 0)> cB−S

l (α,α −δ , ĥωn,1
, ĥωn,2

)
]

= sup
h∈H

P
[

T̃l,h > cB−S
l (α,α −δ , h̃

1
,h

2
)
]

, (A.21)

Now, for any h ∈ H , we have:

P
[

T̃l,h ≥ cB−S
l (α,α −δ , h̃

1
,h

2
)
]

= P
[

T̃l,h ≥ cB−S
l (α,α −δ , h̃

1
,h

2
)≥ cl,h(1−δ )

]

+ P
[

T̃l,h ≥ cl,h(1−δ )≥ cB−S
l (α,α −δ , h̃

1
,h

2
)
]

+ P
[

cl,h(1−δ )≥ T̃l,h ≥ cB−S
l (α,α −δ , h̃

1
,h

2
)
]

≤ P
[

T̃l,h ≥ cl,h(1−δ )
]

+P
[

cl,h(1−δ )≥ cB−S
l (α,α −δ , h̃

1
,h

2
)
]

= P
[

T̃l,h ≥ cl,h(1−δ )
]

+P
[

h1 /∈CIα−δ (h̃1)
]

= δ +(α −δ ) = α, (A.22)

where the inequality and the second equality follow from the form of cB−S
l (α,α − δ , h̃

1
,h

2
), and

the third equality follows from the definition of CIα−δ (h̃1). As (A.22) holds for any h ∈ H , it is
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clear from (A.21) that AsySz[cB−S
l (α,α −δ , ĥn,1, ĥn,2)]≤ α, as stated.

PROOF OF THEOREM 3.3

As in Theorem 3.1, we can show that there exists a sequence γn ∈ Γ , a subsequence

{mn : n ≥ 1} of {n : n ≥ 1}, and a subsubsequnce {ωn : n ≥ 1} of {mn : n ≥ 1} such that the

following result holds for l ∈ {1,2}:

AsySz
[

cB−A
l (α,α −δ , ĥn,1, ĥn,2)

]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[

Tl,n(θ 0)> cB−S
l (α,α −δ , ĥn,1, ĥn,2)+ η̂ l,n

]

= limsup
n→∞

P
θ0,γn

[

Tl,n(θ 0)> cB−S
l (α,α −δ , ĥn,1, ĥn,2)+ η̂ l,n

]

= lim
n→∞

P
θ0,γmn

[

Tl,mn
(θ 0)> cB−S

l (α,α −δ , ĥ
mn,1

, ĥ
mn,2

)+ η̂ l,mn

]

= lim
n→∞

P
θ0,γωn,h

[

Tl,ωn
(θ 0)> cB−S

l (α,α −δ , ĥωn,1
, ĥωn,2

)+ η̂ l,ωn

]

(A.23)

for some h ∈ H . Furthermore, as in the proof of Theorem 3.1, for any h ∈ Hh, any subsequence

{ωn : n ≥ 1} of {n : n ≥ 1}, and any sequence {γωn,h
: n ≥ 1}, we have

(

Tl,ωn
(θ 0), ĥωn,1

)

→d

(

T̃l,h, h̃1

)

jointly. Hence,

lim
n→∞

P
θ0,γωn ,h

[

Tl,ωn
(θ 0)> cB−S

l (α,α −δ , ĥωn,1
, ĥωn,2

)+ η̂ l,ωn

]

= sup
h∈H

P
[

T̃l,h > cB−S
l (α,α −δ , h̃

1
,h

2
)+ η̄ l

]

(A.24)

≡ sup
h∈H

P
[

T̃l,h > cB−A
l (α,α −δ , h̃

1
,h

2
)
]

, (A.25)

where η̄ l = inf

{

η : sup
h1∈H1

P
[

T̃l,h > cB−S
l (α,α −δ , h̃

1
,h

2
)+η

]

≤ α

}

. For the simplicity of expo-

sition, define the following asymptotic rejection probability:

NRPl[h,η ] ≡ P[T̃l,h > cB−S
l (α,α −δ , h̃

1
,h

2
)+η ]. (A.26)

It is clear from (A.23)-(A.26) that AsySz[cB−A
l (α,α − δ , ĥn,1, ĥn,2)] = sup

h∈H

NRPl[h, η̄ l]. Hence, it

suffices to show that sup
h∈H

NRPl[h, η̄ l] = α to establish Theorem 3.3.

First, from the result of Theorem 3.1 and the definition of the size-correction criterion, it is clear

that sup
h∈H

NRPl[h, η̄ l] ≤ α . We proceed to show that sup
h∈H

NRPl[h, η̄ l] < α leads to contradiction.

Assume that sup
h∈H

NRPl[h, η̄ l]< α and define the function Kl(·) : R− → [−α, 1−α] such that

Kl(x) = sup
h∈H

NRPl[h,x]−α. (A.27)
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Notice that given Assumption 3.2, NRPl[h, ·] is continuous on R−. Therefore, the Maximum The-

orem entails that Kl(·) is also continuous on R−. Moreover, we have13

Kl

(

−cB−S
l (α,α −δ , h̃

1
,h

2
)
)

= sup
h∈H

NRPl[h,−cB−S
l (α,α −δ , h̃

1
,h

2
)]−α = 1−α > 0

and Kl (η̄ l) = sup
h∈H

NRPl[h, η̄ l]−α < 0 (by assumption).

Then, we note that by the Intermediate Value Theorem, there exists η̇ l such that

i) − cB−S
l (α,α −δ , h̃

1
,h

2
)< η̇ l < η̄ l almost surely,

ii) Kl (η̇ l) = 0; i.e., sup
h∈H

NRPl[h, η̇ l] = α.

However, this contradicts the size-correction procedure where

η̄ l = inf

{

η : sup
h1∈H1

P
[

T̃l,h > cB−S
l (α,α −δ , h̃

1
,h

2
)+η

]

≤ α

}

.

It follows that sup
h∈H

NRPl[h, η̄ l] = α; i.e., AsySz[cB−A
l (α,α −δ , ĥn,1, ĥn,2)] = α .

