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Deterministic chaos within the transfer space 

An unstable fixed point as a narrow ford to complexity through chaos  

T. Friedrich 

The complete reinvestment of the net profit of a previous production cycle 

as substrate of the next cycle of a single party may result in deterministic 

chaos. The dynamics of such a feedback loop is controlled by the size 

relation of a benefit factor (serves also as complexity factor) and a cost 

factor. An increasing benefit factor or decreasing cost factor trigger 

bifurcation and deterministic chaos at certain size relations. In 

deterministic chaos the size of the net profit of the reinvestment is no 

longer reliable. Thus, a limit to the evolution of complexity via an increasing 

benefit factor and complete reinvestment would be expected.  

Chaos already starts when benefit exceeds cost; a sink. In a source cost 

exceeds benefit. Both conditions met, source and sink form an ensemble, 

peacefully transfer substrate when in contact, and produce superadditivity. 

At low substrate concentrations a sink has to pass through the region of 

chaos to become a source. To suppress chaotic behaviour, an ensemble 

could become active when on both sides benefit still exceeds cost; two 

sinks. The emerging superadditivity supports such a behaviour. In 

addition, the mathematical analysis of my model identifies a unique 

substrate concentration leading to an unstable fixed point. Notably, this 

concentration is independent of an increasing benefit factor and thus does 

not collide with evolution towards complexity. Moreover, this concentration 

is a turning point as the result of a further complete reinvestment no longer 

grows. This limit guides the ensemble through chaos towards complexity 

and division of labour by a sink and a source.  

source, sink, ensemble, net profit, benefit factor, cost factor, superadditivity, 
subadditivity, deterministic chaos, stable fixed point, unstable fixed point, bifurcation, 
evolution of complexity, division of labour 



 

Introduction 

The features of the transfer space have been recently described again in 

detail (1). A short abstract: I observe the transfer space of an ensemble 

and its constituents (source and sink) with respect to the quality of their 

net profit (np>0 or np=0 or np<0). Net profit is the difference of benefit (b) 

and cost (c) on basis of the same units (b-c). The net profit of the ensemble 

is the sum of the net profits of source and sink. Transfer of substate from 

source to sink will result in superadditivity or subadditivity due to the non-

linear nature of the benefit function. The cost function is linear and a fixed 

cost is usually absent. In the absence of transfer there is only simple 

additivity. Both parties may differ with respect to affinity or maximal 

reaction velocity for the same substrate. In addition, the substrate has a 

benefit and a cost aspect expressed in a benefit factor (bf) and cost factor 

(cf) for source and sink. They may also be of different size in source and 

sink. The benefit factor bf may serve as a complexity factor in addition. 

This is primarily understood as increasing efficiency through 

architectonical and structural complexity and hierarchy of ensembles (2).  

Structure of the investigation 

In the beginning I observe a single party of an ensemble. The size of the 

net profit there depends besides the biochemical basics (Km, Vmax, and 

substrate concentration [S]) on size and relationship of the benefit factor 

and the cost factor. I investigate what happens to the net profit of a 

feedback loop if the benefit factor or the cost factor are continuously 

changed in a single party. Then I observe different strategies to find a path 

to increased complexity (increased benefit factor) by mutation and 

selection with improved net profit as assessment standard. Is it possible 

to evolve a sink at low external substrate concentration to a source with 

higher substrate concentration? Finally, I briefly investigate the interplay 

of source and sink to further control the emerging dynamics. 



 

Feedback loops 

In biology and in economy the net profit of a past period could be the start 

substrate or start capital for the following period (figure 1). Therefore, I no 

longer observe all possible concentrations within a single party and a 

single transfer in parallel. Now I want to observe the dynamics of a 

feedback loop where the net profit of the previous period is fed back as 

substrate into the same party to give rise to the net profit of the present 

period and so forth.  

I look e.g. at a single organism consuming glucose to acquire glucose. 

This organism could be a single cell foraging for food or a person earning 

money to buy food. This feedback loop (figure 1) may lead to growth, an 

equilibrium or starvation. The crucial quantity is the size of the net profit 

(np) of this action. This is determined by the Michaelis-Menten constant 

(Km, 0.5mM), the maximal reaction velocity (Vmax, 5µmol/min), the 

benefit factor (bf, b*min/µmol), the cost factor (cf, c/mM), and the initial 

substrate concentration [S] (mM). 

 

Figure 1 

 

Figure 1 
Here we look at the feedback loop of the net profit production of a single party. The 
benefit function (b) is set according to Km and Vmax. The cost function is c. The 
consumption of a start substrate [S] leads to a net profit (np=b-c). The net profit is used 
in a feed-back loop as substrate within 1050 such cycles. The effect of an increasing 
benefit factor (bf, blue arrow) or a decreasing cost factor (cf, red arrow) on the last 250 
cycles will be observed.  



 

Net profit here is the difference between a non-linear benefit function and 

a linear cost function. Both functions are monotonously increasing. I 

observe the effect of an increase of the benefit factor or a decrease of the 

cost factor on the long-term behaviour of a feedback loop. Km and Vmax 

remain unchanged. The substrate concentration is variable but is the result 

of the feedback loop. The increase of a benefit factor and the decrease of 

a cost factor have here both the same effect. The reason is that the point 

of equilibrium b-c=0 shifts to higher substrate concentrations and the area 

of benefit domination (b>c) is increased. An increased benefit domination 

is positively correlated to net profit (figure 2). 

