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Abstract

How does the value of life affect annuity demand? To address this question, we

construct a portfolio choice problem with three key features: i) agents have access

to life-contingent assets, ii) they always prefer living to dying, iii) agents have non-

expected utility preferences. We show that as utility from being alive increases,

annuity demand decreases (increases) if agents are more (less) averse to risk rather

than to intertemporal fluctuations. Put differently, if people prefer early resolution

of uncertainty, they are less interested in annuities when the value of life is high. Our

findings have two important implications. First, we get a better understanding of the

well-known annuity puzzle. Second, we argue that the observed low annuity demand

provides evidence that people prefer early rather than late resolution of uncertainty.
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1 Introduction

How does the value of life affect investments in life-contingent assets? Standard portfolio

choice theory with survival uncertainty, going back to Yaari (1965), usually sidesteps the

issue of the value of life by not requiring the agent’s utility when alive to be greater than

when he is dead.1 Empirical evidence shows, however, that people require substantial

compensation for an increase in mortality risk, implying that the value of life is large (see

Viscusi, 1993, for an extensive review). This, in turn, has dramatic effects on the welfare

assessment of issues involving changes in health and longevity (Murphy and Topel, 2006;

Hall and Jones, 2007).

Our goal in this paper is to analyze a portfolio choice problem in an environment where

life is valuable but survival is uncertain. Specifically, we study how explicitly incorporating

the value of life changes our understanding of consumers’ decisions to invest in assets with

survival-contingent payoffs such as annuities or life insurance.

The starting point of such an analysis is how to think about the utility of life. We take

a stand that this utility is an additional component to overall utility that depends only on

whether an individual is alive but not on his consumption, income, asset holding, etc. Put

differently, intra-period utility from being alive represents a non-pecuniary element of an

individuals’ welfare not captured by other pecuniary factors.2

In a standard additive expected utility framework, this non-pecuniary felicity from

being alive does not change consumption/savings decisions because it does not affect the

marginal utilities of consumption or wealth. However, this is not necessarily the case with

a more general preferences specification. In our analysis, we adopt a non-expected utility

framework (Kreps and Porteus, 1978). The attractive feature of these preferences is that

unlike the standard expected utility case, they allow to separately model aversion to risk

1In fact, in many parametrizations of such models, people have higher utility in the state of death. This

happens, for example, if utility over consumption is of the constant relative risk aversion (CRRA) type

with the coefficient of risk aversion set above one, and the utility in death is set equal to zero.

2In this approach, we follow Hall and Jones (2007). An alternative approach is to re-normalize disutility

from being dead instead of assuming extra utility from being alive. Rosen (1988) shows that these two

approaches are equivalent.
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and aversion to intertemporal substitution. This feature adds an important dimension

to the analysis: even though the utility from being alive does not affect the intra-period

marginal utility, it does introduce additional fluctuations in utility both over time and over

states of the world. This, in turn, matters for decisions of consumers who have different

attitudes towards these two types of fluctuations.

In this framework, we study how consumers allocate their investments between survival-

contingent assets. In the standard expected utility framework, the trade-off in this decision

depends on the marginal benefits of having additional resources in each state: marginal

utility of consumption if alive and marginal utility of bequests if dead. In the non-expected

utility case, there is an additional consideration, which, following Weil (1990), we call the

trade-off between safety and stability of utility. Importantly, each life-contingent asset can

potentially affect this trade-off in a different way.

We proceed in several steps. First, we provide a general characterization of how changes

in (intra-period) utility of being alive affect the relative benefits of allocating resources to

states when alive versus when dead. We derive conditions that determine the sign of the

corresponding change in annuity demand. We show that if agents are more (less) averse to

risk than to intertemporal fluctuations, annuity demand decreases (increases) when intra-

period utility of being alive increases. This happens because an increase in intra-period

utility from being alive increases differences in utilities both across states of the world and

over time. Annuity investments accentuate the former difference but can smooth the latter.

Second, we apply our analysis to three parametrizations of non-expected utility, namely,

Epstein-Zin-Weil (Epstein and Zin, 1989; Weil, 1990), risk-sensitive (Hansen and Sargent,

1995) and disappointment aversion version of Chew-Dekel preferences (Chew, 1983; Dekel,

1986; Gul, 1991). The application of our approach to Epstein-Zin-Weil preferences allows

for the most intuitive interpretation of our results: we show that annuity demand decreases

(increases) with intra-period utility of being alive if the coefficient of relative risk aversion

is higher (lower) than the inverse of the elasticity of intertemporal substitution (EIS). This

result is of a particular interest because the relationship between these two parameters

determines agents’ attitudes toward the timing of the resolution of uncertainty. Our result,

thus, can be restated as follows: when agents prefer early (late) resolution of uncertainty,

they are less (more) interested in annuities as intra-period utility of being alive increases.
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In the final part of the paper, we provide a quantitative illustration of our theoretical

findings using a retirement saving model where agents have access to the private annuity

market. For this illustration, we choose Epstein-Zin-Weil preferences since it is most com-

monly used non-expected utility parametrization in macroeconomics and finance. Using

the distribution of retirees by wealth and pension income from the Health and Retirement

Study (HRS), we simulate how annuity demand changes with the per-period utility of be-

ing alive. We show that if risk aversion is above the inverse of the EIS, the percentage

of people buying annuities quickly decreases as the utility of being alive increases. Put

differently, when people prefer early resolution of uncertainty, one of the reasons for the

low demand for annuities is that people derive utility from being alive.

The last result offers important insight into the long-standing annuity puzzle. The

essence of this puzzle is that a standard life-cycle model predicts people should annuitize a

substantial fraction (if not all) of their wealth (Yaari, 1965), while in reality, the demand

for annuities is low. A number of explanations have been put forward to account for this

discrepancy. The prominent explanations include, for example, bequest motives, market

frictions, crowding out by Social Security, medical expenses, means-tested benefits, and

high degree of impatience (Butler et al., 2017; Dushi and Webb, 2004; Inkman et al., 2011;

Mitchell et al., 1999; Lockwood, 2012; Pashchenko, 2013; Pashchenko and Porapakkarm,

2019; Peijnenburg et al., 2017; Reichling and Smetters, 2015; Turra and Mitchell, 2008).

Several studies have investigated the puzzle in the framework with non-standard prefer-

ences while allowing life to be valuable. Bommier and Le Grand (2014) use the expected

utility framework with the concavification of the lifetime utility function to show that an

increase in risk aversion leads to lower demand for annuities. Bommier et al. (2020) further

show that this result holds in a framework with risk-sensitive preference when the value of

life is positive. We contribute to this line of research by showing theoretically that demand

for annuities is affected by the interplay between i) agents’ attitudes toward uncertainty

and intertemporal fluctuations; and ii) intra-period utility of being alive. Moreover, our

simulations with Epstein-Zin-Weil preferences show that this mechanism can be quantita-

tively important.

From another angle, we can also state that in light of our findings, the low demand for

annuities can be considered as evidence that people prefer early resolution of uncertainty.
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The issue of whether empirical evidence supports preferences for early or late resolution

of uncertainty is not entirely resolved. On the one hand, support for early resolution of

uncertainty comes from three sources. First are the direct estimates of the risk aversion

and the elasticity of intertemporal substitution from consumption data using an Euler

equation. These estimates find that the former exceeds the inverse of the latter (Attanasio

and Weber, 1989; Chen et al., 2013; Vissing-Jorgensen and Attanasio, 2003). Second are

the results from controlled experiments where people choose between different lotteries and

preferences are elicited from their choices. These experiments show that even though people

have heterogeneous preferences, on average they prefer early resolution (Brown and Kim,

2014; Meissner and Pfeiffer, 2018). Finally, studies in macro-finance show that in order

to account for a numbers of features of asset markets, such as the equity premium puzzle,

people should prefer early resolution of uncertainty (Bansal and Yaron, 2004; Huang and

Shaliastovich, 2013; Malloy et al., 2009; Yogo, 2006).

On the other hand, evidence that people may prefer late resolution of uncertainty

comes from studies in health economics. A number of studies in this field show that people

avoid learning about the true state of their health when it comes to serious illness (see,

for example, Oster et al., 2013 for the case of genetic testing for Huntington disease or

Kellerman et al., 2002 for HIV testing; see also Cordoba and Ripoll, 2017 for an excellent

review of such evidence).

It is important to mention our relationship to several strands of literature not discussed

above. Our paper belongs to a broad class of studies on saving and portfolio choice in the

presence of survival uncertainty. These studies can be divided into four groups based on

whether mortality is assumed to be exogenous or endogenous, and whether preferences are

standard additive expected utility or of a more general type.

The literature in the first category (exogenous mortality and standard preferences) is

very substantial and includes, among others, seminal work on saving behavior (Hubbard

et al., 1994; De Nardi et al., 2010). As we mentioned earlier, these studies typically

abstract from the value of life; i.e., they do not impose a constraint that individuals are

better off being alive since, in the context of standard preferences and exogenous mortality,

assuming life is valuable usually does not add any new insights. One exception is De Nardi

et al. (2018) who explicitly incorporate the value of life in a structural consumption/saving
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model with exogenous mortality in order to understand the non-pecuniary implications of

deteriorating health.

Among the literature in the second category (exogenous mortality and non-standard

preferences) it is more common to encounter studies that incorporate the value of life.