PROOF OF COROLLARY 3.4 We notice that for l ∈ {1,2},

liminf
n→∞

inf
γ ∈ Γ

P
θ ,γ

[

θ ∈CSl,n(1−α)
]

= liminf
n→∞

inf
γ ∈ Γ

P
θ ,γ

[

Tl,n(θ)≤ cB−A
l (α,α −δ , ĥn,1, ĥn,2)

]

, (A.28)

where cB−A
l (α,α − δ , ĥn,1, ĥn,2) denotes the BACV corresponding to Tl,n(θ). Then, the result

follows by Theorem 3.3 and by exploiting the duality between confidence set and inverting the test

of each of the individual null hypothesis H0 : θ = θ 0.

13We notice that the proof is focused on the symmetric two-sided test and uses the fact that NRPl [h,−cB−S
l (α,α −

δ , h̃1,h2)] = P[T̃l,h > 0] = 1 in this case. This proof can be adapted to the case of a lower/upper one-sided test by noting

that for any ε > 0 small enough, there exists a large enough positive constant c≡ c(ε) such that NRPl [h,−c(ε)] = 1−ε,
for all h ∈H . Therefore, Kl(−c(ε)) = suph∈H NRPl [h,−c(ε)] = 1−ε −α. As this holds for any ε > 0 small enough,

the result for the case with lower/upper one-sided test follows by choosing ε such that ε → 0.
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SA.1. Proofs for Lemmas A.1 and A.2

PROOF OF LEMMA A.1 Note first that we can write n1/2(â− γn,h,1) as:

n1/2(â− γn,h,1) = n1/2
(

(v̂′MX v̂)−1v̂′MX

(

(v− v̂+ v̂)γn,h,1 + e
)

− γn,h,1

)

(SA.29)

=
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX(v− v̂)
)

γn,h,1 +
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

.

Therefore, to show the result of the lemma, it suffices to show that the first term in (SA.29) is

oP(1). Note that

n−1/2v̂′MX(v− v̂) = n−1/2v̂′MX Z(Z′Z)−1Z′v = (n−1v̂′MX Z)(n−1Z′Z)−1(n−1/2Z′v)

= OP(1)OP(1)OP(1) = OP(1), (SA.30)

which follows from the fact that

n−1v̂′MX Z = n−1v̂′Z −n−1v̂′PX Z, (SA.31)

n−1v̂′Z = n−1(v+(v̂− v))′Z = n−1v′Z +n−1(v̂− v)′Z (SA.32)

= n−1v′Z +(γn,h,21 − π̂)′(n−1Z′Z) = OP(n
−1/2)+OP(n

−1/2)OP(1) = OP(n
−1/2),

n−1v̂′PX Z = n−1v′PX Z +n−1(v̂− v)′PX Z = (n−1v′Zγn,h,21 +n−1v′v)(n−1X ′X)−1(n−1X ′Z)+

n−1(v̂− v)′PX Z =
h′21h24h25

(h′21h24h21 +h25)
+OP(n

−1/2), (SA.33)

which follows from n−1Z′v →P 0, n−1Z′Z →P h24, n−1v′v →P h25, and n−1X ′X →P h′21h24h21 +

h25, respectively. The OP(n
−1/2) term in the last equality of (SA.33) is justified by the fact that

n−1(v̂− v)′PX Z = (γn,h,21 − π̂)′(n−1Z′X)(n−1X ′X)−1(n−1X ′Z) = OP(n
−1/2). (SA.34)

Therefore, given that n−1/2v̂′MX(v− v̂) = OP(1) and n1/2γn,h,1 → h1 ∈ R, we have

(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX(v− v̂)
)

γn,h,1 = oP(1), (SA.35)

so that n1/2(â− γn,h,1) =
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

+oP(1), as stated.
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PROOF OF LEMMA A.2 (a) It is sufficient to characterize the asymptotic distributions of estima-

tors separately: (a1) n1/2â, (a2) n1/2(θ̂ ols −θ), and (a3) n1/2(θ̂ 2sls −θ).

(a1) Asymptotic distribution of n1/2â. We know from Lemma A.1 that n1/2(â − γn,h,1) is

asymptotically equivalent to
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

, so we focus on characterizing the

asymptotic distribution of the latter. First, note that for the denominator,

n−1v̂′MX v̂ = n−1X̂ ′MX X̂ = n−1X̂ ′X̂ −n−1X̂ ′PZX̂

→P h′21h24h21 −
(h′21h24h21)

2

(h′21h24h21 +h25)
=

h′21h24h21h25

(h′21h24h21 +h25)
, (SA.36)

where X̂ = PZX , the first equality follows from v̂= X −PZX and the convergence in probability fol-

lows from n−1X̂ ′X̂ = n−1X ′PZX →P h′21h24h21, n−1X̂ ′PX X̂ = (n−1X̂ ′X)(n−1X ′X)−1(n−1X ′X̂)→P

(h′21h24h21)
2

(h′21h24h21+h25)
. Second, note that for the numerator,

n−1/2v̂′MX e =−n−1/2X̂ ′MX e =−n−1/2X̂ ′e+n−1/2X̂ ′PX e. (SA.37)

By applying Lyapunov Central Limit Theorem (CLT), we find for the first term in (SA.37),

−n−1/2X̂ ′e = −
(

n−1X ′Z
)(

n−1Z′Z
)−1
(

n−1/2Z′e
)

→d −h′21ψZe, (SA.38)

and the second term is such that

n−1/2X̂ ′PX e =
(

n−1X ′PZX
)(

n−1X ′X
)−1
(

n−1/2X ′e
)

→d (h′21h24h21 +h25)
−1h′21h24h21

(

h′21ψZe +ψve

)

, (SA.39)

where ψZe and ψve are uncorrelated, ψZe ∼ N(0,h22) and ψve ∼ N(0,h23). Therefore,

