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Abstract

In this paper, we use Sperner’s lemma to prove the existence of general equilibrium
for a competitive economy with production or with uncertainty and financial assets.
We then show that the direct use of Sperner’s lemma together with Carathéodory’s
convexity theorem and basic properties of topology such as partition of unit, finite
covering of a compact set allow us to bypass the Kakutani fixed point theorem even
in establishing the Gale-Nikaido-Debreu Lemma. We also provide a new proof of the
Kakutani fixed point theorem based on Sperner’s lemma.
Keywords: Sperner lemma, Simplex, Subdivision, Fixed Point Theorem, Gale-
Nikaido-Debreu Lemma, General Equilibrium.
JEL Classification: C60, C62, D5.

1 Introduction

The classic proofs of the existence of general equilibrium mainly rely on Brouwer and Kaku-
tani fixed point theorems (Brouwer, 1911; Kakutani, 1941). They make use of either Gale-
Nikaido-Debreu (Debreu, 1959; Gale, 1955; Nikaido, 1956) or Gale and Mas-Colell (Gale and
Mas-Colell, 1975, 1979) lemmas, the proofs of which in turn require Kakutani or Brouwer
fixed point theorems.1

Sperner’s lemma (Sperner, 1928) is a combinatorial variant of the Brouwer fixed point
theorem and actually equivalent to it.2 By enabling us to work with topological spaces in a

∗University of Wollongong. Email address: thanhl@uow.edu.au
†IPAG Business School, Paris School of Economics, TIMAS. Email address: levan@univ-paris1.fr
‡EM Normandie Business School, Métis Lab. Email address: npham@em-normandie.fr
§Bilkent University, Department of Economics. Email address: csaglam@bilkent.edu.tr
1See, for excellent treatments of the existence of equilibrium, Debreu (1982) and Florenzano (2003).
2For instance, Knaster, Kuratowski, and Mazurkiewicz (1929) use the Sperner lemma to prove the

Knaster-Kuratowski-Mazurkiewicz lemma which implies the Brouwer fixed point theorem. Meanwhile,
Yoseloff (1974) and Park and Jeong (2003) prove the Sperner lemma by using the Brouwer fixed point
theorem. The reader is referred to Park (1999) for a more complete survey of fixed point theorems and
Ben-El-Mechaiekh et al. (2009) for a survey of general equilibrium and fixed point theory.
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purely combinatorial way, Sperner’s lemma has been proven useful in computing the fixed
points of mappings, critical points of dynamical systems, and the fair division problems
(Scarf and Hansen, 1973; Su, 1999). However, this intuitive yet powerful lemma has not
been fully exploited in the theory of general equilibrium.

This paper highlights the role of the Sperner’s lemma as an alternative, purely conbi-
natorial approach, to equilibrium analysis. First, following the excess demand approach,
we use the Sperner lemma and elementary mathematical results, which allow us to bypass
the fixed points theorems and the Gale-Nikaido-Debreu lemma, to prove the existence of an
equilibrium in an economy with or without production and a two-period stochastic economy
with incomplete financial markets.

The key point when applying the Sperner’s lemma is to construct a labeling which is
proper (i.e., it satisfies Sperner condition) and, more importantly, will generate a point
corresponding to an equilibrium price. In an earlier attempt, Scarf (1982) (page 1024)
also uses the Sperner’s lemma to prove the existence of general equilibrium, but for a pure
exchange economy. In an economy with production, thanks to the Weak Walras Law and
by adapting the labeling in Scarf (1982), we can construct a proper labeling which generates
an equilibrium price.

In a two-period economy with incomplete financial markets, constructing a proper la-
beling is more difficult because the budget sets may have empty interiors when some prices
are null. To overcome this difficulty, we introduce an artificial economy where all agents
except for one have an additional income (ǫ > 0) in the first period so that their budget sets
have a non-empty interior for any prices system in the simplex. For this artificial economy,
we can construct a proper labeling and hence prove the existence of an equilibrium which
depends on ǫ. Then, we let ǫ go to zero to get an equilibrium for the original economy. It
should be noticed that our proof works for nominal, and numéraire assets as well. Our result
leads to an important implication: in the case of numéraire asset, there is a continuum of
equilibrium.

Second, we use Sperner’s lemma to give a new proof of the Gale-Nikaido-Debreu lemma.
It is noteworthy that the existing proofs of the several versions of the Gale-Nikaido-Debreu
lemma require the use of the fixed point theorems (see Florenzano (2009) for an excellent
review). For instance, Debreu (1956, 1959) and Nikaido (1956) use the Kakutani fixed point
theorem while Gale (1955) uses the Knaster-Kuratowski-Mazurkiewicz lemma. According to
Duppe and Weintraub (2014), Khan (2021), Debreu wanted to discuss the question whether
one could dispense with a fixed point theorem in proving the lemma. We address the ques-
tion of Debreu by providing a new proof of the Gale-Nikaido-Debreu lemma directly from
Sperner’s lemma and the basic elements of topology.

Last, but certainly not least, we provide a new proof of the Kakutani fixed point theorem
by using the Sperner lemma. There have been earlier attempts to use the Sperner lemma
to prove the Kakutani fixed point theorem. For example, Sondjaja (2008) uses the Sperner
lemma but she also requires to make use of von Neumann (1937)’s approximation lemma.
Shmalo (2018) proves the so-called hyperplane labeling lemma, generalizing Sperner’s lemma,
and uses it together with the approximate minimax theorem to prove the Kakutani fixed
point theorem. In comparison, it seems that our method provides a more straightforward
and direct proof of the theorem as it only uses the core notions of topology.

Note that the Sperner lemma and the mathematical tools that we have used to prove the
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existence of general equilibrium and the Gale-Nikaido-Debreu lemma dates back to 1928.
In this respect, our proofs suggest retrospectively that the existence of general equilibrium
could have been proved almost two decades earlier before the seminal papers of Arrow and
Debreu (1954) and Debreu (1959).3

The paper proceeds as follows. In Section 2, we review some basic concepts such as the
notions of subsimplex, simplicial subdivision, and Sperner’s lemma. In Section 3, we use the
Sperner’s lemmma to prove the existence of general equilibrium (in two models - one with
production and the other with incomplete financial markets), and the Gale-Nikaido-Debreu
lemma. Finally, Section 4 concludes the paper.

2 Preliminaries

In this section, we introduce basic terminologies and necessary background for our work.
First, we present definitions from combinatorial topology based on which we state the
Sperner’s lemma. After that, we provide a brief overview of correspondences and the maxi-
mum theorem which are extensively used for proving the existence of a general equilibrium.

2.1 On the Sperner lemma

Consider the Euclidean space R
n. Let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., and

en = (0, 0, . . . , 0, 1) denote the n unit vectors of R
n. The unit-simplex ∆ of R

n is the
convex hull of {e1, e2, . . . , en}. A simplex of ∆, denoted by [[x1, x2, . . . , xn]], is the convex
hull of {x1, x2, . . . , xn} where xi ∈ ∆ for any i = 1, . . . , n, and the vectors (x1 − x2, x1 −
x3, . . . , x1 − xn) are linearly independent, or equivalently, the vectors (x1, x2, . . . , xn) are
affinely independent (i.e., if

∑n

i=1 λixi = 0 and
∑n

i=1 λi = 0 imply that λi = 0 ∀i).
Given a simplex [[x1, x2, . . . , xn]], a face of this simplex is the convex hull [[xi1 , xi2 , . . . , xim ]]

with m < n, and {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}.
We now define the notions of simplicial subdivision (or triangulation) and labeling (see

Border (1985), Su (1999) or Chapter 23 in Maschler et al. (2013) for a general treatment)
before stating the Sperner’s lemma.

Definition 1. T is a simplicial subdivision of ∆ if it is a finite collection of simplices and
their faces ∆i, i = 1, . . . , p such that

• ∆ = ∪p
i=1∆i,

• ri(∆i) ∩ ri(∆j) = ∅, ∀i 6= j.

Recall that if ∆i = [[xi1 , xi2 , . . . , xim ]], then ri(∆i) ≡ {x | x =
∑m

k=1 αkx
k(i);

∑
k αk = 1; and

∀k : α(k) > 0}.

Simplicial subdivision simply partitions an n-dimensional simplex into small simplices
such that any two simplices are either disjoint or share a full face of a certain dimension.

3Recall that Gérard Debreu was awarded the Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel in 1983 for having incorporated new analytical methods into economic theory and for his
rigorous reformulation of the theory of general equilibrium.
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Remark 1. For any positive integer K, there is a simplicial subdivision TK = {∆K
1 , . . . ,∆

K
p(K)}

of ∆ such that Mesh(TK) ≡ maxi∈{1,...,p(K)} supx,y{‖x− y‖ : x, y ∈ ∆K
i } < 1/K. For exam-

ple, we can take equilateral subdivisions or barycentric subdivisions.

We focus on the labeling of these subdivisions with certain restrictions.