This happens because more general preferences oftentimes lead to non-trivial implications

of treating life as valuable. For example, Bommier and Villeneuve (2012) show that in a

model with standard preferences people are risk-neutral to mortality risk, and allowing for

non-additive preferences can introduce mortality risk aversion which is important to take

into account in many policy applications. Cordoba and Ripoll (2017) provide a detailed

illustration of the advantages of using a non-expected utility approach when modeling the

value of life.

In the last two categories of studies (with endogenous mortality) incorporating the

value of life is crucial because otherwise agents will deliberately increase their mortality. A

common approach in this literature is to add a constant to an otherwise standard utility

function to ensure life is preferred to death. Rosen (1988) was among the first to suggest

this approach, it was later used in the seminal works of Hall and Jones (2007) and Murphy

and Topel (2006). Recent applications of this approach can be found in Eslami and Karimi

(2019), Fonseca et al. (2020), Nygaard, (2019), Ozkan (2017). Two alternative approaches

is to introduce utility penalty from death (Hugonnier et al., 2013, 2020) or to assume that

death happens when health declines below a certain level while assuming health enters the

utility function as a necessary good (Yogo, 2016).

The rest of the paper is organized as follows. Section 2 describes the environment and

derives our main results. Section 3 applies our approach to several common parametriza-

tions of non-expected utility preferences. Section 4 discusses the implication of our results

for the debate about preferences for the timing of the resolution of uncertainty. Section 5

provides a quantitative illustration. Section 6 concludes.

2 Model

We start by considering the demand for annuities in an environment with a general

preferences specification that allows us to separately characterize agents’ attitudes towards
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fluctuations in utility across states of the world and over time. In the first step of our

analysis, we do not impose parametric assumptions on preferences but rather show how

demand for annuities depends on general properties of these preferences when individuals

derive utility from being alive.

2.1 Preferences

Consider an environment where agents’ preferences are characterized by a triple of

functions (w, f, g), where w(·) is the intra-period utility function, g(·) determines the in-

tertemporal aggregation rule and f(·) determines the uncertainty aggregation rule.

Denoting the value function of an agent at time t as Vt, we can write the preferences

in recursive form as follows:

Vt = g−1

[

(1− β)g(w) + βg(zt+1)

]

,

where β is the discount factor and zt+1 is the certainty equivalent:

zt+1 = f−1

[ I∑

i=1

pif(V
i
t+1)

]

Here, pi is the probability of outcome i next period resulting in the value function V i
t+1,

i = 1, ..., I.

We assume that w(·) is continuous, and f(·) and g(·) are strictly increasing, concave

and twice continuously differentiable.3

Before we proceed, it is important to note the followings regarding our preferences

structure. First, when f(·) = g(·), we are dealing with the standard expected utility case.

Second, when f(·) 6= g(·), we can disentangle agents’ attitudes towards inter- and intra-

temporal utility fluctuations. Specifically, an agent’s attitude toward utility fluctuations

3As an example, consider two well-known parametrizations of the non-expected utility preferences

commonly used in macroeconomics and finance. The first is Epstein-Zin-Weil parametrization, where both

g(·) and f(·) are assumed to be constant elasticity of substitution functions. The second is risk-sensitive

preferences (Hansen and Sargent, 1995), where g(x) = x and f(x) = −
1

k
exp(−kx). Both parametrizations

are discussed in detail in Section 3.
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over time is determined by the function g(·), while his attitude toward utility fluctuations

across states of the world is determined by the function f(·).4

2.2 Portfolio choice problem

To illustrate how the value of life can affect demand for annuities, we incorporate the

preferences described above into a portfolio choice problem. There is only one type of

uncertainty, which is the uncertainty in survival: with probability st an agent is still alive

in period t+1 (conditional on being alive in period t), and with probability 1−st he is dead

in period t+ 1. Denote the corresponding value functions as V a
t+1 and V d

t+1, respectively.

Assume that an agent can invest in two state-contingent assets. The first type of asset

delivers gross return Ra
t+1 next period if an agent is alive and nothing otherwise, while the

second type of asset delivers gross return Rd
t+1 only in the state when an agent is dead and

nothing otherwise.5 Denote the current holding of Type 1 assets as kat and of Type 2 assets

as kdt .

Note that if an agent does not place any value on having assets in the state when he is

dead, the portfolio choice problem becomes trivial as he will allocate 100% of his resources

to Type 1 assets. We assume that agents have a bequest motive; and we denote utility from

leaving a bequest in the amount kdt as ℧(kdt ), where ℧(·) is increasing and continuously

differentiable. We further assume that ℧(0) = ℧ > −∞.6

Denoting an agent’s time t consumption as ct, we can summarize the environment as

follows: if alive, an agent derives utility from consuming ct; otherwise, he enjoys utility

4It is important to stress that g(·) determines an agent’s attitude toward intertemporal utility fluctu-

ations. His attitude toward intertemporal consumption fluctuations depends not only on g(·) but also on

the intra-period utility function w(·).

5The Type 1 asset can be thought of as an annuity and the Type 2 asset as life insurance. A more

common approach in the literature is to study the demand for annuities in the environment when people

can invest in regular risk-free bonds as an alternative to annuity. Our results can easily be extended to

that framework as well (as we will show later); however, our specification allows for a clearer illustration.

6This assumption is common in the literature since otherwise even the poorest agents are compelled to

leave a bequest (see De Nardi, 2004). In Appendix A we show that this assumption does not affect our

results.
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from leaving a bequest kdtR
d
t .

To ensure that a state when an agent is alive always brings higher utility than a state

when he is dead, we assume that being alive brings additional utility. We model this

additional utility by introducing a constant b, such that when b = 0, we go back to the

standard framework where life is not necessarily valuable, and ∂V a
t /∂b > 0, i.e., the higher

is b, the more valuable it is to be alive.7

We specify the intra-period utility as follows:

w(·) =







ψ(ct, b) if an agent is alive in period t

℧(kdtR
d
t ) otherwise

Assumption 1
∂g(ψ(ct, b))

∂ct
does not depend on b, i.e., the g-transformed marginal

utility of consumption does not depend on b.

We will show below that this assumption ensures that in the standard expected utility

framework, parameter b does not affect consumption/savings decisions.

Denoting per-period income of an agent as yt, we can write the individual’s optimization

7In our model with the bequest motive, the parameter b cannot be interpreted as a consumption

threshold such that an individual would rather be dead than consume less than this threshold as in

more standard formulations (e.g., Cordoba and Ripoll, 2017; Murphy and Topel, 2006). In case with the

bequest motive, an individual can affect his utility of death by leaving larger bequests. The decision of how

much bequests to leave comes form comparison of marginal utilities of consumption today versus bequest

tomorrow, and does not depend on the total utilities of life versus death, meaning that nothing prevents

an individual to optimally leave bequests that make utility in the latter state higher. The constant b is the

parameter that ensures life is still valuable even if people leave large bequests. The actual consumption

threshold that makes an individual indifferent between life and death depends not only on b but also on

the parameters of bequest function and the amount of bequests left. We discuss this issue in more details

in Appendix B.
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problem as follows:

V a
t (k

a
t ) = max

kat+1
,kdt+1

{

g−1

[

(1− β)g(ψ(ct, b)) + βg(zt+1)
]}

zt+1 = f−1

[

stf(V
a
t+1(k

a
t+1)) + (1− st)f(V

d
t+1(k

d
t+1))

]

s.t ct + kat+1 + kdt+1 = katR
a
t + yt

V d
t (k

d
t ) = g−1

[

(1− β)g(℧(kdtR
d
t ))
]

8

For the ease of exposition, we introduce the following notations:

ψ(ct, b) ≡ ψt, ℧(kdtR
d
t ) ≡ ℧t.

Using these notations, we can write the first-order conditions for the investments in

kat+1 and kdt+1 as follows:

(1− β)
∂g(ψt)

∂ct
= β

∂g(zt+1)/∂zt+1

∂f(zt+1)/∂zt+1

st
∂f(V a

t+1)

∂V a
t+1

∂V a
t+1

∂kat+1

, (1)

(1− β)
∂g(ψt)

∂ct
= β

∂g(zt+1)/∂zt+1

∂f(zt+1)/∂zt+1

(1− st)
∂f(V d

t+1)

∂V d
t+1

∂V d
t+1

∂kdt+1

. (2)

We can use the envelope theorem to find ∂V a
t+1/∂k

a
t+1 and ∂V d

t+1/∂k
d
t+1:

∂V a
t+1

∂kat+1

=
(1− β) ∂g(ψt+1)/∂ct+1 R

a
t+1

∂g
(
V a
t+1

)
/∂V a

t+1

, (3)

∂V d
t+1

∂kdt+1

=
(1− β) ∂g(℧t+1)/∂k

d
t+1 R

d
t+1

∂g
(
V d
t+1

)
/∂V d

t+1

. (4)

8We can also set V d
t (k

d
t ) = ℧(kdtR

d
t ), which will not change our results. We have chosen this formulation

for the sake of symmetry.
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Note that the left-hand sides of Equation (1) and Equation (2) are the marginal costs

of investing in kat+1 and kdt+1, respectively, while the right-hand sides represent the corre-

sponding marginal benefits. We denote these marginal benefits as MBa
t+1 and MBd

t+1 for

investment in kat+1 and kdt+1, respectively.

