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Abstract

We explore the relation between different notions of local incentive compatibil-

ity (LIC) and incentive compatibility (IC) on ordinal type-spaces. In this context,

we introduce the notion of ordinal local global equivalent (OLGE) and cardinal

local global equivalent (CLGE) environments. First, we establish the equivalence

between the two environments on strict ordinal type-spaces. Next, we consider

ordinal type-spaces admitting indifference. We introduce the notion of almost

everywhere IC and strong LIC, and provide a necessary and sufficient condition

on ordinal type spaces for their equivalence. Finally, we provide results on how to

(minimally) check the IC property of a given mechanism on any ordinal type-space

and show that local types along with the boundary types form a minimal set of

incentive constraints that imply full incentive compatibility.
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1. INTRODUCTION

We consider standard mechanism design problems when agents have quasi linear utility

function. There is a finite set of alternatives and a finite set of agents. Agents’ types are

their valuations for the alternatives. A mechanism is incentive compatible (IC) if it is not

possible for any agent to increase his/her (net) utility by misreporting his/her sincere type

in any way. It is locally IC (LIC) if it is not possible for an agent to increase his/her (net)

utility by misreporting to a type that lies in a small “neighborhood” of his/her sincere

type. In other words, LIC is a weakening of IC where IC is required to be satisfied for

deviations within a small neighborhood.

Characterizing all IC mechanisms on a given type-space is an important problem in

mechanism design. However, despite its importance, the structure of IC mechanisms is

known only for the case when the type-space is unrestricted (that is, R
|A|, where A is the

set of alternatives) (see Lavi et al. (2009) for details) and finding this structure on other

type-spaces seem to be a hard problem. As an intermediate step, researchers have got

interested in exploring if the requirement of IC can be reduced considerably.1 Local IC

(LIC) turns out to be a way.

The notion of LIC depends on the notion of neighborhood one intends to consider.

Carroll (2012) considered neighborhoods with respect to Euclidean distance. We refer to

this notion as pointwise LIC (PLIC). He showed that if the type-space is convex, then

PLIC is equivalent to IC. To the best of our knowledge, nothing is known about the

equivalence of LIC and IC on other type-spaces.

An ordinal domain is a collection of ordinal preferences. In contrast to cardinal

environments (that is, for type-spaces), the relation between LIC and IC is well-explored

for ordinal domains (see Kumar et al. (2021) for details). A type represents an ordinal

preference if for any two alternatives a and b, a is preferred to b implies the valuation

of a will be higher than b. A type-space is called ordinal if it is induced by an ordinal

1For the importance of identifying a minimal set of incentive constraints that imply full incentive

compatibility - see discussions in Chapter 7 of Fudenberg and Tirole (1991), Armstrong (2000) and

Chapter 6 in Vohra (2011).
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domain, that is, it contains all types representing some preference in an ordinal domain.2

An ordinal domain/type-space is strict if it does not admit indifference.

The mechanism design literature generally considers geometric restrictions such as

connectedness and convexity on type-spaces. While these are simplifying technical

assumptions, ordinal restrictions such as single-peaked or single-crossing or single-

dipped preferences arise in several economic problems. For instance, in a problem where

the location of a public good on a street needs to be decided, subsidies can be given to

the people who reside far away from the chosen location. Similarly, in determining the

budget for infrastructure, industrial development, etc., subsidies can be given to poor

people (or whoever derives relatively lesser externalities from a decision). Barzel (1973),

Stiglitz (1974), and Bearse et al. (2001) consider the problem of setting the level of tax

rates to provide public funding in the education sector, and Ireland (1990) and Epple and

Romano (1996) consider the same problem in the health insurance market.3 Our analysis

enables one to analyze these problems as a mechanism design problem with transfers.

Mishra et al. (2016) explains how single-peakedness arises in a private good scheduling

problem. Some other papers that deal with mechanism design in ordinal type-spaces are

Mishra et al. (2014), Carbajal and Müller (2015), Mishra et al. (2016), etc.

An ordinal domain satisfies ordinal local global equivalence (OLGE) if every locally

incentive compatible social choice function on that domain is incentive compatible. The

notion of OLGE is defined in Kumar et al. (2021), where it is shown that a strict ordinal

domain is OLGE if and only if it satisfies “Property L”. Almost all well-known domains

such as single-peaked, single-crossing, single-dipped, etc., satisfies OLGE. An ordinal

type-space satisfies cardinal local global equivalence (CLGE) if every locally incentive

compatible mechanism on that type-space is incentive compatible. We characterize strict

CLGE type-spaces by showing that a strict ordinal domain is OLGE if and only if the

corresponding strict type-space is CLGE. It is worth mentioning that our result applies

to type-spaces that are not necessarily convex, not even connected. The relaxation of

connectedness or convexity is not a trivial extension. For instance, the equivalence of

2All the results of this paper also hold if we consider types that are bounded below or bounded above

(for instance, non-negative types).
3Individuals’ preferences are considered to be single-peaked in such scenarios.
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PLIC and IC does not hold on non-connected type-spaces, consequently we introduce

the notion of uniform LIC (ULIC) and establish the equivalence of ULIC and IC on such

type-spaces.

Indifference occurs naturally in preferences, therefore we explore the equivalence of

LIC and IC on ordinal type-spaces admitting indifferences. We introduce the notion of

almost everywhere IC. A mechanism is almost everywhere IC if it is IC outside a set of

(Lebesgue) measure zero (thus, such a mechanism is IC except for some rare (measure

zero) situations). We suitably define the notion of LIC to take care of indifference.

We call it strong LIC and provide a necessary and sufficient condition on an ordinal

type-space for the equivalence of strong LIC and almost everywhere IC. The closure

of single-peaked or single-crossing type-spaces, single-plateaued type-spaces, etc., are

non-convex type-spaces that satisfy the necessary and sufficient condition. As a corollary,

we establish the equivalence of PLIC and almost everywhere IC on these type-spaces.

To see the novelty of our analysis, note that the equivalence of PLIC and IC does not

hold on such type-spaces (see Example 1 in Mishra et al. (2016)), and that is why it is

important to see the extent to which IC can be ensured by PLIC on such non-convex

type-spaces. What our result says is that the said equivalence actually holds but only

in an almost everywhere sense. Mishra et al. (2016) consider the same problem for a

particular type of mechanisms, called payments-only mechanisms and show that PLIC

and IC are equivalent for such mechanisms. Our result complements their result by

showing that one can drop payment-onlyness by requiring almost everywhere IC instead

of IC.

Finally, we consider the problem of checking whether a given mechanism is IC or

not on an arbitrary ordinal type-space. We show that to ensure IC of a mechanism, apart

from checking the local types, one needs to check only the “boundary types”. Thus,

local types and boundary types form a minimal set of incentive constraints that imply

full incentive compatibility. Since the boundary types have Lebesgue measure zero,

this result reduces the complexity of checking whether a mechanism is IC or not in a

considerable manner.

A salient feature of our result is that we deduce them for arbitrary notion of localness.
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To see the importance of this framework, note that the notion of localness is very

subjective and may vary from person to person. Not only that, the standard notion of

adjacent localness does not apply to multi-dimensional ordinal domains (See Kumar

et al. (2021) for details). Our general framework enables one to apply our results to any

such scenario.

2. MODEL

We consider a one-agent model in this paper. This is without loss of generality for our

analysis.4

Let A be a finite set of alternatives with |A| = n. For any given subset X of R
n, by

cl(X) we denote the closure of X . A type t is a mapping from A to R that represents the

valuation of each alternative in A. We view a type as an element of R
n (with an arbitrary

but fixed indexation of the alternatives). A type t is strict if t(a) 6= t(b) for all a,b ∈ A,

otherwise it is a weak type.5 By relative valuation of an alternative a with respect to

another alternative b at a type t, we mean the number t(a)− t(b). For two types t and t ′,

we denote the line joining them by [t, t ′].6 A subset T of R
n is called a type-space. An

allocation rule is a map f : T → A and a payment rule is a map p : T → R. A (direct)

mechanism µ is a pair consisting of an allocation rule f and a payment rule p.

Definition 2.1. A mechanism ( f , p) is incentive compatible (IC) on a pair of types (t,s)

if

t( f (t))− p(t) ≥ t( f (s))− p(s).

It is IC on a type-space T if it is IC on every pair of types (t,s) ∈ T ×T .

Below, we note some facts regarding the IC property. Facts 2.1 and 2.2 follow from

the definition of IC property.