Definition 2. Consider a simplicial subdivision of ∆. Let V denote the set of vertices of all
the subsimplices of ∆. A labeling R is a function from V into {1, 2, . . . , n}. A labeling R is
said to be proper if it satisfies the Sperner condition:

x ∈ ri[[ei1 , ei2 , . . . , eim ]] ⇒ R(x) ∈ {i1, i2, . . . , im}.

In particular, R(ei) = i, ∀i.

Note that the Sperner condition implies that all vertices of the simplex are labeled dis-
tinctly. Moreover, the label of any vertex on the edge between the vertices of the original
simplex matches with another label of these vertices. With these in mind, we can now state
the Sperner’s lemma.

Lemma 1. (Sperner) Let T = {∆1, . . . ,∆p} be a simplicial subdivision of ∆. Let R be a
labeling which satisfies the Sperner condition. Then there exists a subsimplex ∆i ∈ T which
is completely labeled, i.e. ∆i = [[x1(i), . . . , xn(i)]] with R(xl(i)) = l, ∀l = 1, . . . , n.

The Sperner’s lemma guarantees the existence of a completely labeled subsimplex for any
simplicially subdivided simplex in accordance with the Sperner condition. A proof of this
lemma can be found in several textbooks (Berge, 1959; Scarf and Hansen, 1973; Border, 1985;
Maschler et al., 2013) or papers (Sperner, 1928; Le Van, 1982). In particular, the original
proof uses an inductive argument based on a complete enumeration of all completely labeled
simplices for a series of lower dimensional problems. Meanwhile, proofs using constructive
arguments date back to Cohen (1967) and Kuhn (1968) (see Scarf (1982) for a demonstration
of the constructive proof).

2.2 On correspondences

Let X ⊂ R
l, Y ⊂ R

m. A correspondence Γ from X into Y is a mapping from X into the
set of subsets of Y . The graph of Γ is the set graphΓ = {(x, y) ∈ X × Y : y ∈ Γ(x)}. A
correspondence Γ : X → Y is closed if its graph is closed.

Definition 3. A correspondence Γ : X → Y is upper semicontinuous at point x if for every
open set V of Y for which Γ(x) ⊂ V , there exists a neighborhood U of x such that Γ(x) ∈ V
∀x ∈ U . Γ is said to be upper semicontinuous on X if it is upper continuous at every point
of X.

Notice that if X is compact then Γ is upper semicontinuous if and only if Γ is closed. It is
also clear that if Γ is upper semicontinuous and K ⊂ X is compact, then Γ(K) is compact.
Recall that if Γ is single-valued, the notions of continuity, upper semicontinuity, and the
lower semicontinuity turn out to be equivalent.
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3 Main results

3.1 Using Sperner’s lemma to prove the existence of general equi-
librium

In this section, we show that Sperner lemma can be used as a direct tool to prove the
existence of general equilibrium in competitive economies. Our proofs are novel as they only
make use of the Sperner lemma and elementary mathematical results.

3.1.1 Equilibrium existence in an economy with production

Consider an economy with L consumption goods, K input goods which may be capital or
labor, I consumers, and J firms.4 Each consumer i has an initial endowment of consumption
goods ωi ∈ R

L
+, an initial endowment of inputs yi0 ∈ R

K
+ , and a utility function ui depending

on her/his consumptions xi ∈ R
L
+. The firms produce consumption goods. Firm j has

production functions F j = (F j
1 , . . . , F

j
L) and uses a vector of inputs (yj1, . . . , y

j
K) ∈ R

K
+ . The

production functions satisfy F j
l ≥ 0, and F j 6= 0. We do not exclude the case that F j

l = 0
for some l (i.e., firm j does not produce good l).

We adopt the following set of standard assumptions concerning the specifications of an
economy with production.

Assumption 1. (i) Each utility function is strictly concave, continuous, and strictly in-
creasing.
(ii) The endowments of consumption goods satisfy: ωi ≫ 0 (i.e., ω ∈ R

L
++) ∀i.

(iii) The endowments of inputs satisfy: yi0 ≫ 0 (i.e., yi0 ∈ R
K
++) ∀i.

(iv) For any l, F j
l (0) = 0, and if F j

l 6= 0 then it is strictly concave and strictly increasing.
(v) The firms distribute their profits among consumers. The share coefficients θij, i = 1, . . . , I
and j = 1, . . . , J are positive and satisfy

∑
i θ

ij = 1, ∀j.

In this economy, each firm j maximizes its profit given the prices p of outputs and the
prices q of inputs. Let

Πj(p, q) = max
y∈RK

+

{p · F j(y)− q · y}.

We observe that for any (p, q), Πj(p, q) ≥ p · F j(0)− q · 0 = 0.
On the other hand, given the prices p of outputs and the prices q of inputs, each consumer

i solves the problem

max ui(xi) subject to xi ∈ R
L
+ and p · xi ≤ p · ωi +

∑

j

θijΠj(p, q) + q · yi0.

We now introduce the definitions of equilibrium and feasible allocation for such an economy
with production.

Definition 4. An equilibrium is a list ((xi∗)i=1,...,I , (y
j∗)j=1,...,J , p

∗, q∗) that satisfies the prop-
erties: (i) p∗ ≫ 0, q∗ ≫ 0; (ii) given prices, households and firms maximize their utility and
profit respectively; and (iii) all markets clear.

4When K = J = 0, we recover the pure exchange economy.
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Definition 5. An allocation ((xi)i, (y
j)j) is feasible if

(i) xi ∈ R
L
+ for any i = 1, . . . , I, yj ∈ R

K
+ , for any j = 1, . . . , J ,

(ii)
∑I

i=1 x
i ≤

∑I

i=1 ω
i +

∑J

j=1 F
j(yj),

(iii)
∑J

j=1 y
j ≤

∑I

i=1 y
i
0.

The set of feasible allocations is denoted by F . It is convex and compact. We denote
by X i the set of allocations xi such that there exist (x−i) ∈ (RL

+)
I−1 and (yj) which satisfy

((xi, x−i), (yj)) ∈ F . We denote by Y j the set of inputs (yj) such that there exist allocations
(xi) which satisfy ((xi), (yj)) ∈ F . Note that all of these sets are convex, compact, and
nonempty.

Let X be a closed ball of RL
+ that contains all the X i (for i = 1, . . . , I) in its interior.

Also, let Y be a closed ball of RK
+ that contains all the sets Y j (for j = 1, . . . , J) in its

interior.
We will consider an intermediate economy in which the consumption sets equal to X and

the input sets equal to Y . In this economy, given prices p and q, the behavior of each firm
j can be recast as: maxyj∈Y {p · F

j(yj)− q · yj}. Accordingly, the behavior of each consumer
i can be recast as

max ui(xi) subject to xi ∈ X and p · xi ≤ p · ωi +
∑

j

θijΠj(p, q) + q · yi0.

Definition 6. An equilibrium of the intermediate economy is a list ((xi∗)i=1,...,I , (y
j∗)j=1,...,J , p

∗, q∗)
that satisfies

(i) p∗ ≫ 0, q∗ ≫ 0,

(ii) For any i, xi∗ ∈ X and p∗ · xi∗ = p∗ · ωi +
∑

j θ
ijΠj(p∗, q∗) + q∗ · yi0,

(iii) For any i, xi ∈ X, p∗ · xi ≤ p∗ · ωi +
∑

j θ
ijΠj(p∗, q∗) + q∗ · yi0 ⇒ ui(xi) ≤ ui(xi∗),

(iv) For any j, yj∗ ∈ Y and Πj(p∗, q∗) = p∗ · F j(yj∗)− q∗ · yj∗,

(v)
∑I

i=1 x
i∗ =

∑I

i=1 ω
i +

∑J

j=1 F
j(yj∗) and

∑J

j=1 y
j∗ =

∑I

i=1 y
i
0.

Since the utility functions and the production functions are strictly increasing, an equiv-
alent definition can be reached by refining condition (v) in Definition 6. More precisely,
an equilibrium in this intermediate economy is a list ((xi∗)i=1,...,I , (y

j∗)j=1,...,J , p
∗, q∗) that

satisfies the conditions (i-iv) in Definition 6 together with

(vi’) For any l = 1, . . . , L,
∑I

i=1 x
i∗
l −

(∑I

i=1 ω
i
l +

∑J

j=1 F
j
l (y

j∗)
)
≤ 0,

(vii’) For any k = 1, . . . , K,
∑J

j=1 y
j∗
k −

∑I

i=1 y
i
0,k ≤ 0,

(viii’) For any l = 1, . . . , L, p∗l

(∑I

i=1 x
i∗
l −

(∑I

i=1 ω
i
l +

∑J

j=1 F
j
l (y

j∗)
))

= 0,
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(viv’) For any k = 1, . . . , K, q∗k

(∑J

j=1 y
j∗
k −

∑I

i=1 y
i
0,k

)
= 0.

The following remark is important for the analysis of the equilibrium existence.