The key object of interest for our analysis is the ratioMBa
t+1/MB

d
t+1 since it determines

the relative demand for Type 1 and Type 2 assets. Using Equation (3) and Equation (4),

this ratio can be represented as follows:

RMBt+1(k
a
t+1, k

d
t+1) =

MBa
t+1

MBd
t+1

=
st

1− st

∂f(V a
t+1)/∂V

a
t+1

∂g(V a
t+1)/∂V

a
t+1

∂f(V d
t+1)/∂V

d
t+1

∂g(V d
t+1)/∂V

d
t+1

∂g(ψt+1)/∂ct+1

∂g(℧t+1)/∂kdt+1

Ra
t+1

Rd
t+1

. (5)

The ratio of marginal benefits in Equation (5) is a function of kat+1 and kdt+1. Denote

the optimal solution to the household’s problem as k
a

t+1 and k
d

t+1. Note that the ratio

RMBt+1(k
a
t+1, k

d
t+1) evaluated at this optimal bundle is equal to one:

RMBt+1(k
a

t+1, k
d

t+1) =
MBa

t+1

MBd
t+1

∣
∣
∣
∣
∣
∣
∣
k
a
t+1,k

d
t+1

= 1 (6)

Consider an agent who optimally chooses his portfolio allocation k
a

t+1, k
d

t+1 given a par-

ticular value of per-period utility of being alive b. Next, suppose b marginally increases. If

the ratio RMBt+1(k
a

t+1, k
d

t+1) evaluated with the new value of b is no longer equal to one,

the previous optimal decisions no longer maximize an agent’s utility. The key question

is which way an agent will shift his portfolio allocation. If the ratio RMBt+1(k
a

t+1, k
d

t+1)

increases, an agent will reallocate his portfolio towards kat+1, while if it decreases, he real-

locates his portfolio towards kdt+1.

Thus, our key point of interest is how the ratioMBa
t+1/MB

d
t+1 changes when being alive

brings higher utility, taking initial optimal allocation as a starting point.9 The direction of

9Note that if instead of two state-contingent assets, we consider portfolio allocation between annuities

and regular bonds, we would consider the ratio: MBa
t+1/(MB

a
t+1+MB

d
t+1), where the denominator repre-

sents the marginal benefits of investing in bonds since they pay out both in states when an individual is alive

and not alive. Since this expression can be rewritten as 1/(1 +MBd
t+1/MB

a
t+1), the ratio MBa

t+1/MB
d
t+1

is still our main object of interest determining the relative weight of annuities in the optimal portfolio.
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this change is stated in the Proposition 1 below. Before formulating the proposition, we

introduce the following notations:

∂f(V a
t+1)

∂V a
t+1

≡ f ′
a,

∂2f(V a
t+1)

∂(V a
t+1)

2
≡ f ′′

a ,

∂g(V a
t+1)

∂V a
t+1

≡ g′a,
∂2g(V a

t+1)

∂(V a
t+1)

2
≡ g′′a .

Proposition 1: Consider the ratio of marginal benefits of investing in two survival-

contingent assets defined in Equation (5) evaluated at the optimal allocation k
a

t+1, k
d

t+1.

The change in this ratio in response to the marginal increase in b,
∂RMBt+1(k

a

t+1, k
d

t+1)

∂b
can be described as follows.

i) If f(·) = g(·), then
∂RMBt+1(k

a

t+1, k
d

t+1)

∂b
= 0;

ii) If f(·) 6= g(·) and

∣
∣
∣
∣
∣
∣
∣

f ′′
a

f ′
a

∣
∣
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
∣
∣

g′′a

g′a

∣
∣
∣
∣
∣
∣
∣

, then
∂RMBt+1(k

a

t+1, k
d

t+1)

∂b
< 0;

iii) If f(·) 6= g(·) and

∣
∣
∣
∣
∣
∣
∣

f ′′
a

f ′
a

∣
∣
∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣
∣
∣

g′′a

g′a

∣
∣
∣
∣
∣
∣
∣

, then
∂RMBt+1(k

a

t+1, k
d

t+1)

∂b
> 0.

Proof Consider first the standard expected utility case where f(·) = g(·). In this case,

the ratio in Equation (5) reduces to:

MBa
t+1

MBd
t+1

∣
∣
∣
∣
∣
∣
∣
k
a
t+1,k

d
t+1

=
st

1− st

(
∂g(ψt+1)/∂ct+1

∂g(℧t+1)/∂kdt+1

)
Ra

t+1

Rd
t+1

(7)

which is just the ratio of marginal utilities of consumption and bequests multiplied by the

ratio of expected returns of the two state-contingent assets.

Note that given Assumption 1 (that
∂g(ψt+1)
∂ct+1

does not depend on b), the ratioMBa
t+1/MB

d
t+1

does not depend on b as well, which proves part i) of Proposition 1.

Next, consider a case of non-expected utility, f(·) 6= g(·). Before proceeding, we intro-
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duce the following notation:

∂f(V d
t+1)

∂V d
t+1

≡ f ′
d,

∂g(V d
t+1)

∂V d
t+1

≡ g′d,

st

1− st

(
∂g(ψt+1)/∂ct+1

∂g(℧t+1)/∂kdt+1

)
Ra

t+1

Rd
t+1

≡ D.

Note that D is positive and does not depend on b given fixed portfolio allocations. We can

now express the derivative in question as follows:

∂RMBt+1(k
a

t+1, k
d

t+1)

∂b
=

∂

∂b

(
MBa

t+1

MBd
t+1

∣
∣
∣
∣
∣
k
a
t+1,k

d
t+1

)

= D
g′d
f ′
d

f ′
a

g′a

∂V a
t+1

∂b

(
f ′′
a

f ′
a

−
g′′a
g′a

)

(8)

The whole expression on the right-hand side before the bracket is positive: D > 0;

∂V a
t+1/∂b > 0; in addition, the pairs (g′a, g

′
d) and (f ′

a, f
′
d) have the same sign because of

monotonicity of f(·) and g(·). Thus, the sign of ∂
∂b
RMBt+1(k

a

t+1, k
d

t+1) is determined by

the expression in the bracket:
f ′′
a

f ′
a

−
g′′a

g′a
. Since both f(·) and g(·) are increasing and concave,

both ratios
f ′′
a

f ′
a

and
g′′a

g′a
are negative, and the sign of the expression in the bracket depends

on which ratio has higher absolute value. This finishes the proof of parts ii) and iii) of

Proposition 1.

Part i) of Proposition 1 states that the demand for annuities and portfolio allocation

is independent of b in the expected utility framework. Parts ii) and iii) state that the

effect of per-period utility of being alive b on portfolio allocation depends on the relative

properties of the functions f(·) and g(·). The ratios
f ′′
a

f ′
a

and
g′′a

g′a
can be thought of as

measuring an agent’s aversion to fluctuations in utility over states of the world and over

time, respectively. When

∣
∣
∣
∣
∣
∣
∣

f ′′
a

f ′
a

∣
∣
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
∣
∣

g′′a

g′a

∣
∣
∣
∣
∣
∣
∣

, we can say f(·) is “more concave” than g(·). In

this case, an increase in b leads to more investments in kdt+1 and a decrease in demand for

annuities.

In contrast, when

∣
∣
∣
∣
∣
∣
∣

f ′′
a

f ′
a

∣
∣
∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣
∣
∣

g′′a

g′a

∣
∣
∣
∣
∣
∣
∣

, g(·) is “more concave” than f(·) and an increase in b

leads to higher demand for annuities since MBa
t+1 increases relative to MBd

t+1.

13



Thus, the relative concavity of f(·) versus g(·) determines whether an increase in intra-

period utility of being alive increases or decreases the demand for annuities. We discuss

the intuition behind this result in the next section.

2.3 Why does the relative concavity of f(·) and g(·) matter?

To better understand the results of the previous section, here we further discuss the

importance of the relative concavity of functions f(·) and g(·). Our focus is on how the

properties of these functions affect an agent’s decision of whether to allocate an extra dollar

of investment in kat+1 (and thus increase V a
t+1) or in k

d
t+1 (and thus increase V d

t+1).

To better illustrate the intuition, we consider two extreme cases which differ in whether

f(·) or g(·) is more concave. In the first case, we assume that g(·) is linear while maintaining

the assumption that f(·) is concave. In the second case, we assume that f(·) is linear and

only g(·) is concave.

2.3.1 Case 1: g(·) is linear and f(·) is concave

We can rewrite the ratio MBa
t+1/MB

d
t+1 in Equation (5) as follows:

MBa
t+1

MBd
t+1

=
st

1− st

(
∂f(V a

t+1)/∂V
a
t+1

∂f(V d
t+1)/∂V

d
t+1

) (
∂ψt+1/∂ct+1

∂℧t+1/∂kdt+1

)
Ra

t+1

Rd
t+1

Note that the only term in this expression that changes as b increases (fixing portfolio

allocation at k
a

t+1, k
d

t+1) is ∂f(V
a
t+1)/∂V

a
t+1. Given the concavity of f(·), this term decreases

as V a
t+1 increases.

Intuitively, the function f(·) determines an agent’s attitude toward fluctuations in util-

ity over states of the world. An increase in b widens the gap between V a
t+1 and V d

t+1, so an

agent tries to reverse this by increasing the value of being dead V d
t+1 through investments

in kdt+1.