FACT 2.1. Suppose that a mechanism ( f , p) is IC on both pairs of types (t,s) and (s, t).

Suppose further that f (t) = f (s). Then, p(t) = p(s).

4All the results of this paper can be generalized to the case of more than one agent in a systematic

manner (see Carroll (2012), Mishra et al. (2016), etc.).
5Note that strict types are not special cases of weak types.
6More formally, [t, t ′] = {(1−α)t +αt ′ | α ∈ [0,1]}.
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FACT 2.2. Suppose that a mechanism ( f , p) is IC on both pairs of types (t,s) and (s, t).

Suppose further that the relative valuation of f (t) with respect to some alternative a is

increased from t to s, that is, s( f (t))− s(a) > t( f (t))− t(a). Then, f (s) 6= a.

Our next fact provides a sufficient condition for a mechanism to be IC on a pair of

types based on its IC property over a sequence of types. This fact was first used in Kumar

and Roy (2021); see Appendix A.1 of the paper for a formal proof.

FACT 2.3. A mechanism µ = ( f , p) on a type-space T is IC on a pair of types (t, t ′) if

there is a finite sequence of types (t = t1, . . . , tk = t ′) in T such that for all l < k,

(i) µ is IC on (t l , t l+1), and

(ii) t1( f (t l+1))− t1( f (t l)) ≤ t l( f (t l+1))− t l( f (t l)).

The relation between LIC and IC is well-studied for social choice functions on ordinal

domains (see Kumar et al. (2021) for details); in this paper we extend this study for

cardinal environments. In line with Kumar et al. (2021), we consider a general notion of

localness represented by means of a graph on an ordinal domain.

A preference on A is a weak linear order, that is, a complete and transitive binary

relation on A. If it is additionally antisymmetric, it is called a strict preference, otherwise

it is called a weak preference.7 For a weak preference R, we denote its strict part by

P and the indifference part by I. We denote the set of all preferences on A by ĚP(A)

and the set of all strict preferences on A by P̂(A). An ordinal domain ĎD is a subset of

ĚP(A) and a strict ordinal domain D̂ is a subset of P̂(A).

We deal with type-spaces that have some additional structure. For a type t and a

preference R, we say that t represents R (or R represents t) if for all a,b ∈ A, aRb if and

only if t(a) ≥ t(b). We denote the preference that a type t represents by prfn(t), and

the set of types that a preference R represents by type(R).8 Similarly, for an ordinal

domain D , we denote the set of all types that represent some preference in the domain

by type(D), that is, type(D) = {t ∈ R
|A| | prfn(t) ∈ D}, and for a type-space T , the set

7 Note that strict preferences are not special cases of weak preferences
8All the results of this paper also hold if we weaken the assumption on type(R) to be the set of

types that are bounded below (for instance, non-negative types) or bounded above. More formally,

there exists a real number L such that type(R) = {t | t represents R and t(x) ≥ L for every x ∈ A} or

type(R) = {t | t represents R and t(x) ≤ L for every x ∈ A}.
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of all preferences that are represented by some type in T by prfn(T ). A type-space T

is called strict if t(a) 6= t(b) for all t ∈ T and all a,b ∈ A. We say that T is an ordinal

type-space if T = type(D) for some D ⊆ ĚP(A).

Let D be a domain. An ordinal environment is a pair (D ,G), where D is an ordinal

domain and G = 〈D ,E〉 is an (undirected) graph on D . Two preferences in D are called

G-local if they form an edge in G. A path (P1, . . . ,Pk) from P1 to Pk is G-local if every

two consecutive preferences in it are G-local. An ordinal environment (D ,G) is called

strict if D is a collection of strict preferences.

We introduce the notion of cardinal environment in a natural way. A cardinal environ-

ment is a pair (T ,G), where T is a type-space and G is an undirected graph on prfn(T ).

Two types t and t ′ in T are said to be G-local if prfn(t) = prfn(t ′) or prfn(t) and prfn(t ′)

are G-local. A cardinal environment (T ,G) is called strict if T is a strict type-space.

A mechanism µ on a cardinal environment (T ,G) is LIC if it is IC on every pair of

G-local types, that is, µ is IC on type({R,R′})∩T for all G-local preferences R and R′

in prfn(T ).

A social choice function (SCF) on an ordinal domain D is a mapping g : D → A. It

is IC on a pair of preferences (R,R′) if g(R)Rg(R′). An SCF g : D → A is LIC on an

ordinal environment (D ,G) if it is IC on every pair of G-local preferences, and it is IC

on D if it is IC on every pair of preferences in D .

An ordinal environment (D ,G) is called ordinal local global equivalent (OLGE) if

every LIC SCF on (D ,G) is IC on D . Similarly, a cardinal environment (T ,G) is called

cardinal local global equivalent (CLGE) if every LIC mechanism on (T ,G) is IC on T .

3. TWO PARTICULAR KINDS OF LOCALNESS

The main objective of this paper is to characterize ordinal type-spaces so that a restricted

version of IC, called local IC (LIC), becomes equivalent to IC. Although we present

results for a general notion of localness by means of graphs, we specifically deal with two

particular kinds of localness that are practically important. A mechanism is point-wise

LIC (PLIC) on a type-space T if for every t ∈ T , there exists an ε > 0 such that it is IC
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on (t,s) and (s, t) for every s ∈ T with ||t − s|| < ε .9 For a given ε > 0, a mechanism

on a type-space T is called ε-LIC if it is IC on every pair of types (t,s) ∈ T ×T having

(Euclidean) distance less than ε , that is, for all t,s∈ T , ||t−s||< ε implies the mechanism

is IC on (t,s). A mechanism is called uniformly LIC (ULIC) if it is ε-locally IC for

some ε > 0.

FACT 3.1. Carroll (2012) If a type-space T is convex, then every PLIC mechanism on T

is IC on T .

The notion of PLIC is introduced in Carroll (2012). According to this notion, one has

the freedom to choose different ε for different types, whereas in ULIC one has to chose

the same ε for all types. If the infimum value of the ε’s chosen for different types in

case of PLIC is positive, then that value can be taken as the choice of the ε in ULIC, and

consequently, the two notions will become equivalent. On other hand, if the said infimum

is zero, then ULIC becomes slightly stronger than PLIC. This slight strengthening

of PLIC widens its applicability. To see this, consider the situation where there are

just two alternatives, say a and b, and the type-space is T = {t ∈ R
2 | t(a) 6= t(b)}.

Thus, T is disconnected and can be written as a union of two disjoint open spaces

T 1 = {t ∈ R
2 | t(a) < t(b)} and T 2 = {t ∈ R

2 | t(a) > t(b)}. In such situations, one

can define neighborhoods of the points in T 1 such that none of them intersects T 2, and

those of the points in T 2 such that none of them intersects T 1. Thus, PLIC with such

neighborhoods does not put any constraint on a pair of types (s, t) where s ∈ T 1 and

t ∈ T 2, and consequently, cannot imply IC on T . However, ULIC imposes IC on certain

pairs of types (sufficiently close ones) that are on the other sides of the boundary of T 1

and T 2, and thereby retains the “possibility” of implying IC on T . In fact, as we show in

this paper, ULIC indeed implies IC on T .

It is worth mentioning that ULIC is as useful as PLIC for practical purposes. In

reality, if one wants to check (by means of a program/device) whether some mechanism

is LIC or not, he/she can only check it for some given neighborhood of each type, not

for a sequence of neighborhoods whose size converges to zero.

9We denote the Euclidean norm of a vector t ∈ R
n by ||t||.
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4. A CHARACTERIZATION OF STRICT CLGE TYPE-SPACES

Kumar et al. (2021) provide a necessary and sufficient condition for a strict ordinal

environment to be OLGE. We generalize their result for strict cardinal environments. We

begin with defining some notions that are provided in Kumar et al. (2021).10

Definition 4.1. A pair of alternatives {a,b} has a restoration in a G-local path (P1, . . . ,

Pk) if there exist 1 ≤ r < s < t ≤ k such that either [aPrb,bPsa, and aPtb] or [bPra,aPsb,

and bPta].

Definition 4.2. Given a strict ordinal environment (D̂ ,G), for P,P′ ∈ D̂ and a ∈ A, we

say that a G-local path π from P to P′ satisfies the Lower Contour Set no-restoration

property (Property L) with respect to a if the path π has no {a,b}-restoration for all

b ∈ L(a,P) where L(a,P) = {z ∈ A | aPz}.