 

Figure 2 

 

Figure 2 
Left: When the benefit factor bf of a saturating benefit function is increased from a start 
value (light blue) to a higher value (dark blue) the point b-c=0 shifts to a higher 
substrate concentration (dotted lines) in the case of a linear, constant cost function 
(orange). The total net profit b-c, the area between the orange line and the dark blue 
curve, is increased compared to the start.  

Right: When the cost factor cf of a linear cost function is decreased from a start value 
(orange) to a smaller value (red) the point b-c=0 shifts to a higher substrate 
concentration (dotted lines) in the case of a constant, saturating benefit function (light 
blue). The total net profit b-c, the area between the red line and the blue curve, is 
increased compared to the start. A fix cost is not included. 

 

 



 

Results 

Emergence of deterministic chaos on the level of a single party 

The following results are obtained in analogy to the logistic map. For figure 

3 (right part, the Feigenbaum diagram) the benefit factor (bf, b*min/µM) is 

varied from zero to ten at fixed Km (0.5mM), Vmax (5µM/min), and cost 

factor cf=5/3 (c/mM) values. The feedback loop is started at several 

different substrate concentrations (not 0.3mM; to be explained in the 

discussion). The result - the net profit - is calculated and used in the next 

cycle as substrate. However, in case the net profit drops to or below zero, 

the feedback loop is terminated (figure 3, bf=8/3). The reason is that at 

this point the behaviour of the system will change. As long as net profit is 

positive, I observe a sink (b-c>0). Beyond about bf=8/3 net profits, 

depending on the orbit, sooner or later become negative, a source (b-c<0). 

The feedback loop is performed 1050 times. The results of the first 800 

iterations are omitted. The results of the next 250 iterations are printed (y-

axis, np). The np value for any substrate start value (0.15mM, 0.25mM, 

0.35mM, 0.45mM, 0.55mM, 0.65mM, 0.75mM, 0.85mM, 0.95mM) 

between bf=0 and bf=8/30 are either zero, converge to zero with 

increasing bf or are negative values and set to zero (inset figure 3). 

Positive values at low bf, if observed, are very small.  

Only between bf=8/30 and bf=8/3 always positive, large values are 

observed. Beyond bf=8/3 sooner or later np values are negative and 

therefore the whole result is set to zero, too. This is observed up to bf=10. 

The behaviour resulting in large values is similar to the overall 

observations with the quadratic iterator. Starting at bf=8/30 attractive and 

stable fixed points are observed with increasing bf. At higher bf values 

unstable fixed points (bifurcations) are observed. After that deterministic 

chaos with windows of stability follows.  



 

Figure 3 

 

Figure 3 

Left: Two cobweb-diagrams are displayed ([S] invested on the x-axes, np received on 
the y-axes). The upper diagram shows at bf=1 the inwards spiral (blue) to the attractive, 
stable fixed point (dotted grey line at bf=1, right). The lower diagram shows the situation 
after the first bifurcation (right, grey dotted line at bf=1.2). Two start concentrations are 
observed. The green orbit spirals outwards, away from an unstable fixed point towards 
a periodic cycle. The blue orbit spirals inwards to the same attractive, stable cycle. The 
result oscillates between an upper and lower value (bifurcation of np). Right: The 
feedback loop examined with a continuously increasing benefit factor (the step size is 
0.0016875bf - one pixel is one step) results in a Feigenbaum diagram (bf on the x-axis, 
np on the y-axis). The net profit becomes positive at bf=8/30 (orange arrow). The grey 
dotted lines at bf=1 and bf=1.2, the limit at bf=8/3, and the orange arrow reappear in 
figure 5. The red arrow points to the location of the inset. 

 

Net profit will also increase when cf is decreasing (figure 2, right). 

Therefore, a similar behaviour appears when net profit is observed while 

cf is decreasing. This, however, is limited especially in the presence of a 

fix cost. The cost factor in figure 4 is decreased from ten to zero at two 

different benefit factors. The first benefit factor is before the first bifurcation 

in figure 3 (bf=1). The other benefit factor is after the first bifurcation but 

before the second bifurcation (bf=1.2) of figure 3. 



 

Figure 4 

 

Figure 4 

Here, the feedback loop is examined according to a continuously falling cost factor 
(from 10 to zero). This is observed at two different benefit factors (left bf=1, right 
bf=1.2), the net profit on the y-axis, the cost factor (cf) on the x-axis. The orange dotted 
lines mark two special cost factors (5/3 and 4) appearing also in the next figure. The 
orange arrow marks cf where np is zero and reappears also in figure 5.  

 

The overall picture of both results is also known from other iterated 

functions.  In case the cost factor is high, only a low net profit is achievable. 

Observing the graph (figure 4 left, bf=1) from right (high cf) to left (low cf) 

stable fixed points, bifurcations and partial deterministic chaos appear and 

disappear again. At bf1.2 (figure 4, right) the complete deterministic chaos 

is followed by a change of behaviour to a source (b-c<0 for some values) 

and then at much lower cf values the sequence is mirrored. After the area 

of the behavioural change, deterministic chaos reappears followed by 

unstable fixed points, bifurcation, and stable fixed points. This result leads 

to the question what pattern bf and cf follow.   