2.3.2 Case 2: f(·) is linear and g(·) is concave

We can rewrite the ratio in Equation (5) as follows:

MBa
t+1

MBd
t+1

=
st

1− st

(
∂g(V d

t+1)/∂V
d
t+1

∂g(V a
t+1)/∂V

a
t+1

) (
∂g(ψt+1)/∂ct+1

∂g(℧t+1)/∂kdt+1

)
Ra

t+1

Rd
t+1
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Note that the only term here that depends on b (fixing portfolio allocation at k
a

t+1, k
d

t+1)

is ∂g(V a
t+1)/∂V

a
t+1, which decreases as b marginally increases, thus making the ratio larger.

Intuitively, while risk aversion induces an agent to allocate resources to the worst state,

his concern for intertemporal smoothing induces him to allocate resources to the best state.

With linear f(·) the latter motive dominates: an increase in b makes the state of being

alive better, increasing the efficiency of investing in it from the perspective of intertemporal

smoothing.

2.4 The value of a statistical life

In this section, we will discuss the relationship between per-period utility of being

alive (b) and the concept of the value of a statistical life (VSL). The VSL represents a

monetary value of a reduction in mortality risk that would prevent one statistical death.

More formally, it is the willingness to pay for a marginal reduction in mortality risk, or

the marginal rate of substitution between wealth and survival probability (Andersson and

Treich, 2011).

In our framework, it can be expressed as follows:

VSL =
∂V a

t /∂st
∂V a

t /∂k
a
t

(9)

For the ease of exposition and comparison with other studies, we are going to rewrite

the budget constraint in our optimization problem in terms of asset prices rather than

asset returns:

ct + pat+1k
a
t+1 + pdt+1k

d
t+1 = yt + kat (10)

Compared to the previous formulation, the return on assets is normalized to be equal

to one (conditional on surviving), while the price of the unit of assets kat+1 (k
d
t+1) costs p

a
t+1

(pdt+1).
10

10Assets prices and returns are linked as follows: pat+1 = 1/Ra
t+1 and pdt+1 = 1/Rd

t+1.
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To derive ∂V a
t /∂st, we need to take into account that a change in st can potentially

affect the price of survival-contingent assets, i.e.,
∂pit+1

∂st
(i = a, d) can be nonzero.11

Before proceeding, we introduce the following notations:

∂f(zt+1)

∂zt+1

≡ f ′
z,

∂2f(zt+1)

∂z2t+1

≡ f ′′
z ,

∂g(zt+1)

∂zt+1

≡ g′z,
∂2g(zt+1)

∂z2t+1

≡ g′′z ,

∂g(ψt)

∂ct
≡ g′c.

Using the envelope condition to find ∂V a
t /∂k

a
t , we can express the VSL as follows:

VSL =
β

1− β

1

g′c

g′z

f ′
z

(

f(V a
t+1)− f(V d

t+1)
)

− kat+1

∂pat+1

∂st
− kdt+1

∂pdt+1

∂st
(11)

We next discuss the relationship between the VSL and per-period utility of being alive

b. We can represent the response of the former to the marginal change in the latter as

follows:

d V SL

d b
=
∂V SL

∂b
+






∂V SL

∂kat+1

∂kat+1

∂b
+

∂V SL

∂kdt+1

∂kdt+1

∂b






The first part of this expression represents the direct effect of the per-period utility of

being alive on the VSL, while the second part represents the indirect effect coming from

the adjustments in the optimal portfolio allocation. In the standard expected utility case

the second term is absent since optimal decisions do not change in response to the marginal

change in b. Moreover, it is straightforward to show that the first term in this case is always

positive (
∂V SL

∂b
> 0), implying that the marginal increase in b always leads to higher values

of VSL.

In case of non-expected preferences, the relationship between b and VSL is more com-

plex. Consider first the direct effect of b on VSL. The corresponding derivative can be

11In our framework, the probability of each state (life and death) is independent of individuals’ decisions

and thus does not depend on b.

16



represented as follows:

∂ VSL

∂b
=

β

1− β

f ′
a

g′c

g′z

f ′
z

∂V a
t+1

∂b












g′′z

g′z
−
f ′′
z

f ′
z




 st

f(V a
t+1)− f(V d

t+1)

f ′
z

+ 1







(12)

From this expression, it follows that the direct effect of b is always positive when

∣
∣
∣
∣
∣
∣
∣

f ′′
a

f ′
a

∣
∣
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
∣
∣

g′′a

g′a

∣
∣
∣
∣
∣
∣
∣

, i.e., when f(·) is more concave than g(·). However, when the opposite is true, i.e.,

when g(·) is more concave than f(·), it is possible to have
∂V SL

∂b
< 0. Specifically, as can

be seen from Eq (12), this can happen when the following condition hold:







∣
∣
∣
∣
∣
∣
∣

g′′z

g′z

∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣

f ′′
z

f ′
z

∣
∣
∣
∣
∣
∣
∣






st
f(V a

t+1)− f(V d
t+1)

f ′
z

> 1.

To understand the intuition behind this result, note that compared to the standard

expected utility case, the VSL in Equation (11) has an additional element
g′z

f ′
z

. When

survival probability increases, the certainty equivalent zt+1 increases. But because of the

term
g′z

f ′
z

, the way an individual evaluates how much his value function increases in response

to this change is not scale-invariant, i.e., it depends on the starting value of the certainty

equivalent zt+1. This mechanism arises because with the standard expected utility, current

utility and certainty equivalent are aggregated linearly, while with the non-expected utility

they are aggregated using a concave function g(·). This type of aggregation assigns lower

weight to larger outcomes. Because of this, a further increase in zt+1 coming from the

marginal increase in survival probability can be valued less when zt+1 is already high.12

12For example, consider the case when f(·) is linear (f(x) = x) and g(·) is concave. We can write down

the VSL as follows (abstracting from the change in prices in response to the change in survival):

VSL =
β

1− β

1

g′c
g′z
︸︷︷︸
part1

(

V a
t+1 − V d

t+1

)

︸ ︷︷ ︸
part2
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We next turn to the indirect effect which comes from the adjustments in the optimal

portfolio allocation. In Appendix C we show that

∂V SL

∂kat+1

> 0 ,
∂V SL

∂kdt+1

< 0

Thus, when in response to the marginal change in b an agent reallocates his portfolio from

kdt+1 to kat+1, the VSL increases, and when he reallocates from kat+1 to kdt+1, the opposite is

true.

Overall, the analyses above shows that the relationship between the VSL and the per-

period utility of being alive is not necessary positive in case of non-expected utility prefer-

ences. The total effect depends on agents attitude towards utility fluctuations over states

of the world and over time, as well as on the adjustments in their portfolio allocation in

response to the change in b.13

2.5 Extension: The case of irreversible annuity investment

In the portfolio choice problem we have considered so far, we assume that an annuity

pays out for one period: an agent, who, in period t, purchases an annuity gets paid only in

period t+1; to continue receiving an annuity payout in period t+2, he needs to purchase

an annuity again in period t+ 1. This is analogous to purchasing lifelong annuities, which

can be freely adjusted both upwards and downwards every period. Annuities, however,

can represent an irreversible investment: if an agent holds annuities in the amount kat in

period t, he can only increase it.

To illustrate how modeling annuities as irreversible investments can affect our findings,

consider the following modified portfolio choice problem. We modify the budget constraint

Note that this expression includes two parts: part 1 is smaller for high values of b, while part 2 is larger (by

Assumption 1, g′c is independent of b). If the change in the first part is larger (when g(·) is very concave),

the total direct effect of larger b can be negative. It is straightforward to show that if we additionally

assume that g(x) = x1−1/α/(1− 1/α) and V d
t+1 = 0, the VSL decreases in direct response to the increase

in b whenever 1/α > 1, i.e., when g(·) is sufficiently concave.

13In our quantitative simulations below, in most cases the effect of b on the VSL is positive. One

exception can be seen in Figure 5 in Appendix F where the VSL decreases in b for a range of b.
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in Equation (10) as follows:

ct + p̃at+1(k
a
t+1 − kat ) + pdt+1k

d
t+1 = yt + kat ,

where the annuity price p̃at+1 takes into account the irreversibility, and is thus higher than

in the case we considered earlier.14 In addition, we must add another constraint to reflect

this irreversibility:

kat+1 ≥ kat (13)

We denote the Lagrange multiplier on this constraint as µt.

Now consider two situations. First, suppose the constraint in Equation (13) is not

binding, then µt = 0 and our expression for MBa
t+1/MB

d
t+1 is unchanged.15 Thus, our

results carry through and the relative concavity of functions f(·) and g(·) determines

whether demand for annuities increases or decreases as life becomes more valuable.

Second, suppose the constraint in Equation (13) is binding, µt > 0. In this case, in

period t, an agent does not invest in annuities, thus at the optimum MBa
t+1 < MBd

t+1. As

we established earlier, when g(·) is more concave than f(·), an increase in b (extra utility

from being alive) increases the demand for reversible (or liquid) annuities. This, however,

is not necessarily the case now: even though an increase in b increases MBa
t+1 relative to

MBd
t+1 (keeping portfolio choice fixed at the initial optimal level), this may not be enough

to induce an agent to start investing in annuities, i.e., MBa
t+1 can still be less than MBd

t+1.

