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This paper investigates the incentives to manipulate sequential markets by

strategically reneging on forward commitments. We first study the behavior of

a dominant firm in a two-period model with demand uncertainty. Our results

show that sequential markets may be a source of inefficiencies. We then use the

model’s predictions to investigate occurrences of reneging on long-term commit-

ments in Alberta’s electricity market. We develop a machine learning approach

to evaluate manipulations. We find that a dominant supplier increased its rev-

enues by $35 million during the winter of 2010-11, causing Alberta’s electricity

procurement costs to increase by above $330 million (20%).
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participants to various seminars and conferences. This research is supported by a grant of the French

National Research Agency (ANR), “Investissements d’Avenir” (LabEx Ecodec/ANR-11-LABX-0047).

1



1 Introduction

“Contracts are like hearts, they are made to be broken”.1 Failures to fulfill contractual

obligations are indeed frequent. As parties recognize the risk of a contract “breach”,

they write clauses to protect themselves against certain contingencies but can hardly

consider them all. In sequential markets, a contract breach may occur for legitimate

reasons as, say, a shortage may force a supplier to renege on its promise to deliver

some goods at a given date. Yet, insufficient penalties (or imperfect penalty schemes)

imposed in case of such contingencies give rise to a moral hazard problem by leaving

space for parties to renege on their commitments for strategic reasons. This moral

hazard problem can have significant consequences in terms of efficiency and welfare

distribution, especially in markets where prices are very sensitive to unexpected supply

or demand shocks.

In this paper, we first develop a theoretical framework to analyze the behavior

of a dominant firm facing a competitive fringe in a two-period model with imperfect

commitment and demand uncertainty. Unlike in most of the literature on sequential

markets, we find that a spot price premium can arise in equilibrium, because of the

imperfect commitment problem. Second, we leverage machine learning to test our

model’s predictions and investigate manipulations using a rich dataset about Alberta’s

electricity market in Canada. The empirical analysis focuses on alleged occurrences

of strategic reneging disguised under claims of “emergency outages” of power plants

under long-term contracts. Third, we estimate the welfare consequences of imperfect

commitment in this market. A dominant supplier is found to have caused Alberta’s

electricity procurement costs to increase by above $330 million from November 2010 to

February 2011. The firm earned an extra $35 million in revenues. Rival suppliers also

greatly benefited from the price increases, of up to +$950 per megawatt-hour (MWh)

1So is reported to have said Ray Kroc, the fast-food tycoon who built the McDonalds empire.

2



in some instances.

Our theoretical framework aims at investigating how imperfect commitment inter-

acts with market power in a sequential setting. We show that the decision to renege

crucially depends on the residual demand. A less elastic residual demand causes the

manipulation to have a larger price impact, while larger demand realizations increase

the volume of spot sales which implies more leverage. The key prediction is that the

dominant supplier will modify both its forward and spot supply strategies upon an-

ticipating a profitable reneging opportunity. Our theory shows that the exercise of

market power and strategic reneging can be strategic substitutes or strategic comple-

ments, depending on market conditions. We can nevertheless establish predictions

about the direction and size of the supply shifts. These predictions provide guidance

to detect strategic reneging, collect indirect evidence of potential misconduct, measure

its consequences, and thus assess the need for regulatory intervention.

In our model, the monopolist competes against a competitive fringe over two periods

to supply a homogeneous good at a particular delivery time. Demand is random and

assumed to be perfectly inelastic.2 The residual demand curve is nevertheless elastic

in both periods due to the presence of the fringe. In the first period, a share of the

expected demand is allocated through forward contracts. The realized demand net of

these commitments is supplied in the second period on the spot market, where both

production and consumption take place. We assume away arbitrage opportunities

across time to restrict attention to the consequences of imperfect commitment. The

strategic reneging of commitments on the forward market weakens competition on the

spot market to enhance the firm’s overall profitability.3 More precisely, by reducing

its own output committed at forward prices, the firm increases the net demand in

2This is a reasonable assumption for electricity markets, where end-users are rarely faced with
real-time prices. Relaxing it would not alter our qualitative results because it is not required for
strategic reneging to occur.

3Carlton and Heyer (2008) defines this as extensive conduct in opposition to extractive conduct,
e.g. the exercise of unilateral market power.

3



the spot market because the withdrawn output must be (at least partly) replaced in

equilibrium. The residual demand curve is hence shifted which results in a spot price

increase.4 Strategic reneging is found to reduce the forward price premium, and can

even induce price-convergence in equilibrium. We thus offer a new rationale of why the

latter is no indication of market efficiency.

We test our model predictions and investigate the consequences of imperfect com-

mitment in an application to Alberta’s electricity market. This market provides several

advantages to study strategic reneging. First, incentives to suppliers are relatively sim-

ple in Alberta’s electricity market. Market outcomes are settled through a real-time

auction, and there is no day-ahead auction (Olmstead and Ayres, 2014). Second, the

market structure consists of a few large suppliers and many small firms, and market

power execution is relevant as documented by Brown and Olmstead (2017). Third,

the availability of firm-level bid data allows us to reconstruct residual demand func-

tions and to test the theory. Fourth, the Alberta Market Surveillance Administrator

(MSA) accused an incumbent supplier of market manipulations through strategically

timed “emergency outages” of power plants subject to long-term forward contracts, in

several instances from November 2010 to February 2011.5 This case thus offers a rare

opportunity to investigate strategic reneging empirically.

In our empirical analysis, we interpret these strategic outages as a type of strategic

reneging on long-term forward commitments and evaluate their economic impacts. The

compelling evidence collected in AUC (2015) makes clear that TransAlta’s traders and

plant operators collaborated to time outages. The report reveals that the firm had im-

plemented a trading strategy that involved coordinating forced outages of power plants

under long-term contracts and optimize spot and forward strategies. The strategy also

4Throughout this paper, we use “reneging” to refer to the act of not satisfying one’s forward
commitments to deliver some output.

5We focus on this case study that has been already thoroughly investigated to avoid spreading
erroneous accusations.
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involved wind farms, under similar long-term fixed-price contracts, reducing output

during periods of high wind to inflate wholesale prices.

Our empirical investigation uses a sample of hourly observations containing firm-

level bids, plant-level production, and market outcomes from November 2010 to March

2011. The analysis first documents evidence that the events coincided with high de-

mand and low wind output periods. Although no evidence is found that TransAlta’s

wind production was reduced for strategic reasons during the outages, our results sug-

gest that the firm strategically curtailed wind power during high demand periods more

generally. Second, we show that the firm has optimized its supply strategies accounting

for its private information about the outage timing. To do so, we leverage hourly firm-

level bid data to predict supply and residual demand functions using a multivariate

extension of the least absolute shrinkage and selection operator, or lasso (Simon, Fried-

man and Hastie, 2013). By predicting counterfactual strategies during reneging events

(assuming outages did not occur) we can identify strategy shifts, compute counterfac-

tual market outcomes, and therefore evaluate the manipulations. We find deviations

of the firm’s strategies in the spot market during the outages that are consistent with

our model’s predictions. By making use of its informational advantage regarding the

outage timing, the firm’s bids reveal its intent to manipulate. Those deviations provide

a red flag for regulators to detect potential misconduct early on, and intervene sooner.