I assume benefit factors and cost factors to be independent from each 

other. Therefore, I now observe the outcome of net profit when both, bf 



 

and cf, are varied between zero and ten. This results in a two-dimensional 

surface. When the last 250 iterations contain a negative net profit value 

the area is red. If only a single positive net profit appears (stable fixed 

point) the area is coloured in green. If the values oscillate or show chaotic 

behaviour with values above zero, they are coloured in blue (figure 5).  

 

Figure 5 

 

Figure 5 

The benefit factor is on the x-axis and the cost factor is on the y-axis depicted. Within 
the large red area, the last 250 iterations contain a negative np value. In the blue area 
bifurcation (unstable fixed points) or deterministic chaos are observed and in the green 
area the last 250 iterations are a stable fixed point and a positive net profit. The grey 
and orange dotted lines are connected to figure 3 and figure 4 and follow a fixed cf 
(orange) or bf (grey) value. Orange arrows mark related positions in figure 3 and figure 
4. The colour coding here has no connections to the colour coding used in my older 
papers. The result of the inset in figure 3 appears in the triangular shaped red area. As 
the values are very small, they are omitted to give a clear picture.  



 

The orange cuts of figure 5: At a constant cf=5/3 and an increasing bf, the 

following observations are made: Starting at zero and increasing bf, net 

profit is chaotic or converges to zero (purposely depicted as red triangular 

shaped area only; figure 3, inset). At bf=8/30 the green area is entered 

(orange arrow). Between bf=1.0 and bf=1.2 the results switch from stable 

fixed points to bifurcation, the initial part of the blue area. Finally, at bf=8/3 

the results leave the chaotic part of the blue area and enter the red area 

where negative net profits (b-c<0) appear within the last 250 iterations.  

The grey cuts of figure 5: At about cf=9.2 and bf=1.0 (orange arrow) net 

profit starts to become positive and at bf=1.2 stable fixed points (green) 

are reached but they are only of a very small net profit (figure 4). At cf=4.0 

and bf=1 the results are in the blue area (bifurcation and chaos) while at 

bf=1.2 they are already in the red area. It should be clear that the net profit 

in direction of larger cf is decreasing and net profit is increasing in direction 

of increasing bf – a third dimension. Within the green and blue area net 

profit is positive. In the red area a first negative net profit value appears 

and the iteration stops because this is the start of a behavioural change. 

In the green and blue area of figure 5 sink behaviour is observed; b-c>0. 

All net profits - the substrate of the next cycle - are positive. Although, they 

may no longer be predictable. A source behaviour will start only if the 

concentration of substrate is high enough to meet the condition that the 

cost of the substrate exceeds the benefit of the substrate (b-c<0). This 

starts to begin in the large red area. Substrates which will result in a 

negative net profit are given away – a source. 

It seems that there are three paths to complexity. Two green branches are 

obvious, it is the complexity of a sink: First, when the cost factor is very 

low, the benefit factor can increase unhindered by orders of magnitude. 

Second, the benefit factor can slowly grow controlled by an even stronger 



 

increasing cost factor. The area of similar sized cost and benefit factors 

and the evolutionary development of a source behaviour (giving) seems to 

be excluded by a blue wall of bifurcation and deterministic chaos, where 

increased net profit is no longer reliable. The large red area of a source is 

not a homogeneous area without any structure (figure 6).  

An increasing complexity (bf) might confer additional cost (cf). The idea of 

cf as a function of bf is not considered.  

 

Figure 6 

 

Figure 6 

The triangular shaped red region for small bf values is not further investigated. The 
large red area in figure 5 is further differentiated. A pixel is coloured in red when the 
first iteration of the last 250 is negative (a fast escape velocity to a source behaviour) 
and in the brightest yellow when the 23rd iteration is negative (a slow escape velocity 
to go from sink to source). The start concentration of the single orbit is [S]=0.01nM. 



 

Evolution of a sink into a source at low substrate concentrations 

Substrate is usually scarce in nature and therefore the world should be full 

of sinks. A single sink is a simple layout. Two parties are a more complex 

layout when they function as a source and a sink in an ensemble.  

An easy way to convert a sink into a source in the absence of high 

substrate concentrations is an increase of the cost factor, an increase of 

Km, or a decrease of Vmax. This will move the point b-c=0 to even lower 

substrate concentrations so that substrate is easily given; a source. The 

result of such unfavourable biochemical changes is a decrease in net profit 

of the affected party. This is not a good evolutionary move for a party as 

long as the ensemble is not yet fully integrated.  

To evolve two independent sinks into an ensemble of source and sink is a 

step upwards in complexity. This can be achieved by increasing the 

complexity factor (bf, figure 2, left). A decrease of the cost factor (cf) is 

limited, especially as there will be usually a fix cost. Complexity is not 

directly measurable by a system. An indicator of increased complexity 

could be increased net profit. Different strategies to reach increased net 

profit and guide the system towards increased complexity are conceivable.  

In the following section four behavioural strategies (1 to 4) to evolve a sink 

into a source are investigated. They range from complete reinvestment to 

the reinvestment of only a fixed amount. In a process of mutation and 

selection the evaluation depends always on measured net profit. 