To summarize, when f(·) is more concave than g(·), the illiquidity of annuities does not

change the result that an increase in b decreases demand for annuities. When, however,

g(·) is more concave than f(·), an increase in b either increases the demand for annuities

or has no effect on it.

14Note that in this specification an agent who already has lifelong annuity income kat , adds k
a
t+1 − kat to

it in period t.

15Since we have rewritten the budget constraint in terms of assets prices, the ratio Ra
t+1/R

d
t+1 in Equation

(5) is changed to pdt+1/p
a
t+1.
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3 Parametric illustrations

In this section, we provide an illustration of our results by making parametric assump-

tions on functions f(·) and g(·). Here, we consider two parameterizations, Epstein-Zin-Weil

(EZW) and risk-sensitive preferences, and in Appendix D we also consider preferences with

Chew-Dekel risk aggregator. Among these three, EZW is probably the most widely used

in macroeconomics, asset-pricing, and household finance, far from complete list includes

Guvenen, 2009; Inkman et al., 2011; Kaplan and Violante, 2014; Krueger and Ludwig,

2019; Love, 2017. Several notable applications of risk-sensitive preferences developed by

Hansen and Sargent (1995) include Andersen (2005); Bommier et al. (2020); and Tallarini

(2000).16 In Chew-Dekel class of preferences, the most well-known is those with disappoint-

ment aversion developed by Gul (1991). Applications of these preferences can be found in

Campanele et al. (2010) and their generalization in Routledge and Zin (2010).

3.1 Epstein-Zin-Weil preferences

In EZW preferences both uncertainty and time aggregators are assumed to be constant

elasticity of substitution (CES)-type functions. We assume that:

f(x) =
x1−σ

1− σ
and:

g(x) =
x1−

1

α

1− 1

α

For the intra-period utility functions ψ(·) and ℧(·), we assume the following parametriza-

16Two recent studies provide deep theoretical insight into the latter two parametrizations. Specifically,

Bommier et al. (2017) show that risk-sensitive preferences satisfy the property of monotonicity, while this

is not the case for EZW preferences. Dillenberger et al. (2020) show that both these parametrizations

violate stochastic impatience property for a range of parameters values.
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tion:

ψ(ct, b) =







[

ξcρt + (1− ξ)bρ
]1/ρ

if b > 0

ct if b = 0,

℧(kdt ) = η(ϕ+ kdtR
d
t )

Note that when b = 0 and η = 0, we have standard EZW preferences. When ϕ = 0,

bequests become a necessity.17 To maintain Assumption 1 (
∂g(ψ(ct, b))

∂ct
does not depend

on b), we set ρ = 1− 1/α.18

In this parametrization, the concavity of f(·) is characterized by the parameter σ, which

is also the coefficient of relative risk aversion, and the concavity of g(·) is characterized by

the parameter 1/α, which is also the inverse of the elasticity of intertemporal substitution

α. In light of our earlier results, the relationship between these two parameters is important

for our subsequent analysis. Note that when σ = 1/α (and thus f(·) = g(·)), we are back

to the standard expected utility case.

17In our parametrization of the bequest motive, we follow De Nardi (2004). One way to think about

this bequest motive is that an agent derives utility from leaving wealth to his children and thus from

increasing their consumption; and the bequest function captures the extra utility of children from this

additional consumption. This represents a limited altruism in a sense that the entire lifetime utility of

children does not become part of the utility of parents. This latter case would be an interesting but not

altogether straightforward extension for future work: parents then would enjoy not only utility from being

alive themselves but also from the fact that their children are alive.

18Note that when ρ 6= 1− 1/α, the change in b affects marginal utility of consumption even in the case

of standard expected utility preferences.
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We can now write the value functions as follows:

V a
t (k

a
t ) = max

kat+1
,kdt+1

{

(1− β)
(
ξc

1− 1

α
t + (1− ξ)b1−

1

α

)
+ βz

1− 1

α
t+1

} 1

1− 1
α

zt+1 =

{

st

[

V a
t+1(k

a
t+1)

]1−σ

+ (1− st)
[

V d
t+1(k

d
t+1)

]1−σ
} 1

1−σ

V d
t (k

d
t ) =

{

(1− β)
[

η(ϕ+ kdtR
d
t )
]1− 1

α

} 1

1− 1
α
=
(

1− β
) 1

1− 1
α η(ϕ+ kdtR

d
t )

s.t. ct + kat+1 + kdt+1 = katR
a
t + yt

We can express the ratio of marginal benefits of investing in each life-contingent asset

asset as follows:

RMBt+1(k
a
t+1, k

d
t+1) =

MBa
t+1

MBd
t+1

=
st

1− st

ξ

η1−
1

α

c
− 1

α
t+1

(
ϕ+ kdt+1R

d
t+1

)− 1

α

Ra
t+1

Rd
t+1

(
V a
t+1

) 1

α
−σ

(
V d
t+1

) 1

α
−σ

(14)

Consider how this ratio, evaluated at the optimal bundle (k
a

t+1, k
d

t+1) changes when b

marginally increases. As before, RMBt+1(k
a

t+1, k
d

t+1) = 1 and the direction of the change

in this ratio when b marginally changes indicates which direction an agent will reallocate

his portfolio (see also Proposition 1).

Starting with the expected utility case, note that when 1
α = σ, the last term in Equation

(14) disappears and the relative benefits of investing in two state-contingent assets are

determined by the ratio of the marginal utility of consumption to that of bequests. In this

case, a change in b does not affect annuity demand.

Next, consider the case when 1
α 6= σ. When evaluated at the optimal portfolio choice,

the only term in Equation (14) that depends on b is
(
V a
t+1

) 1

α
−σ

. Taking the derivative of

this term with respect to b while keeping portfolio choice fixed at (k
a

t+1, k
d

t+1), we get:

( 1

α
− σ

)[(

V a
t+1

) 1

α
−σ−1

]
∂V a

t+1

∂b

The sign of this expression is determined by 1
α − σ. When 1

α < σ, in response to an

increase in b, agents reallocate investments from kat+1 to k
d
t+1. This also corresponds to the
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case when f(·) is more concave than g(·) and agents dislike uncertainty more than they

dislike intertemporal fluctuations. In contrast, when 1
α > σ investments in kat+1 increase

as b increases.

To summarize, when the coefficient of risk aversion is above (below) the inverse of the

EIS, an increase in intra-period utility of being alive, b, leads to lower (higher) demand for

annuities.

3.2 Risk-sensitive preferences

The risk-sensitive preferences correspond to the following functional forms for f(·) and

g(·):

f(x) = −
1

k
exp(−kx)

g(x) = x

Here the parameter k can be thought of as risk aversion since it determines the aversion

to utility fluctuations over states of the world.19 The value function has the following

representation:

V a
t (k

a
t ) = (1− β)ψ(ct, b)−

β

k
ln[st exp(−kV

a
t+1(k

a
t+1)) + (1− st) exp(−kV

d
t+1(k

d
t+1))]

Note that this also corresponds to the case of linear g(·) and concave f(·) discussed in

Section 2.3. Using the results of that section, we can write the ratio of marginal benefits

of investing in Type 1 and Type 2 assets as follows:

RMBt(k
a
t+1, k

d
t+1) =

MBa
t+1

MBd
t+1

=
st

1− st

exp(−kV a
t+1)

exp(−kV d
t+1)

∂ψt+1/∂ct+1

∂℧t+1/∂kdt+1

Ra
t+1

Rd
t+1

(15)

When evaluated at (k
a

t+1, k
d

t+), the only term in Equation (15) that responds to marginal

change in b is exp(−kV a
t+1), moreover, this term decreases as b increases. This means

19Because of linearity of g(·) an agent is neutral to intertemporal utility fluctuations, but he may not be

neutral to intertemporal consumption fluctuations. The latter also depends on function ψ(·).
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that given the initial optimal allocation, the marginal increase in b will drive an agent to

reallocate from Type 1 to Type 2 assets, i.e., to purchase less annuities. Put differently,

for any value of k, which measures the degree of risk aversion, an increase in the value of

life will lead an agent with risk-sensitive preferences to buy less annuities.20

4 Implications for the debate about early versus late

resolution of uncertainty

The application of our approach to EZW parametrization of non-expected utility de-

scribed in Section 3.1 allows us to link annuity demand and preferences for the timing of

the resolution of uncertainty. In this section, we discuss this connection in some details.

When people have standard additive expected utility they demonstrate indifference to

the timing of the resolution of uncertainty. In a simple two-period example this means they

are indifferent between two lotteries, A and B, that can be described as follows. Let both

lotteries have the same expected payoff. In lottery A, in the first period the outcomes for

both the current and future period are revealed, i.e., all uncertainty is resolved. In lottery

B, the outcome for the second period is not known until the second period arrives.21

In the case of non-expected utility, people are no longer indifferent between these two

lotteries. Specifically, in the case of EZW preferences, when risk aversion exceeds the inverse

of the EIS, people are said to demonstrate preference for early resolution of uncertainty, i.e.,

in our example, lottery A brings higher ex-ante utility than lottery B. In contrast, when

risk aversion is below the inverse of the EIS, late resolution of uncertainty is preferred, i.e.,

lottery B brings higher expected utility.