Remark 2. If (x∗, y∗) solves the problems of the consumers and the firms, then (x∗, y∗)
satisfies Weak Walras Law:

p ·
(∑

i

(x∗i − ωi)−
∑

j

F j(y∗)
)
+ q ·

(∑

j

y∗j −
∑

i

yi0

)
≤ 0. (1)

However, if
∑

i(x
∗i − ωi) −

∑
j F

j(y∗) ≤ 0 and
∑

j y
∗j −

∑
i y

i
0 ≤ 0, i.e., (x∗, y∗) ∈ F ,

since the utility functions are strictly increasing and the feasible set F is in the interior of
X × Y , the allocation (x∗, y∗) satisfies Walras Law:

p ·
(∑

i

(x∗i − ωi)−
∑

j

F j(y∗)
)
+ q ·

(∑

j

y∗j −
∑

i

yi0

)
= 0. (2)

We now use the Sperner lemma to prove the existence of an equilibrium for the interme-
diate economy. We will show that it is actually an equilibrium for the initial economy.

Proposition 1. Under above assumptions, there exists an equilibrium in the intermediate
economy.

Proof. Let α > 0.
Step 1. Consider the following transformed problem of the producer:

Πj,α(p, q) = max{p · F j(yj)− q · yj : yj ∈ Cj,α(p, q)}

where Cj,α(p, q) = {y ∈ Y : q·yj−p·F j(yj) ≤ α}. Let ηj,α(p, q) = {yj ∈ Y : p·F j(yj)−q·yj =
Πj,α(p, q)}. Since the production function is strictly concave, ηj,α is a single-valued mapping.
We can directly prove, without using the Maximum Theorem (Berge, 1959), that ηj,α(p, q)
is continuous in the set ∆ ≡ {(x1, . . . , xL+K) ≥ 0 :

∑L+K

i=1 xi = 1}. Indeed, let (p, q) ∈ ∆
and denote y∗ = ηj,α(p, q). We have that p ·F j(y∗)− q · y∗ ≥ 0 > −α. Consider the sequence
(pn, qn) ∈ ∆ that converges to (p, q) when n tends to infinity. Let yn = ηj,α(pn, qn). We have
to prove that yn converges to y∗. Since Cj,α(p, q) contains 0, we have p · F j(y∗)− q · y∗ ≥ 0.
Hence, for n large enough, we have pn · F j(y∗)− qn · y∗ > −α.

Again, by definition, we have Πj,α(pn, qn) = pn · F j(yn)− qn · yn ≥ 0 > −α for any n.
When n→ +∞, we can assume yn → ȳ ∈ Y and hence, p · F j(ȳ)− q · ȳ ≥ −α. In other

words, ȳ ∈ Cj,α(p, q). This implies

Πj,α(p, q) = p · F j(y∗)− q · y∗ ≥ p · F j(ȳ)− q · ȳ.

But, since pn · F j(y∗)− qn · y∗ > −α, we have y∗ ∈ Cj,α(pn, qn). Therefore,

Πj,α(pn, qn) = pn · F j(yn)− qn · yn ≥ pn · F j(y∗)− qn · y∗.

Let n→ +∞. We get
p · F j(ȳ)− q · ȳ ≥ p · F j(y∗)− q · y∗.

7



Therefore, ȳ = y∗. We have proved that the mapping ηj,α is continuous. We then also get
that the maximum profit Πj,α is a continuous function.

Step 2. Consider also the transformed problem of the consumer:

max ui(xi) subject to xi ∈ X, p · xi ≤ p · ωi +
∑

j

θijΠj,α(p, q) + q · yi0.

It is easy to see that the set Di,α(p, q) = {xi : xi ∈ X, p·xi ≤ p·ωi+
∑

j θ
ijΠj,α(p, q)+q ·yi0} is

convex and compact. Moreover, it has a non-empty interior. Indeed, observe that Πj,α(p, q) ≥
0. If p = 0 then q > 0 and q · yi0 > 0. We have 0 <

∑
j θ

ijΠj,α(p, q) + q · yi0. If p 6= 0, choose

xi close to ωi and xi ≪ ωi. Then p · (xi − ωi) < 0 ≤
∑

j θ
ijΠj,α(p, q) + q · yi0.

For (p, q) ∈ ∆ and i = 1, . . . , I, we define

ξα,i(p, q) = {xi ∈ X : ui(xi) ≥ ui(x′), if p · x′ ≤ p · ωi +
∑

j

θijΠj,α(p, q) + q · yi0}. (3)

The mapping ξα ≡ (ξα,i)Ii=1 is single-valued. We shall prove that ξα is continuous without
using the Maximum Theorem (Berge, 1959).

Denote xi∗ = ξα,i(p, q), we have p · xi∗ ≤ p · ωi +
∑

j θ
ijΠj,α(p, q) + q · yi0.

Let (pn, qn) ∈ ∆ → (p, q) when n → +∞. Denote xi(n) = ξi(pn, qn). We can assume
xi(n) → x̄i,α ∈ X. Since pn · xi(n) ≤ pn · ωi +

∑
j θ

ijΠj,α(pn, qn) + qn · yi0, we have

p · x̄i ≤ p · ωi +
∑

j

θijΠj,α(p, q) + q · yi0,

and hence ui(xi∗) ≥ ui(x̄i).
Let z ∈ intDi,α(p, q), i.e. it satisfies p · z < p · ωi +

∑
j θ

ijΠj,α(p, q) + q · yi0. Then for n
large enough, we have

pn · z < pn · ωi +
∑

j

θijΠj,α(pn, qn) + qn · yi0.

This implies ui(xi(n)) ≥ ui(z) for any n large enough. Hence ui(x̄i) ≥ ui(z). Actually this
inequality holds for any z in the interior of Di,α(p, q). Take x0 ∈ int Di,α(p, q). For any
integer m define zm = 1

m
x0 + (1− 1

m
)xi∗. Then zm is in the interior of Di,α(p, q). We have

1

m
ui(x0) + (1−

1

m
)ui(xi∗) ≤ ui(zm) ≤ ui(x̄i).

Let m → +∞. We get ui(xi∗) ≤ ui(x̄i). Hence x̄i = xi∗. We have proved that ξα,i is
continuous.

Step 3. Denote N = L+K, π = (p, q) ∈ ∆, and define the excess demand mappings:

ξα(π) =
I∑

i=1

(ξα,i(π)− ωi)−
J∑

j=1

F j(ηj,α(π))

ηα(π) =
J∑

j=1

ηj,α(π)−
I∑

i=1

yi0

ζ(π) = (ξα(π), ηα(π)).
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According to Steps 1 and 2, the mapping ζ is continuous.
Step 4 (using the Sperner’s lemma). We will use the Sperner lemma to prove that there

exists π∗ ∈ ∆ such that ζj(π
∗) ≤ 0 ∀j. Indeed, let K > 0 be an integer and consider a

simplicial subdivision TK of ∆ such that Mesh(TK) < 1/K and define a labeling R as
follows: For π ∈ ∆, R(π) = i where i satisfies ζi(π) ≤ 0. We can see that the labeling R
is well-defined (because of Weak Walras Law) and satisfies Sperner condition.5 Indeed, let
π ∈ ri[[ei1 , ei2 , . . . , eim ]] where m ≤ N , we have π =

∑m

t=1 λte
it where λt > 0,

∑m

t=1 λt = 1.
By the Weak Walras Law, we have

∑m

t=1 λtζit(π) ≤ 0. So, R(π) ∈ {i1, i2, . . . , im} because,
otherwise, we have ζit(π) > 0 ∀it ∈ {i1, i2, . . . , im} and hence

∑m

t=1 λtζit(π) > 0, which is a
contradiction.

Applying the Sperner lemma, there exists a completely labeled subsimplex [[π̄K,1, π̄K,2, . . . , π̄K,n]]
such that R(π̄K,j) = j, i.e., ζj(π̄

K,j) ≤ 0, ∀j = 1, . . . , N . Let K go to +∞, the vertices {π̄K,j}
converge to the same point π∗ ∈ ∆. This point satisfies ζj(π

∗) ≤ 0 ∀j.
Step 5. From Remark 2, Walras Law holds. Hence,

∑
j π

∗
j ζj(π

∗) = 0 and we have
actually π∗

j ζj(π
∗) = 0, ∀j.

Finally, we claim that Πj,α(p∗, q∗) = max{p∗ · F j(yj)− q∗ · yj : yj ∈ Y }. Indeed, if there
exists y ∈ Y such that p∗ · F j(y) − q∗ · y > Πj,α(p∗, q∗) ≥ 0, then q∗ · y − p∗F j(y) < 0 < α
and that is a contradiction.

Condition Πj,α(p∗, q∗) = max{p∗ ·F j(yj)− q∗ · yj : yj ∈ Y } and the definition of ξα,i(p, q)
imply the optimality of consumers’ allocation.

We have proved that there exists an equilibrium in the intermediate economy.

The following proposition allows us to move from an equilibrium in the intermediate
economy to an equilibrium in the initial economy.

Proposition 2. ((xi∗)i=1,...,I , (y
j∗)j=1,...,J , p

∗, q∗) is an equilibrium for the initial economy.