Increased complexity (bf) can only prevail when net profit is increased. 

 

1. A reinvestment strategy where the single party always completely 

reinvests the net profit as substrate and the resulting net profit is 



 

measured and reinvested again ([S]n-1 produces np and np becomes 

[S]n). A mutated bf will prevail if np is increased.  

2. The single party reinvests the latest net profit but judges the 

performance according to the average net profit of the last 20 net 

profits. This will result in an average net profit as measure of 

success. A mutated bf will prevail if the average np is increased. 

3. The single party chooses any fixed concentration and obtains a net 

profit. This net profit is used to regenerate the start concentration 

and is the measure of the evolutionary success of a mutated benefit 

factor. The rest of the net profit (substrate) is discarded. 

4. This strategy compares the present net profit (b-c)
n
 and the previous 

net profit (b-c)
n-1 of a start concentration. When (b-c)

n
/(b-c)

n-1
>1 the 

reinvested amount of substrate is increased by this factor. When (b-

c)
n
/(b-c)

n-1
<1 the reinvested amount of substrate is decreased by this 

factor. Finally, the reinvested substrate stays unchanged when (b-

c)
n
/(b-c)

n-1
=1. That concentration is the limit. The success of a 

changed complexity (changed bf) is measured as achieved net 

profit. The surplus is discarded. Only a mutated bf with increased net 

profit will survive. 

 

Strategy 3 and 4 are basically already on the way to an ensemble of source 

and sink. A fixed or limited concentration requires that substrate is 

discarded when there is substrate in surplus of the concentration limit. This 

surplus could be released into the environment, but it could also be given 

to a neighbour. If this neighbour is genetically related, the advantage of 

entanglement starts (3). 

 



 

Strategy 1: 

100 individuals with an initial bf=0.2, Km=0.5, Vmax=5, cf=5/3 and initial 

substrate concentration [S]=0.1 were randomly mutated between -0.0005 

and +0.0005 according to bf. The production cycle is started and the 

resulting net profit is calculated. In addition, the average net profit and the 

average bf is calculated for the graph in figure 7. The size of the individual 

net profit ranks the 100 parties. The top five individuals reproduce once 

and the bottom five individuals die, bf is mutated randomly and the next 

production cycle starts. The result is shown in figure 7. 

 

Figure 7 

 

Figure 7 

Left: The size of the average net profit of 100 individuals is shown (y-axis, np) over a 
time span of 6000 generations (x-axis, gen). The increase in net profit is the result of 
random mutations in the values of bf. After about 3500 generations the average net 
profit levels off at about 1.5 (np). The black arrow indicates a sudden jump in net profit 
after about 560 generations when bf has grown beyond 8/30. Right: Here, the size of 
the benefit factor (y-axis, bf) in dependence of the generation time (x-axis, gen) is 
observed. The benefit factor does not exceed a value of about 1.15.  

 



 

The single party is only able to increase its complexity to bf=1.15. This is 

just behind the first bifurcation (see also figure 5). In bifurcations the 

resulting net profit does no longer continuously increase; it alternates 

between a larger value and a smaller value. It is surprising that the 

increase in bf does not immediately stop at the first bifurcation. A more 

intensive selection process (10 individuals die) moves further into the zone 

of bifurcation (not shown) but bf also stops to grow. As the system starts 

with bf=0.2, there is for many generations no visible growth in net profit. 

There, the average substrate concentration (net profit) is decreasing from 

the start values and bf grows very slowly. After bf has grown to over 8/30 

net profit explodes (arrow in figure 7). However, the growth of bf finally 

stops. The growth of the complexity factor bf stops because the growth in 

net profit stops. The strategy of complete reinvestment of the net profit 

does not penetrate far into the area of bifurcation. A large accumulation of 

complexity is not possible with this strategy.  

 

Strategy 2 

100 individuals with an initial bf=0.5, Km=0.5, Vmax=5, cf=5/3 and initial 

substrate concentration [S]=0.8 were randomly mutated between -0.0005 

and +0.0005 according to bf over 10 000 generations. The individuals 

alternate between 20 production cycles and a mutation cycle. For every 

individual the average np of the 20 production cycles is determined. 

According to np the ten best individuals reproduce, the ten worst die. The 

average np and bf of all 100 individuals is calculated and is displayed with 

generation time in figure 8.  



 

Figure 8 

 

Figure 8 

Left: The size of the average net profit of 100 individuals after 20 production cycles is 
shown (y-axis, np) over a time span of 10 000 generations (x-axis, gen). The increase 
in net profit is the result of random mutations in the values of bf. After about 3500 
generations the average net profit levels off at about 2.5 (np). Right: Here, the size of 
the benefit factor (y-axis, bf) in dependence of the generation time (x-axis, gen) is 
observed. The benefit factor does not exceed a value of about 1.5. 

 

The start concentration (0.8mM) is not visible in figure 8 as the system 

adjusts within a few generations. With other start concentrations and other 

initial bf values the figures vary only slightly. Again, the system is not able 

to accumulate large complexity (bf). Within the first bifurcation the 

evolution of bf (complexity) comes to a halt. 