In this light, we can restate our finding as follows: when people prefer early resolution

20This result complements that of Bommier et al. (2020) who show that an increase in risk aversion for

agents with risk-sensitive preferences decreases annuity demand given fixed positive value of life. We show

that given fixed risk aversion k, an increase in the utility of being alive decreases annuity demand. From

Equation (15), one can see that this effect is larger for higher values of k.

21The comparison between the two lotteries is made under the assumption that people cannot do any-

thing, whether they know the outcomes early or not, i.e., they cannot re-optimize.

24



of uncertainty, the annuity puzzle can to a significant degree be explained by the fact

that people value life. We argue that one reason why theoretical models starting with

Yaari (1965) consistently over-predict annuity demand is that in these models people are

typically indifferent to the timing of uncertainty resolution and do not necessarily prefer

living to dying.

A number of studies show that people are not indifferent to the timing of uncertainty

resolution, but the question of whether early or late resolution is preferred is not entirely

resolved. Three branches of literature discussed in the introduction provide evidence that

early resolution is preferred; specifically, studies that estimate an Euler equation using

consumption data, experimental studies and macro finance literature (e.g., Bansal and

Yaron, 2004; Brown and Kim, 2014; Vissing-Jorgensen and Attanasio, 2003). However,

there are some studies pointing in the other direction. In particular, several studies in

health economics suggest that people’s attitude towards testing for serious diseases may

signal preferences for late resolution (e.g., Oster et al., 2013).

This suggests another angle in which our results can be viewed. Specifically, we can

contribute to the debate on whether early or late resolution of uncertainty is preferred. We

show that high VSL can decrease demand for annuities when people prefer early resolution

of uncertainty. Thus, two well-documented empirical facts, high estimated VSL and low

annuity demand, when taken together are consistent with preferences for early resolution

of uncertainty.

5 Quantitative illustration: annuitization at retire-

ment

In this section, we quantitatively solve a retirement saving model where retirees have

access to a private annuity market. For this exercise, we use EZW preferences described

in section 3.1 above. The main purpose of this exercise is to show that the theoretical

mechanisms described above can be quantitatively important.
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5.1 Setup

A retiree enters the model at time t = 1 with initial wealth k1 and pension income

n1, representing pre-existing annuity income provided by Social Security. At the start of

retirement, he chooses whether to acquire additional annuities through the private market,

i.e., whether to annuitize a part of his wealth k1. Starting from period t = 2 he only solves

a consumption/saving problem.22 We denote the annuity income of a retiree starting from

period t = 2 as n, where n = n1 + ∆, and ∆ is newly acquired annuity income in period

t = 1. Note that annuity investments are irreversible, i.e., retirees receive ∆ every period

as long as they are alive. The price of annuity p̃a is determined as follows:

p̃a = γ

T−1∑

t=1

St+1|1

(1 + r)t
. (16)

Here St+1|1 is the probability an agent survives to age t + 1 (t = 1, ..., T − 1) conditional

on being alive in period 1. It has the following relationship with per-period survival prob-

abilities st: Sj|1 = s2s3...sj.

We model two types of frictions in the private annuity market. First, there is a load

denoted as γ in Equation (16). It represents the discrepancy between the actual and

actuarially fair annuity prices for an individual with average mortality. It arises because

of administrative costs and adverse selection.

Second, there is a minimum purchase requirement, i.e., a retiree cannot buy an arbitrar-

ily small annuity income flow. This reflects an important feature of the market: insurance

companies usually put a restriction on minimum premiums for a life annuity. We denote

the minimum purchase requirement as n, thus ∆ ≥ n, and the minimum premium is np̃a.

5.2 Calibration

Retirees enter the model at the age of 65 (corresponding to t = 1) and can live at most

to age 95 (i.e., the maximum lifespan is T = 30). We use the Social Security life tables to

construct survival probabilities st, t = 1, ..., 30.

22Pashchenko (2013) proves that in a retirement saving model with no uncertainty (except for survival

uncertainty) an agent always chooses to annuitize only once in the first period.
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We take the initial distribution of retirees by total wealth and annuity income from

the Health and Retirement Study dataset (HRS). The HRS is a nationally representative

sample of individuals over the age of 50. We use the RAND Version P of this dataset. To

create the initial distribution we use male retirees aged 66-67 in this dataset to increase the

number of observations. Initial wealth (k1) includes the value of housing and real estate,

vehicles, value of business, IRAs, Keoghs, stocks, bonds, checking, saving and money

market accounts, minus mortgages and other debts. Since in our model borrowing is not

allowed, we set k1 of individuals with negative net worth to zero. We have also dropped

individuals at the top 0.5% of the net worth distribution. Preexisting annuity income (n1)

corresponds to income from Social Security and private pensions averaged out over all the

years that an individual is observed. Table 1 displays the summary statistics of the wealth

and income variables in the sample used for simulations.

Net worth Income

Mean 374.9 14.0

25 th percentile 50.9 5.8

Median 170.9 10.6

75 th percentile 429.3 18.4

Standard deviation 651.6 12.5

Min 0.0 0.0

Max 7238.3 213.5

Table 1: Summary statistics for the sample used in simulations. Source: HRS. The sample includes only

retired males aged 66-67, the total sample size is 3,923 observations. All variables are in thousands of 2000

dollars. Individuals with negative net worth are assigned the wealth of zero.

We use the EZW parametrization of preferences described in Section 3.1. We assume

the following parameter values. To set risk aversion, EIS, discount factor and bequest

parameters, we use parametrization from Pashchenko and Porapakkarm (2019), who adjust

these parameters to match labor supply and saving behavior over the life-cycle. Specifically,

we set the discount factor β to 0.96, the risk aversion parameter σ to 4, and the EIS

parameter α to 2/3. Note that in their estimation, risk aversion exceeds the inverse of the
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EIS. We also consider how our quantitative results change when the opposite is true.

We adjust bequest parameters so that the marginal propensity to bequeath (MPB)

and the bequest threshold in our model are equal to 0.97 and $3,600, respectively (values

estimated by Pashchenko and Porapakkarm, 2019). The threshold and the MPB can be

expressed as functions of parameters η and ϕ in a simple two-period consumption-savings

model (see De Nardi et al. (2010) and Pashchenko (2013) for more details). They have

the following interpretation: only people whose wealth is above the threshold will leave a

bequest (i.e., have an operational bequest motive) and 97 cents of every dollar above the

threshold will be considered as potential bequests.23 In Appendix F we also consider the

case with no bequest motive. We set the weight of consumption in the intra-period utility

function ξ to 0.5.24

We set the load in annuity price γ to 1.1 based on the estimates of Mitchell et al. (1999).

Following Pashchenko (2013) we set the minimum purchase requirement n to $2,500. She

shows that this number produces a minimum premium consistent with that set by large

insurance companies.

5.3 Results

Figure 1 displays the results of our simulations. The top panel shows the percentage of

individuals who purchase annuities at the beginning of retirement as a function of intra-

period utility of being alive (b), while the bottom panel shows the corresponding change

in the value of a statistical life (VSL). The VSL is an average VSL in our sample in the

first period. We also report the quintile of the VSL distribution (25th, median and 75th

percentile) in Appendix E.

When b is close to zero, almost 60% of retirees annuitize at least some part of their

wealth.25 This situation also corresponds to a negative VSL, i.e., the state of being alive

23The corresponding values of η and ϕ are 10−4 and 120, 000, respectively.

24Our results are robust to alternative values of this parameter. Changing the value of this parameter,

while keeping everything else the same, changes the MPB and bequest threshold. However, once other

parameters are adjusted to reset the MPB and threshold to the targeted values, the effect of the change

in ξ becomes insubstantial.
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Figure 1: Annuity demand and the value of life when risk aversion is above 1/EIS. Top panel: the

percentage of retirees buying annuities. Bottom panel: VSL in thousand of dollars.

is valued less than the state of being dead. As b increases, the VSL increases, while at the

same time, demand for annuities goes down. The VSL becomes positive once b is close to

2, and in this situation only around 10% of people buy annuities. Increasing b to around 6

almost entirely eliminates the demand for annuities. Note that the corresponding VSL is

less than $200K.

We consider next a situation when risk aversion is below the inverse of the EIS. We

decrease the coefficient of risk aversion to 0.5 (compared to the benchmark value of 4),

which is now below 1/EIS, while keeping all other parameters unchanged.

Figure 2 displays the results when using this new parametrization. The top panel

looks very different from the previous case: now when b is zero, no retirees buy annuities.

However, as b increases, more and more people start annuitizing. For example, when b is

25In the canonical life-cycle model this number would be 100%. Our model, however, features several

impediments to annuitization; specifically, preannuitized wealth, market frictions, and bequest motives.

Note that despite all these impediments, more than half of retirees choose to annuitize.
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Figure 2: Annuity demand and the value of life when risk aversion is below 1/EIS. Top panel: the

percentage of retirees buying annuities. Bottom panel: VSL in thousands of dollars.

close to 9, almost 40% of retirees purchase private annuities. This is in sharp contrast with

the previous case: when risk aversion was above 1/EIS, a value of b close to 9 resulted in

zero annuity demand.

To summarize, the results of this section reinforce our earlier conclusion: when we

disentangle an agent’s attitude toward risk and intertemporal fluctuations, utility of being

alive affects the demand for annuities. Moreover, this mechanism can be quantitatively

important: using the EZW parametrization with risk aversion exceeding the inverse of the

EIS, we show that the demand for annuities is substantially lower when the per-period

utility of being alive is high.