Bidding strategies reflecting this inside information indeed deliver indirect proofs of

intent, which, as we argue, can be helpful for prosecution.

We finally use counterfactual strategies to estimate the welfare consequences. The

official investigation found a welfare harm of $100 million, and a $56 million settlement

was made between TransAlta, the alleged manipulator, and the regulatory authority.

This settlement included $27 million for gains disgorgement, $4 million in regulatory

fees, and the rest in penalties. As we show in this paper, accounting for equilibrium

effects yields much greater estimates of welfare impacts and manipulations gains. We

5



estimate that strategic reneging delivered nearly $35 million in extra revenues to the

firm in five months. Other firms also benefited substantially from the increased spot

prices. Ultimately, the corresponding harm to society is estimated above $330 million.

This represents a 20 percentage point increase in total energy procurement costs in the

province.

Finally, our paper provides both theoretical arguments and empirical evidence for

the fact that, although long-term contracts are often considered as a channel to limit

the exercise of market power (AUC, 2015), they may also create incentives for market

manipulations with harmful consequences.

Related literature. This paper is related to the strands of economic literature on

sequential markets, market manipulations, and market power in electricity markets.

First, our framework draws from the durable good monopoly model of Coase (1972)

which identifies a commitment problem. There is also a large literature in economics

studying the role of various factors in the formation of price spreads between sequential

markets (Weber, 1981; McAfee and Vincent, 1993; Bernhardt and Scoones, 1994). We

focus on the role of imperfect competition, as in Allaz and Vila (1993) who show that

sequential markets always improve efficiency. In contrast, we do not assume perfect

arbitrage across markets and introduce an imperfect commitment problem. We find

that, in the presence of contract incompleteness, sequential markets may be a source

of manipulations and inefficiencies.

Our paper is related to Ito and Reguant (2016) who study arbitrage in sequential

markets under imperfect competition and show that the conjunction of limited arbi-

trage and market power generates a forward price premium. We contribute to this

literature by showing that the opposite result, i.e. a spot price premium, can arise in

expectations because of imperfect commitment. We also complement their important

insight about price convergence not being a reliable metric for assessing the degree of
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competition. In our setting, price convergence can arise because of multiple market

failures: imperfect competition and imperfect commitment.

Second, this paper is related to the literature on market manipulations. Ledger-

wood and Carpenter (2012) present a general framework of market manipulations with

examples taken from financial and commodity markets. Strategic reneging can be

interpreted as a form of loss-based manipulation in their framework. One of our

main theoretical predictions is also in line with the general insight, found in the fi-

nance literature, that traders receiving inside information will re-optimize their strategy

(Imkeller, 2003). Market manipulations typically involve collusion (Brown, Eckert and

Lin, 2018; Dechenaux and Kovenock, 2007) or financial derivatives and transmission-

related strategies in electricity markets (Birge et al., 2018; Lo Prete et al., 2019; AUC,

2012). Evidence of strategic timing of “emergency” outages of plants during tight

market conditions also exist in European markets (Bergler, Heim and Hüschelrath,

2017; Fogelberg and Lazarczyk, 2019). We document similar evidence for Alberta and

show that bid data can deliver further evidence of intent to manipulate and allow for

a precise market impact assessment.

Third, there is a large literature on market power in the electricity industry. Boren-

stein, Bushnell and Wolak (2002) and Puller (2007) study the California electricity

market, where suppliers scheduled plant maintenance during peak periods as a way to

exercise market power. Empirical evidence of market power has been found in many

electricity markets, including for capacity (Schwenen, 2015). In our application, we

focus on the “emergency” maintenance of plants under forward contracts used as a

manipulation device to extend unilateral market power in the spot market. There is

also a prolific amount of research about the role of forward contracts to mitigate mar-

ket power. Although forward contracts are generally expected to be welfare-enhancing

(Bushnell, Mansur and Saravia, 2008; Green and Le Coq, 2010), they may yield anti-

competitive outcomes when firms are asymmetric (de Frutos and Fabra, 2012), or
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exacerbate intertemporal market power distortions (Billette de Villemeur and Vinella,

2011). This paper shows evidence that incomplete forward contracts can create incen-

tives to dominant players for market manipulations with harmful consequences.

Fourth, there is a growing empirical literature using machine learning methods in

microeconomic applications. Burlig et al. (2019) use causal inference for evaluating the

gains of energy efficiency investments in K-12 schools in California. More precisely,

they use a lasso approach as a way to construct the counterfactual energy consumption

of each school assuming no investment had taken place. Benatia (2020) and Graf,

Quaglia and Wolak (2020) study the COVID-19 pandemic’s consequences for electricity

markets in France and Italy, respectively. They use machine learning methods to

obtain counterfactual predictions of electricity market outcomes during the first round

of containment measures. To the best of our knowledge, our paper is the first to use

an empirical strategy based on machine learning in the context of a strategic game.

Finally, strategic reneging is not limited to the supply side,6 it can also occur outside

electricity markets and take various forms. For instance, a company can schedule

deliveries and cancel them at the last minute to withhold pipeline capacities,7 or it

can refuse to honor a particular contract clause in order to foreclose competition.8

Alternatively, the firm may force its competitors to renege on their contracts,9 or even

renege as a means to disseminate misleading information.10 Although our paper is

6Faced with large electricity demand reductions caused by the pandemic in spring 2020, French
distributors reneged on their regulated forward contracts, claiming force majeure, hence transferring
their losses to the historical producer (Benatia, 2020).

7Marks et al. (2017) argue that electricity price spikes in New England have been caused by
two companies regularly reneging on scheduled deliveries to withhold pipeline capacity. After due
investigation, regulators have ruled that the companies followed normal industry practices.

8An antitrust investigation of the EU Commission has accused Gazprom to have strategically
reneged on its obligations to accommodate changes of gas delivery points during a cold spell to ensure
that Poland had “no choice but to cover the gas shortage by acquiring from Gazprom” (EUC, 2018).

9In a historical case, two potatoes producers were forced to default on their deliveries because of
the scheme of a competitor which withheld all rail cars with phony deliveries, “leaving 1.5 million
pounds of potatoes rotted because they could not be shipped out of Maine” (Markham, 1991).

10“Spoofing” refers in financial markets to the posting and immediate reneging of quotes on elec-
tronic trading platforms is an observed practice that artificially increases trading activity and tem-
porarily inflates the stock price (Hewitt and Carlson, 2019).
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built in reference to precise market manipulations in a specific context, namely that of

Alberta’s power market, we argue that the lessons learned extend much beyond.

The model is presented in Section 2. The application to Alberta’s electricity market

is developed in Section 3. Section 4 concludes the paper. All propositions and proofs

are in Appendix A, and additional empirical results in Appendix B.

2 Model

A dominant supplier is facing a fringe of competitive firms in a sequential market with

stochastic demand.11 We first present the general setup, and develop the benchmark

case (without reneging), before studying the case with reneging and discuss the results.