The strict ordinal environment (D̂ ,G) satisfies Property L if for all distinct P,P′ ∈ D̂

and all a ∈ A, there exists a G-local path from P to P′ satisfying Property L with respect

to a.

The following theorem in Kumar et al. (2021) provides a necessary and sufficient

condition for a strict ordinal environment to be OLGE.

Theorem 4.1. Kumar et al. (2021) A strict ordinal environment (D̂ ,G) is OLGE if and

only if it satisfies Property L.

Our next theorem generalizes Theorem 4.1 for strict cardinal environments.

Theorem 4.2. A strict ordinal environment (D̂ ,G) is OLGE if and only if the strict

cardinal environment
(
type(D̂

)
,G) is CLGE.

The proof of this theorem is relegated to Appendix A.1. It follows from Theorem 4.1

and Theorem 4.2 that a strict cardinal environment
(
type(D̂

)
,G) is CLGE if and only if

(D̂ ,G) satisfies Property L.

It is shown in Kumar et al. (2021) that well-known multi-dimensional ordinal domains

such as the separable domain and the multi-dimensional single-peaked domain are OLGE.

It follows from Theorem 4.2 that the cardinal environments of these domains are CLGE.

10See Kumar et al. (2021) for verbal explanations of these notions.
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4.1 THE CASE OF ADJACENT LOCALNESS

In this subsection, we deal with a specific case where the notion of localness for the

ordinal environment is “adjacency” and that for the cardinal environment is a weaker

version of ULIC which we call adjusted LIC.

For some 1 ≤ k ≤ n, we denote the k-th ranked alternative of a strict preference P by

P(k). Two strict preferences P and P′ are said to be adjacent local if they differ by the

ranking of two consecutively ranked alternatives, that is, there is 1 ≤ k < n such that

P(k) = P′(k+ 1), P(k+ 1) = P′(k), and P(l) = P′(l) for all l /∈ {k,k+ 1}. We write

Gad when localness is defined by adjacency, that is, there is an edge between P and P′ in

Gad if and only if P and P′ are adjacent.

A mechanism µ is said to be adjusted LIC (ALIC) on a strict type-space T̂ if (i)

for every type t in T̂ , there is a neighborhood around t such that µ is IC on both (t,s)

and (s, t) for all types s in that neighborhood, and (ii) for every type t̄ that lies on the

boundary of T̂ (that is, in cl(T̂ ) \ T̂ ), there is a neighborhood of t̄ such that µ is IC on

every pair of strict types in that neighborhood.

Part (i) of the definition of ALIC is the same as PLIC. As we have explained in Section

3, PLIC (with suitably chosen arbitrarily small neighborhoods) is unable to “spread”

IC between two components of a disconnected type-space. Part (ii) of the definition of

ALIC ensures the said spread in a natural way: it requires IC for types that are arbitrarily

close but on the opposite sides of the boundary of the strict type-space. It does this by

considering an arbitrary neighborhood of a type that lies on the boundary of T̂ (and

hence not in T̂ ) and requiring IC for all pairs of types of T̂ in this neighborhood.

Definition 4.3. A mechanism µ on a strict type-space T̂ is said to adjusted locally IC

(ALIC) if it is PLIC and for every t̄ ∈ cl(T̂ ) \ T̂ , there exists an open neighborhood

N(t̄) ⊆ cl(T̂ ) of t̄ such that for all t ′, t ′′ ∈ N(t̄)∩ T̂ , µ is IC on (t ′, t ′′).

The following corollary is obtained from Theorem 4.2.

Corollary 4.1. If a strict ordinal environment (D̂ ,Gad) is OLGE, then a mechanism on

type(D̂) is IC if and only if it is ALIC.

The proof of this corollary is relegated to Appendix A.2.

11



Since ULIC implies ALIC by definition, it follows from Corollary 4.1 that if a strict

ordinal environment satisfies OLGE with respect to adjacency localness, then ULIC and

IC are equivalent on its cardinal version.

Corollary 4.2. If a strict ordinal environment (D̂ ,Gad) is OLGE, then a mechanism on

type(D̂) is IC if and only if it is ULIC.

A large class of strict ordinal environments of practical importance, such as single-

peaked, single-dipped, single-crossing, etc., are OLGE with respect to the adjacency

localness.11 Corollary 4.1 implies that ALIC (and hence, ULIC) and IC are equivalent on

their corresponding type-spaces. It should be noted that PLIC and IC are not equivalent

on these type-spaces as the type-spaces are not connected.

4.2 A STRONGER VERSION OF THEOREM 4.2

Note that the statement of Theorem 4.2 requires all types to be present for each ordi-

nal preference. Since requiring all types representing an ordinal preference might be

restrictive for practical applications, we extract out the types, the presence of which is

sufficient for the proof of Theorem 4.2. The objective is to emphasize that Theorem 4.2

holds for much weaker environments rather than just strict ordinal type-spaces.

We introduce a property called L̂ for a cardinal environment and show that any cardinal

environment satisfying this property is CLGE. Property L̂ is a suitable adaptation of

Property L for cardinal environments. Thus, instead of providing a sufficient condition

on an ordinal domain to ensure CLGE on its corresponding type-space, we provide a

sufficient condition on a strict type-space directly.

We say an alternative a overtakes another alternative b from a strict preference P to

another strict preference P′ if bPa and aP′b. Recall that Property L says that between

any two strict preferences P and P′ and any alternative a, there exists a local path from

P to P′ with no {a,b}-restoration for all b ∈ L(a,P). Below, we introduce the cardinal

version of Property L, which we call Property L̂.

Definition 4.4. A strict cardinal environment (T̂ ,G) satisfies Property L̂ if for all t,

t ′ ∈ T̂ and all a ∈ A, there exists a G-local path (P1, . . . ,Pk) in prfn(T̂ ) with P1 ∈ prfn(t)

11For the definition of these domains see Mishra et al. (2016) and Carroll (2012).
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and Pk ∈ prfn(t ′) satisfying Property L with respect to a such that for all l < k and all

t l+1 ∈ type(Pl+1)∩ T̂ , there exists t l ∈ type(Pl)∩ T̂ such that

(i) t l(a)− t l(x)> t l+1(a)− t l+1(x) for all x that a does not overtake from Pl to Pl+1,

and

(ii) t l(a)− t l(y) ≥ t(a)− t(y) for all y that a overtakes from Pl to Pl+1.

Theorem 4.3. A strict cardinal environment (T̂ ,G) is CLGE if T̂ satisfies Property L̂.

The proof of this theorem follows by using similar arguments as in the proof of

Theorem 4.2.

5. ORDINAL DOMAINS WHEN LOCALNESS IS DEFINED ON STRICT

PREFERENCES

In this section, we consider ordinal environments admitting indifference where local

structure is given by means of a graph over the strict preferences. Since in such an

environment, LIC does not impose any restriction on weak preferences, it cannot ensure

IC on the whole domain as well. So, we impose additional requirements on weak

preferences in order to ensure IC.

For an ordinal domain ĎD , we denote its maximal strict ordinal subset by strict(ĎD),

that is, strict(ĎD) = {P ∈ ĎD | P is a strict preference}.

In order to generalize Theorem 4.2 for ordinal domains allowing indifferences, we

introduce the notion of weak-compatibility. For a weak preference R, we say a strict

preference P̂ is compatible with R if aPb implies aP̂b for all a,b ∈ A. For instance, if

R = [ab]c[de] f , then the following preferences are compatible with R: abcde f , abced f ,

bacde f , and baced f .12 Weak compatibility says that for every weak preference R in ĎD ,

there exists a strict preference in ĎD that is compatible with R.

Let ĎD be an ordinal domain. Let G be an (undirected) graph on strict(ĎD). A

mechanism µ is strong LIC on the cardinal environment (type(ĎD),G) if it is LIC, and

12By [ab]c, we denote a weak preference where a and b are indifferent, and are preferred to c. Similarly

by abc, we denote a strict preference where a is preferred b, and b is preferred to c.
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additionally IC on every pair of types (t̄, t̂) such that there is P ∈ strict(ĎD) so that t̂ is a

strict type in type(P) and t̄ is a weak type in cl(type(P))∩ type(ĎD).

