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Abstract

I consider a RUM model for migration where destination countries or regions are
viewed as collections of ‘opportunities’ which are the fundamental units of choice for
migrants. The best opportunity for a prospective migrant is more likely to be found in a
destination that has many and diverse opportunities. Recent contributions in economics
studying migration rather consider entire regions or countries as the fundamental, atom-
istic, units of choice. The key role of the size of destinations and the diversity within
them is therefore often not fully recognised, which may lead to biased inference. I argue
that the coefficient on size equals 1 in the ideal RUM model. This is also required for
the gravity model for migration to have some intuitive properties: only then migration
flows scale proportionally when aggregating destinations, and there is zero net migra-
tion between otherwise similar regions of different size. Models omitting size or using
a coefficient on size different from 1 violate these properties. Imposing proportional
scaling also has implications for how different sets of opportunities should be combined.
The approach is showcased in a study of internal migration and urbanisation in Ethiopia.

1 Introduction

The random utility based gravity equation used in current economic research on migration

(see for example Beine, Bertoli, and Fernández-Huertas Moraga, 2016, for an overview) does

∗email: damiaan.persyn@uni-goettingen.de. I am greatly indebted to Liesbeth Colen for help-
ful discussions and insightful comments that have greatly improved the paper. I would like to thank Tom
Bundervoet and Astewale Melaku for their kind help and comments, and Simone Bertoli and the seminar
participants at the chair of Agricultural policy at the DARE for helpful comments. Any remaining errors are
mine.
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not naturally include a size variable for the destination country or region. Whilemany studies

correct for this by adding destination size or destination dummies, a significant number of

studies does not, or inconsistently. In reality gross migration flows are highly correlated

with the destination size. Not controlling for the size of the destination then leads to poor

predictions of migration flows if destinations differ in size; or bias in the estimation of the

effect on migration of variables that are correlated with size due to omitted variable bias.

In this paper, I use the nested logit model of McFadden (1977) to extend the traditional

framework by considering destination countries or regions as collections (nests) of many

underlying atomistic units of choice for migrants. Depending on the context, a unit of choice

could be a job, a dwelling, a partner, a piece of arable land, etc.İ call these ‘opportunities’

following the wording of Docquier, Peri, and Ruyssen (2014). Considering destinations as

aggregates rather than as atomistic units of choice provides key insights which are missing

from the traditional analysis. I summarise five such insights and point out the contributions

of this paper in the next paragraphs:

A first key result from considering a nested logit structure with a set of underlying choices

within destinations is that, under appropriate assumptions, the number of opportunities

appears as an attractive factor in the gravity equation for migration, serving as the size or

mass variable for the destination. I point out several well known studies that may suffer

from biases as a result from considering destinations as fundamental units of choice and not

controlling adequately for the size of the opportunity set in the destinations as a result.

Second, the probability that the best opportunity is found in a destination, and the ex-

pectedmigration flow to this destination, increases not onlywith the number of opportunities

in the destination but also with the dispersion between them. Considering otherwise simi-

lar destinations, and assuming that migrants can choose between opportunities and avoid

less attractive outcomes, heterogeneity in the utility from opportunities makes a destina-

tion more attractive. This property follows directly from random utility maximisation when

considering aggregates of fundamental units of choice as described in McFadden (1977),

but seems little known or applied. It may offer an alternative explanation for the observed

attractive force of cities on migrants, in spite of high inequality in economic outcomes in

cities and high unemployment rates; an issue studied by economists since at least Harris and

Todaro (1970). I do not know any migration study acknowledging the possible attractiveness
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of dispersion in outcomes within destinations for homogeneous migrants.1 I investigate the

effect of dispersion in the empirical application to internal migration in Ethiopia, and find

the predicted positive effect. This finding goes against those of Stark (2006). The effect is

especially strong for the current residence, which seems consistent with the condition that

migrants have good information on opportunities, for dispersion between them to become

an attractive feature.

Third, it follows directly from the theory of discrete choice and the nested logit model of

McFadden (1977) that the coefficient associatedwith the size variable reflects the dissimilarity

of the opportunities within the destinations (see also Kanaroglou and Ferguson, 1996). This

insight is lost in applications controlling for destination size in an ad-hoc fashion. In an ideal

model including the most relevant factors affecting migration decisions residual correlation

between opportunities should be small, opportunities perceived as dissimilar, and the mass

variable should therefore have an associated coefficient close to 1. A minor contribution

of this paper is to simply to remind researchers of migration of this interpretation of the

coefficient on size. The deviation from its ideal value of 1 can therefore also be seen as a

basic measure of model fit. A coefficient significantly smaller than one could point to a mass

variable that does not proxy well for the number or the type of opportunities migrants are

looking for in a destination, or point to significant correlation between opportunities within

destinations, suggesting that an important control variable is missing or an additional level

of nesting of destinations should be considered.

Fourth, a coefficient of 1 on size leads to two desirable spatial properties: (1) a coefficient

of 1 on size is required to make predicted migration flows independent from the level of

spatial aggregation, such that the predicted migration flow to a country equals the predicted

migration flows to its constituent regions and vice-versa. This point was already made by

Daly (1982). (2) I add to this by showing that a coefficient of 1 is required to have zero

net migration between similar regions of different size. It is intuitive that there is little net

migration migration between regions or countries with similar opportunities, even if the

number of these opportunities is very different. There is indeed little net migration between

similar countries of different size like Belgium and Germany, or between a typical region in

a country and the rest of the country considered as an aggregate. These intuitive properties

1The mechanism at work makes a destination with a high variance in opportunities more attractive for
all individuals, and is quite different from the sorting and self-selection of heterogeneous agents described by
Borjas (1987).
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do not hold in analyses omitting a mass variable, or when the coefficient on mass differs

significantly from 1. To my best knowledge these consequences of a coefficient on mass or

size deviating from 1 are not known in the migration literature.

Fifth, again following Daly (1982), if migrants are looking for different types of oppor-

tunities (for example jobs and arable land), and if predicted migration flows are to scale

proportionally when considering aggregates of destinations as described in the previous

paragraph, then the sizes of the opportunity sets should be combined (for example in a

weighted index), which then enters the utility function and the gravity equation as the sole

mass variable for the destination with an associated coefficient equal to 1. The appropri-

ate weights of the different proxies for size entering the index can be estimated from data.

Also this consistent aggregation of multiple opportunity sets (i.e. mass or size variables) has

never been considered in the context of migration. I implement the aggregation of two mass

variables in the empirical application to internal migration in Ethiopia.

A last contribution of this paper is to link important contributions in transportation sci-

ence to the recent work in economics on migration. Examples are the seminal constrained

models of spatial interaction of Wilson (1967, 1970, 1971); the estimation of gravity equa-

tions using Poisson regression by Flowerdew and Aitkin (1982); the work of Daly (1982),

Anas (1983) and Kanaroglou and Ferguson (1996) who study aggregation by zones in spatial

discrete choice models; and the relationship between dummies and ‘balancing constraints’

or ‘multilateral resistance terms’ studied by Fotheringham and Williams (1983); Davies and

Guy (1987) and Griffith and Fischer (2013).

I apply the described methodology estimating a nested logit model for interregional mi-

gration flows in Ethiopia. An upper nest distinguishes between the own region and all other

possible destinations as in Ortega and Peri (2013) and Beine, Bourgeon, and Bricongne (2019).

The lower nest is implicit and considers two sets of opportunities in each destination region:

the number of houses with running water and the number of jobs with paid earnings. These

mass variables are combined in a single index as described above. Given that some regions

hardly have individuals with paid earnings ś or none at all, I consider the variance in con-

sumption per adult equivalent at the destination to test for the attractive force of dispersion

in opportunities. This variance correlates with more inward migration, as predicted. More-

over I find that the effect is significantly larger the for origin-region, which is supportive of

the hypothesis that this attraction of variability in opportunities requires information to be

available as assumed in the discrete choice framework.
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The remainder of this paper is organised as follows: Section 2 considers the RUM based

gravity equation for migration that is popular in current economic research. Section 3 intro-

duces a nested logit model with a countable set of opportunities in destinations, which leads

to the appearance of the number of opportunities as a size variable for the destination in the

gravity equation. Section 4 considers extensions: dispersion in opportunities as an attractive

force; multiple size variables per destination; and the link between the coefficient on the

size variable and both aggregation properties and spatial equilibria. Section 5 considers the

application to internal migration in Ethiopia. Section 6 concludes.

2 The traditional approach

Consider the gravity equation for migration as derived by Grogger and Hanson (2011) and

many subsequent contributions (see Beine, Bertoli, and Fernández-Huertas Moraga, 2016, for

an overview), which is based on random utility maximisation (McFadden, 1974). A potential

migrant 𝑖 in an origin country 𝑜 compares utility among possible destination countries

indexed by 𝑑 ∈ 𝐷 , among which the country of origin itself. Following the notation of Beine,

Bertoli, and Fernández-Huertas Moraga (2016), utility𝑈 of individual 𝑖 is assumed to depend

on an index of observables at the destination𝑤𝑑 , and on the bilateral cost 𝑐𝑜𝑑 of moving from

𝑜 to 𝑑 :

𝑈𝑜𝑑𝑖 = 𝑤𝑑 − 𝑐𝑜𝑑 + 𝜖𝑜𝑑𝑖 .