Appendix A collects the results in the form of several propositions.

2.1 The Setup

Let us consider a sequential market organized in two periods. The forward market

takes place in period 1 and the spot market occurs in period 2. Both production and

consumption take place in period 2. Final demand is a random variable A realized in

period 2, and which distribution F (·) is supposed to be known. Demand is observable

and perfectly inelastic to prices in the spot market. In period 1, buyers choose to

contract an exogenous share α > 0 of the expected demand E(A) through forward

commitments.12 They hence buy A − αE(A) in the spot market.13 For clarity, we

assume that arbitrage across markets is not possible.14

11The main insights would be unchanged under an alternative modeling of imperfect competition.
12Making α endogenous requires assumptions about the risk aversion of buyers and their degree of

coordination. We opted for not introducing such assumptions and offering results that are valid for
any α. Some additional results are discussed in the Appendix.

13Buyers sell back their extra commitments in the spot market if A < αE(A). In electricity markets,
αE(A) represents the forward obligations of load-serving entities.

14Most of the literature considers at least some degree of arbitrage between spot and forward prices.
We assume away arbitrage because i) it would only affect the level of demand above which reneging
is profitable, and ii) our empirical study focuses on long-term commitments.
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A dominant supplier competes against a competitive fringe on the supply-side. Let

Qt and qt be the quantities sold by the dominant firm and the fringe, respectively, in

period t ∈ {1, 2}. For each player, the total quantity produced is denoted Q = Q1+Q2

and q = q1+q2, respectively. To gain intuition, we specify linear marginal cost functions

as C(Q) = Q/B for the monopolist and c(q) = q/b for the fringe. The hypothesis

of price-taking behaviour implies that the fringe’s supply in period 1 is q1 = bp1,

whereas p2 = (q1 + q2)/b because the whole production takes place in period 2 so that

q2 = b(p2 − p1).

2.2 Sequential Markets under Uncertainty

Residual demand. In period 1, the demand αE[A] is covered. The residual demand

faced by the monopolist is D1(p1) = αE[A]− bp1, meaning that in equilibrium

Q1 = αE[A]− bp1 (1)

must hold. Similarly, the equilibrium quantity sold on the spot market by the monop-

olist must be such that

Q2 = A− αE[A]− q2

= A− αE[A] + b(p1 − p2).

(2)

Spot market sales depend on the difference between realized demand A and total

forward commitments αE[A], as well as the difference between forward and spot prices

p1 − p2, which corresponds to the fringe’s adjustment on the spot market.

Monopolist problem. The expected profits of the dominant firm, hereafter referred

to as the monopolist, can be written

E[Π] = p1Q1 + E[p2Q2]− E

[∫ Q1+Q2

0

C(Q)dQ

]
, (3)
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where the expectation is taken with respect to A, and the prices p1 and p2 are deter-

mined by the equilibrium conditions (1) and (2). The monopolist maximizes profits

by backward induction. Taking forward commitments as sunk decisions, the profit-

maximizing spot sales upon observing A are denoted by Q⋆
2. In the first stage, the

monopolist anticipates its behavior in the spot market and maximizes its expected

profits defined in (3). Its equilibrium forward commitments are denoted Q⋆
1.

In equilibrium, the monopolist’s commitments and final output are positively re-

lated to the level of demand and its relative competitive advantage (Proposition 1).15

Positive price-cost margins in the spot market are observed when the monopolist is a

net seller. Furthermore, there is a forward premium, that is p⋆1−E[p⋆2] > 0, if and only

if the monopolist is a seller in the forward market. This occurs when consumers choose

a large enough degree of forward contracting. Hereafter, we assume α > α so that the

monopolist is always a seller in the forward market.

2.3 Strategic Reneging

The monopolist is now given the ability to renege on some of its forward commitments

upon observing A. In practice, reneging may occur for legitimate reasons, for instance

as a consequence of technical failures, or for strategic purposes. It is nevertheless

costly to verify the legitimacy of supply disruptions and thus whether they constitute

a contract breach or even a fraud.

In this paper, we assume the institutional framework to fully ignore the possibility

of reneging not being legitimate. This is, of course, an extreme assumption. However,

as long as strategic reneging cannot be completely prevented, there will be deviations

in equilibrium under imperfect information (Green and Porter, 1984). Those deviations

15In addition to being the slope of the residual demand, recall that b is inversely related to the
fringe’s marginal cost.

11



are the main focus of the paper.16

Let µ ∈ [0, 1] denote the share of commitments that can be reneged upon because

the firm has a “good excuse” to do so. In our application, µ represents the share of

contracts tied to specific production assets for which the firm can credibly claim an

emergency outage requirement.17 Those contracts commit the assets to the physical

production of µQ1 in period 2. Let R ∈ [0, µQ1] denote the “reneged output”, i.e. the

amount that the monopolist chooses not to produce although initially committed.

The unsatisfied demand R must be served in the spot market.18 The forward price

remains unaffected because it has already been settled. However, reneging affects the

price in period 2 as it shifts upward the residual demand curve faced by the monopolist.

More precisely, the spot price is now determined by

p2 =
1

b
(A− (Q1 −R)−Q2) . (4)

Spot market. Contracts typically account for the possibility of non-delivery. Let τ

represent a per-unit deviation penalty that is contractually binding.19 In period 2, the

monopolist solves the profit-maximization problem

max
Q2,R

Π = p1(Q1 −R) + p2Q2 −

∫ Q1−R+Q2

0

C(Q)dQ− τR, (5)

16An alternative model under asymmetric information would assume two states of the world (true
production failure or not) which realizations are unobservable by the principal. Although we do not
pursue in this direction here, the insights would be unchanged as long as institutions remain imperfect.

17In our study of Alberta’s market, the firm exaggerated minor technical problems reported by plant
operators to substantiate claims of emergency outage requirements. Technical failures occur randomly
and independently of market conditions. The firm can decide whether to take advantage of it.

18More generally, this effect could also be the result of reneging in a different market (Marks et al.,
2017), or due to the refusal to honor a contract clause (EUC, 2018), or even caused by a scheme
forcing some rival firm to default on its delivery obligations (Markham, 1991).

19We will see that this linear contract leads to imperfect commitment. In a more general model,
the availability of a “good excuse” µ would be random. The optimal τ would hence be determined
together with p1 as functions of the distributions of µ and A, and the cost of auditing.
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jointly with respect to Q2 and R taking Q1 as given. The profit-maximizing spot

sales are denoted by Q†
2. As long as Q1 > 0, reneging R > 0 leads to an increase

of the profit-maximizing volume of sales in the spot market Q†
2 = Q⋆

2 + ∆Q2, with

0 < ∆Q2 < R.

The commitment problem essentially arises from a contractual failure. A natural

solution is to penalize any deviation by p2 − p1. Doing so makes the firm financially

accountable for its deviations, which would prevent any strategic reneging in equilib-

rium.20 This penalty can, however, put too much risk on the seller in a situation where

actual technical problems are bound to happen.