Now, we introduce the notion of almost everywhere IC. We use the following notation

to ease the presentation. For a type-space sT , we denote its maximal strict subset by

strict(sT ), that is, strict(sT ) = {t ∈ sT | t(a) 6= t(b) for all distinct a,b∈A}. A mechanism

on a type-space sT is almost everywhere IC, if it is IC on every pair of types in sT ×

strict(sT ). Thus, an almost everywhere IC mechanism might fail to become IC on a pair

of types (t, t̄) only if t̄ is a weak type that lies in sT . Since the (Lebesgue) measure of the

set sT \ strict(sT ) is zero, the measure (in the product space) of the set of pairs on which

an almost everywhere IC mechanism may fail to be IC is also zero, which justifies the

name. Note that almost everywhere IC implies strong LIC by definition.

As we have mentioned in Subsection 5.1, the equivalence between strong LIC and

IC does not hold on ordinal type-spaces admitting indifference. Our next theorem

establishes the extent to which IC is implied by strong LIC. It turns out that strong LIC

implies IC “almost everywhere”.

Theorem 5.1. Let ĎD be an ordinal domain. Then, the following two statements are

equivalent.

(i) Every strong LIC mechanism on the environment (type(ĎD),G) is almost every-

where IC.

(ii) The domain ĎD satisfies weak-compatibility and the environment (strict(ĎD),G) is

OLGE.

The proof of this theorem is relegated to Appendix A.3.

5.1 CLOSURE OF TYPE-SPACES OF STRICT ORDINAL DOMAINS

Let D̂ be a strict ordinal domain and let cl(type(D̂)) be the closure of type(D̂). Since

cl(type(D̂)) is closed, Part (ii) of Definition 4.3 is vacuously true, and consequently,

the notion of ALIC boils down to that of PLIC. However, Corollary 4.1 does not hold

anymore, that is, PLIC does not imply IC on cl(type(D̂)) (see Example 1 in Mishra et al.

(2016) for details). It is worth mentioning that PLIC implies strong LIC in adjacency

14



environments.13 Therefore the equivalence of strong LIC and IC cannot hold in such

environments. The following corollary, which is obtained from Theorem 5.1, says that a

version of Corollary 4.1 holds if we weaken IC by almost everywhere IC.

Corollary 5.1. If a strict ordinal environment (D̂ ,Gad) is OLGE, then every PLIC

mechanism on cl(type(D̂)) is almost everywhere IC.

The proof of this corollary is relegated to Appendix A.4.

Corollary 5.1 applies to closure of single-peaked or single-crossing type-spaces or

single-plateaued type-spaces.14 Corollary 5.1 also applies to closure of single-peaked

domain on a tree (Demange (1982)).

5.2 LIC VS. IC FOR A GIVEN MECHANISM

Having a characterization of ordinal type-spaces such that the equivalence of strong LIC

and almost everywhere IC holds, the next natural step is to look at the extent to which we

can push the almost everywhere IC property on such type-spaces. As discussed earlier,

an almost everywhere IC mechanism might fail to be IC only on the pairs (t, t̄) where t̄

is a weak type in the type-space.15 We show that if t̄ is a weak type lying in the interior

of the type-space, then such mechanisms are bound to be IC on pairs (t, t̄). Hence, we

establish the fact that an almost everywhere IC mechanism might fail to be IC only on

the pairs (t, t̄) where t̄ is a weak type lying on the boundary of the type-space, thereby

modifying our previous result. We further identify the possible outcomes of a given

mechanism at such a weak type t̄ (that is, we identify possible values of f (t̄)) such that

the mechanism is IC on pairs (t, t̄).

For a set sT ⊆ R
n, by sT o we denote the interior of the set sT , that is, sT o = {t ∈ sT |

there exists ε > 0 such that s ∈ sT for every s with d(t,s) < ε}. By ∂̂ sT we denote the

points in sT that lie on the boundary of sT , that is, ∂̂ sT = sT \ sT o.

Theorem 5.2. Let a strict ordinal environment (D̂ ,Gad) be OLGE and let sT = cl(type(D̂)).

Suppose µ is an arbitrary PLIC mechanism on sT . Then,

13For a formal proof, see the proof of Corollary 5.1.
14For the definition of single-plateau domain see Berga (1998).
15We use t here to denote a generic element of the type-space.
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(i) µ is IC on sT × sT o, and

(ii) µ is IC on sT ×{t̄} for all t̄ ∈ ∂̂ sT such that there exists P ∈ D̂ with t̄ ∈ cl(type(P))

and f (t̄)Pz for every z with t̄( f (t̄)) = t̄(z).

The proof of this theorem is relegated to Appendix A.5.

REMARK 5.1. For simplicity we present Theorem 5.2 for adjacent localness and PLIC

mechanisms but it can be suitably formulated for arbitrary notion of localness and strong

LIC mechanisms.

REMARK 5.2. Example 1 in Mishra et al. (2016) presents a single-peaked type-space

where they construct a PLIC mechanism that fails to be IC. It follows from part (i) of

Theorem 5.2 in our paper that a PLIC mechanism on such a type-space sT can violate IC

only on types lying in sT × ∂̂ sT . For such a violation on any pair of types (t, t ′), it must be

the case that t ′ lie in either type(c[ba]) or type(a[bc]).16 It further follows from part(ii)

of Theorem 5.2 that the outcome at type t ′ must be either a if t ′ ∈ type(c[ba]) or c if

t ′ ∈ type(a[bc]). Thus, the counter example (Example 1 in Mishra et al. (2016)) was the

only way (upto symmetry) to construct a PLIC mechanism that violates IC.

A. APPENDIX

A.1 PROOF OF THEOREM 4.2

Proof: If part: The proof of the if part is rather straightforward; we provide it for the

sake of completeness. Let
(
type(D̂

)
,G) be a CLGE strict cardinal environment. We

show that (D̂ ,G) is OLGE. Suppose not. Then there exists an SCF ϕ : D̂ → A that is

LIC on (D̂ ,G) but fails to be IC on D̂ . Therefore, there exists P,P′ ∈ D̂ and x,y ∈ A such

that ϕ(P′) = x, y = ϕ(P), and xPy. We complete the proof of the if part by constructing

a mechanism ( f , p) that is LIC on
(
type(D̂

)
,G) but fails to be IC on type(D̂), which

will lead to a contradiction to the fact that
(
type(D̂

)
,G) is CLGE.

Define f (s) = ϕ(prfn(s)) and p(s) = 0 for all s ∈ type(D̂). The fact that ( f , p) is

LIC on
(
type(D̂

)
,G) follows straightforwardly from the definition of G-local types and

16Recall that by c[ba], we denote a weak preference where c is preferred to both a and b, and a and b

are indifferent.
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the fact that ϕ is LIC on (D̂ ,G). Fix any t ∈ type(P) and t ′ ∈ type(P′). By the definition

of f , f (t) = y and f (t ′) = x. This, together with the facts that xPy and p(t) = 0 = p(t ′),

implies that t( f (t))− p(t) < t( f (t ′))− p(t ′), and hence, it follows that ( f , p) is not IC

on (t, t ′), a contradiction. This completes the proof of the if part of the theorem.

Only if part: Let (D̂ ,G) be an OLGE strict ordinal environment. We show that the

environment
(
type(D̂

)
,G) is CLGE. Let ( f , p) be an LIC mechanism on

(
type(D̂

)
,G).

We need to show that ( f , p) is IC on type(D̂).

Consider arbitrary t, t ′ ∈ type(D̂). By the definition of type(D̂), there are P,P′ ∈ D̂

such that t ∈ type(P) and t ′ ∈ type(P′). Without loss of generality, let us assume that the

alternatives in A are indexed as a1, . . . ,an such that a1Pa2P . . .Pan. Suppose f (t ′) = a j

for some j ∈ {1, . . . ,n}. We proceed to show that ( f , p) is IC on (t, t ′).

If P = P′, then t and t ′ are G-local types, and hence the proof follows by the assump-

tion of the theorem that ( f , p) is IC on every pair of G-local types. So, assume P 6= P′.

Since (D̂ ,G) is OLGE, by Theorem 4.1, it satisfies Property L. This, together with the

fact that f (t ′) = a j, implies that there exists a G-local path π = (P1, . . . ,Pk) from P

to P′ satisfying Property L with respect to a j. Since π has no (a j,x)-restoration for

all x ∈ {a j+1, . . . ,an}, it follows that L(a j,P
l+1) \{a1, . . . ,a j−1} ⊆ L(a j,P

l) \{a1, . . . ,

a j−1} for all l ∈ {1, . . . ,k−1}.

Let l1 ≥ 1 be the minimum number with the property that for each l ∈ {l1 + 1, . . . ,k}

there exist t l ∈ type(Pl) such that f (t l) = a j. Note that such an l1 will always exist as

f (t ′) = a j and t ′ ∈ type(Pk).