−n−1/2X̂ ′MX e →d −h′21ψZe +(h′21h24h21 +h25)
−1h′21h24h21

(

h′21ψZe +ψve

)

= −
h25

(h′21h24h21 +h25)
h′21ψZe +

h′21h24h21

(h′21h24h21 +h25)
ψve. (SA.40)

By combining (SA.36) and (SA.40), we obtain

n1/2(â− γn,h,1) →d −
(

h′21h24h21

)−1
h′21ψZe +h−1

25 ψve

∼ N
(

0,(h′21h24h21)
−2h′21h22h21 +h−2

25 h23

)

. (SA.41)

Since n1/2â = n1/2(â− γn,h,1)+n1/2γn,h,1, it follows that

n1/2â →d ψa =−
(

h′21h24h21

)−1
h′21ψZe +h−1

25 ψve +h1

2



∼ N
(

h1,(h
′
21h24h21)

−2h′21h22h21 +h−2
25 h23

)

. (SA.42)

(a2) Asymptotic distribution of n1/2(θ̂ OLS −θ). First, we have

n1/2(θ̂ OLS −θ) =
(

n−1X ′X
)−1(

n−1/2X ′u
)

, (SA.43)

where n−1X ′X →P h′21h24h21 +h25, and

n−1/2X ′u = n−1/2(γ ′n,h,21Z′+ v′)(vγn,h,1 + e)

= γ ′n,h,21

(

n−1/2Z′e
)

+ γ ′n,h,21

(

n−1/2Z′v
)

γn,h,1 +n−1/2v′e+
(

n−1v′v
)

n1/2γn,h,1

→d h′21ψZe +ψve +h25h1, (SA.44)

since γ ′n,h,21(n
−1/2Z′v)γn,h,1 = oP(1), n−1(v′v) = h25 +oP(1), and n1/2γn,h,1 → h1 as n → ∞.

Therefore, we obtain

n1/2(θ̂ ols −θ) →d ψols = (h′21h24h21 +h25)
−1(h′21ψZe +ψve +h25h1) (SA.45)

∼ N
( h25h1

h′21h24h21 +h25

,
h′21h22h21 +h23

(h′21h24h21 +h25)2

)

.

(a3) Asymptotic distribution of n1/2(θ̂ 2sls − θ). First, note that n1/2(θ̂ 2sls − θ) =
(

n−1X ′PZX
)−1(

n−1/2X ′PZu
)

and it follows from the proofs above that n−1X ′PZX →P h′21h24h21

and n−1/2X ′PZu →d h′21ψZe. Therefore, we have

n1/2(θ̂ 2sls −θ)→d ψ2sls = (h′21h24h21)
−1h′21ψZe ∼ N

(

0,(h′21h24h21)
−2h′21h22h21

)

. (SA.46)

(b) It also suffices to characterize the asymptotic distributions of each statistic separately. Be-

low we first show that nV̂ols →
P h′21h22h21+h23

(h′21h24h21+h25)
2 , and nV̂2sls →

P h′21h22h21

(h′21h24h21)2 .

For V̂ols we use the decomposition

V̂ols

Vols

−1 =V−1
ols

(

V̂ols −Vols

)

=V−1
ols

(

Aols,1 −2Aols,2 +Aols,3

)

+oP(1), (SA.47)

where Vols = n−2Q−1
ols ∑

n
i=1 EF [X

2
i u2

i ]Q
−1
ols , Aols,1 = n−2Q−1

ols ∑
n
i=1 X2

i u2
i Q−1

ols −

n−2Q−1
ols ∑

n
i=1 EF [X

2
i u2

i ]Q
−1
ols , Aols,2 = n−2Q−1

ols ∑
n
i=1 X3

i ui(θ̂ ols − θ)Q−1
ols , Aols,3 =

n−2Q−1
ols ∑

n
i=1 X4

i (θ̂ ols − θ)2Q−1
ols , and Qols = plimn→∞n−1X ′X . Thus, we need to show that

V−1
ols Aols,m = oP(1), for m = 1,2,3.

For m = 1, we let ri = n−1V
−1/2

ols Q−1
olsXiui, and we have EF

[

∑
n
i=1 r2

i −1
]

= EF

[

V−1
ols Aols,1

]

= 0.

3



Also define the truncated variable qi = ri1(|ri| ≤ ε) such that r2
i = q2

i + r2
i 1(|ri|> ε). Then,

EF

∣

∣

∣

∣

∣

n

∑
i=1

r2
i −1

∣

∣

∣

∣

∣

≤ EF

∣

∣

∣

∣

∣

n

∑
i=1

(

q2
i −EF [q

2
i ]
)

∣

∣

∣

∣

∣

+EF

∣

∣

∣

∣

∣

n

∑
i=1

(

r2
i 1(|ri|> ε)−EF [r

2
i 1(|ri|> ε)]

)

∣

∣

∣

∣

∣

.(SA.48)

by the triangle inequality. The first term is o(1) because

VarF

[

n

∑
i=1

q2
i

]

=
n

∑
i=1

VarF

[

q2
i

]

≤ ε2
n

∑
i=1

VarF [|qi|]≤ ε2
n

∑
i=1

EF

[

q2
i

]

≤ ε2
n

∑
i=1

EF

[

r2
i

]

= ε2,(SA.49)

where ε is arbitrary. For the second term, we have

EF

∣

∣

∣

∣

∣

n

∑
i=1

(

r2
i 1(|ri|> ε)−EF(r

2
i 1(|ri|> ε)

)

∣

∣

∣

∣

∣

≤ 2
n

∑
i=1

EF

[

|ri|
2+ξ |ri|

−ξ
1(|ri|> ε)

]

≤ 2ε−ξ
n

∑
i=1

EF |ri|
2+ξ → 0, (SA.50)

where the result of convergence to zero holds by the moment restriction on EF [||Ziei||
2+ξ ],

EF [|viei|
2+ξ ], EF [||ZiZ

′
i ||

2+ξ ] and EF [|Xi|
2(2+ξ )], and by Vols = O(n−1). For m = 3, we have

|nAols,3|= n−1Q−2
ols(θ̂ ols −θ)2

n

∑
i=1

X4
i = oP(1), (SA.51)

where the second equality follows from the moment restriction on EF [|Xi|
2(2+ξ )]. Therefore, we

obtain that V−1
ols Aols,3 = oP(1). For m = 2, by the Cauchy-Schwarz inequality,

∣

∣V−1
ols Aols,2

∣

∣ ≤

(

V−1
ols n−2Q−1

ols

n

∑
i=1

X2
i u2

i Q−1
ols

)1/2
(

V−1
ols Aols,3

)1/2

=
(

1+V−1
ols Aols,1

)1/2 (
V−1

ols Aols,3

)1/2
= oP(1), (SA.52)

so that the results follows from those for m = 1 and m = 3.