The volume of commitments to be reneged upon follows an all-or-nothing strategy

(Proposition 2). It is either profitable to satisfy its contracts and maintain its spot

strategy or to renege as much as possible on commitments and modify its spot strategy

to account for this anticipated decision. The most profitable option is determined by

the realized level of demand. Demand must be sufficiently large for this conduct to be

profitable. Increasing the amount of commitments allows to shift the residual demand

further to the right upon reneging, hence it results in a greater likelihood of a profitable

manipulation.

Reneging incentives. The optimal strategy can be characterized by comparing the

profits obtained in each case. For a given realized demand A, let us denote the ex-post

profits in the two cases by,

Π⋆(A) = p1Q1 + p⋆2Q
⋆
2 −

∫ Q1+Q⋆

2

0

C(Q)dQ, (6)

20This corresponds to financial forward contracts. Substituting τ by p2−p1 in (5) yieldsQ†
2
−Q⋆

2
= R,

hence p2 is unchanged in equilibrium and the problem vanishes. However, in a supply function auction
with binding capacity constraints, no finite penalty can fully deter strategic reneging (Benatia, 2018a).
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when commitments are satisfied, and

Π†(A) = p1(1− µ)Q1 + p†2Q
†
2 −

∫ (1−µ)Q1+Q
†
2

0

C(Q)dQ− τµQ1
(7)

when the firm reneges on µQ1. It is profitable for all A such that Π†(A)−Π⋆(A) ≥ 0,

which is equivalent to

∆p2Q
⋆
2 + p†2∆Q2 +∆C ≥ (p1 + τ)µQ1, (8)

where ∆p2 = p†2 − p⋆2 is the price impact, ∆Q2 = Q†
2 −Q⋆

2 denotes the strategy shift on

the spot market and the cost savings are ∆C =
∫ Q1+Q⋆

2

(1−µ)Q1+Q
†
2

C(Q)dQ.

The condition (8) sheds light on the benefits and losses associated with reneging. On

the one hand, the scheme involves incurring the penalty cost τ as well as the opportunity

cost p1 for each reneged unit. On the other hand, it affects the strategic player’s profits

through two channels (Proposition 3). First, it affects the (spot) market-clearing price

upwards, ∆p2 ≥ 0. This revenue corresponds to the intensive margin, that is the

increased profit margin on the spot sales. The less elastic the residual demand, the

larger this effect. Second, the spot sales are adjusted upwards, ∆Q2 ≥ 0, which will

give more leverage to the manipulation. The less elastic the residual demand, the

smaller this effect. This effect is on the extensive margin.

The elasticity of the residual demand faced by the firm is the key determinant of the

strategy shift, the price impact, and potential cost savings. In any case, reneging on

the quantity supplied on the forward market is associated with an increase in supply on

the spot market, hence to a decrease in the exercise of market power. In other words,

market power and reneging can be considered as strategic substitutes.
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Forward market. In period 1, by assumption, the expected profit maximization

program is changed into

max
Q1

E[Π] =

∫ T

0

Π⋆(A)dF (A) +

∫ +∞

T

Π†(A)dF (A). (9)

For µ = 0, the first-order condition coincides with that characterizing Q⋆
1 in the ab-

sence of reneging possibility. For µ > 0, because the gains from reneging increase with

Q1, the profit-maximizing forward position will be larger if the monopolist anticipates

that reneging will be profitable with positive probability (Proposition 4).

The monopolist faces a trade-off upon choosing Q1. In equilibrium, the firm will

equalize the expected marginal efficiency loss associated with excessive forward sales

with the expected marginal profit associated with spot market manipulation. Upon

increasing its forward sales, the monopolist increases both the likelihood of a profitable

manipulation 1−F (T ) and the profitability of the latter. This comes at the opportunity

cost of “over contracting” when A ≤ T .

Is there a forward premium? The forward premium is decreased by strategic

reneging even without anticipatory adjustments in the forward market (Q†
1 = Q⋆

1) be-

cause the spot price will be larger in expectations. More importantly, there is a range

of forward covers [α, α] for which a spot price premium is sustained in equilibrium

(Proposition 5). It follows in particular that for α = α there is price convergence

and the monopolist is a seller in both markets. This convergence exists in our set-

ting because the monopolist exerts market power and manipulates the spot price via

strategic reneging, and not because of arbitrage and increased competition. This result

shows the limit of using price convergence as a metric to measure competitiveness in

sequential imperfect markets.21

21This point was already made by Ito and Reguant (2016) in a setup with market power and limited
arbitrage. In their setting, more arbitrage leads to more competitive outcomes on average but enlarges
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Remark that buyers now face a trade-off. Indeed, they provide more room for

manipulation to the monopolist by taking more forward contracts to hedge against

higher spot prices (and volatility) caused by reneging. Although useful to deal with

uncertainties, forward markets may introduce distortions into market mechanisms.

Discontinuous residual demand. Residual demand functions are seldom linear in

the real world. For example, in the application, the observed residual demands are

step functions because of the multi-unit auction design. We now extend our results by

considering (discontinuous) piecewise linear functions. Let the fringe’s marginal cost

function be modified to c(q) = q/b + ∆c for q ≥ k, and be unchanged for q < k. The

dominant supplier is paid the spot price

p2 =
1

b
(A−Q1 −Q2) + ∆c, (10)

where ∆c > 0 is the step size, if its output is Q2 ≤ Qk
2 = A−Q1 − k.

In the linear setting, strategic reneging always coincides with a positive strategy

shift to Q†
2 instead of Q⋆

2. The existence of a price step gives rise to a different situation

where it is sometimes profitable to renege on commitments and reduce output below Q⋆
2

to trigger the price step. This occurs for levels of demand smaller than the threshold

T characterized in the linear case. Proposition 6 has two main implications:22

• Discontinuous residual demand functions facilitate strategic reneging because it

is now profitable at lower demand levels; and,

• The exercise of market power and strategic reneging can complement each other

to create a price impact. Indeed, a negative strategy shift would not be profitable

without reneging.

the deadweight loss during periods where the strategic player enjoys high market power.
22Proposition 6 summarizes the results for the case where the step (the discontinuity jump) is at

the left of the profit-maximizing output in the linear setting, i.e. Qk
2
< Q⋆

2
.
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Therefore, a supply-cut on the spot market coincidental with reneging can be due to

strategic manipulations, because market power and reneging can be strategic comple-

ments.

2.4 Lessons for Regulation

The model delivers important insights for regulation. Identifying and proving a manip-

ulative behavior is not a trivial task. It entails providing evidence of the manipulation

and the intent to manipulate, as well as the creation of a price impact caused by the

alleged manipulation. Let us consider that a firm has strategically reneged on its com-

mitments under (false or exaggerated) claims of a production failure. From (8), the

rewards from the manipulation are

(
∆p2Q

⋆
2 + p†2∆Q2 +∆C

)
− (p1 + τ)R. (11)

The profitability depends on the reneged output R and its associated cost p1 + τ ,

the production costs reduction ∆C, the ex-post price p†2, the strategy shift ∆Q2, the

price impact ∆p2 and the counterfactual sales Q⋆
2 assuming reneging had not occurred.