Claim 1. There exists t̃1 ∈ type(Pl1+1) such that f (t̃1) = f (t ′) = a j and p(t̃1) = p(t ′).

Proof of Claim 1. By the definition of l1, for each l ∈ {l1 + 1, . . . ,k} there exist

t l ∈ type(Pl) such that f (t l) = a j. Now we show that p(t l) = p(t ′) for each l ∈ {l1 +1,

. . . ,k}. First we show that p(tk−1) = p(t ′). Since Pk and Pk−1 are G-local preferences

and ( f , p) is LIC on
(
type(D̂

)
,G), ( f , p) is IC on type({Pk,Pk−1}), and hence, is IC on

(tk−1, t ′) and (t ′, tk−1). Since f (tk−1) = f (t ′), the fact that p(tk−1) = p(t ′) now follows

from Fact 2.1. By using this argument repeatedly, it follows that for all l ∈ {l1+1, . . . ,k},

p(t l) = p(t ′). Set t l1+1 = t̃1. This completes the proof of the claim. �

Also note that since f (t̃1) = f (t ′) = a j and p(t̃1) = p(t ′), by the definition of
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incentive compatibility it follows that ( f , p) is IC on (t̃1, t ′).

If l1 = 1, then by Claim 1, there exists t̃1 in type(P2) such that f (t̃1) = f (t ′) = a j and

p(t̃1) = p(t ′). Since t ∈ type(P), t̃1 ∈ type(P2), and ( f , p) is IC on type({P = P1,P2}),

it follows that t( f (t))− p(t)≥ t( f (t̃1))− p(t̃1). Since f (t̃1) = f (t ′) and p(t̃1) = p(t ′),

this implies t( f (t))− p(t) ≥ t( f (t ′))− p(t ′), which shows that ( f , p) is IC on (t, t ′)

thereby completing the proof of the Theorem.

Suppose l1 > 1. Then by Claim 1 there exists t̃1 ∈ type(Pl1+1) such that f (t̃1) =

f (t ′) = a j and p(t̃1) = p(t ′). We proceed to Step 1.

Step 1. In this step, we show that if l1 > 1, then there exists t̃2 ∈ type(Pl1) such that

f (t̃2) ∈ {a1, . . . ,a j−1} and t̃2( f (t̃1))− t̃2( f (t̃2)) ≥ t( f (t̃1))− t( f (t̃2)).

Since l1 > 1, by the definition of l1, we must have f (s) 6= a j for all s ∈ type(Pl1).17

Claim 2. L(a j,P
l1+1) * L(a j,P

l1).

Proof of Claim 2. Assume for contradiction that L(a j,P
l1+1) ⊆ L(a j,P

l1). Consider a

type t l1 ∈ type(Pl1) such that t l1(a j)− t l1(x) > t̃1(a j)− t̃1(x) for all x ∈ A\{a j}. Such

a type can be found since L(a j,P
l1+1) ⊆ L(a j,P

l1). Since Pl1 and Pl1+1 are G-local

preferences, ( f , p) is IC on type(Pl1 ,Pl1+1), and hence, is IC on (t l1 , t̃1) and (t̃1, t l1).

This, together with the facts that t l1(a j)− t l1(x) > t̃1(a j)− t̃1(x) for all x ∈ A \ {a j}

and f (t̃1) = a j, implies that f (t l1) = a j. This leads to a contradiction to the fact that

f (s) 6= a j for all s ∈ type(Pl1). This completes the proof of the claim. �

Since L(a j,P
l1+1)* L(a j,P

l1), it must be that alP
l1a j and a jP

l1+1al for some l ∈ {1,

. . . ,n}. Let B1 = {al | alP
l1a j and a jP

l1+1al}. Note that since L(a j,P
l1+1) \ {a1, . . . ,

a j−1} ⊆ L(a j,P
l1) \ {a1, . . . ,a j−1}, we must have B1 ⊆ {a1, . . . ,a j−1}. Choose t̃2 ∈

type(Pl1) such that

(i) t̃2(a j)− t̃2(x) > t̃1(a j)− t̃1(x) for all x ∈ A\B1, and

(ii) t̃2(a j)− t̃2(y) ≥ t(a j)− t(y) for all y ∈ B1.

We explain how such a choice of t̃2 is possible. Note that (i) implies that the relative

valuation of a j with respect to each alternative in A\B1 is increased from t̃1 to t̃2. This

can be assured by the fact that there is no z ∈ A \B1 such that zPl1a j and a jP
l1+1z.

17Otherwise l1 −1 would satisfy the requirement of the definition of l1 contradicting the fact that l1 is

the minimum number satisfying this requirement.
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Similarly, (ii) can be assured by means of the fact that the relative ordering of a j with

any alternative in B1 is the same in both P and Pl1 .

Since ( f , p) is IC on type({Pl1 ,Pl1+1}) and f (s) 6= a j for all s∈ type(Pl1), (i) implies

that f (t̃2) ∈ B1. This, together with (ii) and the fact that a j = f (t̃1), implies that

t̃2( f (t̃1))− t̃2( f (t̃2)) ≥ t( f (t̃1))− t( f (t̃2)). This completes Step 1. �

Note that since t̃2 ∈ type(Pl1), t̃1 ∈ type(Pl1+1) and Pl1 and Pl1+1 are G-local prefer-

ences, ( f , p) is IC on (t̃2, t̃1).

We now complete the proof of the Theorem by using Step 1 recursively. Let f (t̃2) =

b2, where b2 ∈ {a1, . . . ,a j−1}. Since (D̂ ,G) is OLGE, by Theorem 4.1, it satisfies

Property L. This, together with the fact that f (t̃2) = b2, implies there exists a G-local

path (P̂1, . . . , P̂r) from P to Pl1 satisfying Property L with respect to b2.

Let l2 ≥ 1 be the minimum number with the property that for each l ∈ {l2 + 1, . . . ,r}

there exist t l ∈ type(P̂l) such that f (t l) = b2. Note that such an l2 will always exist as

f (t̃2) = b2 and t̃2 ∈ type(P̂r).

Using similar logic as in Claim 1, it follows that there exists t̃3 ∈ type(P̂l2+1) such that

f (t̃3) = f (t̃2) = b2 and p(t̃3) = p(t̃2). This, together with the definition of incentive

compatibility implies that ( f , p) is IC on (t̃3, t̃2).

If l2 = 1, we have t̃3 ∈ type(P̂2) such that f (t̃3) = f (t̃2) = b2 and p(t̃3) = p(t̃2).

Since t ∈ type(P), t̃3 ∈ type(P̂2), and ( f , p) is IC on type({P = P̂1, P̂2}), it follows that

t( f (t))− p(t) ≥ t( f (t̃3))− p(t̃3). Since f (t̃3) = f (t̃2) and p(t̃3) = p(t̃2), this implies

t( f (t))− p(t) ≥ t( f (t̃2))− p(t̃2), which shows that ( f , p) is IC on (t, t̃2). Hence we

have a finite sequence of types (t, t̃2, t̃1, t ′) such that ( f , p) is IC on (t, t̃2), (t̃2, t̃1) and (t̃1,

t ′). Therefore the sequence of types (t, t̃2, t̃1, t ′) satisfies condition (i) of Fact 2.3. Further

note that since f (t̃1) = f (t ′), the fact that t̃1( f (t ′))− t̃1( f (t̃1))≥ t( f (t ′))− t( f (t̃1)) is

trivially satisfied (both sides being 0). This, together with step 1 implies that we have

(i) t̃2( f (t̃1))− t̃2( f (t̃2)) ≥ t( f (t̃1))− t( f (t̃2)), and

(ii) t̃1( f (t ′))− t̃1( f (t̃1)) ≥ t( f (t ′))− t) f (t̃1).

Hence the sequence of types (t, t̃2, t̃1, t ′) satisfies condition (ii) of Fact 2.3. Therefore,

by Fact 2.3, it follows that ( f , p) is IC on (t, t ′) thereby completing the proof of the

Theorem.
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Suppose l2 > 1. Then, by using similar logic as in Step 1, there exists t̃4 ∈ type(P̂l2)

such that f (t̃4) ∈U(b2,P) where U(b2,P) = {z ∈ A | zPb2} and t̃4( f (t̃3)− t̃4( f (t̃4))≥

t( f (t̃3))− t( f (t̃4)).