Similarly, for V̂2sls we use the decomposition

V̂2sls

V2sls

−1 =V−1
2sls

(

A2sls,1 −2A2sls,2 +A2sls,3

)

+oP(1), (SA.53)

where V2sls = n−2Q−1
2sls ∑

n
i=1 EF

[

ZiZ
′
iu

2
i

]

Q−1
2sls, A2sls,1 = n−2Q−1

2sls ∑
n
i=1

(

ZiZ
′
iu

2
i −EF

[

ZiZ
′
iu

2
i

])

Q−1
2sls,

A2sls,2 = n−2Q−1
2sls ∑

n
i=1 ZiZ

′
iXiui(θ̂ 2sls − θ)Q−1

2sls, A2sls,3 = n−2Q−1
2sls ∑

n
i=1 ZiZ

′
iX

2
i (θ̂ 2sls − θ)2Q−1

2sls,

and Q2sls = plimn→∞

(

n−1X ′PZX
)−1

(n−1X ′Z)(n−1Z′Z)−1. The result follows by using the same

arguments as for V̂ols.

Then, it suffices to verify that nVols →
P h′21h22h21+h23

(h′21h24h21+h25)
2 , and nV2sls →

P h′21h22h21

(h′21h24h21)2 , and the

4



results of Tols(θ) and T2sls(θ) follow immediately from part (a) of the lemma.

Finally, for V̂a we use the decomposition

V̂a

Va
−1 =V−1

a (Aa,1 −2Aa,2 +Aa,3 +Aa,4)+oP(1), (SA.54)

where Va = n−2Q−1
a ∑

n
i=1 EF [ℓ′SiS

′
iℓ]Q

−1
a , Aa,1 = n−2Q−1

a ∑
n
i=1 (ℓ

′SiS
′
iℓ−EF [ℓ′SiS

′
iℓ])Q−1

a , Aa,2 =

n−2Q−1
a ∑

n
i=1 ṽ3

i ei(â− a)Q−1
a , Aa,3 = n−2Q−1

a ∑
n
i=1 ṽ4

i (â− a)2Q−1
a , Aa,4 = n−2Q−1

a ∑
n
i=1(ℓ̂

′ŜiŜ
′
iℓ̂−

ℓ′SiS
′
iℓ)Q

−1
a , ℓ= (1,−πv)

′, ℓ̂= (1,−π̂v)
′, π̂v = (X ′X)−1X ′v̂, Si = (viei,Xiei)

′, Ŝi = (v̂iei,Xiei)
′, and

πv = plimn→∞π̂v = h25(h
′
21h24h21 +h25)

−1,

Qa = plimn→∞n−1ṽ′ṽ = h25h′21h24h21/(h
′
21h24h21 +h25). (SA.55)

Then, the arguments for Aa,1,Aa,2, and Aa,3 follows those for OLS and 2SLS, and we have

V−1
a Aa,4 = oP(1) by standard arguments. Therefore, V̂a/Va −1 = oP(1) and now it suffice to find

the probability limit of nVa to establish the limiting distribution for Hn. Notice that

EF

[

ℓ′SiS
′
iℓ
]

= EF

[

v2
i e2

i

]

−2πvEF

[

Xie
2
i vi

]

+π2
vEF

[

X2
i e2

i

]

, (SA.56)

where EF

[

v2
i e2

i

]

→ h23, EF

[

Xie
2
i vi

]

→ h23, and EF

[

X2
i e2

i

]

→ h′21h22h21 + h23. Then, we obtain

from the expression of Va, (SA.55), and (SA.56) that

nVa = Q−1
a n−1

n

∑
i=1

EF

[

ℓ′SiS
′
iℓ
]

Q−1
a → (h′21h24h21)

−2h′21h22h21 +h−2
25 h23, (SA.57)

so that Hn →
d

(

h′21h22h21

(h′21h24h21)2 +h−2
25 h23

)−1(

− (h′21h24h21)
−1h′21ψZe +h−1

25 ψve +h1

)2

.

SA.2. Proofs for the Clustering Case

PROOF OF THEOREM 3.6

The proofs are similar to those for the heteroskedastic case, so we will keep the exposition

concise. First, similar to Lemma A.2, we have under the drift sequences of parameters {γc
n,h} in

(3.16) with |hc
1|< ∞, the joint asymptotic distribution of the test statistics are as follows:







T c
2sls(θ 0)

T c
ols(θ 0)

Hc
n






→d ηc

h =







ηc
1,h

ηc
2,h

ηc
3,h







5



=















(

hc′

21hc
22hc

21

)−1/2

hc′

21ψc
Ze

(hc′

21hc
22hc

21 +hc
23)

−1/2
(

hc′

21ψc
Ze +ψc

ve +hc
25ḣc

1

)

(

hc′
21hc

22hc
21

(hc′
21hc

24hc
21)

2
+hc

23hc−2
25

)−1(

−(hc′

21hc
24hc

21)
−1hc′

21ψc
Ze +hc−1

25 ψc
ve + ḣc

1

)2















T c
1,n(θ 0) →d T̃ c

1,h =
∣

∣

∣ηc
2,h1(η

c
3,h ≤ χ2

1,1−β )+ηc
1,h1(η

c
3,h > χ2

1,1−β )
∣

∣

∣ ,

T c
2,n(θ 0) →d T̃ c

2,h =
∣

∣

∣
ηc

2,hw(ηc
3,h)+ηc

1,h(1−w(ηc
3,h))