Assuming that the error term 𝜖𝑜𝑑𝑖 has an iid extreme value distribution results in a convenient

expression for the probability 𝑃𝑜𝑑 of an individual in location 𝑜 to prefer destination 𝑑 ∈ 𝐷

over all other destinations 𝑥 ∈ 𝐷 . Also using 𝑒 as an index over destinations, it obtains that

𝑃 (𝑈𝑜𝑑𝑖 > 𝑈𝑜𝑥𝑖) =
exp(𝑤𝑑 − 𝑐𝑜𝑑)

∑

𝑒∈𝐷 exp(𝑤𝑒 − 𝑐𝑜𝑒)
∀ 𝑥 ∈ 𝐷.

If the number of individuals is large, this probability corresponds to the share 𝑠𝑜𝑑 of the

population migrating from 𝑜 to 𝑑 . Writing 𝑝𝑜𝑝𝑜 for the number of individuals in 𝑜 and𝑚𝑜𝑑
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for the number of migrants between 𝑜 and 𝑑 :

𝑠𝑜𝑑 ≡
𝑚𝑜𝑑

𝑝𝑜𝑝𝑜
=

exp(𝑤𝑑 − 𝑐𝑜𝑑)
∑

𝑒∈𝐷 exp(𝑤𝑒 − 𝑐𝑜𝑒)
. (1)

By bringing 𝑝𝑜𝑝𝑜 to the right hand side and writing 𝑦𝑑 for 𝑒𝑥𝑝 (𝑤𝑑) and 𝜙𝑜𝑑 = 𝑒𝑥𝑝 (−𝑐𝑜𝑑) the

resulting expression for the expected number of migrants𝑚𝑜𝑑 resembles a gravity equation:

𝑚𝑜𝑑 = 𝑝𝑜𝑝𝑜𝑦𝑑𝜙𝑜𝑑
1

∑

𝑒 𝑦𝑒𝜙𝑜𝑒
. (2)

The population in the origin appears naturally by assuming that there is a given number

of individual decision makers in the origin. This number of choice-makers serves as the

measure of the mass of the origin. It is perhaps disconcerting that there is no corresponding

variable for the size of the destination, as you would expect in a gravity equation. Such

a destination-size variable may or may not be included by the empirical researcher as a

destination-specific explanatory variable in 𝑦𝑑 , but its inclusion does not naturally follow

from this traditionally used theoretical framework. Frequently the size of the destination is

omitted.

After adding an appropriately defined multiplicative error term to equation (2) it can be

estimated using Poisson pseudo-maximum likelihood. An advantage of the Poisson regres-

sion framework is that it is able to handle zero flows and heteroskedasticity, as emphasised

by Silva and Tenreyro (2006). Also Flowerdew and Aitkin (1982) discussed the advantages

of Poisson regression for the estimation of gravity equations.

An alternative frequently used in the literature is to consider the log of the ratio of

two migration shares, the log-odds. A convenient choice is to divide by the share of stayers

(individuals in 𝑜 who prefer their current country of residence 𝑜 over all possible destinations)

𝑠𝑜𝑜 =
𝑚𝑜𝑜

𝑝𝑜𝑝𝑜
=

exp(𝑤𝑜 − 𝑐𝑜𝑜)
∑

𝑑∈𝐷 exp(𝑤𝑑 − 𝑐𝑜𝑑)
. (3)

Taking the log of the ratio of the shares (1) and (3) results in a linear function of the difference

in the variables determining the attractiveness of a location.

ln

(

𝑠𝑜𝑑

𝑠𝑜𝑜

)

= ln

(

𝑚𝑜𝑑

𝑚𝑜𝑜

)

= 𝑤𝑑 −𝑤𝑜 − (𝑐𝑜𝑑 − 𝑐𝑜𝑜) (4)
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Again the researcher is left to decide whether the vector of explanatory variables should

include some measure of size, which would logically then be included in both in𝑤𝑑 and𝑤𝑜 .

This equation can be estimated by OLS. Advantages of this functional form are that it avoids

numerical optimization and allows for instrumental variable estimation (Berry, 1994).

The omission of a mass variable for the destination can be problematic in empirical

applications. Consider an analysis based on equation (1) or (4) for migration between two

countries of vastly different size but with similar wages. An example could be Malta and Italy.

Consider the case where size is not controlled for, wages are equal to 1 in both countries,

and assume 𝑐𝑜𝑜 = 0 and 𝑐𝑜𝑑 = 4.6 for 𝑜 ≠ 𝑑 . For these values the model predicts 1 percent of

inhabitants in either country will migrate. Malta has a population of about 500.000, so 5.000

Maltese would be predicted to migrate to Italy. Italy has a population of about 60 million, so

600.000 Italians would be predicted to migrate to Malta, more than doubling its population.

This is obviously not realistic. The model does not reflect our intuition that migration flows

also depend on the size of the destination. In real data the share of individuals choosing

a destination likely depends on its size (as I will argue formally in the next section). An

analysis on real-world data ignoring size is likely to find unexpectedly large residual flows

to large destinations.

Such a pattern may be reflected in the results of Grogger and Hanson (2011, p. 54) who

omit measures for the size of the destination in their analysis of international migration

but control for size (and any other origin-destination specific factor) by including origin-

destination (dyadic) fixed effects. In a secondary analysis, they consider the value of the

estimated fixed effects from their main analysis as an estimate of ‘fixed costs’ of migration.

Among all destinations considered they observe the largest residual attractiveness (as cap-

tured by the fixed effects) for the USA and Germany. Offered explanations are higher wages

in these countries, labour-recruitment strategies in the 1960s, post-war asylum policies and

immigrant networks. Whereas such factors may indeed play a role, a more basic explana-

tion for the large residual migration flows to these countries is that these are the largest

destination countries in an analysis that does not control for size.

Ortega and Peri (2013) and Beine, Bourgeon, and Bricongne (2019), estimate a dynamic

version of (4) which may be stylised as

ln(𝑚𝑜𝑑𝑡 ) = ln(𝑚𝑜𝑜𝑡 ) +𝑤𝑑𝑡 −𝑤𝑜𝑡 − 𝑐𝑜𝑑𝑡 + 𝜉𝑜𝑑𝑡 .
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Beine, Bourgeon, and Bricongne (2019) emphasise the importance of including origin-time

fixed effects to control for𝑚𝑜𝑜𝑡 . These origin-time fixed effects would also capture the effect

of any time-varying size variable in 𝑤𝑜𝑡 . But there is an asymmetry in that no destination-

time fixed effects are included, such that any time-varying effect of the size of the destination

in𝑤𝑑𝑡 (such as the number of jobs or the GDP which may be important given the focus on

the business cycle in their analysis) would not be controlled for.

3 Putting back size in the RUM based gravity equation

for migration

The previous section showed that the RUM based gravity equation for migration commonly

used in the economics literature leads to a gravity equation which does not naturally include

a size variable for the destination, and that this may be problematic in applied work if a

size variable is not explicitly added (or if insufficient destination dummies are included; or

if dummies are included but subsequently analysed without controlling for size).

As already noted by Kanaroglou and Ferguson (1996), the root of this problem lies with

considering spatial aggregates as fundamental units of choice. This section introduces a

countable number of fundamental units of choice in each destination, which we call op-

portunities as in Docquier, Peri, and Ruyssen (2014). I formalise the concept here drawing

from a large and old literature on discrete choice in transport and spatial modelling (see for

example McFadden, 1977; Flowerdew and Aitkin, 1982; Daly, 1982; Anas, 1983; Kanaroglou

and Ferguson, 1996).

In a discrete choice setting, the probability that the maximum utility can be found in a

destination (and therefore expected migration flow to this destination) increases with the

number of fundamental units of choice found in the destination. If the utility derived from the

opportunities within a destination is heterogeneous, the probability that the best opportunity

can be found in a destination śand the expected migration flow to this destinationś also

increases with the degree of dispersion in opportunities. I consider this property as an

extension in section 4.1.
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3.1 Aggregating opportunities

Assume now that migrants do not seek countries but rather some type of opportunity, for

example a dwelling or a job, contained in them. The opportunities can be contrasted with

other determinants of migration that are frequently a such as climate, the average wage or

a common colonial history. Such variables are clearly important to migrants and should be

controlled for, but we cannot assign a number, size or mass to them.