In principle, this formula can be used to estimate the disgorgement penalties. Unfor-

tunately, estimates of ∆p2 and Q⋆
2 may be the subject of contention. Furthermore,

benefiting from a supply disruption or even causing a price impact is not satisfactory

proof of intent. Reneging can occur for legitimate reasons and contracts usually ac-

count for the possibility of non-delivery.23 Additional evidence need usually be collected

through audits performed ex-post, as in the case of our empirical application.

The auditing costs and limited investigation capacities tend to reduce the scope of

regulatory interventions to outright manipulation cases, or following a denunciation.

23Reneging under a claim of a technical issue is not legitimate if the claim cannot be substantiated
(e.g. the technical failure was exaggerated, or reported later so as to time the non-delivery).
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In our application, the strategic manipulations could have escaped the regulator for

long, had they not hurt a (large) rival supplier because of its financial position. The

theoretical predictions of our model deliver potential red flags and additional proofs

of intent which can be helpful to motivate inquiries into more surreptitious cases.

According to the model, the occurrence of a reneging event is more likely to be of

strategic nature if it coincides with tight market conditions (e.g. peak demand, inelastic

residual demand, or low wind output); but also if the firm’s strategy on the spot

and forward markets differ from usual, and reflects that the supply disruption was

anticipated. We argue that, in such a case, the observed adjustments constitute indirect

evidence of intended market manipulations.

In practice, there are often delays between market closure and the time at which

market outcomes are settled. In most electricity markets, offer bids must be submitted

by market participants several hours before actual production, leaving room for an

emergency outage to be declared after market closure. Bids exhibiting a sudden shift

before the outage declaration actually reveals either its strategic nature or that the firm

concealed information about the upcoming occurrence of a (legitimate) forced outage.

In either case, the bids provide proof of misconduct.

Therefore, the regulator can not only use causal estimates of price impacts but also

obtain estimates of counterfactual strategies to evaluate whether further investigation

is needed. Even though regulators have been reluctant to prosecute based on statistical

inference in the past, they are now increasingly using data for market oversight.24 We

propose to collect additional information by leveraging machine learning.

24For instance, the FERC’s investigation into Constellation’s virtual trading activities in New York’s
electricity market was initiated following observations of “bizarre price behavior” by the Division of
Energy Market Oversight (FERC, 2012).
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3 Strategic Reneging in Electricity Markets

The theoretical analysis suggests that outages of power plants can be used to disguise

strategic reneging in restructured electricity markets. We take advantage of the well-

documented market manipulation events that occurred in Alberta’s electricity market

in 2010-2011 to identify strategy shifts and analyze the impact of reneging. We begin

by providing institutional details and data descriptions about the market and the

manipulation events. We then develop a preliminary analysis of the events. Finally, we

propose an in-depth analysis of the firm’s conduct, exhibit additional proofs of intent

to manipulate, and account for strategic effects to assess market outcomes and welfare

impacts.

3.1 Institutions and Data

The Alberta electricity market. Alberta’s electricity system is market-based since

2001. Competition has been introduced on the retail and wholesale segments of the

industry, while transmission and distribution remained as regulated monopolies (Olm-

stead and Ayres, 2014; Brown and Olmstead, 2017). The Alberta Electric System

Operator (AESO) is the authority mandated to design and operate the market. The

revenues of wholesale suppliers in this market consist almost only on payments collected

from the short-run electricity market.25

The electricity market is organized as a uniform-price multi-unit procurement auc-

tion for each hour of the day. Suppliers submit offer bids one day-ahead of physical

production to signal their willingness to produce different amounts of energy. Offer

bids can be modified up to two hours before production. Generators must offer their

available capacity in the market and can choose prices between $0 and $999.99 per

25The Alberta electricity market is an energy-only market, meaning that there are no additional
payment to suppliers to ensuring their profitability. In practice, some additional revenues can be
obtained from supplying ancillary services to the AESO, such as short-term load balancing.
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MWh. Bids take the form of several price-quantity pairs for each generator. The

AESO aggregates them into an industry-level supply function. The market-clearing

price is determined at every minute and equals the highest accepted bid price to sup-

ply the realized electricity demand. Participants are paid the pool price, which is the

time-weighted average price for each hour.

Table 1 provides information with regards to Alberta’s market structure and firm

characteristics. Production is dominated by coal-fired power plants in Alberta, al-

though it has been slowly replaced by natural gas and some additional wind capacity

over the recent years. In 2010-2011, the five largest firms controlled about 70% of

market offers while the rest was controlled by a fringe of over 20 firms. Wind farms are

not included in market shares because they receive fixed-price payments irrespective of

market outcomes. Offer control differs from capacity ownership because of long-term

bilateral contracts between suppliers.26

[Table 1]

Long-term forward contracts. Power purchase arrangements (PPAs) are long-

term contracts of up to 20 years introduced during the restructuring of Alberta’s elec-

tricity industry in 2000.27 The primary purpose of the PPAs was to anticipate poten-

tial market power issues caused by the concentration of capacity ownership within the

hands of incumbent utilities. Before that, 90% of capacity was controlled by TransAlta,

ATCO, and Capital Power. The contract leaves the ownership and operation of the

assets to the owners but gives buyers the right to sell its production to the electric-

ity market. This is essentially a “virtual divesture” for incumbents. In 2000, PPAs

26One caveat of our data is that offer control was not well followed at that time. A few plants have
multiple owners, each of which can submit bids for its respective share. Bid data is not differentiated
in these cases, so we decided to split bids using information on offer controls from MSA (2012).

27In the U.S., this type of contracts is generally called power purchase agreements, and is used for
renewables.
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were sold in auctions with varying private terms including remunerations for fixed and

operating costs, plus a rate of return.

The contracts give the buyer exclusivity to sell the facility’s output up to a certain

capacity, known as its committed capacity. For obvious reasons, the PPAs include

incentives to owners to achieve the committed capacity. These incentives are referred

to as availability incentive payments. If the available capacity is above a target specified

by the contract, then the owner receives this payment. Conversely, if capacity is below

the target the owner must pay this amount to the PPA buyer (AUC, 2015). The

incentive payment is calculated as a 30-day rolling average of prices times the difference

between the actual available capacity and the specified target.

We interpret those contracts as long-term forward commitments tied to some phys-

ical capacity. The plants subject to PPAs provide baseload production which is offered

at low prices on the energy market by the PPA buyers.28 The average offer price is

between $2/MWh and $17/MWh for PPA plants in our sample, and 85% of capacity

is offered at $0/MWh. For that reason, they almost always produce up to available

capacity. The contract commits the owner to deliver whatever output the buyer might

want up to target capacity. In this context, strategic reneging consists in choosing not

to deliver the output by reducing available capacity below the contract target, at the

cost of incurring the associated penalty. This conduct can be disguised under claims

of urgent maintenance needs, which must still be substantiated.