It is important to point out, however, that the quantitative relationship between the

utility of being alive b and annuity demand can be weaker under alternative parametrization

of the model. The parametrization in this section produces relatively low values of the VSL

compared to the common empirical estimates.26 In Appendix F we discuss the challenge

of jointly calibrating the strength of the bequest motive and the VSL in a life-cycle model
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and also show the results of the alternative parametrization with much higher VSL. In that

parametrization, the relationship between utility of being alive and annuity demand still

follows our theoretical predictions but its quantitative magnitude is significantly smaller.

6 Conclusion

In this paper, we study the relationship between the value of life and the demand for

assets with survival-contingent payoffs. Two key features of our approach compared to

a standard portfolio choice problem with survival uncertainty is that i) we enforce the

restriction that living is preferred to dying by allowing for non-pecuniary utility of being

alive, ii) we allow for a more general preference specification where attitudes towards risk

and intertemporal fluctuations can be separated.

We show theoretically that increasing non-pecuniary benefits from being alive can in-

crease or decrease the demand for annuities depending on whether people are more averse to

risk or to intertemporal fluctuations. When safety is of greater concern than intertemporal

stability, people buy less annuities when utility of being alive increases.

We apply our approach to the three common parametrizations of non-expected utility.

The most intuitive interpretation of our results comes from the application of our approach

to Epstein-Zin-Weil preferences: we show that annuity demand decreases (increases) with

intra-period utility of being alive if the coefficient of relative risk aversion is higher (lower)

than the inverse of the elasticity of intertemporal substitution (EIS).

To illustrate our findings quantitatively, we use Epstein-Zin-Weil parametrization of

preferences and simulate annuity demand in a retirement saving models using the data

from the HRS. We show that our theoretical mechanism can be quantitatively important:

when risk aversion exceeds the inverse of the EIS, the fraction of retirees buying annuities

quickly decreases as life becomes more valuable.

26Viscusi (1993) provides an extensive review documenting that the VSL estimates vary from $1 million

to $16 million (in 1990 dollars). US government agencies (Department of Transportation, Food and Drug

Administration, Environmental Protection Agency) use a VSL between $1-10 million in their analyses

involving mortality risk (Robinson, 2007).
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We can rephrase our findings in two ways. First, the well-known annuity puzzle can be

at least partially explained by a combination of two factors: i) the utility of being alive is

sufficiently large, ii) people are more averse to risk than to intertemporal fluctuations.

Second, the annuity puzzle may provide evidence that people prefer early resolution of

uncertainty, i.e., that risk aversion is above the inverse of the EIS. This is because high

value of life and low annuity demand taken together are consistent with preferences for

early resolution of uncertainty.
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Appendix

A The role of bequest motive specification

In our specification we assume that the utility from leaving bequests satisfy the following

property: ℧(0) = ℧ > −∞, i.e., there is no infinite disutility of leaving no bequests. In this

we follow a growing literature that allow bequests not to be a necessity and convincingly

show that this assumption is consistent with the data (e.g., Ameriks et al., 2021, De Nardi,

2004, De Nardi et al, 2010 and 2016, Lockwood, 2018). In our framework, this assumption

also means that there is a low bound on the utility of being dead.

One implication of treating bequests this way is that an individual whose wealth is

relatively low, may choose not to leave a bequest. In this section, we show that our main

results (Proposition 1) still hold in this case.

Consider a portfolio choice problem described in Section 2.2. Suppose an individual

optimally chooses not to invest in Type 2 assets. We denote his portfolio allocation as

(¯̄kat+1, 0). Consider the change in his portfolio choice in response to the marginal change

in b. Note that the ratio of marginal benefits of investing in Type 1 and Type 2 assets

defined in Equation (5) is now greater or equal to one:

RMBt+1(
¯̄kat+1, 0) =

MBa
t+1

MBd
t+1

∣
∣
∣
∣
∣
∣
∣
¯̄kat+1

,0

≥ 1

The direction of change in RMBt+1(
¯̄kat+1, 0) in response to the marginal change in b

is the same as summarized in Proposition 1. However, the implications can be somewhat

different. If f(·) is less concave than g(·), this ratio increases and then agents choose to

buy more Type 1 assets while they still do not invest in Type 2 asset. When f(·) is more

concave than g(·), the ratio in question decreases, and an agent decreases his investments

in Type 1 asset. At the same time, he may or may not start investing in Type 2 asset.

Thus, our main argument goes through with the slight modification that when f(·) is less

concave than g(·), a marginal increase in b does not necessarily lead to more investments

in Type 2 assets.
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B How to think about per-period utility of being alive

when there is a bequest motive?

In a standard expected utility case with no bequest motive and when utility of being

dead is normalized to zero, constant b that is added to utility in order to ensure life is

preferred to death has a straightforward interpretation. To see this, consider a simple

static model with the CRRA utility. An individual is indifferent between life and death

when utility when alive is equal to utility when dead (zero):

c1−σ

1− σ
+ b = 0

From here we have

c =
[
b(σ − 1)

] 1

1−σ

Thus, b determines the threshold consumption level so that if an individual consumes

less than the threshold, he would rather be dead. In our case with bequest motive, even

though the constant b plays a similar role by ensuring life is better than death, it can

no longer be interpreted as consumption threshold. To see this, consider a version of the

model described in Section 2.2 where an individual faces constant survival probability and

receives the same income every period, i.e, st = s and yt = y for all t. Consider a situation

when an individual is indifferent between life and death, i.e., V a(ka) = V d(kd). Using the

definition of V a(ka) we can write:

g(V a(ka)) = g(V d(kd)) = (1− β)g(ψ(c, b)) + βg(z),

and

f(z) = sf(V a(ka)) + (1− s)f(V d(kd)) = f(V a(ka)) = f(V d(kd))

Thus,

z = V a(ka) = V d(kd),

and

g(V d(kd)) = (1− β)g(ψ(c, b)) + βg(V d(kd)).
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Rearranging and using the fact that V d(kd) = g−1

[

(1− β)g(℧(kd))
]

we get

g(ψ(c, b)) = (1− β)g(℧(kd)) (17)

An important difference from the standard case without bequest motive is that an

individual can change the utility in the death state. To make this more transparent, let us

assume an agent does not invest in annuities (ka = 0), so every period he receives income

y and divide it between consumption c and bequests kd. Equation (17) can be rewritten

as:

g(ψ(y − kd, b)) = (1− β)g(℧(kd))

Note that by increasing kd an agent decreases his utility when alive and increases his utility

when dead. His optimal choice of kd is determined by equating marginal disutility from

consuming less today to the marginal utility from leaving larger bequests. However, in this

choice, nothing prevents him from choosing kd such that utility of death will exceed utility

of life since such a restriction does not enter in the optimal choice of kd. Having constant b

in per-period utility allows to avoid this problem. Put differently, extra utility from being

alive b ensures an individual will not make utility of death exceed utility when alive by his

choice of bequests.

To get the interpretation of b closest to the standard case, consider an individual who

sets consumption equal to his income every period (c = y) and thus both ka and kd are

zero. This individual is indifferent between life and death if

g
(
ψ(c, b)

)
= (1− β)g(℧)

Thus, the consumption threshold such that below it an individual would prefer to die is a

function not only of b but also of ℧, a low bound on utility of death.
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C The indirect effect of the per-period utility of being

alive on the VSL

In section 2.4, we have discussed the effect of the marginal change in per-period utility

of being alive b on the VSL. This effect can be represented as follows:

d V SL

d b
=
∂V SL

∂b
+






∂V SL

∂kat+1

∂kat+1

∂b
+

∂V SL

∂kdt+1

∂kdt+1

∂b






In this section, we focus on the indirect change in the VSL in response to the marginal

change in per-period utility of being alive b, i.e., the response coming from the change in

portfolio allocations:

∂V SL

∂kat+1

∂kat+1

∂b
+

∂V SL

∂kdt+1

∂kdt+1

∂b

To proceed, assume that prices for state-contingent assets are actuarially-fair:

p a
t+1 =

st
1 + r

, p d
t+1 =

1− st
1 + r

,

where r is the return on risk-free bond. In this case, the FOCs for investing in k a
t+1 and

k d
t+1 can be expressed as follows:

(1− β) g′c = β (1 + r)
g′z
f ′
z

∂f(V a
t+1)

∂k a
t+1

(18)

(1− β) g′c = β (1 + r)
g′z
f ′
z

∂f(V d
t+1)

∂k d
t+1

(19)

From the FOCs it follows that:

β

1− β

1

g′c

g′z
f ′
z

=
1

1 + r

1

∂f(V a
t+1)

∂k a
t+1

=
1

1 + r

1

∂f(V d
t+1)

∂k d
t+1

(20)

Given our assumption about prices, the derivative of p a
t+1 and p d

t+1 with respect to st can

be represented as follows:

∂p a
t+1

∂st
=

1

1 + r
and

∂p d
t+1

∂st
= −

1

1 + r
(21)
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Using Equation (20) and Equation (21), we can rewrite V SL as follows:

(1 + r)V SL =
f(V a

t+1)

∂f(V a
t+1)

∂k a
t+1

−
f(V d

t+1)