Following Anas (1983) I first consider the case where utility is not correlated between

opportunities. In this case, the equations (2) and (3) remain valid, with the adjustment that

the choice now is no longer over destination countries, but over opportunities, which are

indexed by 𝑓 ∈ 𝐹𝑑 (for felicity), with 𝐹𝑑 the set of opportunities in country 𝑑 with cardinality

𝑁𝑑 , such that the share of individuals in origin 𝑜 choosing opportunity 𝑓 in destination 𝑑

equals

𝑠𝑜𝑓𝑑 ≡
𝑚𝑜𝑓𝑑

𝑝𝑜𝑝𝑜
=

exp(𝑤𝑓𝑑 − 𝑐𝑜𝑓𝑑)
∑

𝑒∈𝐷

∑

𝑔∈𝐹𝑒 exp(𝑤𝑔𝑒 − 𝑐𝑜𝑔𝑒)

When interested in the number of migrants to countries. one simply has to add the probabili-

ties or shares corresponding to the opportunities contained within each destination country.

Consider the case where the utility derived from the different opportunities within a country

is identical such that𝑤𝑓𝑑 = 𝑤𝑑 and 𝑐𝑜𝑓𝑑 = 𝑐𝑜𝑑 , then

𝑠𝑜𝑑 =

∑︁

𝑓 ∈𝐹𝑑

𝑚𝑜𝑓𝑑

𝑝𝑜𝑝𝑜
=

∑︁

𝑓 ∈𝐹𝑑

exp(𝑤𝑓𝑑 − 𝑐𝑜𝑓𝑑)
∑

𝑒∈𝐷

∑

𝑔∈𝐹𝑒 exp(𝑤𝑔𝑒 − 𝑐𝑜𝑔𝑒)

=
𝑁𝑑 exp(𝑤𝑑 − 𝑐𝑜𝑑)

∑

𝑒∈𝐷 𝑁𝑒 exp(𝑤𝑒 − 𝑐𝑜𝑒)
.

Written as a gravity equation and writing 𝑦𝑑 for 𝑒𝑥𝑝 (𝑤𝑑) and 𝜙𝑜𝑑 = 𝑒𝑥𝑝 (−𝑐𝑜𝑑) as before, we

obtain

𝑚𝑜𝑑 = 𝑝𝑜𝑝𝑜𝑁𝑑𝑦𝑑𝜙𝑜𝑑
1

∑

𝑒∈𝐷 𝑁𝑒𝑦𝑒𝜙𝑜𝑒
(5)

Considering countable, independent, atomistic units of choice (opportunities) within desti-

nations, leads the size of the opportunity set in the destination 𝑁𝑑 to appear naturally in the

gravity equation.
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The log-odds are

ln

(

𝑠𝑜𝑑

𝑠𝑜𝑜

)

= ln

(

𝑚𝑜𝑑

𝑚𝑜𝑜

)

= ln(𝑁𝑑) − ln(𝑁𝑜) +𝑤𝑑 −𝑤𝑜 − (𝑐𝑜𝑑 − 𝑐𝑜𝑜).

Whereas the number of potential migrants in the origin 𝑝𝑜𝑝𝑜 cancels out when considering

log-odds, the log of a size variable proxying the number of opportunities should be included

for both origin and destination. The expected coefficients on these size variables are 1 and

-1 given the assumption of strictly uncorrelated opportunities. The gravity equation and

log-odds expression distinguish between the number of choice makers (for example the

population 𝑝𝑜𝑝𝑜 ) which operates as a push factor, and the number of opportunities 𝑁𝑜 and

𝑁𝑑 which operate as pull factors. One could use the population in the origin 𝑝𝑜𝑝𝑜 in the

log-odds expression rather than 𝑁𝑜 only in a context where a large population in a region

correlates with an abundance of attractive opportunities. This assumption would be violated

in an application considering countries or regions with significant differences in the level of

development.

The gravity equation describing aggregate migration flows in equation (5) is asymmetric

in that the size of the destination appears in the numerator and denominator, while the

population as the size variable of the origin is absent from the denominator. Appendix B

comments how this relates to an asymmetry in assumptions: whereas the number of choice-

makers is constrained, the total inflow in each destination is not constrained. If one would

also require predicted flows to match the observed aggregate inflows to each destination, one

would obtain a fully symmetric gravity equation quite similar to that derived by Anderson

and Wincoop (2003) in a CES framework. Their gravity equation in turn has the same form

as the seminal doubly constrained model derived by Wilson (1970) from information theory

some decades earlier, which is rarely acknowledged in economic studies.

3.2 Correlated opportunities: nested logit

It may be unrealistic to assume that the unobserved part in the utility an individual de-

rives from different opportunities within the same destination is uncorrelated between them.

Following McFadden (1977),I now consider a more general utility function with correlated

opportunities (see also Kanaroglou and Ferguson, 1996; Train, 2002). Without loss of gen-

erality, the observed part of utility derived from choosing a certain opportunity 𝑓 within a
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destination (country, region,. . .) 𝑑 is decomposed in a part 𝑤𝑑 that is common among op-

portunities within 𝑑 , and a part 𝑧𝑓𝑑 specific to the opportunity. Following the approach of

Cardell (1997) and Berry (1994) which was first applied to migration by Ortega and Peri

(2013), also the unobserved part of individual utility is split in a destination specific part 𝜇𝑑𝑖 ,

and an opportunity-specific part 𝜖𝑜𝑓 𝑖 such that

𝑈𝑜𝑓 𝑖 = 𝑤𝑑 + 𝑧𝑓𝑑 − 𝑐𝑜𝑑 + (1 − 𝜆𝑑)𝜇𝑑𝑖 + 𝜆𝑑𝜖𝑜𝑓 𝑖 . (6)

The unobserved part of utility which is shared among all opportunities within a destination

for an individual, 𝜇𝑑𝑖 , is distributed iid extreme value. The fully idiosyncratic part which also

varies between opportunities 𝜖𝑜𝑓 𝑖 is distributed as the unique random variable ensuring that

also the joint error term (1 − 𝜆𝑑)𝜇𝑑𝑖 + 𝜆𝑑𝜖𝑜𝑓 𝑖 is extreme value distributed. The parameter 𝜆𝑑

or ‘dissimilarity parameter’ governs the correlation between the unobserved part of utility

for individuals between opportunities within destinations. A low value of 𝜆𝑑 implies that

individuals perceive the opportunities in a destination as similar, increasing the role of

the observed opportunity specific characteristics 𝑧 𝑓 𝑑 in the choice of individuals between

opportunities within a given destination.

We consider the following convenient decomposition of the corresponding probability

that an alternative 𝑓 within the opportunity set 𝐹𝑑 of destination 𝑑 is chosen:

𝑃𝑜,𝑓 = 𝑃𝑓 |𝐹𝑑 · 𝑃𝑜,𝐹𝑑

𝑃𝑜,𝐹𝑑 =
exp(𝑤𝑑 − 𝑐𝑜𝑑 + 𝜆𝑑𝐼𝑑)

∑

𝑒 exp(𝑤𝑒 − 𝑐𝑜,𝑒 + 𝜆𝑒𝐼𝑒)

𝑃𝑓 |𝐹𝑑 =

exp(𝑧𝑓𝑑/𝜆𝑑)
∑

𝑔∈𝐹𝑑
exp(𝑧𝑔𝑑/𝜆𝑑)

𝐼𝑑 = log
∑︁

𝑔∈𝐹𝑑

exp(𝑧𝑔𝑑/𝜆𝑑).

If interest lies with predicting migration flows to destinations 𝑑 (countries, regions, cities,. . .)

which nest opportunities, rather than which opportunity is chosen within them, then only

the aggregate level flow described by 𝑃𝑜,𝐹𝑑 and the log-sum or inclusive value term 𝐼𝑑 are

relevant. Under the assumption that the deterministic part of opportunity-specific utility is
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constant within destination countries (𝑧𝑓𝑑 = 𝑧𝑑), it holds that 𝐼𝑑 = log(𝑁𝑑) + 𝑧𝑑/𝜆𝑑 and

𝑃𝑜,𝐹𝑑 =
𝑚𝑜𝑑

𝑝𝑜𝑝𝑜
=

exp(𝑤𝑑 + 𝑧𝑑 + 𝜆𝑑 log𝑁𝑑)
∑

𝑒 exp(𝑤𝑒 + 𝑧𝑒 + 𝜆𝑑 log𝑁𝑒)
(8)

or writing 𝑦𝑑 for 𝑒𝑥𝑝 (𝑤𝑑) and 𝑞𝑑 = 𝑒𝑥𝑝 (𝑧𝑑) and 𝜙𝑜𝑑 = 𝑒𝑥𝑝 (−𝑐𝑜𝑑) as before, it obtains that

𝑚𝑜𝑑 = 𝑝𝑜𝑝𝑜𝑦𝑑𝑞𝑑𝑁
𝜆𝑑
𝑑
𝜙𝑜𝑑

1
∑

𝑒 𝑦𝑒𝑞𝑒𝑁
𝜆𝑑
𝑒 𝜙𝑜𝑑

. (9)

Here 𝑦𝑑 collects the influence of variables pertaining the country (climate, etc.), 𝑞𝑑 pertains

to characteristics of the opportunities (average wage, housing price level, etc.), 𝑁𝑑 is the

number or mass of opportunities (number of jobs, houses, arable land area, etc.), and the

associated parameters 0 ≤ 𝜆𝑑 ≤ 1 reflects how independent the unobserved part of utility is

between opportunities in each destination. The log-odds at the country level then are given

by

ln

(

𝑠𝑜𝑑

𝑠𝑜𝑜

)

= ln

(

𝑚𝑜𝑑

𝑚𝑜𝑜

)

= 𝜆𝑑 ln(𝑁𝑑) − 𝜆𝑑 ln(𝑁𝑜) +𝑤𝑑 −𝑤𝑜 + 𝑧𝑑 − 𝑧𝑜 − (𝑐𝑜𝑑 − 𝑐𝑜𝑜).