The allegations of market manipulations. The Alberta Market Surveillance Ad-

ministrator (MSA) accused TransAlta Corporation of market manipulations through

strategically timed “emergency” outages of its coal-fired power plants under PPAs in

28The energy is sold to a rival firm which then sells to the market. Assuming this rival to be
price-taker (or with large forward covers) the energy would be offered at price p1 in the spot as in our
model. The main results are hence left unchanged. In a strategic setting, reneging would impact the
rival’s cost structure and further exacerbate the manipulator’s market power.
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several instances from November 2010 to February 2011. After due investigation, the

Alberta Utilities Commission (AUC, 2015) concluded that “TransAlta unfairly exer-

cised its outage timing discretion [...] for its own advantage and made its own portfolio

benefits paramount to the competitive operation of the market”. In other words, main-

tenance needs were not urgent and outages could have been delayed to off-peak periods

to prevent substantial market impacts. Ultimately, a $56 million settlement was made.

In the fall of 2010, TransAlta identified the complementarity of its supply strategy

and forced outages of plants under long-term contracts to increase spot prices. The firm

developed the Portfolio Bidding Strategy outlined in an (internal) executive summary

dated October 21, 2010. The strategy’s objective was to enlarge revenues from the

spot market by increasing prices when the firm had a net selling position.29 The main

ingredients of that strategy involved to:

1. (Forward & Spot) Optimize the bidding strategy in the spot market and amount

of forward contracting;

2. (Outages) Coordinate forced outages to optimize market impacts; and

3. (Wind) Have wind farms to reduce output during periods of high wind.

The firm officially started to use this strategy on November 18, 2010. On February

25, 2011, the MSA received a complaint regarding TransAlta’s management of out-

ages of its plants under PPAs. The MSA accused TransAlta of timing forced outages

on 4 different occasions: November 19-21, November 23, December 13-16, 2010, and

February 16, 2011. Details are provided in Table 11 in Appendix B. The evidence col-

lected in AUC (2015) make clear that traders and plant operators collaborated to time

the outages. For example, after the event on November 23, 2010, a trader circulated

29Besides, the firm considered that the price increase would drive forward prices up. This was
expected to create arbitrage opportunities from undervalued forward contracts given the firm’s private
information about forced outages.
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an email stating: “Operations Manager for Sun 1/2, had called me on [November 22,

2010] afternoon about timing a 150 MW derate [...]. We determined to take [it] during

the day for a price impact. [...] This was a great example of the ongoing coordination

we have [...] to optimize outages”.

We interpret strategically timed forced outages of plants under PPAs as a form

of strategic reneging on long-term forward commitments. The firm purposefully re-

strained production from the assets under contracts to benefit its portfolio position at

the cost of the foregone revenues and contract penalties. Note that the plants were

always undergoing actual technical issues although not as urgent as claimed by the

firm. In this respect, the urgency of maintenance requirements is difficult to monitor

for regulators, rival suppliers, and retailers alike. However, as an enforcement mat-

ter, the timing of bids accounting for the outage information relative to actual outage

declaration is key. This is however not observed in our data.

Data. We use public data shared by the AESO and the MSA.30 It contains hourly

spot prices and loads, as well as generator-level information such as hourly bids, avail-

able capacity, and dispatch schedules.31 The data covers the period where the alleged

manipulations took place, that is from November 1, 2010 to March 31, 2011.

This data is aimed at estimating the counterfactual supply strategies during the

events, assuming the outages did not occur. For so doing, we train a predictive model

of strategic bidding using the observations outside of those events. We carry the estima-

tion separately for the sample of (four) peak hours, from 17:00 to 21:00, and (twenty)

off-peak hours. All hourly observations where reneging occurred during the same day

are assigned to a “reneging set”. This consists of the treatment group, whereas the

30We are grateful to Derek Olmstead for sharing generator-level bid data.
31Bids include domestic generation as well as export/import offers to adjacent regions. At the time,

there were no demand-side bidders but some responsive load (about 3% of average demand) for a total
of 245 MW. We neglect this feature due to insufficient data.
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remaining sample is considered as the control group. We split those remaining obser-

vations into a training set and a testing set. The training set is used to estimate the

model whereas the testing set is used to evaluate its predictive power. Sample splitting

is done randomly so that the training sample has roughly 70% of observations. Table 2

provides summary statistics of the main variables for peak and off-peak hours in each

sample. The mean and standard deviations are relatively close between the training

and testing samples. Prices are noticeably larger and excess supply is lower during the

events.

[Table 2]

3.2 Preliminary Evidence of Extensive Conduct

We begin by documenting what features are correlated with the occurrence of the

strategic forced outage events. We then investigate whether the firm curtailed wind

power production to complement the impacts of the strategic outages. Finally, we show

that the firm’s bids account for the outage information.

Strategic timing? First, we investigate whether the outages occurred under tight

market conditions. We regress a binary variable 1outage
t equal to one in hours during

forced outage events on a set of explanatory variables capturing market conditions. We

estimate the following equation by OLS

1
outage
t = β0kt + β1LWt + β2Dt + β3dRDt + α′Xt + ut, (12)

where controls include the firm’s available capacity kt, a binary variable equal to one

during low wind periods LWt (below 5% of max annual production), system demand

Dt, and the slope of residual demand dRDt.
32 We also include a set of time fixed-

32The slope is estimated from each hourly residual demand function using an affine specification.
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effects, denoted Xt, for hours of the day, days of the week, and weeks. Table 3 shows

the estimation results on the entire sample. To maintain consistency throughout the

paper, we choose to report p-values in all tables rather than standard errors. The test

statistics used in Section 3.3 obeys non-standard asymmetric distributions (weighted

Chi-squares) due to the functional nature of the parameters of interest. Therefore,

standard errors do not provide a meaningful way to evaluate statistical significance.33

[Table 3]

The outage events are found to coincide with tighter market conditions on average.

The fixed-effects reveal that outages occurred less often at off-peak hours, and more

often on weekdays, hence coincided with higher demand levels. The abundance of

seasonal controls may explain the negative sign of demand’s coefficient, which is anyway

not found to be statistically significant. Besides, the probability to observe a strategic

outage is higher by 8 percentage points during low wind episodes. We also find that the

firm’s available capacity (excluding PPA plants) was on average larger, which suggests

a selling position on the spot market.

Strategic curtailment of wind power? The firm’s trading strategy described ear-

lier involved the strategic curtailment of wind farms. We investigate whether this

strategy was effectively implemented. To do so, we estimate the following linear model

W TA
t = β′

wsWS +
∑

j 6=TA

βij
wW

j
t + βDDt +

11∑

l=1

βl1
renegl
t + α′Xt + ut (13)

where W i
t denotes firm i’s wind power production, 1renegl

t is a dummy equal to one for

all hours with reneging in day l ∈ {1, ..., 11}, and zero in all other hours. Dt denotes

total demand. We use wind speed measures WS, from three weather stations located

33Inference is discussed further in Section 3.3 and formally detailed in Appendix B.
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nearby TransAlta’s wind farms,34 and measured output from rival wind farms, W j
t ’s,

as predictors. We also include hour of the day, day of the week, and week fixed-effects.