 

 

 

 

 



 

Strategy 3 

This strategy uses a (any) fixed substrate concentration. In the shown 

example (figure 9) the substrate concentration is 0.2mM and start bf is set 

to 0.4. As long as bf>28/75 the outcome is larger than the investment. At 

bf=28/75 the investment is replaced. Below this value the strategy would 

not work. The population is set to 100 individuals. According to the net 

profit the worst ten individuals die and the top ten individuals reproduce 

once to replace the dead.  

 

Figure 9 

 

Figure 9 

Net profit (left) and benefit factor (right) grow continuously over the generations. 

 

This, however is a too simple strategy. As soon as a competing strategy 

will use a slightly higher fixed concentration (e.g. figure 11), the competitor 

will prevail. Large start concentrations found in the outside world will be 

rare. A reinvestment strategy will produce this on its own. But reinvestment 

is coupled to chaos. Is there a reinvestment strategy avoiding chaos? 



 

Strategy 4 

The longer the reinvestment lasts, the more chaos will be observed. The 

shortest reinvestment is a two-step procedure. As soon as the net profit 

no longer grows (npn-1 equals npn), the substrate concentration is kept 

constant. This should be detectable by a simple algorithm comparing the 

past net profit and the present net profit. The search strategy for the 

optimal start concentration is:  

[S]n = [S]n-1 * f(f([S]n-1)) / f([S]n-1)  

simultaneously the benefit factor is mutated (figure 10). Again, the 

population is set to 100 individuals. According to the net profit the worst 

ten individuals die and the top ten reproduce once to replace the dead. 

 

Figure 10 

 

Figure 10 

The average substrate concentration [S] or benefit factor (bf) of 100 individuals is 
shown over a time span of 4000 generations. In less than 1600 generations the optimal 
start concentration is reached (black arrow, left). At 0.3mM the net profits of the 
previous and the actual substrate concentration are identical (b-c)n/(b-c)n-1=1. When 
the optimal start concentration is found, bf dramatically increases at that fixed 
concentration (black arrow, right).     



 

At e.g. a low start concentration bf is slowly growing over many 

generations. When f(f([S]n))/f([S]n-1)=1, a stable concentration is achieved 

(0.3mM). When this concentration is reached the increase in bf 

(complexity) drastically increases. The net profit (np=f([S]=b-c) is 

produced according to a saturating benefit function (Michaelis-Menten) 

and a linear cost function: [S]n = bf * Vmax* [S]n-1/([S]n-1+Km) - cf * [S]n-1. 

The biochemical values used are: Km=0.5, Vmax=5 und cf=5/3. For figure 

10 and 11 bf=0.27; there bf is mutated in step sizes of +/- 0.001.  

The substrate concentration [S] to start with and the size of the benefit 

factor to start with are very critical. Three different behaviours are 

observed with e.g. bf=0.5:  

a.) [S] < 0.3: The two-step procedure leads to increasing start values and 

finally to a stable start concentration of 0.3mM. 

b.) 0.3 < [S] < 0.4375: The two-step procedure leads to a slowly falling 

start value and finally to a stable start concentration of 0.3mM (not shown).  

c.) [S] > 0.4375: The values increase steadily and finally become negative 

([S] > 1.0). The sink has changed into a source. Here, the start 

concentration is to the right of the unstable fixed point (see discussion). To 

avoid this the search strategy for the optimal start concentration should 

search for the lowest possible start concentration.  

Finally, there is an upper limit where the values immediately, after the first 

iteration, become zero or negative above that limit.  

bf 0.27 0.28 0.29 0.30 0.35 0.40 0.50 

[S] upper limit 0.31 0.34 0.37 0.40 0.55 0.70 1.00 

 



 

In figure 11 the optimal start concentration (0.3mM) is used right from the 

very beginning and only as a single investment – no reinvestment of the 

result. The net profit and the benefit factor increase in a linear fashion.  

The benefit factor reaches a value of bf=3 within 3000 generations. This 

is not directly comparable to other strategies due to differently sized 

mutational steps. In figure 3 this bf value is beyond the values that would 

cause chaos. Within the limits of the set values of Km, Vmax and cf, this 

fixed substrate concentration of 0.3mM leads through chaos. A sink 

keeping a special fixed concentration can pass through the area of chaos 

and increase complexity. 

 

Figure 11 

 

Figure 11 

Increasing net profit (np, left) guides the evolution of the benefit factor (start value 
bf=0.27, right) through the region of bifurcation and in less than 3000 generations. The 
fixed substrate concentration of 0.3mM has the feature that it leads to an unstable fixed 
point (see discussion). 

 

 



 

An ensemble can suppress further deterministic chaos 

In the following section I compare an active, symmetric ensemble of a 

source and a sink with the same two identical parties acting on their own, 

which is basically in my definition an inactive, symmetric ensemble. Every 

party of the inactive ensembles will completely reinvest the net profit of 

each cycle as substrate of the next cycle. To demonstrate my idea this will 

happen at a high benefit factor causing deterministic chaos. The ensemble 

of a source and a sink will be an integrated ensemble. The source will give 

the excess net profit (beyond 0.3mM) to the sink where the substrate is 

used once and the product (net profit) is consumed completely. Therefore, 

sink will need new (excess) substrate from the source. Although 0.3mM is 

not the substrate concentration for the maximum net profit (0.36mM), it is 

very close in a broad peak. Therefore, I do not change the variables.  