One may obviously choose to test or impose the assumption that the dissimilarity between

opportunities is equal among destinations (𝜆𝑑 = 𝜆).

If the correlation in the unobserved part of utility within destinations is large, opportuni-

ties within destinations are perceived as similar and the associated dissimilarity parameters

𝜆𝑑 will be small. If the model includes the most relevant control variables of locations and

individuals, and considers other levels of nesting (which group destination countries or re-

gions with similar properties such as language or ethnicity), then the residual unobserved

component in utility (6) will be small, and opportunities will be perceived as dissimilar. In

the limit, in a perfectly specified model, the parameter associated with the size variables

should tend to 1.

A large opportunity set 𝑁𝑜 in the origin makes it more likely that an individual will

make the choice to stay in current location. This is clear in the utility 𝑤𝑜 + 𝑧𝑜 + 𝜆𝑜 log𝑁𝑜

obtained when choosing the origin (see (8)). The gravity equation (9) also shows how a larger

𝑁𝑜 increases𝑚𝑜𝑜 flows (the number of stayers) and lowers all other migration flows. It is

especially clear in the log-odds expression where 𝑁𝑜 appears with a negative sign for all

destinations 𝑑 ≠ 𝑜 . The discrete choice framework already considers the number of choice-

makers in the origin, and this number of choice-makers appears as the mass variable in the
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gravity equation. It is nevertheless also needed to include the number of opportunities 𝑁𝑜

in utility functions or gravity equations when considering the choice to stay in the origin.

This is not always done in practice. An example of an analysis omitting 𝑁𝑜 may be Beine,

Bierlaire, and Docquier (2021), who include population as a size variable affecting utility in

all destinations, but do not include population for the origin.

These results suggest that an applied researcher Ð even if uninterested in the concept of

underlying opportunities or the mathematics of nested logit models Ð would be well advised

to include some measure of size of the destination in multiplicative gravity equations, or

the log of the size of both origin and destination in log-odds regressions. The size variable

should proxy the size of the opportunity sets in all locations, and the origin region itself is

one such location. The associated coefficients serve as an inverse indicator of correlation

between opportunities within destinations. A coefficient significantly smaller than 1 may

suggest that the size proxy is not appropriate, that relevant control variables are missing, or

further nesting of destinations should be modelled to reduce unobserved correlation within

destinations.

4 Extensions

The previous sections argued that a proxy for the size of the opportunity set in the destination

should be included in the gravity equation for migration, and showed how the coefficient on

size relates to the perceived similarity of the opportunities to migrants. The framework with

opportunity sets allows to consider other issues as well. In this section I first consider the

case where opportunities are many and can be treated stochastically. The dispersion in the

utility derived from opportunities can be shown to be an attractive factor of a destination.

Second, I consider the case of migrants looking for different types of opportunities, and the

nonlinearity this introduces in the gravity equation. Lastly, I revisit the coefficient on the

size variable, and its link with spatial equilibria and the scaling or aggregating of migration

flows.

4.1 Heterogeneous opportunities within destinations

If the observed part of utility associated with the opportunities within each destination can

be described stochastically and is approximately iid normally distributed with mean 𝑧𝑑 and
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variance 𝜔𝑑 , McFadden (1977) shows that the utility of choosing destination 𝑑 equals2

𝑃𝐹𝑑 =

exp(𝑤𝑑 + 𝑧𝑑 +
𝜔𝑑

2𝜆 + 𝜆 log(𝑁𝑑))
∑

𝑒 exp(𝑤𝑒 + 𝑧𝑒 +
𝜔𝑒

2𝜆 + 𝜆 log(𝑁𝑒))
. (10)

Underlying variability in the utility derived from opportunities makes a destination more

attractive. If two destinations offer the same average return per opportunity, the maximum

utility (and therefore the chosen opportunity) is more likely to be found in a destination with

more opportunities and one with more dispersion in utility. This assumes that a migrant is

able to observe and choose the opportunity within the destination. This result may be only

relevant in situations with good information flows. A relevant could be migration over small

distances, between regions of a developed country, where migration often occurs only after

a jobmarket match has been made. Another example could be migrant networks passing on

information on specific available jobs and other opportunities to prospective migrants in the

home country. See also Bertoli, Moraga, and Guichard (2020) on how costs to information

acquisition can shape migration decisions. Another case could be dispersion in opportunities

found specifically in the current location of residence for which one can be expected to have

quite good information.

The attractive effect of the variance in opportunities may offer an explanation for ur-

banisation trends in developing countries. Cities with a wide variation in opportunities are

predicted to be attractive, in spite of high unemployment and other factors suggesting a low

average expected return should a migrant arrive uninformed and unconnected. This explana-

tion is different from the traditional analysis of Harris and Todaro (1970) where high wages

in cities compensate for high unemployment rates, with prospective migrants considering

expected urban wages taking into account the probability of becoming unemployed. The

2This section assumes 𝜆 > 0, McFadden (1977) considers the the limiting case 𝜆 → 0 where the probability
almost surely converges to

𝑃𝐹𝑑 →
a.s.

exp(𝑤𝑑 +max
𝑓

𝑧𝑓𝑑 )

∑

𝑒 exp(𝑤𝑒 +max
𝑓

𝑧𝑓 𝑒 )
.

When opportunities are perceived as extremely similar conditional on 𝑤𝑑 and 𝑧𝑑𝑓 , their number becomes
irrelevant and (apart from destination specific factors in 𝑤𝑑 ) only the maximum attainable 𝑧𝑑𝑓 within each
destination matters for the probability of destination 𝑑 to be chosen. The properties 𝑧𝑓𝑑 of this best and only
relevant opportunity within 𝑑 can be absorbed in the destination specific variables contained in𝑤𝑑 . This case
does not seem relevant for applications to migration.
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discrete choice framework rather assumes that migrants ignore high urban unemployment

rates because they can choose between opportunities, and focus on the higher wages offered

by job opportunities in cities, possibly waiting until they obtain information on a specific op-

portunity presenting itself. This framework can also offer an explanation on why countries

with high income dispersion are found be attractive in empirical studies on international

migration.

4.2 Multiple sets of opportunities

As a second extension offered by considering sets of opportunities in destinations, imagine

that migrants are heterogeneous and have different motivations for migration. In this case it

may be unclear what size variable should be chosen, e.g. number of jobs, housing, landmass,

etc. As argued by Daly (1982), rather than choosing between them, different size variables

can be combined in a single weighted index. With different relevant size variables in the

destination, 𝑁1𝑑 , 𝑁2𝑑 , . . . the utility from choosing destination 𝑑 can be modelled as

𝑤𝑑 + 𝑧𝑑 + 𝜆 log(𝑁1𝑑 + 𝑏2𝑁2𝑑 + . . .).

The same index 𝑁1𝑑 + 𝑏2𝑁2𝑑 + . . . would enter the gravity equation as the combined mass

or size variable for the destination. The index weights 𝑏 can be estimated from data using

maximum likelihood, although convergence can be more difficult. The log-odds are no longer

linear in parameters and therefore no longer estimable by OLS.

Daly (1982) argues that the coefficient 𝜆 on the combined size-index should equal 1 if

aggregating destinations is to lead to a proportional increase in predicted migration flows.

The next section considers this argument more in detail.