Proof. First observe that if there exists y ∈ R
K
+ such that

p∗ · F j(y)− q∗ · y > p∗ · F j(y∗)− q∗ · y∗ = Πj,α(p∗, q∗) ≥ 0,

then q∗ · y − p∗F j(y) < 0 < α and that is a contradiction. By consequence, we get that

p∗ · F j(y∗)− q∗ · y∗ = Πj(p∗, q∗) = max{p∗ · F j(yj)− q∗ · yj : yj ∈ R
K
+}.

Now fix some i and take x ∈ R
L
+ satisfying ui(x) > ui(xi∗). We have to prove that p∗ · x >

p∗ · ωi +
∑

j θ
ijΠj(p∗, q∗) + q∗ · yi0. Of course, this is the case if x ∈ X. We now consider

the case where x /∈ X. Since xi∗ is in the interior of X, there exists λ ∈ (0, 1) such that
λx+(1−λ)xi∗ ∈ X. We have ui(λx+(1−λ)xi∗) ≥ λui(x)+ (1−λ)ui(xi∗) > ui(xi∗). Hence,
we have

p∗ · (λx+ (1− λ)xi∗) > p∗ · ωi +
∑

j

θijΠj(p∗, q∗) + q∗ · yi0 = p∗ · xi∗

⇔ λp∗ · x > λp∗ · xi∗ ⇔ p∗ · x > p∗ · xi∗ = p∗ · ωi +
∑

j

θijΠj(p∗, q∗) + q∗ · yi0.

5This labeling is similar to that in Scarf (1982), page 1024.
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Remark 3. It is interesting to note that our proof of the existence of general equilibrium
requires only the Sperner lemma and elementary mathematical results which were available
before 1930. We also do not need to use the Maximum Theorem proven by Berge (1959).

Remark 4. When the utility and the production functions are only concave, the demand
may not be single-valued and hence we cannot directly apply the Sperner lemma. In this
case, the standard approach is to make use of the Kakutani fixed point theorem or the Gale-
Nikaido-Debreu lemma. However, we can skip the use of the Kakutani fixed point theorem or
the Gale-Nikaido-Debreu lemma by doing as follows. First, we approximate the utility and
production functions by a family of strictly concave functions:

For each integer N > 0, define uiN(x) = ui(x) +
1

N
v(x) , F j

N(k) = F j(k) +
1

N
G(k)

where v and G are strictly concave.
Second, applying Proposition 2, we have that: for any N > 0, there exists an equilibrium

eN ≡
(
(xi∗N)i=1,...,I , (y

j∗
N )j=1,...,J , p

∗
N , q

∗
N

)
.

Third, let N go to infinity, there is an infinite subsequence (Nt)t≥1 such that eNt
converges to

e when t goes to infinity. Last, we can prove that e is an equilibrium for the initial economy.

3.1.2 Equilibrium existence in an economy with financial assets

In this section, we use the Sperner lemma to prove the existence of an equilibrium in a two-
period stochastic economy with incomplete financial markets. We consider both nominal
and numéraire assets. We briefly present here some essential notions. For a full exposition,
see Magill and Quinzii (1996) and Florenzano (1999).

Consider an economy with two periods (t = 0 and t = 1), L consumption goods, J
financial assets, and I agents (I ≥ 2). There is no uncertainty in period 0 while there are S
possible states of nature in period 1. In period 0, each agent i ≤ I consumes and purchases
assets. The consumption prices are denoted by p0 ∈ R

L
+ in the first period, ps ∈ R

L
+ in the

state s of period 1.
Let p ≡ (p0, p1, . . . , pS). Each consumer has endowments of consumption good ωi

0 ∈
R

L
+ in period 0 and ωi

s ∈ R
L
+ in state s of period 1. Any agent i has a utility function

U i(xi0, x
i
1, . . . x

i
S) where xis is her consumption at state s. There is a matrix of returns

depending on p of financial assets which is the same for any agent. Typically, if agent i ≤ I
purchases zi quantity of assets in period 0, then in period 1, at state s, she/he will obtain
an income (positive or negative)

∑J

j=1Rs,j(p)z
j. The returns R(p) can be represented by a

matrix

R =




R1,1(p) R1,2(p) . . . R1,J(p)
R2,1(p) R2,2(p) . . . R2,J(p)

...
...

. . .
...

RS,1(p) RS,2(p) . . . RS,J(p)


 .

We denote by Rs(p) = (Rs,1(p), Rs,2(p), . . . , Rs,J(p)) the sth row of R(p). Typically, the
constraints faced by agent i are

p0 · (x
i
0 − ωi

0) + q · zi ≤ 0,

ps · (x
i
s − ωi

s) ≤ Rs(p) · z
i ∀s = 1, . . . , S.
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We make use of the following set of standard assumptions.

Assumption 2. (i) For any i = 1, . . . , I, the consumption set is X i = R
L(S+1)
+ , and the

assets set is Zi = R
J .

(ii) For any i = 1, . . . , I, ωi
0 ∈ R

L
++, ω

i
s ∈ R

L
++ for any state s in period 1.

(iii) The map p→ R(p) is continuous and

• either R(p) is a positive constant matrix (Rs,j(p) = Rs,j ≥ 0 ∀s, ∀j, ∀p ∈ ∆), and
rank(R) = J (the nominal assets case).

• or, in the numéraire assets case, R(p) = Q(p)×G where G is a positive constant S×J-
matrix, rank(G) = J , and

Q(p) =




p1 · e 0 . . . 0
0 p2 · e . . . 0
...

...
. . .

...
0 0 . . . pS · e


 ,

where e≫ 0 is a numéraire.6

(v) For any i = 1, . . . , I, U i is strictly increasing, continuous, and strictly concave.

We now introduce the definitions of complete and incomplete asset markets, feasible
allocations, and the notion of equilibrium in an economy with financial assets.

Definition 7. The assets market is called complete if S = J and incomplete if S > J .

Definition 8. Consider the economy

E =
(
(U i, X i, Zi, ωi), R

)

An equilibrium of this economy is a list
(
(xi∗, zi∗)Ii=1, (p

∗, q∗)
)
where (xi∗, zi∗)Ii=1 ∈ (X i)I ×

(Zi)I , (p∗, q∗) ∈ R
L(S+1)
++ × R

J
++ such that

(i) For any i, (xi∗, zi∗) ∈ X i × Zi, p∗0 · (x
i
0 − ωi

0) + q∗ · zi = 0, p∗s · (x
i
s − ωi

s) = Rs(p
∗) · zi

∀s = 1, . . . , S, and xi∗ solves the problem

maxU i(xi0, x
i
1, . . . , x

i
S) subject to: x

i ∈ Bi(p∗, q∗) (4a)

where we define

Bi(p, q) ≡ {xi ∈ X i : ∃zi ∈ Zi, p0 · (x
i
0 − ωi

0) + q · zi ≤ 0

ps · (x
i
s − ωi

s) ≤ Rs(p) · z
i, s = 1, . . . , S}

(ii)
∑I

i=1(x
∗i
s − ωi

s) = 0 for any s = 0, 1, . . . , S and
∑I

i=1 z
∗i = 0.

6Notice that if ps · e > 0 ∀s ≥ 1, then rank(R(p)) = rank(G).
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Definition 9. The allocations ((xi, zi)i) ∈ (X i)I × (Zi)I are feasible if (i)
∑I

i=1(x
i−ωi) ≤ 0

and (ii)
∑I

i=1 z
i = 0.

Given α > 0 and define the sets F α = {(xi)i ∈ (X i)I :
∑I

i=1(x
i − ωi) ≤ α}. Denote the

projection of F α on X i by X̂ i. Let Bc be a ball of RL, centered at the origin, which contains
any X̂ i in its interior.

An intermediate economy is the economy

Ẽ =
(
(U i, X̃ i, Zi, ωi), R

)
,

i.e., the consumption set is X̃ i = Bc for any i. An equilibrium in this intermediate economy
is defined as in Definition 8.

We aim to provide a new proof (by using the Sperner lemma) of the following result:

Proposition 3. Consider the economy E . Under above assumptions, for any list (λ0, λ1, . . . , λS)
with λ0 = 1, λS > 0, s = 1, . . . , S, there exists an equilibrium

(
(xi∗, zi∗)Ii=1, (p

∗, q∗)
)
with p∗ ∈

∆, and, more importantly, q∗ =
∑S

s=1 λsRs(p
∗), i.e., q∗j =

∑S

s=1 λsRs,j(p
∗), ∀j = 1, . . . , J .

Comments. This result is similar to Theorem 1 in Cass (2006) or Theorem 7.1 in
Florenzano (1999) for the case of nominal assets. Our contribution is that we do not require
that the returns are nominal as Cass (2006) and Florenzano (1999) did. Before presenting
our proof, we point out some important consequences of Proposition 3:

• Continuum of equilibria. In the case of nominal assets where the return matrix is
constant, we have q∗ =

∑S

s=1 λsRs, and, hence, there is a continuum of equilibrium
asset prices.