The transfer space has 4 different compartments according to the size 

relation of benefit and cost. Area I: source b-c<0 and sink b-c>0 results in 

a peaceful transfer if the ensemble is active. Area II: source b-c<0 and sink 

b-c<0 will result in a transfer only by force and deception to solve the 

conflict which party has to carry the encumbrance. Area III: source b-c>0 

and sink b-c>0 will result in a transfer only by force and deception to solve 

the conflict which party has access to the benefit. Area III is here the area 

of interest. Finally, area IV: source b-c>0 and sink b-c<0 will result in a 

transfer only by force and deception through an irrational master.     

In area III (figure 12 left) the inactive ensemble (bf=2.5) produces chaos in 

both parties not acting as source and sink. On the right side of figure 12 

the development of net profit over 500 production steps is shown. The net 

profit of the ensemble is also chaotic. Although not inside quadrant I, the 

ensemble becomes active (figure 13) and the production of net profit is 

constant and high; an active ensemble supresses chaos.  



 

Figure 12 

 

Figure 12 

Two parties of an inactive ensemble are depicted. Left: The concentrations in quadrant 
III of the transfer space range from near zero to 7mM in both parties. The concentration 
pairs of 500 production steps are scattered all over quadrant III. Right: The chaotic 
concentrations during 500 steps result in an average of np=7.588.   

 

Figure 13 

 

Figure 13 

Similar to figure 12. Left: The ensemble alternates between two values (asterisks, 
production and consumption phase). Right: the net profit (np, 8.8mM) output is 
constant over 500 production steps after a few start values. The total average is 
np=8.737. 



 

Discussion 

Biologic life began as a single celled replication unit. The transfer space is 

a model for at least two entities. Biologists are convinced that organisms 

become more complex in the process of evolution. The step from a single-

celled organism to a two-celled organism is such a step of increased 

complexity. I interpret the benefit factor as a complexity factor (2). Is my 

model able to understand the evolution from a single cell to an ensemble 

of two cells? Multicellularity usually starts with identical cells not separated 

after division. Those cells are genetically entangled (3). But this is not a 

prerequisite. Organisms can form intimate and helpful interactions in the 

complete absence of any genetic relation. This has happened often in the 

history of life. One of the most important cases is known as endosymbiotic 

theory (4). Any kind of genetically based altruism does not seem 

necessary! Increased complexity is also observable in economics and 

society. From cells to human societies division of labour and architectural 

hierarchy are observable. To me this is the essence of complexity. A 

feature of complexity is non-linear behaviour. Non-linear behaviour in my 

model has the primary root in the non-linearity of the benefit function. 

The model is not restricted to cells. Molecules similar to RNA, believed to 

be on the basis of biochemical evolution, combine the features of a source 

and a sink. Increasing complexity on this level is also included.     

 

Emergence of deterministic chaos on the level of a single party 

Single parties of an ensemble show the behaviour of the quadratic iterator: 

xn = a*xn−1*(1−xn−1), when “a” approaches a value of 4. This similarity is a 

surprize to me as there is no quadratic term involved in my model. An 

increase of bf or a decrease of cf (figures 3, 4, and 5) results in a 

comparable behaviour. Deterministic chaos starts in an area where benefit 

still exceeds cost (b-c>0). This is the general condition in a sink; the benefit 



 

of a substrate is larger than its cost and therefore substrate is taken but 

not given. To become a source the substrate has to become a burden (b-

c<0). The combination of a source and a sink will form an ensemble. To 

reach this goal the biochemistry (Vmax increase, Km decrease, substrate 

concentration [S] increase) could change. However, there will be 

limitations to a change in Km and Vmax by mutations. A further possibility 

is the increase of the benefit factor. I do not investigate in detail the 

decrease of the cost factor as there is a natural end at zero or even earlier 

when there is a fix cost. 

The benefit factor is also a complexity factor. Complexity has many 

aspects including hierarchical organization and structure. This is an 

architectonical feature on the level of molecules, cells, organisms, and 

groups of organisms. To become a source to a second party, the sink has 

to go through an area where increased net profit is no longer a reliable 

compass to measure progress, as bifurcation and deterministic chaos 

appear (figure 5). Are there strategies to pass through this area?  

 

Evolution of a sink into a source at low substrate concentrations 

Strategy 1 

This strategy chooses a complete and continuous reinvestment of the net 

profit. The single party is only able to increase its complexity to bf=1.15 

(figure 6). This is just behind the first bifurcation. In bifurcations the 

resulting net profit does no longer continuously increase; it alternates 

between a larger value and a smaller value. A large accumulation of 

complexity is not possible. With an even stronger selection (10 individuals 

die) the net profit starts to bifurcate, too. This is very surprising, as there 

is a direct competition. The rest of the observations are very similar to the 

data shown. 



 

Strategy 2 

A further advanced strategy would rely on an average of values to avoid 

errors by fluctuations. In figure 8 an average of 20 steps is used. This also 

ends the increase of bf within the first bifurcation. But even if an average 

of all 1050 iterations would be used, the drop of the average within the 

windows of stability would hinder the further increase of bf (figure 14).  