Table 4 reports the results of the estimation and a F-test of the null hypothesis that

all coefficients associated with reneging dummies are zero.

The results of the F-test yield no evidence of significant output anomalies from the

wind farms owned by TransAlta during the outages investigated by the regulator. It

indicates that traders took advantage of low wind power periods, but did not engage in

strategic wind curtailment to exacerbate market impacts. However, we find the firm’s

wind power production to be negatively correlated with total demand. The smaller

estimate (column 5) corresponds to an elasticity of wind production with respect to

demand of −0.66, after controlling for weather conditions. This result suggests that

the firm strategically curtailed wind power during periods of large demand.35

Long-term renewable contracts, like feed-in tariffs, do not impose delivery obliga-

tions. For this reason, the curtailment of renewable power is a means to “renege” that

is always possible and never costly. Therefore, these contracts provide firms with a

free market manipulation channel, which should draw attention from regulators and

market designers.

[Table 4]

3.3 Machine Learning from Bids about Manipulations

We propose to quantify the strategy shifts during reneging events using a predictive

model.36 We first develop a machine-learning approach to compute counterfactual

strategies which can be used to: identify potential misconducts, derive counterfactual

34TransAlta had seven wind farms, each located between 23 km and 42 km away from their closest
weather station.

35Due to the inherent difficulty to predict wind power production, a more precise empirical analysis
would require more granular weather and wind power data.

36The title of this section is a reference to Burlig et al. (2019) which inspired our empirical approach.

26



market outcomes, and evaluate welfare consequences. Instead of proposing a structural

model, we opt for a predictive model of the firm’s strategy under business-as-usual

conditions, i.e. in absence of strategic reneging.

Our preference for a predictive approach in this context is motivated by two main

reasons. First, the major advantage of the structural approach is to be able to simulate

counterfactual outcomes under different structures that have never been observed in

practice, such as a prospective change in market design. Our objective is, instead, to

predict strategies and market outcomes under business-as-usual conditions, assuming

reneging had not happened.

Second, the framework developed in Section 2 provides helpful indications about

what to look for in the data. Nevertheless, it lacks too many important elements to be

used as a structural model. The structural approach requires imposing behavioral as-

sumptions and choosing an equilibrium concept. The actual game played in Alberta’s

electricity market is a supply function auction with capacity constraints under uncer-

tainty, choosing an equilibrium concept is hence not trivial.37 While the Cournot model

has been found to apply reasonably well to Alberta (Brown and Olmstead, 2017), it

assumes elastic residual functions and quantity strategies that cannot explain the neg-

ative supply shifts predicted in Proposition 6. In comparison, the predictive approach

does not require an equilibrium concept, works with complex strategy spaces (here sup-

ply functions), and can even capture the tendency of some firms to act sub-optimally

without imposing behavioral assumptions. This approach also has its limits: it relies

on an identifying restriction, which is discussed in due time.

Empirical strategy. Let us denote the observed supply and residual demand func-

tions by St and RDt in hour t. Following our model’s notations, let (S†
t , RD†

t ) and

(S⋆
t , RD⋆

t ) be the potential outcomes with and without reneging, respectively. How-

37Holmberg and Wolak (2018) provides a theoretical framework tailored to this context.
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ever, both potential outcomes (S⋆
t , RD⋆

t ) and (S†
t , RD†

t ) are never observable for the

same hour. We propose to train predictive models for (S⋆
t , RD⋆

t ) so as to derive counter-

factual estimates during reneging events (Ŝ⋆
t , R̂D

⋆

t ). These estimates reflect the market

conditions that would have prevailed in absence of reneging. The estimated strategy

shift is defined as

∆̂St(p) = St(p)− Ŝ⋆
t (p), (14)

for every price p ∈ [0, 999.99]. It corresponds to the individual treatment effect of

reneging during “reneging hours” (treatment), and predictions errors during “normal

hours” (control).

The (observed) residual demand function is directly impacted by reneging as it

makes part of the supply committed at forward prices unavailable. In addition, the

function can also be impacted by a reaction from competitors to the supply disruption.

The estimated change in residual demand function, defined as ∆̂RDt(p) = RDt(p) −

R̂D
⋆

t (p), accounts for both effects. To test for the presence of competitors’ reaction

to the supply disruption, we construct an alternative counterfactual residual demand

function. The latter assumes that i) no strategic reaction was caused by reneging; ii) the

withheld capacity would have been offered at zero prices (as observed in the data).38 It

is defined as RDt(p) = RDt(p)+
∑

r∈Rt
kr, where kr denotes the capacity which would

have been available in absence of reneging by plant r ∈ Rt, the set of plants which

reneged. By construction, in absence of strategic reaction from competitors, R̂D
⋆

t and

RDt should be statistically equivalent.

We also study the causal effects of reneging on market outcomes, that is price and

output deviations. The equilibrium condition, given by

Ŝ⋆
t (P̂t) = R̂D

⋆

t (P̂t), (15)

38As mentioned earlier, 85% of PPA capacity is offered at $0/MWh.

28



yields the counterfactual price P̂t as well as the corresponding firm’s output Q̂⋆
t =

Ŝ⋆
t(P̂t). The output change is defined as ∆̂Qt = Qt−Q̂⋆

t and the price impact is ∆̂P t =

Pt− P̂t. If the predictive model performs well, those values should be statistically close

to zero except if reneging affects market outcomes. This approach has the desirable

feature to account for the firm’s own strategic reaction to reneging, in addition to the

strategic reactions of its competitors.

Identification. The identification of causal estimates relies on the assumption that

the treatment selection conditionally on covariates is as good as random. This as-

sumption holds as long as, conditional on the covariates, the strategic outage decision

depends only on random factors independent of market conditions, such as a “good

excuse” to substantiate the need for urgent maintenance.39

Our theoretical model sheds light on the principal factors affecting the profitability

of reneging: demand, wind, and the residual demand’s elasticity. We thus claim that

the identifying restriction holds because: 1) all of these factors can be controlled for to

some extent using observable variables, and 2) the counterfactual predictions obtained

under this assumption are consistent with our theoretical results.

However, our identifying assumption is subject to some limitations. A bias may arise

if the data used to estimate the model, the “control group”, differs in systematic ways

from the data when reneging occurs, the “treatment group”, because of unobservable

factors.40 For instance, if reneging occurs partly because some particular rival generator

is in maintenance but there is no similar observation in the control group, then we would

lack information about supply strategies in this circumstance and the counterfactual

predictions would be biased. It is also possible that the firm’s decision to renege

39The regulatory investigation revealed that each event was initiated by a plant operator reporting
a (non-urgent) technical issue to the trading department (AUC, 2015).

40Although instrumental variables might provide a solution to this limitation, accommodating for
an endogenous treatment in our functional framework with variable selection is beyond the scope of
this paper.
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depends on market dynamics, such as recent rival bidding behaviors. For instance,

Brown, Eckert and Lin (2018) argue that firms in Alberta may be utilizing bidding

patterns to communicate with their rivals to increase market prices. If the occurrence of

such collusive behaviors is correlated with that of strategic reneging, our counterfactual

predictions would suffer from a selection bias.41 Bearing these limits in mind, we now

present the rest of our methodology.