While the property q∗ =
∑S

s=1 λsRs is well-known in the case of nominal assets, our

paper is the first to show a similar property (q∗ =
∑S

s=1 λsRs(p
∗)) in the case of

numéraire assets. Since prices q∗, p∗ depend on λ ≡ (λs)
S
s=1, we can rewrite that

q∗(λ) =
∑S

s=1 λsRs

(
p∗(λ)

)
. From this, we can prove that there is a continuum of

equilibrium prices (p∗, q∗).7

• Equilibrium price versus no-arbitrage price. For the nominal assets, an equilibrium
always exists, and an asset price is an asset equilibrium price if and only if it is a
no arbitrage price. Indeed, take a no-arbitrage price. Using the Cass trick we obtain
an equilibrium. Conversely, for any financial equilibrium, under the assumption that
the utility functions are strictly increasing, the first order conditions show that an
equilibrium asset price is a no-arbitrage price.

However, we do not have this equivalence in the numéraire case. Indeed, in this case,
the set of no-arbitrage prices is {q : q =

∑S

s=1 λsRs(p), λs > 0, ∀s ≥ 1, p ∈ ∆}. If q is
an equilibrium price, then by the first order conditions, it is a no-arbitrage price. The
converse is not always true. Indeed, if q =

∑S

s=1 λsRs(p) with λs > 0, ∀s ≥ 1, p ∈ ∆, it
is not sure that this q is an equilibrium price (because the return matrix depends on
price p).

7Indeed, let us consider two lists of weights (λs)
S
s=1

) and (λ̃s)
S
s=1

such that λ1 6= λ̃1 and λs = λ̃s, ∀s > 1.
We claim that (p∗, q∗) 6= (p̃∗, q̃∗). Suppose the contrary that (p∗, q∗) = (p̃∗, q̃∗), we then have

∑
s(λs −

λ̃s)Rs(p
∗) = 0 which implies that Rj

1
(p∗) = 0, ∀j = 1, . . . , J . We get a contradiction since p∗ ≫ 0.
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Proof of Proposition 3. Observe that, by using the same argument in the proof of Propo-
sition 2 in Section 3.1.1, we can prove that an equilibrium of the intermediate economy is
indeed an equilibrium for the initial economy. As such, it remains to prove the existence of
equilibrium in the intermediate economy Ẽ . To do so, we proceed in two steps. First, we use
the Sperner lemma to prove that there exists actually a Cass equilibrium. Second, from this
Cass equilibrium, we construct an equilibrium for the intermediate economy.

We now define and prove the existence of a Cass equilibrium.

Definition 10. A Cass equilibrium associated with (λ0, λ1, . . . , λS), λ0 = 1, λs > 0, ∀s ≥ 1 is

a list ((x̄i)Ii=1, (z̄
i)Ii=2, (p̄, q̄)) such that

(
(x̄i)Ii=1, (z̄

i)Ii=2

)
∈ (Bc)I × (RJ)I−1, (p̄, q̄) ∈ R

L(1+S)
++ ×

R
J
++ where

(i) x̄1 solves the consumer 1 problem under the constraints: x1 ∈ Bc, p̄′ · (x1 − ω1) ≤ 0,
where p̄′ = (p̄0, λ1p̄1, . . . , λsp̄s).

(ii) For i = 2, . . . , I, we have p̄0 · (x̄
i
0 − ωi

0) + q̄ · z̄i = 0, p̄s · (x̄
i
s − ωi

s) = Rs(p̄) · z̄
i, ∀s ≥ 1,

and x̄i solves the consumer i’s problem

maxU i(xi0, x
i
1, . . . , x

i
S) subject to: x

i ∈ Bi
Bc(p̄, q̄)

where Bi
Bc(p̄, q̄) ≡ {xi ∈ Bc : ∃zi ∈ R

J : p̄0 · (x
i
0 − ωi

0) + q̄ · zi ≤ 0, p̄s · (x
i
s − ωi

s) ≤
Rs(p̄) · z

i,∀s ≥ 1}.

(iii) q̄ =
∑

s λsRs(p̄).

(iv)
∑I

i=1(x̄
i − ωi) = 0.

Lemma 2. There exists a Cass equilibrium associated with (λ0, λ1, . . . , λS), λ0 = 1, λs >
0, ∀s ≥ 1.

Proof. Let p = (p0, p1, . . . , pS) ∈ ∆ where ∆ denotes the unit-simplex of RL(S+1). Define

p′ = (p0, λ1p1, . . . , λsps). Let λ̃ = mins λs. Let ǫ be such that 0 < ǫ < αλ̃
(I−1)

. Define the

following ǫ-returns matrix R′(p, ǫ): R′(p, ǫ) = R(p) +H(ǫ)×G where

H(ǫ) =




ǫ 0 . . . 0
0 ǫ . . . 0
...

...
. . .

...
0 0 . . . ǫ


 .

Obviously, R′(p, 0) = R(p) and R′(p, ǫ) is of rank J for any ǫ > 0.
Consider the problem of agent 1:

maxU1(x1) subject to x1 ∈ B1
Bc(p) ≡ {x1 ∈ Bc : p′ · (x1 − ω1) ≤ 0}.

Any agent i (i ≥ 2) solves the following problem:

maxU i(xi) subject to: xi ∈ Bi,ǫ
Bc(p),

where Bi,ǫ
Bc(p) ≡

{
xi ∈ Bc : ∃zi ∈ R

J : p0 · (x
i
0 − ωi

0) +
(∑

s

λsR
′
s(p, ǫ)

)
· zi ≤ ǫ,

ps · (x
i
s − ωi

s) ≤ R′
s(p, ǫ) · z

i ∀s ≥ 1
}
.
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These optimization problems have continuous objective functions. Since B1
Bc(p) and B

i,ǫ
Bc(p)

are compact, these problems have a solution. The budget set of agent 1 has a nonempty
interior since p ∈ ∆. To prove the budget sets of the agents i ≥ 2 have nonempty interiors,
we observe that xis = ωi

s, s = 0, 1, . . . , S and zi > 0 such that
∑

s λsR
′
s(p, ǫ)z

i < ǫ are in
the interior of these budget sets. By combining with the fact that the utility functions are
strictly concave, the optimal values x∗1, x∗2ǫ . . . , x∗Iǫ are continuous functions with respect to
p.8 For any p, we have

p′ ·
I∑

i=1

(x∗iǫ (p)− ωi) ≤ (I − 1)ǫ,

where, by convention, we denote x∗1ǫ ≡ x∗1.
Define the excess demand mapping ξ by

ξ(p) =
I∑

i=1

(x∗iǫ (p)− ωi).

It is obvious that ∀p ∈ ∆, p′ · ξ(p) ≤ (I − 1)ǫ.
(Using the Sperner lemma) Denote N = (S + 1)L. Let K > 0 be an integer and

consider a simplicial subdivision TK of the unit-simplex ∆ of RN such that Mesh(TK) <

1/K. We define the following labeling r. For any p ∈ ∆, r(p) = t if ξt(p) ≤
(I−1)ǫ

λ̃
. Such a

labeling is well defined. Moreover, it satisfies Sperner condition. Indeed, we see that:

• For t ∈ {1, . . . , N}. If p = et (recall that et is a unit-vector of RN), then (I − 1)ǫ ≥

λte
t · ξ(et) = λtξt(e

t). This implies ξ(et) ≤ (I−1)ǫ
λt

≤ (I−1)ǫ

λ̃
. We label r(et) = t.

• If p ∈ [[ei1 , . . . , eim ]] with m < N , then (I − 1)ǫ ≥ p′ · ξ(p) =
∑

q∈{i1,...,im} λqpqξq(p).

There must exist v ∈ {i1, . . . , im} with ξv(π) ≤
(I−1)ǫ

λ̃
. We label r(p) = v with some

v ∈ {i1, . . . , im}.

So, the labeling r satisfies Sperner condition. According to the Sperner lemma, there exists
a completely labeled subsimplex [[p̄1(K), . . . , p̄N(K)]], i.e., ξt(p̄

t(K)) ≤ (I−1)ǫ

λ̃
, ∀t = 1, . . . , N .

Observe that

∀t = 1, . . . , N,
I∑

i=1

(
x∗iǫ (p̄

t(K))− ωi
)
≤

(I − 1)ǫ

λ̃
< α. (5)

Let K → +∞. Then, for any t ∈ {1, . . . , N}, p̄t(K) → p∗(ǫ) ∈ ∆. We have ξv(p
∗(ǫ)) ≤

(I−1)ǫ

λ̃
< α, for all v. It follows from (5) that

I∑

i=1

(
x∗iǫ (p

∗(ǫ))− ωi
)
≤

(I − 1)ǫ

λ̃
< α. (6)

This implies that for any i, x∗iǫ (p
∗(ǫ)) is uniformly bounded from above when ǫ is small.