∣

∣

∣
,

where

ḣc
1 = hc

1

(

hc′

21hc
22hc

21

(hc′

21hc
24hc

21)
2
+hc

23hc−2
25

)1/2

, and

(

ψc
Ze

ψc
ve

)

∼ N

(

0,

(

hc
22 0

0′ hc
23

))

. (SA.58)

In particular, we let Un,g = µ
1/2
n n−1

{

c′1Z′
geg + c2v′geg

}

, where c1 denotes a k-dimensional vec-

tor and c2 denotes a nonzero scalar, and check that the conditions of the Lyapunov CLT hold for

Un,g:

(a) EF [Un,g] = 0, (SA.59)

(b)
g

∑
g=1

EF

[

U2
n,g

]

= c′1

(

µnn−2
G

∑
g=1

EF [Z
′
gege′gZg]

)

c1 + c2
2

(

µnn−2
G

∑
g=1

EF [v
′
gege′gvg]

)

→ c′1hc
22c1 + c2

2hc
23, (SA.60)

(c) For some ξ > 0 and some large enough constant C,
G

∑
g=1

EF

[

|Un,g|
2+ξ
]

=
(

µ1/2
n n−1

)2+ξ G

∑
g=1

EF

[

|c′1Z′
geg + c2v′geg|

2+ξ
]

≤C
(

µ1/2
n n−1

)2+ξ G

∑
g=1

EF

[

|c′1Z′
geg|

2+ξ +[|c2v′geg|
2+ξ
]

= O

(

µ1+ξ/2
n n−1−ξ sup

g
n1+ξ

g

)

, (SA.61)

where (SA.61) follows from Minkowski Inequality and

G

∑
g=1

EF

[

|c′1Z′
geg|

2+ξ
]

= O

(

G

∑
g=1

n2+ξ
g

)

= O

(

nsup
g

n1+ξ
g

)

,

G

∑
g=1

EF

[

|c2v′geg|
2+ξ
]

= O

(

G

∑
g=1

n2+ξ
g

)

= O

(

nsup
g

n1+ξ
g

)

, (SA.62)

as we can show that supg EF

[

|c′1Z′
geg|

2+ξ
]

= O
(

n
2+ξ
g

)

and supg EF

[

|c2v′geg|
2+ξ
]

= O
(

n
2+ξ
g

)

,

by using the arguments similar to those in the proof of Lemma A.2 of Djogbenou et al. (2019) and
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by using the moment restriction on supg,i EF

[

||Zgiegi||
2+ξ
]

and supg,i EF

[

|vgiegi|
2+ξ
]

. Then, by

Assumption 3.5, we obtain that ∑
G
g=1 EF

[

|Un,g|
2+ξ
]

= o(1).

Furthermore, we show the consistency of the cluster-robust variance estimators as follows. For

V̂ c
ols, we use the decomposition

V̂ c
ols

V c
ols

−1 =V c−1
ols

(

V̂ c
ols −V c

ols

)

=V c−1
ols

(

Ac
ols,1 −Ac

ols,2 −Ac′

ols,2 +Ac
ols,3

)

+oP(1), (SA.63)

where V c
ols = n−2Q−1

ols ∑
G
g=1 EF [X

′
gugu′gXg]Q

−1
ols ,

Ac
ols,1 = n−2Q−1

ols

G

∑
g=1

X ′
gugu′gXgQ−1

ols −n−2Q−1
ols

G

∑
g=1

EF [X
′
gugu′gXg]Q

−1
ols ,

Ac
ols,2 = n−2Q−1

ols

G

∑
g=1

X ′
gug(θ̂

c

ols −θ)X ′
gXgQ−1

ols ,

Ac
ols,3 = n−2Q−1

ols

G

∑
g=1

X ′
gXg(θ̂

c

ols −θ)2X ′
gXgQ−1

ols , (SA.64)

and Qols = plimn→∞n−1X ′X . Thus, we need to show that V c−1
ols Ac

ols,m = oP(1), for m = 1,2,3.

For m= 1, we let rg = n−1V
c−1/2

ols Q−1
olsX ′

gug, and we have EF

[

∑
G
g=1 r2

g −1
]

=EF

[

V c−1
ols Ac

ols,1

]

=

0. Also define the truncated variable qg = rg1(|rg| ≤ ε) such that r2
g = q2

g + r2
g1(|rg| > ε). Then,

by the triangle inequality,

EF

∣

∣

∣

∣

∣

G

∑
g=1

r2
g −1

∣

∣

∣

∣

∣

≤ EF

∣

∣

∣

∣

∣

G

∑
g=1

(

q2
g −EF [q

2
g]
)

∣

∣

∣

∣

∣

+EF

∣

∣

∣

∣

∣

G

∑
g=1

(

r2
g1(|rg|> ε)−EF(r

2
g1(|rg|> ε))

)

∣

∣

∣

∣

∣

.(SA.65)

The first term is oP(1) because

VarF

(

G

∑
g=1

q2
g

)

=
G

∑
g=1

VarF

(

q2
g

)

≤ ε2
G

∑
g=1

VarF (|qg|)≤ ε2
G

∑
g=1

EF

(

q2
g

)

≤ ε2
G

∑
g=1

EF

(

r2
g

)

= ε2, (SA.66)

where ε is arbitrary. For the second term, we have

EF

∣

∣

∣

∣

∣

G

∑
g=1

(

r2
g1(|rg|> ε)−EF [r

2
g1(|rg|> ε)]

)

∣

∣

∣

∣

∣

≤ 2
G

∑
g=1

EF

[

|rg|
2+ξ |rg|

−ξ
1(|rg|> ε)

]