Continuing in this manner, either we end up showing ( f , p) is IC on (t, t ′) or we can

construct a finite sequence (t̃2u, t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1) such that

(i) t2 j and t2 j−1 are G-local types for all j ∈ {1, . . . ,u},

(ii) f (t̃2 j) = b2 j for all j ∈ {1, . . . ,u},

(iii) b2( j+1)Pb2 j for all j ∈ {1, . . . ,u−1},

(iv) f (t̃2 j+1) = f (t̃2 j) and p(t̃2 j+1) = p(t̃2 j) for all j ∈ {1, . . . ,u−1}, and

(v) t̃2 j( f (t̃2 j−1))− t̃2 j( f (t̃2 j)) ≥ t( f (t̃2 j−1))− t( f (t̃2 j)) for all j ∈ {1, . . . ,u}.

Since b2( j+1)Pb2 j for all j ∈ {1, . . . ,u− 1} and the process has not terminated, it

must be that f (t̃2u) = a1 = r1(P). Let t̃2u ∈ type(Plu) for some Plu ∈ D̂ . Since (D̂ ,G) is

OLGE and f (t̃2u) = a1, by Theorem 4.1, there must exist a G-local path π = (P̄1, . . . , P̄w)

from P to Plu satisfying Property L with respect to a1. This means L(a1, P̄l+1) ⊆ L(a1,

P̄l) for all l ∈ {1, . . . ,w−1}.

Claim 3. ( f , p) is IC on (t, t̃2u).

Proof of Claim 3. Using similar logic as in the proof of Claim 2 (by using w in place of

l1+1, w−1 in place of l1 and a1 in place of a j), it follow that there exists tw−1 ∈ t(P̄w−1)

such that f (tw−1) = a1 = f (t̃2u). The fact that p(tw−1) = p(t̃2u) now follows from Fact

2.1.

By using this fact repeatedly, it follows that for all l ∈ {2, . . . ,w− 2}, there exists

t l ∈ type(P̄l) such that f (t l) = a1 = f (t̃2u) and p(t l) = p(t̃2u), which in particular

means that there exists t2 ∈ type(P̄2) such that f (t2) = f (t̃2u) = a1 and p(t2) = p(t̃2u).

Since t ∈ type(P), t2 ∈ type(P̄2), and ( f , p) is IC on type({P = P̄1, P̄2}), it follows that

t( f (t))− p(t) ≥ t( f (t2))− p(t2). Since f (t2) = f (t̃2u) = a1 and p(t2) = p(t̃2u), this

implies t( f (t))− p(t) ≥ t( f (t̃2u))− p(t̃2u), which shows that ( f , p) is IC on (t, t̃2u)

thus proving the claim. �

Now we show that ( f , p) is IC on (t, t ′). Consider the sequence of types (t, t̃2u,

t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1, t ′). By construction, ( f , p) is IC on each pair of consecutive types,

and hence, the sequence of types (t, t̃2u, t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1, t ′) satisfies condition (i)
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of Fact 2.3. Moreover, since f (t̃2 j+1) = f (t̃2 j) for all j ∈ {1, . . . ,u− 1}, it follows

that t̃2 j+1( f (t̃2 j))− t̃2 j+1( f (t̃2 j+1)) = 0 ≥ 0 = t( f (t̃2 j))− t( f (t̃2 j+1)) for all j ∈ {1,

. . . ,u− 1}. Similarly, since f (t̃1) = f (t ′), it follows that t̃1( f (t ′))− t̃1( f (t̃1)) = 0 ≥

0 = t( f (t ′))− t( f (t̃1)). These, together with the fact that t̃2 j( f (t̃2 j−1))− t̃2 j( f (t̃2 j))≥

t( f (t̃2 j−1))− t( f (t̃2 j)) for all j ∈ {1, . . . ,u}, imply that the sequence of types (t, t̃2u,

t̃2u−1, . . . , t̃4, t̃3, t̃2, t̃1, t ′) satisfies condition (ii) of Fact 2.3. Hence, by Fact 2.3, it follows

that ( f , p) is IC on (t, t ′), which completes the proof of the only if part of Theorem.

�

A.2 PROOF OF COROLLARY 4.1

Proof: IC implies ALIC by definition, we show the converse. Consider an ALIC

mechanism µ = ( f , p) on type(D̂). We show that µ is IC. It follows from Theorem 4.2

that the cardinal environment (type(D̂),Gad) is CLGE. Therefore, to show that µ is IC,

it is sufficient to show that it is IC on any pair of Gad-local types. Consider two Gad-local

types t and t ′, and the line [t, t ′]. Let P and P′ (not necessarily distinct), respectively,

be the adjacent preferences that t and t ′ represent. Since P and P′ are adjacent, there

will be at most one point in the line [t, t ′] that does not lie in type(D̂). Such a point (or

type) will lie on the boundary of type(P) and type(P′) and will represent some weak

preference and hence outside the domain D̂ . Let t∗ be that point (if it exists). By means

of ALIC, we can choose t̄ and t̂ in type(D̂)∩ [t, t ′] such that µ is IC on (t̄, t̂) and (t̂, t̄),

and the lines [t, t̄] and [t̂, t ′] lie in type(D̂). These, together with Fact 3.1 and the fact

that implications of ALIC and PLIC are the same in the interior of a type-space, implies

that µ is IC on any two types of the sequence (t, t̄, t̂, t ′). Let us rename the sequence

(t, t̄, t̂, t ′) as (t = t1, t̄ = t2, t̂ = t3, t ′ = t4). Note that the sequence (t1, t2, t3, t4) satisfies

Condition (i) of Fact 2.3 because of the fact that µ is IC on any two consecutive types of

the sequence. Let f (t i) = ai for each i ∈ {1,2,3,4}.

Claim. (t1, t2, t3, t4) satisfies Condition (ii) of Fact 2.3.

Proof of the claim. Since µ is IC on any two consecutive types of the sequence (t1, t2,

t3, t4),
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t i(ai)− t i(ai+1) ≥ t i+1(ai)− t i+1(ai+1) for every i ∈ {1,2,3}. (1)

We need to show that t i(ai+1)− t i(ai) ≥ t1(ai+1)− t1(ai) for all i ∈ {1,2,3} which

would then establish that (t1, t2, t3, t4) satisfies Condition (ii) of Fact 2.3. Since (t = t1,

. . . , t4 = t ′) is a finite sequence of types in [t, t ′], there exists 0 = β1 < β2 < β3 < β4 = 1

such that t i = (1−βi)t
1 +βit

4 for all i ∈ {1,2,3}. Fix any i ∈ {1,2,3}. By (1), we have

t i(ai)− t i(ai+1) ≥ t i+1(ai)− t i+1(ai+1). (2)

Substituting t i = (1−βi)t
1 +βit

4 and t i+1 = (1−βi+1)t
1 +βi+1t4 in (2), we get

t1(ai)− t1(ai+1)+βi[(t
4(ai)− t4(ai+1))− (t1(ai)− t1(ai+1))]

≥ t1(ai)− t1(ai+1)+βi+1[(t
4(ai)− t4(ai+1))− (t1(ai)− t1(ai+1))].

(3)

Since βi < βi+1, from (3) we conclude that

(t4(ai)− t4(ai+1))− (t1(ai)− t1(ai+1)) ≤ 0. (4)

Substituting t i = (1−βi)t
1 +βit

4 in t i(ai+1)− t i(ai), we get

t i(ai+1)− t i(ai) = (1−βi)(t
1(ai+1)− t1(ai))+βi(t

4(ai+1)− t4(ai)). (5)

Since βi ≥ 0, (4) and (5) together imply t1(ai+1)− t1(ai) ≤ t i(ai+1)− t i(ai). This

implies that (t1, t2, t3, t4) satisfies Condition (ii) of Fact 2.3 which completes the proof

of the claim. �

Therefore, by applying Fact 2.3 to the sequence (t1, t2, t3, t4), we obtain that µ is IC

on (t, t ′). This completes the proof of the corollary. �

A.3 PROOF OF THEOREM 5.1

Proof of (i) implies (ii): Suppose (i) holds but (ii) does not hold. Since (ii) does

not hold, either the domain ĎD does not satisfy weak-compatibility or the environment
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(strict(ĎD),G) is not OLGE. We distinguish these two cases.

Case A. Suppose that the domain ĎD does not satisfy weak-compatibility.