4.3 Aggregation ofmigration flow, spatial equilibrium, and themass

variable in the gravity equation

Section 3.2 argued that in an ideally specified discrete choice model residual correlation

in utility between opportunities within destinations should be small, and the parameter

associated with destination size should be close to 1. This section considers neutrality to the

level of aggregation and spatial equilibria as two more reasons why a coefficient close to 1

is a reasonable case to expect.
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Consider the case of 𝑅+1 symmetric regions, indexed by 𝑟 and 𝑘 , with identical attributes

𝑦𝑟𝑞𝑟 = 1, populations 𝑝𝑜𝑝𝑟 = 𝑝𝑜𝑝 , and 𝑁𝑟 = 𝑁 opportunities. Individuals face 0 migration

costs when choosing their current region or 𝜙𝑟𝑟 = 𝑒𝑥𝑝 (0) = 1, and some positive cost when

migrating such that 𝜙𝑟𝑘 |𝑟≠𝑘 = 𝜙 (with 0 < 𝜙 < 1). The migration flow from 𝑟 to 𝑘 (see

equation (9)) then is given by

𝑚𝑟𝑘 |𝑟≠𝑘 = 𝑝𝑜𝑝𝑁 𝜆𝜙
1

𝑁 𝜆 + 𝑅𝑁 𝜆𝜙

Now consider a scenario where 𝑅 of the regions are considered as a single destination (say

𝑅 regions are Italian) by the inhabitants of the remaining region 𝑅 + 1 (Malta). Consider the

expected aggregate migration flow from Malta (region 𝑅 + 1) to Italy obtained from adding

up the individual flows to each of the 𝑅 Italian regions:

𝑅
∑︁

𝑟=1

𝑚𝑅+1,𝑟 = 𝑅 · 𝑝𝑜𝑝𝑁 𝜆𝜙
1

𝑁 𝜆 + 𝑅𝑁 𝜆𝜙
(11)

When rather considering Italy as a single destination of size (rN), the predicted flow from

Malta to Italy is

𝑝𝑜𝑝 (𝑟𝑁 )𝜆𝜙
1

𝑁 𝜆 + (𝑟𝑁 )𝜆𝜙
(12)

An obvious sufficient condition for these two perspectives in equations (11) and (12) to result

in the same predicted number of migrants is 𝜆 = 1. This reflects the point made by Daly

(1982) on requiring 𝜆 = 1 for migration to be proportional to the destination size, and for the

gravity equation to be neutral to the level of aggregation of destinations. This perfect scaling

with size fails if opportunities are seen as closer substitutes within locations compared to

across locations. Although one may expect some deviation from perfect scaling, for most

applications to migration scaling may be expected to hold to a large degree, and a coeffcient

𝜆 close to 1 on the mass variable would be reasonable to expect.

A further case for 𝜆 = 1 can be made by considering a spatial equilibrium. It is useful

here to consider 𝑅 as a measure of the size of the aggregated region relative to the remaining

region. In the example Italy is 𝑅 times larger than Malta since it contains 𝑅 regions each of

size 𝑁 whereas Malta consists of only one such region. Continuing to assume that there are
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migration costs between the 𝑅 Italian locations, the total migration flow from Italy to Malta

is given by the sum of the flows from the individual 𝑅 Italian locations to location 𝑅 + 1,

Malta. The expression for this aggregate migration flow from Italy to Malta corresponds to

the right hand side of equation (11). A spatial equilibrium exists when this equals the flow

in the opposite direction, from Malta to Italy, given by equation (12), or

𝑅 · 𝑝𝑜𝑝𝑁 𝜆𝜙
1

𝑁 𝜆 + 𝑅𝑁 𝜆𝜙
= 𝑝𝑜𝑝 (𝑅𝑁 )𝜆𝜙

1

𝑁 𝜆 + (𝑅𝑁 )𝜆𝜙

or equivalently

𝑅
1

𝑁 𝜆 + 𝑅𝑁 𝜆𝜙
= 𝑅𝜆 1

𝑁 𝜆 + (𝑅𝑁 )𝜆𝜙
.

For 𝜆 = 0 the equation simplifies to 𝑅 = 1: In case destinations are considered as atomistic

as in the traditional analysis described in Section 2, migration flows are symmetric only

if locations contain the same number of opportunities. If we assume that the number of

opportunities in a location equals the population, this implies that the only stable spatial

distribution of population is one with an equal population in both aggregate locations (Malta

and Italy), however different their initial size.

For 𝜆 = 1, in contrast, the equation holds for any 𝑅: for any size difference 𝑅 between

two regions or aggregates of regions, the predicted migration flows in both directions will

be equal, implying that any initial size difference is a stable spatial equilibrium. This is of

course closer to reality: there tend to be only small net migration flows between countries

or regions with similar properties (average wage, etc.), even if they are of very different size

such as Malta and Italy.

The arguments in the previous section on the interpretation of the dissimilarity parameter

together with those presented here on the conditions for scalability and spatial equilibria

show that a reasonable value to expect for the mass variable in a well specified gravity

equation for migration is close to 1. The link between the coefficient on size and spatial

equilibria is also important when interpreting empirical estimates. Estimating a gravity

equation for migration in China from rural locations to cities Xing and Zhang (2017) find

size coefficients close to 1.3 However, they conclude from this that ‘migrants derive higher

utilities from larger cities’ and that this explains the growth of larger cities. This seems

3They find estimates below and above 1. Their preferred estimate is 1.056 with a standard error of 0.133

17



unfounded as it was shown that in a basic gravity equation a coefficient of 1 on a size

variable rather corresponds to the base case where migration flows do not alter a given

spatial population distribution, i.e. a situation without any urbanisation trend. One can have

a coefficient of 1 on size in combination with urbanisation if other variables are included,

such as population density, or a dummy indicating urban destinations, and I will do so in

our empirical application in the next section.

5 Empirical Application: Internal migration in Ethiopia

5.1 Data Description

The main dataset used in the analysis is the 2013 wave of the Ethiopian labour force survey

(LFS).4 A recent study of internal Ethiopian migration using the LFS is Bundervoet (2018),

who uses the multinomial framework of section 3.1 and also considers qualitative aspects of

migration. The LFS contains information on 240660 individuals. Such a large cross-section is

important when studying migration which is a rare occurrence. I consider only individuals

between 15 and 65 years old who have migrated in the 20 years prior to the interview or

have never migrated, leaving 110615 individuals. About 9 percent of these report to have

moved zone in the 20 years before the interview.

The number of variables in the LFS is limited, but crucially includes the current and

previous zone of residence, and whether this (previous) place of residence is (was) in an

urban or rural area within the zone. Migrants are also asked how many years ago they

migrated.

We combine the LFS with data on housing from the Ethiopian Central Statistical Agency

(CSA) ‘Population and Housing Census of Ethiopia’ from 2007,5 and with the 2018 wave of

the Living Standards Measurement Study (LSMS) for consumption expenditures6. I believe it

is unproblematic to merge data from different years because the identification relies on cross-

sectional variation. The relevant differences between zones driving our results, in terms of

4The LFS can be downloaded freely from https://www.ilo.org/surveyLib/index.php/
catalog/2363.

5This dataset is downloadable from the CSA website at https://www.statsethiopia.gov.et/
census-2007-2/ and can be obtained in digitised form from the authors website or on request.

6This dataset is publicly available through the World Bank Central Microdata Catalog. See the project
website https://microdata.worldbank.org/index.php/catalog/3823 for a descrip-
tion, technical documentation, and to download the microdata.
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for example migration flows, housing stock, or population span several orders of magnitude

and are persistent over time.

Although the LFS contains information on earned income, for several zones there are

only a handful of sampled individuals with earned income, or none at all. This reflects the

scarceness of paid jobs in these areas, which is taken into account in the analysis by control-

ling for the number of paid jobs as an independent variable. It is impossible to estimate the

zonal mean or variance of earnings for zones without paid jobs, however. I therefore use the

spatially adjusted consumption per adult equivalent from the LSMS to estimate the mean

and dispersion in the return from opportunities at the zonal level, rather than earnings data.

This variable is calculated with the explicit aim of measuring the standard of living of the

individuals, including individuals who do not earn an income in monetary terms. Due to

some border changes between zones that occurred between 2013 and 2018, combining the

LFS and LSMS data implies that some small zones had to be merged.

There were 86 zones in Ethiopia in 2013. The LFS and both auxiliary datasets (on housing

and consumption) differentiate between urban and rural areas within each zone. Some zones

are purely rural or urban, however. I merge the 10 zones corresponding to the capital Addis

Ababa. Others zones were merged due to border changes which are hard to trace: 4 small

zones of the SNNPR region, the zones of the Gambela region and the zones of the Benishangul-

Gumuz region. The Afar and Somalia regions are not considered because of the large share

of semi-nomadic population. In total, the analysis considers 98 different locations. Appendix

A provides a list of regions and zones included in the analysis, with some summary statistics,

and an indicator for the zones which were merged. Considering this many alternatives in a

discrete choice model is computationally intensive. Often this is solved by considering the

chosen alternative (migration destination), combined with a relatively small random sample

from the set of non-chosen alternatives. I rather opted to keep the full set of alternatives and

used extensive computing resources. Estimation was done using the maximum likelihood

implementation of the Biogeme Python package (Bierlaire, 2020). This provides a convenient

environment for handling data while allowing for the non-linear specifications of the utility

functions which is required in the suggested framework when considering multiple size

variables. All the datasets used in the analysis are publicly available. The Stata and Python

code is available from the authors’ website or on simple request.
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5.2 Estimation equation and variable definitions

One of the richer specifications which will be brought to the data defines utility for an

individual 𝑖 from origin 𝑜 from choosing destination 𝑑 (allowing for 𝑑 = 𝑜) as

𝑈𝑜𝑑𝑖 = 𝜆 log(ℎ𝑜𝑢𝑠𝑒𝑠𝑑 + 𝑏 𝑗 𝑗𝑜𝑏𝑠𝑑) + 𝛽𝑐 log(𝑐𝑜𝑛𝑠𝑑) + 𝛽𝑣Var(cons𝑑) + 𝛽𝑢𝐼 (𝑢𝑟𝑏𝑎𝑛𝑑)

+ 𝐼 (𝑜 = 𝑑) · (𝛽𝑜𝑜 + 𝛽𝑎𝑎𝑔𝑒𝑖 + 𝛽𝑒𝑒𝑑𝑢𝑐𝑖 + 𝛽 𝑓 𝐼 (𝑓 𝑒𝑚𝑎𝑙𝑒𝑖))

+ 𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑑) · 𝛽𝑠 + 𝛽𝑑 log(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑) + 𝑒𝑜𝑑𝑖, (13)

where 𝑒𝑜𝑑𝑖 is extreme value distributed. As in Ortega and Peri (2013) and Beine, Bourgeon,

and Bricongne (2019), correlation in the error term 𝑒𝑜𝑑𝑖 is allowed for between destinations

other than the origin, giving rise to a nested logit structure with the origin as a single

alternative in a degenerate nest, and all other destinations grouped in a second nest. Write 𝜉

for the dissimilarity parameter associatedwith this upper level of nesting. This basic structure

captures and controls for the important fact that migrants are different from non-migrants in

many ways that are hard to measure. A risk-averse individual may have a strong preference

for the origin compared to any other destination, for example, which introduces correlation

between destinations other than the origin.