≤ 2ε−ξ
G

∑
g=1

EF |rg|
2+ξ ≤Cµ1+ξ/2

n n−1−ξ sup
g

n1+ξ
g → 0, (SA.67)
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where C is some large enough constant, the convergence to zero follows from Assumption 3.5, and

the last inequality follows from the fact that V c
ols = O

(

µ−1
n

)

and

G

∑
g=1

E|X ′
gug|

2+ξ = O

(

nsup
g

n1+ξ
g

)

, (SA.68)

since supg EF

[

|X ′
gug|

2+ξ
]

= O
(

n
2+ξ
g

)

, by similar arguments as those in the proof of Lemma

A.2 of Djogbenou et al. (2019) and the moment restriction on supg,i EF

[

||Zgiegi||
2+ξ
]

,

supg,i EF

[

|vgiegi|
2+ξ
]

, supg,i EF

[

||ZgiZ
′
gi||

2+ξ
]

, and supg,i EF

[

|Xgi|
2(2+ξ )

]

.

For m = 3, we have

|µnAc
ols,3|= µnn−2Q−2

ols(θ̂
c

ols −θ)2
G

∑
g=1

(X ′
gXg)

2 = OP

(

µnn−2 sup
g

n2
g

)

= oP(1), (SA.69)

where the second equality follows from the moment restriction on supg,i EF

[

|Xg,i|
2(2+ξ )

]

, which

implies that supg EF

[

|X ′
gXg|

2
]

= O
(

n2
g

)

, and thus

G

∑
g=1

(X ′
gXg)

2 = OP

(

G

∑
g=1

n2
g

)

= OP

(

nsup
g

ng

)

, (SA.70)

and by using |θ̂
c

ols−θ |= OP

(

V
c1/2

ols

)

= OP

(

n−1/2 supg n
1/2
g

)

. For m = 2, by the Cauchy-Schwarz

inequality,

∣

∣

∣
V c−1

ols Ac
ols,2

∣

∣

∣
≤

(

V c−1
ols n−2Q−1

ols

G

∑
g=1

X ′
gugu′gXgQ−1

ols

)1/2
(

V c−1
ols Ac

ols,3

)1/2

=
(

1+V c−1
ols Ac

ols,1

)1/2(

V c−1
ols Ac

ols,3

)1/2

, (SA.71)

so that the results follows from those for m = 1 and m = 3.

For V̂ c
2sls, we use the decomposition

V̂ c
2sls

V c
2sls

−1 =V c−1
2sls

(

Ac
2sls,1 −Ac

2sls,2 −Ac′

2sls,2 +Ac
2sls,3

)

+oP(1), (SA.72)

where V c
2sls = n−2Q−1

2sls ∑
G
g=1 EF

[

Z′
gugu′gZg

]

Q−1
2sls,

Ac
2sls,1 = n−2Q−1

2sls

G

∑
g=1

Z′
gugu′gZgQ−1

2sls −n−2Q−1
2sls

G

∑
g=1

EF

[

Z′
gugu′gZg

]

Q−1
2sls,

Ac
2sls,2 = n−2Q−1

2sls

G

∑
g=1

Z′
gug(θ̂ 2sls −θ)X ′

gZgQ−1
2sls,

8



Ac
2sls,3 = n−2Q−1

2sls

G

∑
g=1

Z′
gXg(θ̂ 2sls −θ)2X ′

gZgQ−1
2sls, (SA.73)

and Q2sls = plimn→∞

(

n−1X ′PZX
)−1

(n−1X ′Z)(n−1Z′Z)−1. The result follows by using similar

arguments as those for V̂ c
ols. In particular, we have ∑

G
g=1 EF

[

||Z′
gug||

2+ξ
]

= O
(

nsupg n
1+ξ
g

)

by the

moment restriction on supg,i EF

[

||Zgivgi||
2+ξ
]

and supg,i EF

[

||Zgiegi||
2+ξ
]

, and ∑
G
g=1 ||Z

′
gXg||

2 =

OP

(

nsupg ng

)

by the moment restriction on supg,i EF

[

||Zgivgi||
2+ξ
]

and supg,i EF

[

||ZgiZ
′
gi||

2+ξ
]

.

Additionally, for V̂ c
a , we use the decomposition

V̂ c
a

V c
a

−1 =V c−1
a

(

Ac
a,1 −Ac

a,2 −Ac′

a,2 +Ac
a,3 +Ac

a,4

)

+oP(1), (SA.74)

where V c
a = n−2Q−1

a ∑
G
g=1 E

[

ℓ′SgS′gℓ
]

Q−1
a ,

Ac
a,1 = n−2Q−1

a

G

∑
g=1

ℓ′SgS′gℓQ
−1
a −n−2Q−1

a

G

∑
g=1

EF

[

ℓ′SgS′gℓ
]

Q−1
a ,

Ac
a,2 = n−2Q−1

a

G

∑
g=1

ṽ′geg(â
c −a)ṽ′gṽgQ−1

a ,

Ac
a,3 = n−2Q−1

a

G

∑
g=1

ṽ′gṽg(â
c −a)2ṽ′gṽgQ−1

a ,

Ac
a,4 = n−2Q−1

a

G

∑
g=1

ℓ̂′ŜgŜ′gℓ̂Q
−1
a −n−2Q−1

a

G

∑
g=1

ℓ′SgS′gℓQ
−1
a , (SA.75)

ℓ = (1,−πv)
′, ℓ̂ = (1,−π̂v)

′, π̂v = (X ′X)−1X ′v̂, πv = plimn→∞π̂v, Sg = (v′geg,X
′
geg)

′, Ŝg =

(v̂′geg,X
′
geg)

′, and Qa = plimn→∞n−1ṽ′ṽ. Then, the arguments for Ac
a,1,A

c
a,2, and Ac

a,3 follows those

for OLS and 2SLS, and we have V c−1
a Ac

a,4 = oP(1) by standard arguments.