Since ĎD does not satisfy weak-compatibility, there exists a weak preference R ∈ ĎD

for which there is no strict preference in strict(ĎD) that is compatible with R. First, note

that R cannot be indifferent over all the alternatives in A, that is, it is not possible that

aIb for all a,b ∈ A. This is because, if R is so, then any strict preference in strict(ĎD)

(recall that strict(ĎD) 6= /0 by our assumption) is compatible with R. So, let us assume

that aPb for some a,b ∈ A.

Consider the mechanism µ = ( f , p) such that f (t) = b for all t ∈ type(R) and

f (t) = a for all other types, and p(t) = 0 for all t ∈ type(ĎD). We claim that this

mechanism is strong LIC but not almost everywhere IC.

Since both f and p are constant (equal to a and 0, respectively) over all strict types in

type(ĎD), the mechanism µ is LIC. To see that µ is strong LIC, consider any pair of types

(t̄, t̂) where t̂ is a strict type in type(P∗) and t̄ is a weak type in cl(type(P∗))∩ type(ĎD) for

some P∗ ∈ strict(ĎD). Since there is no strict preference in strict(ĎD) that is compatible

with R, we have t̄ /∈ type(R).

By the construction of f , this means f (t̄) = f (t̂) = a. This, together with the fact

that the payment function is constant everywhere (equal to 0), implies that µ is IC on

(t̄, t̂). Therefore, µ is strong LIC. Finally, we show that µ is not almost everywhere IC.

Consider any type ¯̄t in type(R) and any strict type ˆ̂t in type(ĎD). By the definition of f ,

we have f ( ¯̄t) = b and f ( ˆ̂t) = a. Since aPb, we have ¯̄t(a) > ¯̄t(b). This, together with

the fact that p( ¯̄t) = p( ˆ̂t) = 0, implies ¯̄t( f ( ¯̄t))− p( ¯̄t) < ¯̄t( f ( ˆ̂t))− p( ˆ̂t), and hence, µ is

not IC on the pair ( ¯̄t, ˆ̂t). Since ˆ̂t is a strict type in type(ĎD), this means µ is not almost

everywhere IC, which is a contradiction to (i). This completes the proof for Case A.

Case B. Suppose that the environment (strict(ĎD),G) is not OLGE.

Since the environment (strict(ĎD),G) is not OLGE, there is an SCF g on strict(ĎD)

that is LIC on (strict(ĎD),G) but not IC. Let P and P′ be two preferences in strict(ĎD)

on which g fails to be IC, that is, g(P′)Pg(P).

In what follows, we construct a mechanism µ = ( f , p) that is strong LIC on (type(ĎD),

G) but not IC, and thereby arrive at a contradiction to (i). Consider a strict type
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t̂ ∈ type(ĎD). Define f (t̂) = g(prfn(t̂)). This is well-defined as there is a unique prfn(t̂)

in ĎD for such strict types t̂. Next, consider a weak type t̄ and consider the (strict)

preferences in ĎD that is compatible with the weak preference that represent t̄, that is, the

preferences P(t̄) = {P̂ ∈ strict(ĎD) | P̂ is compatible with prfn(t̄)}. Let P∗ ∈ P(t̄) be

such that t̄(g(P∗))≥ t̄(g(P̂)) for all P̂ ∈ P(t̄). Define f (t̄) = g(P∗). Take the payment

function p to be identically zero, that is, p(t) = 0 for all t ∈ type(ĎD).

Since g is not IC on (P,P′), by the definition, µ is not IC on any pair of types (t, t ′)

such that t ∈ type(P) and t ′ ∈ type(P′). Therefore, µ is not almost everywhere IC. We

claim that the mechanism µ is strong LIC. The fact that µ is LIC follows from the fact

that g is LIC. To see that µ is IC on every pair of types (t̄, t̂) where t̂ is a strict type

in type(P̃) and t̄ is a weak type in cl(type(P̃))∩ type(ĎD) for some (strict) preference

P̃ ∈ ĎD , consider such a pair of types (t̄, t̂). We need to show t̄( f (t̄)) ≥ t̄( f (t̂)). Since t̂

is a strict type, by the definition of f , f (t̂) = g(P̃). Moreover, since t̄ is a weak type and

P̃ is compatible with the weak preference that represent t̄, by the definition of f , we have

t̄( f (t̄)) ≥ t̄(g(P̃)). Combining these observations, we obtain t̄( f (t̄)) ≥ t̄( f (t̂)). This

shows that the mechanism µ is strong LIC, completing the proof by contradicting (i).

Proof of (ii) implies (i): Consider an OLGE environment (strict(ĎD),G) such that ĎD

satisfies weak-compatibility. We show that every strong LIC mechanism on (type(ĎD),G)

is almost everywhere IC. Consider a strong LIC mechanism µ = ( f , p). To show that

it is almost everywhere IC, we need to show that it is IC on every pair of types (t, t̂)

where t̂ is a strict type in type(ĎD). Fix any pair of types (t, t̂) such that t̂ is a strict type

in type(ĎD). We distinguish two cases based on the structure of t.

Case 1. Suppose t is a strict type.

Since (strict(ĎD),G) OLGE, by Theorem 4.2, the environment (type(strict(ĎD)),G)

is CLGE. This means every LIC mechanism on (type(strict(ĎD)),G) is IC. Since strong

LIC implies LIC, it follows that µ is IC on type(strict(ĎD)), and in particular, IC on (t, t̂).

This completes the proof for Case 1.

Case 2. Suppose t is a weak type.

For notational convenience, let us denote t by t̄. If t̄ is such that t̄(x) = t̄(y) for

every x,y ∈ A, then t̄ ∈ cl(type(prfn(t̂)))∩ type(ĎD). Since µ is strong LIC, µ is IC on
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(t̄, t̂), which completes the proof of the theorem. Now assume that t̄(x) 6= t̄(y) for some

x,y ∈ A.

Let P∗ be a strict preference in ĎD that is compatible with the weak preference

representing t̄. Such a preference exists since ĎD satisfies the weak-compatibility property.

Let B be the set of alternatives that have the same valuation as f (t̂) in t̄, and are preferred

to f (t̂) in P∗, that is, B = {b ∈ A | t̄(b) = t̄( f (t̂)) and bP∗ f (t̂)}. Notice that since

t̄(x) 6= t̄(y) for some x,y ∈ A, A\ (B∪ f (t̂)) 6= /0. Let T̃ be the set of types t̃ representing

the preference P∗ such that the relative valuation of f (t̂) with respect to any alternative in

A\ (B∪ f (t̂)) strictly increases from t̄ to t̃, that is, T̃ = {t̃ ∈ type(P∗) | t̃( f (t̂))− t̃(z) >

t̄( f (t̂))− t̄(z) for all z∈A\(B∪ f (t̂))}. Since P∗ is a strict preference that is compatible

with the weak preference representing t̄ and A \ (B∪ f (t̂)) 6= /0, we have T̃ 6= /0. We

distinguish two further subcases.

Case 2.1. Suppose that there exists t̃ ∈ T̃ such that f (t̃) /∈ B.

Since f (t̃) /∈ B, by the definition T̃ , we have

t̃( f (t̂))− t̃( f (t̃)) ≥ t̄( f (t̂))− t̄( f (t̃)), (6)

where the equality holds only when f (t̂) = f (t̃). Consider the sequence (t̄, t̃, t̂). We

apply Fact 2.3 to this sequence. Since t̃ is a strict type in type(P∗) and t̄ is a weak type

in cl(type(P∗))∩ type(ĎD) and µ is strong LIC, µ is IC on (t̄, t̃). Moreover, since both t̃

and t̂ are strict types, by Case 1, it follows that µ is IC on (t̃, t̂). Thus, µ is IC on both

the pairs (t̄, t̃) and (t̃, t̂), and thereby satisfies the Condition (i) of Fact 2.3. Furthermore,

Condition (ii) of Fact 2.3 follows from (6). Therefore, the sequence (t̄, t̃, t̂) satisfies the

conditions of Fact 2.3 and hence µ is IC on (t̄, t̂). This completes the proof for Case 2.1.

Case 2.2. Suppose that Case 2.1 does not hold, that is, for all t̃ ∈ T̃ , we have f (t̃) ∈ B.

Let B̃ be the set of outcomes of f on T̃ , that is, B̃ = { f (t̃) | t̃ ∈ T̃}. Let b̃ be the worst

alternative in B̃ according to P∗, that is, bP∗b̃ for all b ∈ B̃\{b̃}. Let tb̃ ∈ T̃ be a type

such that f (tb̃) = b̃. Let Tb̃ be the set of strict types in type(ĎD) such that the relative

valuation of b̃ with repect to any other alternative in B̃ is greater than that in tb̃, that is,

Tb̃ = {˜̃t ∈ type(ĎD) | ˜̃t is a strict type and ˜̃t(b̃)− ˜̃t(z) > tb̃(b̃)− tb̃(z) for all z ∈ B̃\{b̃}}.