The nesting of opportunities within each destination zone is only considered implic-

itly by the inclusion of a size variable for the destination. Specification (13) considers the

weighted index ℎ𝑜𝑢𝑠𝑒𝑠𝑑 + 𝑏 𝑗 𝑗𝑜𝑏𝑠𝑑 as the size variable. The weight 𝑏 𝑗 will be estimated from

data together with the other parameters. The coefficient 𝜆 on the size variable captures the

dissimilarity between the opportunities proxied by the size variable, as discussed in the pre-

vious sections. It should not be confused with the dissimilarity parameter 𝜉 which pertains

to the dissimilarity between the origin zone and all destinations.

We variously consider population 𝑝𝑜𝑝𝑑 as a sole size variable, or the index ℎ𝑜𝑢𝑠𝑒𝑠𝑑 +

𝑏 𝑗 𝑗𝑜𝑏𝑠𝑑 combining the number of jobs 𝑗𝑜𝑏𝑠𝑑 (number of employment persons with earned

income in the LFS) with the number of houses with running water ℎ𝑜𝑢𝑠𝑒𝑠𝑑 . Some specifica-

tions will include the variance of the consumption in the destinations, Var(𝑐𝑜𝑛𝑠𝑑), and an

indicator 𝐼 (𝑢𝑟𝑏𝑎𝑛𝑑) for urban destinations. All specifications consider the average level of

consumption in the destination zone 𝑐𝑜𝑛𝑠𝑑 , in logs.

If a constant would be added to the utility of every alternative it would not affect the

probabilities and therefore would not be identified. The constant 𝛽𝑜𝑜 therefore only appears
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for the origin region, capturing all factors whichmake choosing the origin (i.e. not migrating)

a more likely outcome. Similarly, variables such as the individual’s age are modelled only

to affect the probability of choosing to stay in the origin. Controls at the individual level

include the age at the time of migration (we take the age at the time of the interview for

non-migrants), a dummy for females, and the education level at the time of the interview.

Education is measured on a 4-level scale which enters as a continuous variable to limit the

number of parameters.

Origin-destination level controls include the distance distance𝑜𝑑 between the geographic

centres of origin and destination zone, in logs, and an indicator whether the origin and

destination zone are in the same region 𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑑). The internal distance was taken

to be 20km for all zones. Although this is a crude approximation, any error in scale will be

captured by the own-region specific dummy.

Some specifications include interactions of variables with 𝐼 (𝑜 = 𝑑), for example to in-

vestigate whether the coefficient on the variance of consumption is different for the origin

region versus when choosing a destination different from the origin. Likewise, interactions

with 𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛) will be considered.

5.3 Results

Table 1 presents the results. Column (1) considers a basic specification with population

as the mass variable for the destination. The coefficient is less than 0.5, compared to the

value of 1 expected in theory. A likely explanation is that the population size of a zone does

not correlate strongly with the number of opportunities therein. Ethiopia is characterised

by a large disparity in the level of development between localities: some populous rural

low income zones offer few opportunities to migrants, whereas a city like Addis Ababa is

both populous and offers many opportunities. The effect of distance is as expected. The

coefficient on the dummy indicating a destination zone in the same region as the origin

𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛) has the ‘wrong’ sign. This may be a further indication of a misspecified

model. The coefficients for the individual characteristics show the effect of these variables

on the probability of not migrating. The effects are as expected: older or less educated

individuals and woman are less likely to migrate. In Bundervoet (2018), in contrast, females
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are found to migrate more in Ethiopia.7 The sign on gender will turn out to change between

specifications. The very low value of the dissimilarity parameter 𝜉 suggests that there is

significant unobserved correlation between destinations other than the origin.

Column (2) introduces a dummy variable for the own region, capturing some of the

unobserved part of utility that is specific to either the own-origin nest or the nest containing

all other destinations (adding the dummy to the other nest would lead to the same result

with the sign flipped). The dissimilarity parameter 𝜉 for the upper level jumps from 0.155 to

0.242, suggesting that the simple dummy indeed captures some of this correlation.

Column (3) replaces the population in the destination with a weighted index of the num-

ber of houses and the number of jobs in the destination, as described in section 4.2. The

weight 𝑏 𝑗 of the jobs variable in the index is estimated together with the other model param-

eters. The coefficient on the combined mass variable is 0.77, compared to the coefficient of

0.472 when considering population as the mass variable. This value being much closer to 1

suggests that the index combining the number of houses and jobs is significantly better at

capturing the size of the underlying opportunity-set in the destination. Intuitive properties

such as scaling and aggregation then hold approximately and the model describes a situation

closer to a spatial equilibrium, as described in section 4.3. Also noteworthy is the change in

the dissimilarity parameter 𝜉 associated with the choice between the own region and any

other region: this parameter further increases from 0.242 to 0.302, suggesting that relevant

control variables have been added, reducing the correlation in the unobserved part of indi-

vidual utility in the explicitly modelled nests, and bringing the model somewhat closer to the

multinomial ideal. Moreover, the effect of per capita consumption drops significantly after

introducing appropriate controls for the size of destinations, suggesting that this variable

was partially capturing the effect of the abundance of opportunities in the destinations in the

first two columns. Another sign that the specification with two mass variables in column (3)

is to be preferred, is the fact that destination zones in another region now are estimated to be

less attractive compared to those in the own region, as one would expect. This small effect

of regional borders in partially explained by migration to Addis Ababa, the capital, which

is highly attractive to migrants from all regions. In an unreported specification, adding a

dummy for Addis Ababa to the specification of column (3) increases the effect of regional

7This may be related to the fact that individuals reporting are considered to have migrated from the same
origin-zone as their current zone of residence (and also do not switch between rural or urban areas within the
zone) as non-migrants, whereas Bundervoet (2018) also considers these intra-zone movements as migration.
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(1) (2) (3) (4) (5) (6)

log(pop) 0.48 0.472
(0.011) (0.011)

log(houses + 𝑏 𝑗 jobs) 0.767 0.784 0.775 0.789
(0.0065) (0.00752) (0.00768) (0.00769)

𝑏 𝑗 0.479 1.78 1.49 1.614
(0.0248) (0.17) (0.14) (0.16)

log(distance) -1.72 -1.7 -1.61 -1.59 -1.59 -1.6
(.0103) (0.0104) (0.00951) (0.0093) (0.00926) (0.00931)

log(cons) 2.07 2.06 0.838 0.293 0.31 0.274
(0.0246) (0.0249) (0.0195) (0.0223) (0.0223) (0.022)

I(urban) 1.13 1.05 1.05
(0.0289) (0.0288) (0.03667)

Var(cons) 0.104
(0.00396)

I(same region) -0.499 -0.456 0.0566 0.0552 -0.0461 0.354
(0.0239) (0.0241) (0.0231) (0.023) (0.0227) (0.0479)

I(same region)·I(urban) -0.136 -0.18
(0.0431) (0.0434)

I(same region)·Var(cons) 0.174
(0.00882)

I(o=d) 2.91 3.52 4.29 6.92 2.45
(0.128) (0.109) (0.132) (0.129) (0.117)

I(o=d)·age 0.461 0.248 0.203 0.242 0.196 0.181
(0.0212) (0.0104) (0.00552) (0.00691) (0.0063) (0.00614)

I(o=d)·educ -1.72 -1.77 -2.02 -2.46 -1.92 -1.8
(0.101) (0.0668) (0.0474) (0.059) (0.0691) (0.0669)

I(o=d)·I(female) 0.265 -0.241 -0.253 -0.306 -0.239 -0.222
(0.0984) (0.0662) (0.056) (0.0665) (0.0513) (0.0502)

I(o=d)·I(urban) -0.393 -0.595
(0.096) (0.121)

I(o=d)·Var(cons) 0.247
(0.0289)

𝜉 0.155 0.242 0.287 0.242 0.3 0.323
(0.00767) (0.00936) (0.00652) (0.00587) (0.00993) (0.00978)

AIC 228336 227930 214915 213278 213208 212334
BIC 228413 228016 215011 213384 213333 212487

N 110615

Table 1: Parameter estimates of a nested logit model for internal migration in Ethiopia. Robust

standard errors in parenthesis.
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borders from 0.0566 to 0.177.