 

Figure 14 

 

Figure 14 

The average value of all 1050 iterations is displayed (red) within the Feigenbaum 
diagram (grey). Enlarged section: blue arrows mark the windows of stability; red arrows 
mark average values within those windows.  

 

Strategy 3 

To reinvest always the same amount of substrate is very successful to 

avoid deterministic chaos in net profit and to maintain a linear growth of 

the benefit factor (figure 9). However, any slightly higher substrate 



 

concentration will outcompete the organism with the lower substrate 

concentration. Very low substrate concentrations may not produce enough 

net profit to replace the start concentration.    

Substrate concentrations in the real world are usually very small. 

Therefore, the system would have to cope with a small net profit. Only 

reinvestment starting at low concentrations can produce larger 

concentrations. But it seems to be a reasonable strategy to give parts of 

the net profit, although still beneficial (b-c>0), in case the full reinvestment 

would lead to a substrate concentration where b-c≤0. The sink would act 

as a source when the limiting concentration would be reached. 

 

Strategy 4 

This strategy results in a safe passage through chaos towards complexity. 

Figure 10 and figure 11 show that there is an optimal fixed concentration. 

This concentration has a very special feature. The net profit coming from 

this concentration reinvested as substrate will result in the same net profit, 

again. The second reinvestment is no further improvement and should not 

be made. The special start concentration is optimal, but not necessarily 

the maximum gain. Why is just this concentration observed and is there a 

general rule?  

A fixed point [S] of a function f is characterized by f([S]) = [S]. 

 

Let us ask now, which start concentrations [S] lead to this fixed point? 



 

 

 

 

 

  

The solution [S]1 is obvious, the fixed point will always lead back to itself. 

However, this fixed point (substrate concentration [S]) will change when bf 

changes in the course of increasing complexity. The solution [S]2 is 

surprising as it is independent of bf and Vmax. The substrate 

concentration 0.3mM in my standard case (Km=0.5, cf=5/3) is such an 

unstable fixed point. This concentration will not change over a wide range 

of benefit factors (Figure 15). In case the organism is keeping this 

concentration as limit or fixed value, chaos will not be observed. 

Complexity can increase unhindered at the concentration Km/cf. 



 

Figure 15 

 

Figure 15 

With the set values of cf=5/3 and Km 0.5 the start concentration of 0.3mM (Km/cf) will 
always reach the unstable fixed point (left side, bf1.2 and bf1.8). The straight line of 
the initial stable fixed point goes on but is then an unstable fixed point. This line is still 
present in the area where the behavioural change starts (beyond bf=8/3). The 
interruptions (red circles) are due to a butterfly effect caused by the graphics program 
(inset on the right with less iterations). Besides 0.3mM start concentrations from 0.1mM 
to 0.9mM were used. They all produce chaos and finally negative net profit values.   

 

Minding the concentration Km/cf a sink may become a source in area III. 

Km/cf is a new type of border useful to avoid the loss of orientation by 

deterministic chaos. In addition, this concentration is a turning point in 

reinvestment. All concentrations smaller than Km/cf will, when their result 

is reinvested, result in a larger net profit than the prior net profit. All 

concentrations larger than Km/cf, when their result is reinvested, become 

smaller. When Km/cf is invested, the result of this investment reinvested 

is of identical size. Km/cf is, as a final investment, optimal and therefore a 

reasonable limit. This limit may not lead to the maximum net profit. 

However, there are conditions where Km/cf results in maximum net profit.  



 

Maximum net profit is a central goal in evolution. Evolution by mutation 

and selection will always look for the maximum net profit (aquila non captat 

muscas). Net profit is benefit minus cost (b-c) and is a function of the 

substrate concentration. The local maxima and minima of a function can 

be determined by the first derivative:  

 

In the point of maximum net profit, the first derivative of the function is 

zero; f´([S]=0 (and f´´<0) The substrate concentration leading to this 

maximum net profit is:  

 

Are there conditions where the substrate concentration leading to the 

maximum net profit is identical to the substrate concentration leading to 

the unstable fixed point where the reinvestment no longer grows (Km/cf)? 

 

This equation can be solved for Vmax or Km or cf: 

 



 

From this calculation it is clear what size relations Km, Vmax and cf have 

to have so that the concentration Km/cf reaching the unstable fixed point 

also results in maximum net profit.  

 

An ensemble, once formed, can suppress further deterministic chaos 

Once an ensemble has formed it becomes resilient to chaos. The chaos 

producing overflow of net profit is buffered by a superadditivity creating 

sink. In figure 12 and 13 the bf value is set to 2.5. The inactive ensemble 

(figure 12) produces in its separate entities according to the benefit and 

cost function. Both parties are basically a sink. The net profit values within 

the transfer space (figure 12 left) and over 500 production steps (figure 12 

right) show a chaotic distribution. In figure 13, the active ensemble, no 

chaos is observed. A sink (b-c>0) has been transformed into a source 

although not yet b-c<0. This is reasonable to optimize net profit. In 

addition, the average np of the active ensemble is better. The system 

decides in favour of more net profit and less benefit. Where are the borders 

to decide in favour of different behaviours?  