Note that since µ is strong LIC and the types in Tb̃ are strict, by Case 1, µ is IC on any
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pair of types in Tb̃. By the construction of the type-space Tb̃ and Fact 2.2, this implies

that the outcome of f at any type in Tb̃ cannot be in the set B̃\{b̃}.

Consider the types in T̃b̃ = Tb̃∩ T̃ . Since there is no restriction on the types in T̃ about

the relative valuation of b̃ with respect to any other alternative in B̃\{b̃} , we have T̃b̃ 6= /0.

Moreover, since both T̃ and Tb̃ put no restriction on the relative valuation of b̃ with respect

to f (t̂) (except that the said relative valuation is positive), the difference of the valuation

of b̃ and f (t̂) can be arbitrarily small in the types in T̃b̃, that is, inf
˜̃t∈T̃b̃

˜̃t(b̃)− ˜̃t( f (t̂)) = 0.

By the definition of Tb̃, the outcome of f at any type in Tb̃ cannot be in the set B̃\{b̃}.

Moreover, by the assumption of Case 2.2, the outcome of f at any type in T̃ has to be in

the set B̃, it follows that the outcome of any type in T̃b̃ is b̃.

Consider any type t̃b̃ in T̃b̃. Since µ is strong LIC and both t̃b̃ and t̂ are strict types, by

Case 1, µ must be IC on (t̃b̃, t̂). Therefore,

p(t̃b̃)− p(t̂) ≤ t̃b̃(b̃)− t̃b̃( f (t̂)). (7)

Since f (t̃b̃) = b̃ for all types t̃b̃ ∈ T̃b̃ and µ is IC on T̃b̃, by Fact 2.1 we have p(t̃b̃) must

be the same for all types in T̃b̃. Let p(t̃b̃) = c for all t̃b̃ ∈ T̃b̃ and for some c ∈ R. Taking

infimum on both sides of (7) and doing some rearrangement, we obtain

− p(t̂) ≤−c (8)

Since t̄( f (t̂)) = t̄(b̃), adding t̄( f (t̂)) to the left side of (8) and t̄(b̃) to the right side of

(8), we get

t̄( f (t̂))− p(t̂) ≤ t̄(b̃)− c.

Fix any t̃b̃ ∈ T̃b̃. Since f (t̃b̃) = b̃, this implies

t̄( f (t̂))− p(t̂) ≤ t̄( f (t̃b̃))− c (9)

Now, since µ is strong LIC and t̄ is a weak type in cl(type(P∗))∩ type(ĎD) and t̃b̃ is a
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strict type in type(P∗), µ is IC on (t̄, t̃b̃). This implies

t̄( f (t̄))− p(t̄) ≥ t̄( f (t̃b̃))− c (10)

By (9), this yields

t̄( f (t̄))− p(t̄) ≥ t̄( f (t̂))− p(t̂), (11)

which concludes that µ is IC on (t̄, t̂). �

A.4 PROOF OF COROLLARY 5.1

Proof: Let (D̂ ,Gad) be a strict ordinal OLGE environment and let µ be a PLIC mecha-

nism on cl(type(D̂)). We show that µ is almost everywhere IC. Let ĎD be the set of all

preferences representing the types in cl(type(D̂)), that is, ĎD = prfn(cl(type(D̂))). By

definition, ĎD satisfies weak compatibility. Since (D̂ ,Gad) is OLGE, by Theorem 5.1,

this implies that every strong LIC mechanism on (cl(type(D̂)),Gad) is almost every-

where IC. So, to show that µ is almost everywhere IC on cl(type(D̂)), it is sufficient to

show that µ is strong LIC on (cl(type(D̂)),Gad).

Consider any pair of Gad-local preferences (P,P′) in D̂ . Since P and P′ are adjacent

local, cl(type({P,P′})) is convex (see Fact 1 in Mishra et al. (2016) for details). Because,

µ is PLIC, it follows from Fact 3.1 that it is IC on cl(type({P,P′})). In particular, it is

IC on (i) any pair of strict types (t, t ′) in type({P,P′}), and (ii) every pair of types (t̄, t̂)

in cl(type(P)) where t̄ is a weak type and t̂ is a strict type. Since P and P′ are arbitrary

Gad-local types, it follows that µ is strong LIC. �

A.5 PROOF OF THEOREM 5.2

Proof: Let (D̂ ,Gad) be a strict ordinal OLGE environment and let sT = cl(type(D̂)).

Consider a PLIC mechanism µ on sT . By Corollary 5.1, µ is almost everywhere IC on sT .

We first prove a claim.

Claim A.1. Let a weak type t̄ ∈ sT \ strict(sT ) be such that there exists a strict type

t̂ ∈ strict(sT ) with the property that
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(i) t̂( f (t̄))− t̂(x) > t̄( f (t̄))− t̄(x) for all x ∈ A\{ f (t̄)}, and

(ii) µ is IC on (t̂, t̄).

Then, µ is IC on sT ×{t̄}.

Proof of the claim: Since µ is almost everywhere IC on sT , it is IC on the pair (t̄, t̂).

Moreover, by Condition (ii) of the claim, µ is IC on the pair (t̂, t̄). Thus, µ is IC on

both (t̄, t̂) and (t̂, t̄). By Condition (i) of the claim, the relative valuation of f (t̄) with

respect to any other alternative is increased from t̄ to t̂. Therefore, by Fact 2.2, we

have f (t̄) = f (t̂). This, together with the fact that µ is IC on both pairs (t̄, t̂) and (t̂, t̄),

implies by Fact 2.1 that p(t̄) = p(t̂).

Now, since µ is almost everywhere IC, it is IC on sT ×{t̂}. Because f (t̄) = f (t̂) and

p(t̄) = p(t̂), it follows that µ is IC on sT ×{t̄}. This completes the proof of the claim. �

We are now ready to prove the theorem.

Proof of (i): We show that µ is IC on sT × sT o. Since µ is almost everywhere IC on sT , by

definition µ is IC on sT × strict(sT ). Note that sT o might contain weak types. So, we need

to show that µ is IC on sT × (sT o \ strict(sT )). Consider any t̄ ∈ sT o \ strict(sT ). By the

definition of sT o, there exists ε1 > 0 such that {s ∈ R
n | d(t̄,s) < ε1} ⊂ sT . Also, by the

definition of a PLIC mechanism, there exists ε2 > 0 such that µ is IC on (t̄,s) and (s, t̄)

for every s ∈ sT with d(t̄,s) < ε2. Consider a type t̂ in strict(sT ) with d(t̄, t̂) < min{ε1,

ε2} such that t̂( f (t̄))− t̂(x) > t̄( f (t̄))− t̄(x) for all x ∈ A\{ f (t̄)}. Such a type can be

constructed from t̄ by lowering the valuation of each alternative other than f (t̄) by an

arbitrarily small amount. This, together with the facts that t̄ ∈ sT \ strict(sT ), µ is almost

everywhere IC on sT , and µ is IC on (t̂, t̄), implies by Claim A.1 that µ is IC on sT ×{t̄}.

Since t̄ ∈ sT o \ strict(sT ) is arbitrary, it follows that µ is IC on sT × (sT o \ strict(sT )). This

completes the proof of Part (i) of the theorem.

Proof of (ii): Let t̄ ∈ ∂̂ sT such that there exists P∈ D̂ with t̄ ∈ cl(type(P)) and f (t̄)Pz

for every z with t̄( f (t̄)) = t̄(z). Since µ is PLIC and cl(type(P)) is convex, by Fact 3.1,

µ is IC on cl(type(P)). Since f (t̄)Pz for every z with t̄( f (t̄)) = t̄(z), starting from the

type t̄, we can construct a type t̂ ∈ type(P) by suitably lowering the valuation of each

alternative other than f (t̄) such that t̂( f (t̄))− t̂(x)> t̄( f (t̄))− t̄(x) for all x ∈ A\{ f (t̄)}.
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This, together with the facts that µ is almost everywhere IC on sT and µ is IC on (t̂, t̄),

implies by Claim A.1 that µ is IC on sT ×{t̄}. This completes the proof of Part (ii) of

the theorem. �
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