Column (4) introduces a dummy for urban destinations. Urban destinations are found

to be more attractive. However, the lower dissimilarity parameter suggests that residual

correlation has been introduced within the nests. I therefore allow the effect of the urban

dummy to differ for the origin and for destinations in the same region (this includes the

origin zone) in column (5). This substantially increases the estimated dissimilarity parameter,

suggesting a better fit. Individuals are also more likely to choose their own region (not to

migrate) if it is urban, with the effect of an urban origin on the probability of staying equal

to 1.05-0.393-0.136=0.521. Urban zones within the same region are also more likely to be

chosen, with an estimated effect of 1.05-0.136=0.914. For zones in a different region, the effect

is largest at 1.05. Put differently, migration is estimated to be more likely from rural origins

and to urban destinations. However, the attraction of a city is weakest for the origin region

(deterring migration), stronger for cities in the same region, and strongest for cities outside

of the own region.

Column (6), lastly, introduces the variance in annual consumption per adult equivalent

at the zonal level as an additional explanatory variable. Also here differences in the effect

are allowed between the zone of origin, zones within the same region, and zones in other

regions. The attractive effect of dispersion in opportunities is found to be largest for the

own region (0.104+0.174+0.247=0.525). It is smaller for other destinations in the own region

(0.104+0.174=0.278), and smallest for destinations in other regions (0.104). These differences

are statistically significant. It is reasonable to assume that information is more readily avail-

able on the availability and properties of opportunities in the own current location, or loca-

tions nearby (in the same region). The differences found in the attractive effect of dispersion

then are in line with the model, which assumes that dispersion in the return to opportunities

is attractive to individuals if they can observe and choose among the opportunities. Lastly,

the estimated coefficient of 0.525 on the variance of consumption in the own region is very

close to the predicted value of 0.5 in section 4.1, equation (10), when assuming a true value

for the dissimilarity parameter of 1.

A final observation is that the introduction of dispersion reduces the effect of the urban

dummies. Also here, this reduction is strongest for the origin (deterrence of migration),

less strong for other zones in the same region, and quite small for the destination zones in

other regions. This suggests that the lack in local dispersion of opportunities may explain

migration from rural areas.
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6 Summary and Conclusion

This paper presented a random utility framework for migration where destination countries

or regions are considered to be nests of opportunities, and it are these opportunities which

are the fundamental unit of choice of migrants rather than the countries or regions contain-

ing them. The model serves as an extension or alternative to the prevalent specifications

considering countries or regions as the fundamental unit of choice of migrants, even if these

destinations differ significantly in size.

If the opportunities are equally valuable to migrants and uncorrelated, their number

appears as an attractive factor for the destination in the multiplicative gravity equation de-

scribing aggregate flows. If the unobserved part of utility is correlated among opportunities,

the size variable in the aggregate gravity equation for migration has an associated coefficient

smaller than one, attenuating the effect of size. The traditional gravity equation where coun-

tries are the relevant unit of choice for migrants is obtained as a limiting case with perfectly

correlated opportunities. In this case only properties at the country level which are unrelated

to size, such as climate, average wage, or the unemployment rate, explain migration flows.

We showed that omitting the destination size, or using a coefficient on size substantially

smaller than 1, leads to predictions that are violated in the data, such as large residual flows

to large destinations in empirical studies, a counter-intuitive prediction of an equal spatial

equilibrium distribution of population among locations that have similar characteristics up

to size, or predicted migration flows that depend on the level of aggregation of the analysis. A

coefficient significantly smaller than 1 therefore may rather point to a misspecified model, or

a choice of a size variable for the destination that is a bad proxy for the number of attractive

opportunities migrants are seeking.

If the deterministic part of utility derived from opportunities can be described stochasti-

cally, the variance in opportunities appears as an attractive factor of the destination. This

result assumes that migrants can choose between opportunities at the destination, ignoring

less favourable ones. This is only realistic if prospective migrants have sufficient informa-

tion about the opportunities. In this case, destinations with equal average opportunities but

more extremes opportunities are more attractive. The attractiveness of otherwise similar

destinations with a wider variance in economic opportunities may be linked to trends of ur-

banisation in developing countries, where cities typically are characterised by very unequal

economic outcomes; and with the observed overall attractiveness of destination countries
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with a more unequal income distribution in the context of international migration.

Practical implications for applied research are that (1) a size proxy for the destination

should be included in gravity equations for migration. This proxy should be related to the

number or mass of opportunities operating as an attractive force in the destinations. The

associated coefficient reflects the dissimilarity between the underlying opportunities. A

coefficient substantially smaller than 1 could point to a poorly defined model. (2) In log-

odds expressions, the size variable capturing attractiveness through the number of available

opportunities in the destinations appears twice, in logs: once for the destination and once

(with a negative sign) for the considered alternative (most often the location of origin). (3) If

migrants are simultaneously looking for different types of opportunities (jobs, housing, etc.)

the size variables are combined in a weighted index, the weights of which can be estimated

from data. (4) If the utility from opportunities in a destination can be described stochastically,

andmigrants receive information on the specific opportunities and can choose between them,

other things equal, dispersion of utility within a destination is an attractive factor and enters

the utility function and gravity equation. For iid normally distributed opportunities, with a

coefficient of 1 on the mass variable, the expected coefficient on the variance variable is 0.5.

The application to Ethiopian internal migration shows how the framework can be im-

plemented and aims to further our understanding of the factors driving urbanisation. Two

size variables were combined and the index weights were estimated from data. Dispersion

in adult-equivalent consumption in destinations was considered, revealing a positive corre-

lation with migration flows, as predicted. This effect is larger for the origin (discouraging

migration), it is weaker for alternative destinations within the same region, and weakest

for destinations outside of the own region. This is supportive of the hypothesis that the

effect is stronger if more information is available. Controlling for dispersion in opportunities

explains part of the attraction of urban origins. Put differently, the results suggest that lack

of dispersion in opportunities in rural origins may be causing migration out of rural areas.
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Appendix

Appendix A Ð Included zones and summary statistics

Table 2 gives a list of zones included in the analysis, together with summary statistics of

the main variables. The sample used includes only individuals in the LFS that have never

migrated or less than 20 years ago andwho are between between 15 and 65 years old currently

or at the time of migration. ‘obs.LFS’ pertains to the number of observation in our final

sample derived from the LFS. pop 15-65 is the population of the zone estimated using the LFS

sampling weights. Jobs is the estimated population-level number of jobs with paid earnings.

Houses is the number of houses with a tap within the house or compound. ‘consum.’ is the

nominal annual level of consumption per adult equivalent, spatially adjusted for food prices.

‘MERGED’ in the column Zone indicates that the line corresponds to a collection of

merged zones within the region. Merging these zones was necessary to merge the LFS

data with the LSMS data. All of the zones in the sparsely populated regions of Gamela and

Benishangul-Gumuz were merged. In the SNNPR region containing a very large number of

small zones, the zones Burji, Konso, Derash and the Segen Peoples’ zone were merged.

Table 2: Zones included in the analysis, with summary statistics.

Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Tigray North Western Rural 916 738003 8479 417 11605

Tigray North Western Urban 308 117236 18645 7162 14564

Tigray Central Rural 1634 1112806 24360 1197 9660

Tigray Central Urban 560 260882 40431 15531 20655

Tigray Eastern Rural 784 555801 29224 1436 10241

Tigray Eastern Urban 1193 214502 31622 12147 29136

Tigray Southern Rural 1310 994514 39122 1923 10102

Tigray Southern Urban 412 146198 19477 7482 29031

Tigray Western Rural 428 340463 3734 460 10650

Tigray Western Urban 194 76726 8925 3432 23187

Tigray Mekele Urban 1278 264919 65167 0 32341

Amhara North Gonder Rural 1959 2850946 45881 6349 8833

Amhara North Gonder Urban 1873 567302 90459 34388 23038

Amhara South Gonder Rural 1515 2153115 60910 3609 11916

Amhara South Gonder Urban 398 276101 44638 15784 15192

Amhara North Wollo Rural 1093 1459643 34185 4507 9974
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Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Amhara North Wollo Urban 300 195177 20083 18039 22823