Now, to show the results for the bootstrap analogues of the test statistics, we first show that

under H0 and the drift sequences of parameters {γc
n,h} in (3.16) with |hc

1|< ∞,

(

µ
1/2
n n−1Z′u∗

µ
1/2
n n−1

(

u∗
′
v∗−E∗

[

u∗
′
v∗
])

)

→d∗

(

ψc∗
Ze

ψc∗
ve

)

∼ N

(

0,

(

hc
22 0

0′ hc
23

))

, (SA.76)

in probability P.

Let c1 denote a k-dimensional nonzero vector and c2 a nonzero scalar. Define

U∗
n,g = µ1/2

n n−1
{

c′1Z′
gu∗g + c2

(

u∗
′

g v∗g −E∗
[

u∗
′

g v∗g

])}

= µ1/2
n n−1

{

c′1Z′
gûg(θ 0)ω

∗
1g + c2

(

ûg(θ 0)v̂gω∗
1gω∗

2g −E∗
[

ûg(θ 0)v̂gω∗
1gω∗

2g

])}

,

(SA.77)
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and it suffices to verify that the conditions of the Lyapunov CLT hold for U∗
n,g:

(a) E∗
[

U∗
n,g

]

= 0 as E
∗
[

Z′
gûg(θ 0)ω

∗
1g

]

= 0 and E
∗
[

û′g(θ 0)v̂gω∗
1gω∗

2g −E∗[û′g(θ 0)v̂gω∗
1gω∗

2g]
]

=

0.

(b) Note that

E
∗
[

Z′
gu∗gu∗

′

g Z′
g

]

= Z′
gûg(θ 0)û

′
g(θ 0)ZgE∗

[

ω∗2
1g

]

= Z′
gûg(θ 0)û

′
g(θ 0)Zg,

E
∗
[

u∗
′

g v∗gv∗
′

g u∗g

]

= û′g(θ 0)v̂gv̂′gûg(θ 0)E
∗
[

ω∗2
1g

]

E∗
[

ω∗2
2g

]

= û′g(θ 0)v̂gv̂′gûg(θ 0),

E∗
[

Z′
gu∗gu∗

′

g v∗g

]

= Z′
gûg(θ 0)û

′
g(θ 0)v̂gE∗

[

ω∗2
1g

]

E∗
[

ω∗
2g

]

= 0.

Therefore, we have

G

∑
g=1

E∗
[

U∗2

n,g

]

= c′1

(

µnn−2
G

∑
g=1

Z′
gûg(θ 0)û

′
g(θ 0)Zg

)

c1 + c2
2

(

µnn−2
G

∑
g=1

û′g(θ 0)v̂gv̂′gûg(θ 0)

)

= c′1γc
n,h,22c1 + c2

2γc
n,h,23 = c′1hc

22c1 + c2
2hc

23 +oP(1) = OP(1). (SA.78)

(c) For some ξ > 0 and some large enough constant C1, we note that by Minkowski Inequality,

G

∑
g=1

E∗
[

∣

∣U∗
n,g

∣

∣

2+ξ
]

≤ C1

(

µ1/2
n n−1

)2+ξ G

∑
g=1

E∗

[

∣

∣c′1Z′
gu∗g
∣

∣

2+ξ
+
∣

∣

∣
c2u∗

′

g v∗g

∣

∣

∣

2+ξ
]

. (SA.79)

Furthermore, notice that for some large enough constant C2,

G

∑
g=1

E∗
[

∣

∣c′1Z′
gu∗g
∣

∣

2+ξ
]

=
G

∑
g=1

E∗
[

∣

∣c′1Z′
gûg(θ 0)ω

∗
1g

∣

∣

2+ξ
]

≤C2

G

∑
g=1

|c′1Z′
gûg(θ 0)|

2+ξ = OP

(

nsup
g

n1+ξ
g

)

, (SA.80)

where the inequality follows from the moment restriction on E∗
[

|ω∗
1g|

2+ξ
]

. By similar argument,

G

∑
g=1

E∗
[

|c2u∗
′

g v∗g|
2+ξ
]

= OP

(

nsup
g

n1+ξ
g

)

. (SA.81)

Therefore, we have

G

∑
g=1

E∗
[

∣

∣U∗
n,g

∣

∣

2+ξ
]

= OP

(

µ1+ξ/2
n n−1−ξ sup

g
n1+ξ

g

)

= oP(1), (SA.82)

where the first equality follows from (SA.79)-(SA.81) and the second equality follows from As-

sumption 3.5.

Then, following similar steps as in the derivation for the bootstrap test statistics in the het-
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eroskedastic case, we find that

µ1/2
n n−1X∗′PZu∗ = π̂ ′

(

µ1/2
n n−1Z′u∗

)

+
(

n−1v∗
′
Z
)

(

n−1Z′Z
)−1
(

µ1/2
n n−1Z′u∗

)

= π̂ ′
(

µ1/2
n n−1Z′u∗

)

+oP∗(1)→d∗
hc′

21ψc∗
Ze,

µ1/2
n n−1X∗′u∗ = π̂ ′

(

µ1/2
n n−1Z′u∗

)

+µ1/2
n n−1

(

u∗
′
v∗−E∗[u∗

′
v∗]
)

+µ1/2
n n−1E∗[u∗

′
v∗]

→d∗
hc′

21ψc∗
Ze +ψc∗

ve , (SA.83)

in probability P, where the last (conditional) convergence in distribution follows from

µ
1/2
n n−1E∗[u∗

′
v∗] = µ

1/2
n n−1 ∑

G
g=1 E∗[u∗

′

g v∗g] = µ
1/2
n n−1 ∑

G
g=1 E∗[ω∗

1g]E
∗[ω∗

2g]û
′
g(θ 0)v̂g = 0 by the

independent bootstrap scheme. Additionally, we find that

n−1X∗′PZX∗ →P∗
hc′

21hc
24hc

21, n−1X∗′X∗ →P∗
hc′

21hc
24hc

21 +hc
25, (SA.84)

in probability P.