8We can prove this continuity by applying the Maximum Theorem (Berge, 1959) or adapting our argument
in Step 2 of the proof of Proposition 1.
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Write p∗(ǫ) = (p∗0(ǫ), p
∗
1(ǫ), . . . , p

∗
S(ǫ)), p

′∗(ǫ) = (p∗0(ǫ), λ1p
∗
1(ǫ), . . . , λSp

∗
S(ǫ)). Because of

(6) and the fact that utility functions are strictly increasing, we obtain

p′∗(ǫ) · (x∗1(p∗(ǫ))− ω1) = 0, (7)

which implies p′∗(ǫ) ≫ 0 ⇔ p∗(ǫ) ≫ 0.
For any agent i ≥ 2, there exists z∗iǫ such that (notice that budget constraints are binding

because of (6))

p∗0(ǫ) · (x
∗i
ǫ,0(p

∗(ǫ))− ωi
s) + (

∑

s

λsR
′
s(p

∗(ǫ), ǫ)z∗iǫ = ǫ,

p∗s(ǫ) · (x
∗i
ǫ,s(p

∗(ǫ))− ωi
s) = R′

s(p
∗(ǫ), ǫ) · z∗iǫ , s = 1, . . . , S.

Since R′(p∗(ǫ), ǫ) is of rank J for ǫ small enough, z∗iǫ is unique.
Let ǫ → 0, without loss of generality, we can assume that p∗(ǫ) → p̄ ∈ ∆. Since x∗1 is

continuous, we have x∗1(p∗(ǫ)) → x̄1 ≡ x∗1(p̄). From this, we have p̄≫ 0 (because x∗iǫ (p
∗(ǫ))

is uniformly bounded, see (6)).
We next claim that there is β > 0 such that ‖z∗i(p∗(ǫ))‖ ≤ β when ǫ is small enough.

Indeed, suppose that there exists a sequence (z∗ikn), with (kn)n=1,2,... being a decreasing
sequence converging to zero, and ‖z∗ikn‖ → +∞ when n → +∞. We have, for any n,
∀s = 1, . . . , S, p∗s(kn) · (x

∗i(p∗(kn))− ωi
s) = R′

s(p
∗(kn), kn) · z

∗i
kn
. Then,

p∗s(kn) · (x
∗i
kn
(p∗(kn))− ωi

s)

‖z∗ikn‖
= R′

s(p
∗(kn), kn) ·

z∗ikn
‖z∗ikn‖

∀s = 1, . . . , S, ∀n (8)

Let n → +∞, we can suppose
z∗i
kn

‖z∗i
kn

‖
→ ζ 6= 0. Since limn→∞ p∗(kn) = p̄, we have

limn→∞R′
s(p

∗(kn), kn) = R(p̄). Therefore, we get that 0 = Rs(p̄) · ζ = 0 ∀s = 1, . . . , S.
Since p̄≫ 0, we have p̄s · e > 0 ∀s ≥ 1, and hence the matrix R(p̄) is of rank J . This implies
that ζ = 0, which is a contradiction. Therefore, there is β > 0 such that ‖z∗iǫ ‖ ≤ β when ǫ
is small enough. Hence, we can assume that z∗iǫ converges when ǫ goes to zero.

To sum up, when ǫ → 0, we can assume that p∗(ǫ) → p̄ ∈ ∆, x∗1(p∗(ǫ)) → x̄1 ≡ x∗1(p̄),
p̄≫ 0. For i ≥ 2, x∗iǫ (p

∗(ǫ)) → x̄i, z∗i(p∗(ǫ)) → z̄i.
Let p̄′ = (p̄0, λ1p̄1, . . . , λS p̄s). Note that from (6) that

∑I

i=1(x̄
i − ωi) ≤ 0 and from (7)

that p̄′ · (
∑I

i=1(x̄
i − ωi) = 0 ⇒ p̄p

∑
i(x̄

i
p − ωi

p) = 0, p = 1, . . . , N. Since p̄ ≫ 0, we deduce

that
∑I

i=1(x̄
i
p − ωi

p) = 0, ∀p = 1, . . . , N , or equivalently
∑I

i=1(x̄
i − ωi) = 0.

The last step: prove the optimality of x̄i for each i ≥ 2. To do so, assume that there
is xi ∈ Bi

Bc(p̄, q̄) such that U i(xi) > U i(x̄i). Without loss of generality, we can assume that
xis ≫ 0 ∀s.9

Since xi ∈ Bi
Bc(p̄, q̄), we take any zi ∈ R

J such that p̄0 ·(x
i
0−ω

i
0)+ q̄ ·z

i ≤ 0, p̄s ·(x
i
s−ω

i
s) ≤

Rs(p̄) · z
i ∀s ≥ 1. Notice that xis ≫ 0, ∀s. So, without loss of generality, we can assume

that10

p̄0 · (x
i
0 − ωi

0) + q̄ · zi < 0, p̄s · (x
i
s − ωi

s) < Rs(p̄) · z
i, ∀s ≥ 1.

9Indeed, we can introduce xi(λ) by xi
s(λ) = (1 − λ)xi

s + λωs. Then, xi
s(λ) ≫ 0 because ωs ≫ 0, ∀s.

Moreover, we can choose λ > 0 small enough so that U i(xi(λ)) > U i(x̄i).
10Indeed, we can define xi′ by xi′

s,l = xi
s,l − τ ∀s = 0, . . . , S, ∀l = 1, . . . , L where τ > 0 small enough so

that U i(xi′) > U i(x̄i).
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Thus, we can choose ǫ > 0 small enough such that

p∗0(ǫ) · (x
i
0 − ωi

0) + R̄′
s(p

∗(ǫ), ǫ) · zi < ǫ, p∗s(ǫ) · (x
i
s − ωi

s) < R′
s(p

∗(ǫ), ǫ) · zi, ∀s ≥ 1.

By the optimality of x∗iǫ (p
∗(ǫ)), we have U i(xi) ≤ U i

(
x∗iǫ (p

∗(ǫ))
)
. Let ǫ → 0, we get

that U i(xi) ≤ U i(x̄i), which is a contradiction. We have proved the existence of a Cass
equilibrium.

We now move from Cass equilibrium to an equilibrium in the intermediate economy.

Lemma 3. There exists an equilibrium in the intermediate economy with q̄ =
∑

s λsRs(p̄).

Proof. Since
∑I

i=1(x̄
i
s − ωi

s) = 0, ∀s ≥ 1, we get that

∀s ≥ 1 , 0 = λsp̄s ·
I∑

i=1

(x̄is − ωi
s) = λsp̄s · (x̄

1
s − ω1

s) + λsp̄s ·
I∑

i=2

(x̄is − ωi
s).

Denote z̄1 = −
∑

i≥2 z̄
i. We have p̄s ·

∑I

i=2(x̄
i
s − ωi

s) = Rs(p̄) · z̄
1 which implies that

∑

s≥1

λsp̄s · (x̄
1
s − ω1

s) =
(∑

s

λsRs(p̄)
)
· z̄1 = q̄ · z̄1.

By combining this with the fact that p̄0 · (x̄
1
0 − ω1

0) +
∑

s≥1 λsp̄s · (x̄
1
s − ω1

s) = 0, we get that
p̄0 · (x̄

1
0 − ω1

0) + q̄ · z̄1 = 0.
It is easy to prove the optimality of x̄1.

3.2 Using Sperner’s lemma to prove the Gale-Nikaido-Debreu lemma

In Section 3.1, the consumers have utility functions and the firms have production functions.
When we consider preference orders for the consumers and production sets for the firms,
the demands of the consumers or of the firms are not necessarily single-valued. In this
case, the customary proofs of the equilibrium existence make use of either the Gale-Nikaido-
Debreu lemma (Debreu, 1956, 1959; Gale, 1955; Nikaido, 1956) or the Gale and Mas-Colell
lemma (Gale and Mas-Colell, 1975, 1979) whose proofs, in turn, require the Kakutani fixed
point theorem or the Knaster-Kuratowski-Mazurkiewicz lemma. In what follows, we use
the Sperner lemma and well-known mathematical results to prove several versions of the
Gale-Nikaido-Debreu lemma.

Let us start with the following version (Theorem 1 in Debreu (1959), page 82).

Lemma 4 (Gale-Nikaido-Debreu lemma). Let ∆ be the unit-simplex of RN . Let ζ be an
upper semi-continuous correspondence with non-empty, compact, convex values from ∆ into
R

N . Suppose ζ satisfies the following condition:

∀p ∈ ∆, ∀z ∈ ζ(p), p · z ≤ 0. (9)

Then there exists p̄ ∈ ∆ such that ζ(p̄) ∩ R
N
− 6= ∅.
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Proof of Lemma 4. Let A = max{‖z‖1 : z ∈ ζ(∆)}.
Step 0. Let ǫ ∈ (0, 1). Since ∆ is compact, there exists a finite covering of ∆ with

a finite family of open balls
(
B (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

. Take a partition of unity subordinate

to the family
(
B (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

, i.e. a family of continuous non-negative real functions

(αi)i=1,...,I(ǫ) from ∆ in R+ such that Supp αi ⊂ B (xi(ǫ), ǫ) , ∀i and
∑I(ǫ)

i=1 αi(x) = 1, ∀x ∈ ∆.11

Take yi(ǫ) ∈ ζ(xi(ǫ)) ∀i.