Amhara South Wollo Rural 1809 2371873 52294 7626 7832

Amhara South Wollo Urban 2787 414613 71568 37080 31647

Amhara North Shewa Amhara Rural 1236 1684467 22970 4215 12380

Amhara North Shewa Amhara Urban 1512 287253 37152 30733 31366

Amhara East Gojam Rural 1602 1956255 47724 3054 8400

Amhara East Gojam Urban 1490 252745 38544 24028 13754

Amhara West Gojam Rural 1524 2125181 49548 3656 14120

Amhara West Gojam Urban 517 299153 28787 18394 16549

Amhara Wag Himra Rural 345 516981 10028 1201 3341

Amhara Wag Himra Urban 56 21820 6931 170 10365

Amhara Awi/Agew Rural 686 969006 36269 1716 11709

Amhara Awi/Agew Urban 236 128303 25516 12771 17535

Amhara Oromia Rural 269 377667 5052 2802 9321

Amhara Oromia Urban 111 73148 17655 8349 25814

Amhara Bahir Dar Special Urban 1280 199973 67352 33255 37100

Oromia West Wellega Urban 226 155389 25020 5085 17108

Oromia East Wellega Rural 765 1581861 33609 1753 11102

Oromia East Wellega Urban 1292 173846 35718 10654 12697

Oromia Ilubabor Rural 639 1141336 14215 1718 12839

Oromia Ilubabor Urban 269 155223 31420 7607 19313

Oromia Jimma Rural 1530 2498684 38894 3769 10305

Oromia Jimma Urban 229 147357 26545 3951 29148

Oromia West Shewa Rural 1088 1851274 33318 2615 12157

Oromia West Shewa Urban 391 321917 62012 23030 14644

Oromia North Shewa Oromia Rural 815 1358272 73819 3691 12197

Oromia East Shewa Rural 555 1035219 74971 6765 12652

Oromia East Shewa Urban 1838 442626 89180 44856 24972

Oromia Arsi Rural 1388 2525899 91616 4372 13322

Oromia Arsi Urban 1612 392751 61509 31754 24410

Oromia West Harerge Rural 1038 2226038 47245 3432 14115

Oromia West Harerge Urban 280 222586 41052 12073 20917

Oromia East Harerge Rural 1623 2810431 26646 9714 15522

Oromia East Harerge Urban 353 280888 18255 9065 25100

Oromia Bale Rural 691 1256138 22855 3869 15477

Oromia Bale Urban 275 241488 29749 20009 20399

Oromia Borena Rural 495 1073541 14207 1599 11305

Oromia South West Shewa Rural 670 1199779 13247 2848 9832
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Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Oromia Guji Rural 694 1707576 10118 1738 13614

Oromia Guji Urban 216 141631 24155 8059 22543

Oromia Jimma special Urban 1399 155720 38615 14542 23025

Oromia West Arsi Rural 986 1940371 26367 5128 7674

Oromia West Arsi Urban 1562 397638 48230 24449 13559

Oromia Kelem Wellega Rural 488 812633 17603 1333 13399

Oromia Kelem Wellega Urban 145 79948 7653 2304 17687

Oromia Horo Guduru Rural 279 487584 33867 2520 12566

Benish.-G. MERGED Rural 2767 788836 15285 499 12295

Benish.-G. MERGED Urban 2086 156318 27892 302 23353

SNNPR Gurage Rural 1078 1144072 16721 4042 22565

SNNPR Gurage Urban 350 220342 39479 11541 21887

SNNPR Hadiya Rural 1103 1223226 25444 3070 13706

SNNPR Hadiya Urban 1436 168083 28130 10421 42814

SNNPR kembata tembaro Rural 574 624118 12856 906 6491

SNNPR kembata tembaro Urban 293 122834 20496 4850 7909

SNNPR Sidama Rural 2566 3006280 31079 7749 11712

SNNPR Sidama Urban 377 254024 32371 9879 24916

SNNPR Gedio Rural 688 757318 7421 1504 10610

SNNPR Wolayita Rural 1318 1438751 15606 4291 12939

SNNPR Wolayita Urban 1621 272785 45363 11628 18237

SNNPR South Omo Rural 475 573842 6264 901 6100

SNNPR South Omo Urban 114 57976 12626 1987 35429

SNNPR Keffa Rural 706 880847 24985 883 7874

SNNPR Keffa Urban 180 98390 13333 1806 10066

SNNPR Gamo Gofa Rural 1311 1586130 21092 3177 13430

SNNPR Gamo Gofa Urban 1495 229939 36760 15153 11656

SNNPR Bench Maji Rural 570 609542 14211 1122 6059

SNNPR Bench Maji Urban 229 136934 24737 1719 13093

SNNPR Dawro Rural 429 551500 13830 541 7491

SNNPR Dawro Urban 65 48928 11483 169 29510

SNNPR Konta Rural 131 170581 1771 282 7112

SNNPR Selti Rural 634 631856 13698 2548 7852

SNNPR Selti Urban 120 90954 18882 2175 33856

SNNPR Alaba Rural 243 250763 7678 635 6409

SNNPR MERGED Rural 459 602806 12645 369 4921

SNNPR MERGED Urban 124 54735 10326 4900 11418

Gambela MERGED Rural 2124 248060 6156 350 8819
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Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Gambela MERGED Urban 2358 102926 17199 155 18638

Harari Hareri Rural 1626 96766 1336 440 15796

Harari Hareri Urban 2379 114248 24826 15108 25086

Addis Ababa Addis Ababa Urban 19196 3105712 892649 871494 22848

Dire Dawa Dire Dawa Rural 1609 140032 4051 823 14615

Dire Dawa Dire Dawa Urban 2392 244119 48724 20123 23222

Appendix B Ð Some remarks on the relation between discrete choice,

constrained gravity equations and multilateral resistance terms

There is an asymmetry in how the size of the origin (the number of choice-making agents

𝑝𝑜𝑝𝑜 ) and the size of the destination (the number of opportunities 𝑁𝑑 ) enter the gravity

equation (5): whereas 𝑁𝑑 appears in the nominator and denominator, 𝑝𝑜𝑝𝑜 only shows up in

the nominator but not in the denominator. This stems from an asymmetry in the assumptions:

The number of agents in each origin is given or fixed. Therefore if less individuals choose a

specific destination, some other destination (or the origin) must experience a higher inflow

from this origin. The number of arrivals in each destination is not fixed, in contrast. If less

migrants choose a specific destination, there typically is no constraint enforcing that the

decrease in inflows from one origin must be compensated by an inflow from another origin.

Given that only the number of potential migrants in each origin is fixed, this model is known

as the origin, production, or single constrained gravity equation (see Wilson, 1971). Taking

the number of decision takers in each origin as given, but not the inflow per destination,

seems particularly warranted in the study of ‘supply driven’ phenomena such as refugee

flows or migration from underdeveloped countries where a decrease in the inflow from one

origin to a specific destination does not imply an increase in the inflow from another origin.

The assumption of a fixed number of individual choice-makers in the origin is embedded

in discrete choice frameworks such as multinomial logit and nested logit models. It can be

implemented in a Poisson regression by including origin fixed effects, as emphasised by

Fally (2015) in the context of international trade, but was already known by for example

Fotheringham and Williams (1983); Davies and Guy (1987) and Griffith and Fischer (2013).

The factor 1/
∑

𝑒∈𝐷 𝑁𝑒𝑦𝑒𝜙𝑜𝑒 in equation (5) assures that the constraint holds that
∑

𝑜𝑚𝑜𝑑 =
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𝑝𝑜𝑝𝑜 . It is therefore called a ‘balancing factor’ by Wilson (1971), and corresponds to one of

the ‘multilateral resistance’ terms of Anderson andWincoop (2003) or Bertoli and Fernández-

Huertas Moraga (2013).

In the context of regional migration, or migration between similar countries, it may be

reasonable to also consider the total inflow in each destination as given. An example would

be the case where opportunities are jobs that need to be filled. If an inflow from one origin

to some destination decreases, the jobs in the destination will be filled by an increase in the

flows from other origins. Strictly imposing this constraint gives rise to the Wilson doubly

constrained model (see Wilson, 1971) which is isomorphic to the gravity model of Anderson

and Wincoop (2003).8 The doubly constrained model can be empirically implemented in a

discrete choice framework by including destination specific constants. As the number of

choice makers is fixed inherently in discrete choice models, the origin-constraint always

holds9. Using a Poisson regression, the doubly constrained model is what is estimated when

including origin and destination dummies (fixed effects). The estimated values of these

dummies corresponds to the origin and destination ‘balancing constraints’ or ‘multilateral

resistance terms’.

This text focussed on the origin-constrained model which has received more attention

in the recent economic literature on migration. However, although most studies derive the

origin-constrained model from a discrete choice framework, many studies are subsequently

ś perhaps unknowingly ś estimating a doubly-constrained model by including both origin

and destination fixed effects in the Poisson regressions in their empirical implementation.

8Whereas Anderson and Wincoop (2003) derived their ’doubly constrained’ model using CES preferences,
Wilson (1970, 1971) used information theory (entropy maximisation) and Anas (1983) used discrete choice
theory. See for example Persyn and Torfs (2016) for an application of a CES based doubly constrained model
to commuting.

9Anas (1983) shows that the maximum likelihood estimate of the destination specific constant in a multi-
nomial framework equals the expression for the balancing constraint (multilateral resistance term).
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