Furthermore, by using similar arguments as those for the consistency of the cluster-robust

variance estimators, we can show the consistency of their bootstrap counterparts, i.e.,

V̂ c∗
2sls

V c∗
2sls

−1 →P∗
0,

V̂ c∗
ols

V c∗
ols

−1 →P∗
0,

V̂ c∗
a

V c∗
a

−1 →P∗
0, (SA.85)

in probability P, where V c∗
2sls = n−2Q−1

2sls ∑
G
g=1 E∗[Z′

gu∗gu∗
′

g Zg]Q
−1
2sls, V c∗

ols =

n−2Q−1
ols ∑

G
g=1 E∗[X∗′

g u∗gu∗
′

g X∗
g ]Q

−1
ols , and V c∗

a = n−2Q−1
a ∑

G
g=1 E∗[ℓ′S∗gS∗

′

g ℓ]Q
−1
a with S∗g =

(

v∗
′

g e∗g,X
∗′
g e∗g

)′
.

Combining these arguments together, we obtain for T c∗
2sls(θ 0) that

θ̂
c∗
2sls −θ 0

V̂
c∗1/2

2sls

=
µ

1/2
n (θ̂

c∗
2sls −θ 0)

(µnV c∗
2sls)

1/2

(

V c∗
2sls

V̂ c∗
2sls

)1/2

=
(n−1X∗′PZX∗)−1µ

1/2
n n−1X∗′PZu∗

(µnV c∗
2sls)

1/2

(

V c∗
2sls

V̂ c∗
2sls

)1/2

→d∗
(hc′

21hc
22hc

21)
−1/2hc′

21ψc
Ze, (SA.86)

in probability P, where the (conditional) convergence in distribution follows from (SA.83)-(SA.85)

and µnV c∗
2sls →

P (hc′

21hc
24hc

21)
−2hc′

21hc
22hc

21. The (conditional) convergence in distribution of T c∗
ols(θ 0)

and Hc∗
n follows similar arguments. The result of the theorem then follows by using the same

arguments as those in the proof of Theorem 3.1.

PROOF OF THEOREM 3.8 The proof of the thoerem follows the same arguments as those in the

proof of Thoerem 3.3, and is thus omitted.
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PROOF OF COROLLARY 3.9 The proof of the corollary follows the same arguments as those in

the proof of Corollary 3.4, and is thus omitted.

SA.3. Further Simulation Results

In this section, we report further simulation results for the finite-sample power performance. Fig-

ures SA.1-SA.2 report the results for the case with heteroskedastic errors with β = 0.025 and

δ = 0.045. Figures SA.3 - SA.4 report the results for the case with heteroskedastic errors with

β = 0.1 and δ = 0.045. Figures SA.5 - SA.6 report the results for the case with heteroskedastic

errors with β = 0.05 and δ = 0.025. Figures SA.7 - SA.8 report the results for the case with design

(2) of clustering, where n1 = 20 with q1 = 5, n2 = 15 with q2 = 10, n3 = 10 with q3 = 20, and

n4 = 5 with q4 = 30.
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Figure SA.1(a): Power of wild bootstrap tests under heteroskedasticity (β = 0.025,δ = 0.045) with φ = 2
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Figure SA.1(b): Power of wild bootstrap tests under heteroskedasticity (β = 0.025,δ = 0.045) with φ = 4

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

je
c
ti
o

n
 r

a
te

s

=0.01

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

je
c
ti
o

n
 r

a
te

s

=0.05

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

je
c
ti
o

n
 r

a
te

s

=0.1

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

je
c
ti
o

n
 r

a
te

s

=0.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

je
c
ti
o

n
 r

a
te

s

=0.4

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

je
c
ti
o

n
 r

a
te

s

=0.6

Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.2(a): Power of wild bootstrap tests under heteroskedasticity (β = 0.025,δ = 0.045) with φ = 16
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Figure SA.2(b): Power of wild bootstrap tests under heteroskedasticity (β = 0.025,δ = 0.045) with φ = 64
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.3(a): Power of wild bootstrap tests under heteroskedasticity (β = 0.1,δ = 0.045) with φ = 2
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Figure SA.3(b): Power of wild bootstrap tests under heteroskedasticity (β = 0.1,δ = 0.045) with φ = 4
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.4(a): Power of wild bootstrap tests under heteroskedasticity (β = 0.1,δ = 0.045) with φ = 16
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Figure SA.4(b): Power of wild bootstrap tests under heteroskedasticity (β = 0.1,δ = 0.045) with φ = 64
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.5(a): Power of wild bootstrap tests under heteroskedasticity (β = 0.05,δ = 0.025) with φ = 2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.01

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.05

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.1

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.4

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.6

BS-2SLS

BACV-Hausman

BACV-Hansen-1

BACV-Hansen-2

BACV-Hansen-3

Figure SA.5(b): Power of wild bootstrap tests under heteroskedasticity (β = 0.05,δ = 0.025) with φ = 4
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.6(a): Power of wild bootstrap tests under heteroskedasticity (β = 0.05,δ = 0.025) with φ = 16
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Figure SA.6(b): Power of wild bootstrap tests under heteroskedasticity (β = 0.05,δ = 0.025) with φ = 64
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.7(a): Power of wild bootstrap tests under clustering (design 2) with φ = 2
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Figure SA.7(b): Power of wild bootstrap tests under clustering (design 2) with φ = 4
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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Figure SA.8(a): Power of wild bootstrap tests under clustering (design 2) with φ = 16

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.01

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
=0.05

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
=0.1

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 r

a
te

s

=0.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
=0.4

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
=0.6

BS-2SLS

BACV-Hauman

BACV-Hansen-1

BACV-Hansen-2

BACV-Hansen-3

Figure SA.8(b): Power of wild bootstrap tests under clustering (design 2) with φ = 64
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Notes: The power curves for the bootstrap 2SLS-t test, the two-stage test with hybrid-BACVs, and the shrinkage test

with BACVs with τ = 1,0.5,0.25 are illustrated by the curves in pink, green, red, blue, and black, respectively.
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