∂f(V d
t+1)

∂k d
t+1

− k a
t+1 + k d

t+1

To find the indirect effect of the marginal change in b on the V SL, we take the following

derivative:

(1 + r)

(

∂V SL

∂k a
t+1

∂k a
t+1

∂b
+
∂V SL

∂k d
t+1

∂k d
t+1

∂b

)

=

=

(

∂f(V a
t+1)

∂k a
t+1

)2

− f(V a
t+1)

∂ 2f(V a
t+1)

∂
(
k a
t+1

)2

(

∂f(V a
t+1)

∂k a
t+1

)2

∂k a
t+1

∂b
−

−

(

∂f(V d
t+1)

∂k d
t+1

)2

− f(V d
t+1)

∂ 2f(V d
t+1)

∂
(
k d
t+1

)2

(

∂f(V d
t+1)

∂k d
t+1

)2

∂k d
t+1

∂b
−
∂k a

t+1

∂b
+
∂k d

t+1

∂b

Rearranging this expression, we get:

(1 + r)

(

∂V SL

∂k a
t+1

∂k a
t+1

∂b
+
∂V SL

∂k d
t+1

∂k d
t+1

∂b

)

=

=

−f(V a
t+1)

∂ 2f(V a
t+1)

∂
(
k a
t+1

)2

(

∂f(V a
t+1)

∂k a
t+1

)2

∂k a
t+1

∂b
+

f(V d
t+1)

∂ 2f(V d
t+1)

∂
(
k d
t+1

)2

(

∂f(V d
t+1)

∂k d
t+1

)2

∂k d
t+1

∂b

This give us the following expression for the indirect effect:

∂V SL

∂kat+1

∂kat+1

∂b
+

∂V SL

∂kdt+1

∂kdt+1

∂b
= N1

∂k a
t+1

∂b
+N2

∂k d
t+1

∂b
,

where

N1 =
1

1 + r

−f(V a
t+1)

∂ 2f(V a
t+1)

∂
(
k a
t+1

)2

(

∂f(V a
t+1)

∂k a
t+1

)2
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and

N2 =
1

1 + r

f(V d
t+1)

∂ 2f(V d
t+1)

∂
(
k d
t+1

)2

(

∂f(V d
t+1)

∂k d
t+1

)2

Given that both V a
t+1 and V d

t+1 and their concave transformations with the function f(·)

are concave in its respective arguments, we have N1 > 0 and N2 < 0.

D Chew-Dekel risk aggregator

In this section, we consider application of our results to the Chew-Dekel class of pref-

erences. Chew (1983) and Dekel (1986) developed a class of preferences where a certainty

equivalent is defined implicitly.27 Denoting a risk aggregator as L, in our context, we can

define the certainty equivalent zt+1 as follows:

zt+1 = stL(V
a
t+1, zt+1) + (1− st)L(V

d
t+1, zt+1). (22)

Among the tractable members of the Chew-Dekel class of preferences, we are going to

focus on the disappointment aversion (Gul, 1991). Agents with these preferences are more

sensitive to bad outcomes. In the original Gul’s formulation bad outcomes are those that

are below the certainty equivalent, while Routledge and Zin (2010) allow for a different

definition of the cutoff at which an outcome is considered bad. In our case, there are

only two outcomes, life and death, and arguably the second is a bad outcome. With

disappointment aversion, the risk aggregator L takes the following form:

L(V a
t+1, zt+1) =

(V a
t+1)

1−σzσt+1

1− σ
+ zt+1(1−

1

1− σ
) (23)

L(V d
t+1, zt+1) =

(V d
t+1)

1−σzσt+1

1− σ
+ zt+1(1−

1

1− σ
) + δ

((V d
t+1)

1−σzσt+1 − zt+1)

1− σ
(24)

27See Backus et al. (2004) for a more detailed discussion of these preferences.
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Here, δ ≥ 0, and when δ = 0 this can be shown to correspond to the case when the

uncertainty aggregation rule is determined by the CRRA function with parameter σ. When

δ is positive, an agent places additional weight on an outcome when he dies. This will

become more transparent after we explicitly solve for zt+1. To do this, we can combine

Equation (22)-Equation (24):

zt+1 =
zσt+1

1− σ
(st(V

a
t+1)

1−σ+(1−st)(V
d
t+1)

1−σ)+zt+1(1−
1

1− σ
)+δ(1−st)

((V d
t+1)

1−σzσt+1 − zt+1)

1− σ

Transforming this further we get:

z1−σ
t+1 =

st
1 + δ(1− st)

(V a
t+1)

1−σ +
(1− st)(1 + δ)

1 + δ(1− st)
(V d

t+1)
1−σ.

We can now redefine the probabilities as follows:

s̃t =
st

1 + δ(1− st)
,

and

(1− s̃t) =
(1− st)(1 + δ)

1 + δ(1− st)
.

Thus,

zt+1 = [s̃t(V
a
t+1)

1−σ + (1− s̃t)(V
d
t+1)

1−σ]
1

1−σ .

This now looks like an uncertainty aggregation rule where f(x) = x1−σ/(1 − σ) and the

probabilities of outcomes (life and death) get reweighted based on the disappointment

aversion parameter δ. Note that the reweighting is such that s̃t < st and 1 − s̃t > 1 − st,

i.e., the bad outcome (death) gets higher weight when δ > 0. Assuming next that the time

aggregation rule has the CRRA form, g(x) = x1−
1

α/(1 − 1

α
), we can rewrite the ratio of

marginal benefits of investing in Type 1 and Type 2 assets as follows:

RMBt(k
a
t+1, k

d
t+1) =

MBa
t+1

MBd
t+1

=
s̃t

1− s̃t

(V a
t+1)

1

α
−σ

(V d
t+1)

1

α
−σ
.
∂g(ψt+1)/∂ct+1

∂g(℧t+1)/∂kdt+1

Ra
t+1

Rd
t+1

This is similar to the case with EZW preferences considered earlier, except for the term

s̃t/(1 − s̃t). This difference, however, does not affect our earlier conclusions: evaluated

at the optimal allocation, the only term in this expression that changes with marginal

increase in b is
(
V a
t+1

) 1

α
−σ

, and its response to b is determined by the relationship between

risk aversion (σ) and the inverse of EIS (1/α).
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E The percentiles of the VSL in our simulations

In Section 5, we report the average VSL in our sample. In this section in Figure 3, we

also report the quintiles of the VSL distribtuion: 25th, 50th, and 75th percentiles. The left

panel corresponds to the situation when early resolution of uncertainty is preferred and the

right panel - when late resolution is preferred. The figure shows that the VSL distribution

is right-skewed, which is due to the skewness of the wealth distribution.
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Figure 3: The percentiles of the VSL distribution (25th, median and 75th percentiles). The left panel is

when early resolution of uncertainty is preferred and the right panel when late resolution is preferred.

F Model without the bequest motive

Our calibrated quantitative model in the main part of the paper produces the VSL that

are relatively low compared to existing empirical estimates. We didn’t target the VSL in

our calibration. The VSL in our settings is affected not only by the non-pecuniary benefits

of being alive b but also by the utility of leaving bequests. We set the parameters of the

bequest function to target the marginal propensity to bequeath (MPB) and the threshold

estimated in Pashchenko and Porapakkarm (2019). These parameters pre-determine rela-

tively low VSL. In order to get higher values of the VSL, the model needs to feature lower

utility level in the state of death, implying higher marginal utility of leaving bequests, i.e.,

stronger bequest motive. However, excessively strong bequest motive can eliminate the

demand for annuity.
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To check whether our results can still be quantitatively important in a framework with

VSL closer to empirical estimates, we considers a version of the model without the bequest

motive by fixing the utility in the state of death:

℧(kdt ) = ℧

In this case, we can obtain high values of the VSL by setting the utility of death ℧ at a

relatively low value. We set ℧ = κ(1− β)
1

1−1/αηϕ. This value is proportional to the value

an individual in our benchmark model gets in the state of death if he leaves no bequests.

We scale this value by a parameter κ. As an example, in Figures 4 and 5 we consider

the case when κ is set to 2. As can be seen from the figures, the VSL can go up to $10

millions in this case, while we still get differential effect of per-period utility of being alive

b on annuity demand in situations when early or late resolution of uncertainty is preferred.

In the former case (preferences for early resolution), higher value of the VSL produces

significantly lower demand for annuities, even though it does not eliminate it as in the

case with bequest motives considered in the main text. Overall, our quantitative examples

point out the challenge of jointly calibrating bequest motive and VSL, and evaluating their

quantitative contribution to the annuity puzzle.
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Figure 4: Annuity demand and the value of life when risk aversion is above 1/EIS and there is no bequest

motive. Top panel: the percentage of retirees buying annuities. Bottom panel: VSL in thousand of dollars.

0 1 2 3 4 5 6 7 8 9

Utility from being alive, b

79

80

81

82

83

%
 b

u
y
in

g
 a

n
n
u
it
ie

s

0 1 2 3 4 5 6 7 8 9

Utility from being alive, b

-1000

0

1000

2000

V
S

L
 (

0
0
0
)

Figure 5: Annuity demand and the value of life when risk aversion is below 1/EIS and there is no

bequest motive. Top panel: the percentage of retirees buying annuities. Bottom panel: VSL in thousands

of dollars.
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