Step 1. We define the function f ǫ : ∆ → ∆ by f ǫ(x) =
∑I(ǫ)

i=1 αi(x)y
i(ǫ). This function

is continuous.
Step 2. We claim that: x · f ǫ(x) ≤ ǫA ∀x ∈ ∆. Let x ∈ ∆, there exists a set

J(x) ⊂ {1, . . . , I(ǫ)} such that x ∈ ∩i∈J(x)B (xi(ǫ), ǫ) . We have f ǫ(x) =
∑

i∈J(x) αi(x)y
i(ǫ)

with
∑

i∈J(x) αi(x) = 1. We have

∀i ∈ J(x), xi(ǫ) = x+ ǫui(x), with some ui(x) ∈ B(0, 1),

which implies that: ∀i ∈ J(x), yi(ǫ) ∈ ζ(xi(ǫ)) = ζ(x + ǫui(x)) ⊂ ζ
(
B(x, ǫ)

)
. By conse-

quence, f ǫ(x) ∈ co
(
ζ
(
B(x, ǫ)

))
. According to Carathéodory’s convexity theorem,12 we have

a decomposition

f ǫ(x) =
N+1∑

i=1

βi(x, ǫ)ỹ
i(x, ǫ),

with ỹi(x, ǫ) ∈ ζ(x + ǫui) where ui ∈ B(0, 1), βi(x, ǫ) ≥ 0,, and
∑N+1

i=1 βi(x, ǫ) = 1. From
this, we have

x · f ǫ(x) =
N+1∑

i=1

βi(x, ǫ)(x+ ǫui) · ỹi(x, ǫ)− ǫ

N+1∑

i=1

βi(x, ǫ)u
i · ỹi

≤ ǫ

N+1∑

i=1

βi(x, ǫ)‖u
i‖ · ‖ỹi‖ ≤ ǫA

N+1∑

i=1

βi(x, ǫ) = ǫA

since (x+ ǫui) · ỹi(x, ǫ) ≤ 0 (see condition (9)), ‖ui‖ ≤ 1 and ‖ỹi‖ ≤ A.
Step 3. We prove that:

∀x ∈ ∆, ∃i, f ǫ
i (x) ≤ ǫA. (10)

Indeed, if ∀i, f ǫ
i (x) > ǫA, then ǫA <

∑
i xif

ǫ
i (x) = x · f ǫ(x) ≤ ǫA, which is a contradiction.

Step 4 (using the Sperner lemma). Let K > 0 be an integer and consider a simplicial
subdivision TK of the unit-simplex ∆ of RN such that Mesh(TK) < 1/K and define the
labeling R as follows:

∀x ∈ ∆, R(x) = i, if f ǫ
i (x) ≤ ǫA.

11For the notion of partition of unity, see, for instance, Aliprantis and Border (2006)’s Section 2.19.
12Carathéodory (1907)’s convexity Theorem states that: In an n-dimensional vector space, every vector in

the convex hull of a nonempty set can be written as a convex combination using no more than n+1 vectors
from the set. For a simple proof, see Florenzano and Le Van (2001)’s Proposition 1.1.2 or Aliprantis and
Border (2006)’s Theorem 5.32.
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According to (10), this labeling is well-defined. It also satisfies the Sperner condition

x ∈ [[ei1 , . . . , eim ]] ⇒ R(x) = i ∈ {i1, . . . , im}

Indeed, if f ǫ
i (x) > ǫA, ∀i ∈ {i1, . . . , im}, then ǫA ≥ x · f ǫ(x) =

∑
i∈{i1,...,im} xif

ǫ
i (x) >

ǫ
∑

i∈{i1,...,im} xi = Aǫ, which is a contradiction.

The Sperner lemma implies that there exists a completely labeled subsimplex [[xK,1, . . . , xK,N ]]
with R(xK,l) = l, ∀l = 1, . . . , N , i.e., f ǫ

l (x
K,l) ≤ ǫA, ∀l = 1, . . . , N .

Let K → +∞, there is a subsequence (Kt) such that

∀l, xKt,l → xǫ ∈ ∆, f ǫ(xKt,l) → f ǫ(xǫ)

and, therefore, f ǫ
l (x

ǫ) ≤ ǫA, ∀l = 1, . . . , N.

Step 5. Since
(
B (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

is a covering of ∆, there exists a set J(xǫ) ⊂

{1, . . . , I(ǫ)} such that x ∈ ∩i∈J(xǫ)B (xi(ǫ), ǫ) . We have f ǫ(xǫ) =
∑

i∈J(xǫ) αi(x
ǫ)yi(xǫ) with∑

i∈J(xǫ) αi(x
ǫ) = 1. By using Carathéodory’s convexity theorem as we have done in Step 2,

we get a decomposition

f ǫ(xǫ) =
N+1∑

i=1

βi(x
ǫ)ỹi(xǫ)

with ỹi(xǫ) ∈ ζ
(
B(xǫ, ǫ)

)
, βi(x

ǫ) ≥ 0,
∑N+1

i=1 βi(x
ǫ) = 1.

Step 6. Let ǫ→ 0, without loss of generality, we can assume that

xǫ → x̄ ∈ ∆, βi(x
ǫ) → β̄i ≥ 0,

N+1∑

i=1

β̄i = 1,

ỹi(xǫ) → ȳi ∈ ζ(x̄), ∀i = 1, . . . , N + 1.

Therefore, we have

f ǫ(xǫ)
ǫ→0
−→ z̄ =

N+1∑

i=1

β̄iȳ
i ∈ ζ(x̄) (because ζ(x̄) is convex).

Moreover, the condition f ǫ
l (x

ǫ) ≤ ǫA, ∀l = 1, . . . , N implies that z̄l ≤ 0, ∀l = 1, . . . , N.
Define p̄ ≡ x̄, we have ζ(p̄) ∩ R

N
− 6= ∅ because z̄ ∈ ζ(p̄) ∩ R

N
− . The proof is over.

From Lemma 4, we can additionally derive two stronger versions of the Gale-Nikaido-
Debreu lemma. Each of them is stated and proved below.

Lemma 5. Let ∆ be the unit-simplex of R
N . Let ζ be an upper semicontinuous corre-

spondence with nonempty, compact, convex values from ∆ into R
N . Suppose ζ satisfies the

condition
∀p ∈ ∆, ∃z ∈ ζ(p) which satisfies p · z ≤ 0.

Then there exists p̄ ∈ ∆ such that ζ(p̄) ∩ R
N
− 6= ∅.
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Proof. For p ∈ ∆, let ζ̃(p) = {z ∈ ζ(p) : z · p ≤ 0}. The correspondence ζ̃ is upper
semicontinuous, convex, and compact valued from ∆ into R

N . It satisfies the assumptions
of Lemma 4. Hence there exist p̄ and z̄ ∈ ζ̃(p̄) ⊂ ζ(p̄), such that z̄ ≤ 0.

Lemma 6. Let ∆ be the unit-simplex of R
N . Let ζ be an upper semicontinuous corre-

spondence with nonempty, compact, convex values from ∆ into R
N . Suppose ζ satisfies the

condition
∀p ∈ ∆, ∀z ∈ ζ(p), we have p · z = 0.

Then there exist p̄, z̄ ∈ ζ(p̄) such that (1) z̄ ≤ 0, and (2) ∀i = 1, . . . , N, p̄i 6= 0 ⇒ z̄i = 0.

Proof. Since ”∀p ∈ ∆, ∀z ∈ ζ(p), p ·z = 0” ⇒ ”∀p ∈ ∆, ∀z ∈ ζ(p), p ·z ≤ 0”, from Lemma 4,
there exist p̄ and z̄ ∈ ζ(p̄) such that z̄ ≤ 0. Since p̄ · z̄ = 0, the conclusion is immediate.

Remark 5. Florenzano (2003) (Lemma 2.1.1) provides another version of the Gale-Nikaido-
Debreu lemma (her proof of this result makes use of the separation and the Brouwer fixed
point theorems). However, the point p̄ in her Lemma 2.1.1 is not proved to be different from
zero. In Lemma 4 and Lemma 5, the price p̄ is in the unit-simplex and hence not equal to
zero (see Florenzano (1982), Florenzano and Le Van (1986) for more detailed discussions).

Remark 6 (The Kakutani fixed point theorem and the Gale-Nikaido-Debreu lemma). We
emphasize that the Kakutani fixed point theorem can be obtained as a corollary of the Gale-
Nikaido-Debreu lemma. We prove this by adapting the argument of Uzawa (1962) for con-
tinuous mapping.

Let ζ be an upper semicontinuous correspondence, with non-empty convex compact values
from ∆ into itself. Define, for p ∈ ∆,

ψ(p) =
{
y : y = z −

p · z
∑N

i=1 p
2
i

p, with z ∈ ζ(p)
}

One can check that ψ is upper semicontinuous and convex valued. Moreover, for any p ∈ ∆,
any y ∈ ψ(p), we have p · y = 0. Hence, from Lemma 6, there exist p̄ ∈ ∆ and ȳ ∈ ψ(p̄)
which satisfy ȳ ≤ 0, and ∀i = 1, . . . , N, p̄i 6= 0 ⇒ ȳi = 0. In other words, there exist p̄ ∈ ∆
and z̄ ∈ ζ(p̄) satisfying two conditions:

1. ∀i = 1, . . . , N, z̄i ≤
p̄·z̄

∑N
i=1

p̄2i
p̄i.