 

Borders within my model 

As long as my model is used to observe and compare benefit and cost, 

the borders within the model are clear. I observe a region where b-c>0; 

this is benefit domination. A sink takes by free will a beneficial substrate 

and can produce a positive net profit. And I observe a region where b-c<0; 

this is cost domination. A source gives by free will a detrimental substrate 

or will produce a negative net profit. The net profit is either larger or smaller 

than zero. Between these two areas there is a clear border where b-c=0. 

This is equivalence of benefit and cost. The optimal benefit is extracted. 



 

No valuable benefit is wasted. In addition, there is no cost in excess, no 

cost is a burden. To simply observe whether benefit is larger or smaller 

than cost is a qualitative approach.  

When I start to look at the amount of net profit, I follow a quantitative 

approach. In figure 6 I observe fuzziness. The net profit of a single start 

concentration but of different bf and cf values is not simultaneously 

negative. Some bf or cf values lead quickly to negative net profit values 

and some slowly. This could be interpreted as an escape velocity into a 

source behaviour. Sinks convert fast or more slowly into a source. This is 

the side where taking (sink behaviour) ends. The transition is gradual 

(figure 15).  
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Figure 15 

The red line (b-c=0) separates benefit domination (b-c>0) and cost domination (b-c<0).  
Chaos starts in benefit domination. Red arrows 1: the location of my standard example, 
b-c=0 at 2.5mM and bf=1. Red arrow 2: at 7.5mM and bf=8/3 more and more results 
induce a change of behaviour through cost domination. The sink slowly becomes a 
source when large net profits are used as substrate – the result will be a negative np.  



 

In figure 10 I look at the other side when giving according to the net profit 

might start. It is reasonable to start to give parts of the net profit while 

approaching Km/cf. The closer the party is to Km/cf, the more of the 

resulting net profit will be given. The start of giving is also fuzzy as the 

amount depends on the size of the net profit and the distance to Km/cf.   

The equilibrium of benefit and cost results in a clear limit; b-c=0. However, 

net profit has a maximum which can never be identical to this limit. This 

maximum is located within the region of b-c>0, a sink. I argue here that 

net profit growth is already declining in the region of sink behaviour. It 

could be reasonable for a sink (b-c>0) to give to optimize net profit size. 

This would be the start of a source behaviour - to give - for a sink. 

According to net profit quantity a sink will become a source at free will 

although, regarding to benefit quality, force would be necessary.   

Furthermore, there seems to be a conflict of goals (Zielkonflikt). Either you 

optimize benefit with a clear border (b-c=0) or you maximize net profit with 

fuzzy borders. Incompatible decisions between maximum net profit and 

optimal benefit have to be made. 

 

A problem with my model 

Here I want to mention a problem. In the early exploration of my model, I 

decided to give certain units to bf and cf for very practical reasons – to get 

rid of them in “b” and “c”. Now it would be better if cf would be a 

dimensionless factor to obtain a concentration when dividing Km by cf. 

Here I would really need some input! The calculations work out 

numerically, the units however do not fit. 

 

 



 

Final remarks 

Finally, I want to discuss two points on extreme ends of the spectrum of 

time and size: 

1. The technological and general progress of civilisation results in 

increased complexity. Net profit from complexity does not solely 

refer to the “in and out” of money. Money as universal medium of 

exchange can connect different categories of phenomena, thus 

creating mixed feedback loops. Money has the ability to spread 

chaotic behaviour. As demonstrated, chaos may emerge from 

complete reinvestment. In chaos an increased complexity may result 

in a decreased outcome, thus destroying the compass. But there is 

an alternative strategy to full reinvestment. However, an unstable 

fixed point is a delicate and fragile place. The narrow ford towards 

complexity has a steep abyss to the right and left and needs a 

cautious balance.  

2. Where does the initial complexity come from? In my model, at very 

low complexity, net profit and increasing complexity (bf) behave 

antagonistically (figure 3, inset). I think at the lowest level in evolution 

- the transition from chemistry to biochemistry and then to biology - 

the driving force to increase complexity does not come from the aim 

to increase net profit but from spontaneous self-organization.  

It could well be that on every level of organization, from an ensemble 

of molecules to an ensemble of cells, organisms and groups of 

organisms, we observe the self-similarity of an even larger scale 

fractal object – life itself. To increase complexity the system depends 

at first on the forces of self-organization. This is depicted on the left 

side of the graph (bifurcation diagram of figure 3, inset). Here, 

increased complexity is not connected to increased net profit. Then 

a region follows where increased complexity is connected to 



 

increased net profit (in my model in a linear fashion, figure 3). In the 

right part of the Feigenbaum diagram the connection of net profit and 

complexity becomes chaotic (starting with bifurcations, figure 3). A 

solution to this problem is suggested; Km/cf. 

In addition, there could be a second way to further complexity. As 

there is no direction in chaos, the system does not know where it 

stands. The chaos at high bf (right side of figure 3) and the chaos at 

very low bf (left side of the inset of figure 3) can´t be discriminated. 

Yes, there is a range difference, but there will be slices of similar 

size. A new round of self-organization out of chaos could emerge. In 

biology there is the idea of major transitions in evolution (5). My 

interpretation now would be that a transition happens when the 

system no longer follows the narrow road of the unstable fixed point 

within the chaotic zone to increased complexity but develops out of 

chaos by self-organization a new stable perspective.    
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