2. ∀i = 1, . . . , N, p̄i 6= 0 ⇒ z̄i =
p̄·z̄

∑N
i=1

p̄2i
p̄i.

Hence, if p̄i = 0, we have 0 ≤ z̄i ≤ 0 which in turn implies that z̄i = 0. Let µ = p̄·z̄
∑N

i=1
p̄2i
.

We obtain that z̄i = µp̄i for any i = 1, . . . , N . Since z̄ ∈ ∆, p̄ ∈ ∆, we have µ = 1. Hence,
p̄ = z̄ ∈ ζ(p̄).

Notice that Florenzano (1982) (see her Proposition 2) also proves the Kakutani fixed point
theorem from the Gale-Nikaido-Debreu lemma but she considers for the unit ball instead of
the simplex ∆ and she makes use of the separation theorem.
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3.3 Using Sperner’s lemma to prove fixed point theorems

The Brouwer fixed point theorem is considered as one of the most fundamental results in
topology. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point
theorem for the case of set-valued functions. These two theorems have a wide application
across different fields of mathematics and economics. We now formally state the Kakutani
fixed point theorem and use the Sperner lemma to prove it.

Theorem 1. (Kakutani) Let ζ be an upper semi continuous correspondence, with non empty
convex compact values from a non-empty convex, compact set V ⊂ R

N into itself. Then there
exists a fixed point x, i.e. x ∈ ζ(x).

Proof. Without loss of generality, we prove this theorem for the case where the set V is the
unit-simplex ∆ of RN .

Let ǫ > 0 be given. Since ∆ is compact, there exists a finite covering of ∆ with a finite
family of open balls

(
B (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

. Take a partition of unity subordinate to the family(
B (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

, i.e. a family of continuous non-negative real functions (αi)i=1,...,I(ǫ)

from ∆ in R+ such that Supp(αi) ⊂ B (xi(ǫ), ǫ) , ∀i and
∑I(ǫ)

i=1 αi(x) = 1, ∀x ∈ ∆.

Take yi(ǫ) ∈ ζ(xi(ǫ)), ∀i and define the function f ǫ : ∆ → ∆ by f ǫ(x) =
∑I(ǫ)

i=1 αi(x)y
i(ǫ).

This function is continuous.
Let K > 0 be an integer and consider a simplicial subdivision TK such thatMesh(TK) <

1/K (see Remark 1). We define a labeling R as follows:13

for x ∈ ∆, R(x) = l, if xl ≥ f ǫ
l (x). (11)

This labeling is well defined because
∑

l xl =
∑

l f
ǫ
l (x) = 1. Moreover, this labeling satisfies

the Sperner condition. Indeed, take x ∈ ri[[ei1 , . . . , eir ]] (recall that (ei)i are the unit-vectors
of RN .) We claim that R(x) ∈ {i1, . . . , ir}. If not, xl < f ǫ

l (x), ∀l ∈ {i1, . . . , ir} and we get a
contradiction:

1 =
∑

l∈{i1,...,ir}

xl <
∑

l∈{i1,...,ir}

f ǫ
l (x) ≤ 1.

According to the Sperner lemma, there exists a completely labeled subsimplex SK = [[xK,1, . . . , xK,N ]],
with xK,l

l ≥ f ǫ
l (x

K,l) ∀l = 1, . . . , N .
Let K → +∞, there exists a subsequence (Kt)t≥1 such that xKt,l converges to xl for any

l = 1, . . . , N . Since Mesh(TK) tends to zero, we must have x1 = x2 = · · · = xN . Let x∗(ǫ)
be this point. By continuity, we have f ǫ(xKt,l) → f ǫ(x∗(ǫ)) ∀l. Since x∗l (ǫ) ≥ f ǫ

l (x
∗(ǫ)) ∀l,

we get x∗(ǫ) = f ǫ(x∗(ǫ)).
Since

(
B (xi(ǫ), ǫ)

)
i=1,...,I(ǫ)

is a covering of ∆, we have x∗(ǫ) ∈ ∩i∈J(ǫ)B (xi(ǫ), ǫ), where

J(ǫ) ⊂ {1, . . . , I(ǫ)}. Hence

x∗(ǫ) = f ǫ(x∗(ǫ)) =
∑

i∈J(ǫ)

αi(x
∗(ǫ))yi(ǫ) (12a)

with
∑

i∈J(ǫ)

αi(x
∗(ǫ)) = 1, yi(ǫ) ∈ ζ(xi(ǫ)), ∀i ∈ J(ǫ). (12b)

13This labeling is similar to that in Scarf (1967) and Border (1985).
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Observe that ∀i ∈ J(ǫ), xi(ǫ) ∈ B(x∗(ǫ), ǫ) ⊂ R
N . Therefore, yi(ǫ) ∈ ζ

(
B(x∗(ǫ), ǫ)

)
and

f ǫ(x∗(ǫ)) ∈ co
(
ζ
(
B(x∗(ǫ), ǫ)

))
. From Carathéodory’s convexity theorem, we have a decom-

position

f ǫ(x∗(ǫ)) =
N+1∑

i=1

βi(x
∗(ǫ))ỹi(x∗(ǫ)) (13)

with ỹi(x∗(ǫ)) ∈ ζ
(
B(x∗(ǫ), ǫ)

)
, βi(x

∗(ǫ)) ≥ 0,
∑N+1

i=1 βi(x
∗(ǫ)) = 1.

Let ǫ→ 0. Without loss of generality, we can assume x∗(ǫ) → x̄ ∈ ∆, βi(x
∗(ǫ)) → β̄i ≥ 0,∑N+1

i=1 β̄i = 1, and ỹi(x∗(ǫ)) → ȳi ∈ ζ(x̄), ∀i = 1, . . . , N + 1. This implies x̄ =
∑N+1

i=1 β̄iȳ
i.

Since ζ(x̄) is convex, we get x̄ ∈ ζ(x̄). The proof of the Kakutani fixed point theorem is,
therefore, over.

The Brouwer fixed point theorem, stated below, is a corollary of the Kakutani fixed point
theorem when ζ is a single valued mapping.

Corollary 1. (Brouwer) Let φ be a continuous mapping from a non-empty convex compact
set into itself. Then there exists a fixed point x, i.e. x = φ(x).

Remark 7. In the literature, the Brouwer fixed point theorem has been used to prove the
Kakutani fixed point theorem. Indeed, the original proof of the Kakutani fixed point theorem
in Kakutani (1941) relies on the application of the Brouwer fixed point theorem to single-
valued mappings approximating the given set-valued mapping. For a pedagogical purpose, we
summarize here the proof of Kakutani. Let Sn be the n-th barycentric simplicial subdivision
of ∆. For each vertex xn of Sn, take an arbitrary point yn ∈ ζ(xn). This mapping can be
extended linearly to a continuous point-to-point mapping x→ φn(x) of ∆ to itself. Applying
the Brouwer fixed point theorem, there exists xn ∈ ∆ such that xn = φn(xn). Let n tend to
infinity, there is a subsequence of (xn) converging to a point x∗ which is actually a fixed-point
of ζ.

Florenzano (1981), in Proposition 2, also makes use the Brouwer fixed point theorem to
prove the Kakutani fixed point theorem. More precisely, for any ǫ > 0, Florenzano considers
a covering of ∆ by a finite family of open balls and defines the function f ǫ as in our above
proof. By applying the Brouwer fixed point theorem, f ǫ has a fixed point xǫ. Let ǫ→ 0, then
xǫ → x̄. To prove that x̄ ∈ ζ(x̄), assume that this is not a case, then apply the Separation
Theorem to the sets {x̄} and ζ(x̄) to get a contradiction.

We proceed as in Florenzano (1981) but use the Sperner lemma to get a fixed point xǫ of
the function f ǫ. Let ǫ → 0, then xǫ → x̄. To prove that x̄ ∈ ζ(x̄), we proceed differently.
More precisely, we apply Carathéodory’s convexity theorem to get a decomposition (13) of
f ǫ(x∗(ǫ)). When ǫ→ 0, x can be expressed as a convex combination of elements which belong
ζ(x̄). So, x̄ ∈ ζ(x̄).

4 Conclusion

We have used the Sperner lemma and elementary mathematical results to prove the exis-
tence of general equilibrium for an economy with production and for another economy with
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incomplete financial markets. We have also made use of the Sperner lemma to provide a
new proof of the Gale-Nikaido-Debreu lemma and the Kakutani fixed point theorem.

It is interesting to notice that, by using the Sperner lemma and algorithms of a combina-
torial nature, we can approximate the equilibrium price (see Scarf and Hansen (1973), Scarf
(1982) for more details). By consequence, we hope that our paper provides a fresh alter-
native way in studying the equilibrium existence, and, potentially, in computing economic
equilibria.
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