Estimation. Let us consider the following functional linear model

St(p) =
103∑

s=1

βks(p)ks + βZ(p)
′Zt + α(p)′Xt + ut(p), (16)

defined for all p, where St(p) is the firm’s supply as a function of the price p, ks

is the available capacity of generator s ∈ {1, ..., 103}, and Zt is a set of predictors

including market demand, wind production, and import and export capacities. The

variable Xt is a set of time dummies for hours of the day, days of the week, and

weeks. ut is a functional error term. Although equilibrium strategies are best-response

to each other, our objective is to identify the best exogenous (or more precisely pre-

determined) predictors of firm-level strategies. Doing so allows to predict equilibrium

strategies without solving for an equilibrium, because they will depend on each other

through the predictors only. The model does not condition directly upon the strategies

of rivals. However, the specification includes the hourly capacity availability of every

single generator in Alberta, irrespective of their ownership or control.42 These variables

are used to control for the expected residual demand’s elasticity and the fact that

TransAlta may have based its reneging decisions on some particular rival generator’s

41Remark that such a bias would lead to overestimate the counterfactual supply functions, hence un-
derestimate (overestimate) |∆S| for negative (positive) shifts, and yield results that could potentially
contradict our theory.

42During hours with reneging, we predict the counterfactual strategies by setting the available
capacity ks of the unavailable plant s to its value in the hour preceding any reneging.
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availability.

The model parameters are functions defined over the price interval, and thus are

infinite-dimensional. To reduce the dimensionality,43 we estimate the multivariate

model given by

St =
103∑

s=1

βks
ks + β′

Z
Zt +α′Xt + ut, (17)

where the variables are evaluated over an evenly-spaced grid of prices {p1, p2, ..., pL}

and stacked into vectors of length L = 52, denoted by bold variables. For example,

St =

(
St(p1) St(p2) ... St(pL)

)′

is a vector of supply quantities evaluated over

the price grid. Vectors for variables that do not depend on p in (16) consist of repeated

values. ut is an iid multivariate gaussian error term. The exact same model is applied

to the residual supply RS(p) =
∑

j 6=TA Sj(p) instead of S(p), which yields the estimate

of interest R̂Dt(p) = Dt − R̂St(p).

The model is estimated on the training set of observations with the multivariate

extension of the lasso developed by Simon, Friedman and Hastie (2013).44 By design,

the lasso selects variables that best predict the outcome of interest and shrinks the

others to zero. The lasso is a form of penalized regression useful for model selection.

In our setting, it is difficult to know what drives the firm’s strategy. At the same time,

we want to prevent overfitting issues caused by the inclusion of too many variables.

The model parsimony depends crucially on the chosen value of a tuning parameter λ.

We opt for using 20-fold cross-validation and select the value of λ that minimizes the

average mean-squared-errors.

The predicted functions obtained from model (17) are finite-dimensional vectors

that are not restricted to be monotone, unlike supply functions. We recover a smooth

43The estimation of the functional model in (16) can be done using the approach of Benatia, Carrasco
and Florens (2017) although it would not allow for variable selection.

44More specifically, we use the glmnet package. We also tried using an elastic net regression, that is
the combination of L1 (lasso) and L2 (ridge) penalties of the parameters, and a neural network. The
results were slightly worse in terms of RMSE on the testing set and are thus not reproduced here.
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monotone function for each estimate using the penalized spline smoothing approach

of Ramsay (1998). Inference is described in Appendix B. It essentially boils down to

testing the null hypothesis

H0 : ∆̂St(p) = 0, ∀p. (18)

The test statistics are derived from weighted Chi-square distributions, with weights

that depend on the eigenvalues of the asymptotic covariance operator of the functions

∆̂St(·). Because these distributions are not symmetric, the standard errors are not

appropriate to assess statistical significance. It would be possible to use a t-test, but

that would only provide a pointwise evaluation of statistical significance. In contrast,

we choose to use a (uniform) test which evaluates the significance of the entire functions.

We compute p-values using an asymptotic approximation and a parametric bootstrap.

Model evaluation. Table 5 shows the main summary statistics of model perfor-

mance for S and RS in peak hours45 in the training, testing and reneging set, as well

as coverage probabilities for prices and outputs’ confidence intervals. The last column

reports the associated statistics for R̂S evaluated against the constructed counterfac-

tual RS which assumes no outage and no strategic response.

The model performs well for both S and RS. For instance, the supply predic-

tion exhibits a mean integrated absolute bias of 21.5 MW on the testing set, which

corresponds to a mean integrated relative absolute error of 2.5%. The root-mean-

integrated-squared-error (RMISE) is also within the same order of magnitude for both

the training and testing sets, meaning that overfitting is not a concern. Substantially

larger biases and RMISE are observed for the reneging set.

Inference also performs well on the testing set. The rejection rates for the functional

test defined in (18) are reasonably close to the nominal size of 5% for both the asymp-

totic approximation and the bootstrap. Also, we report the coverage probabilities for

45Results are similar for off-peak hours (Table 13 Appendix B).
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estimated prices and outputs derived from the pair of functions (Ŝ, RS), that is using

the observed residual supply, and (Ŝ, R̂S), i.e. using the predicted residual supply. For

the testing set, 5% level confidence intervals are found to be close to 95%.

The results for the reneging set yield important insights. As expected, the predic-

tions (Ŝ, R̂S) differ significantly from their observed values. Since RS does not account

for the strategic reaction of competitors to the outages, while R̂S does, their differ-

ence provides evidence of strategic reactions from competitors. We find that it is the

case in 34% of reneging hours. Finally, coverage probabilities for equilibrium outcomes

indicate that counterfactual prices and outputs differ significantly from observed ones.

[Table 5]

Strategic reactions and counterfactual equilibria. We illustrate the results in

Figure 1 for November 19, 2010, 18:00 and Figure 2 for November 21, 2010, 17:00.

Observed supply and residual demand functions are shown by the plain lines and

counterfactuals are represented by the dashed lines. We also display the 95% highest

density region of counterfactual equilibrium outcomes.46 The model predicts that the

supply strategy was increased by about 55 MW in the first example, and reduced

by about 70 MW in the second. In the former case (Figure 1), the supply strategy

shift had virtually no impact on spot prices but profitability increases thanks to the

additional sales. In the latter case (Figure 2), the price impact would have been only

+$30, instead of +$360, had the firm not reduced its supply.

[Figure 1]

[Figure 2]

46The bootstrapped distribution is used to estimate highest density regions and construct a confi-
dence set for equilibrium outcomes (P̂t, Q̂

⋆
t
) (Hyndman, 1996).
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The estimated strategy shifts can be summarized by focusing on the integrated dif-

ference between the observed function and its prediction, ∆̂St =
∫ p

p

(
St(p)− Ŝ⋆

t (p)
)
dp

over different price intervals. This provides information about whether supply offers are

modified for low-, middle- or high-range prices, where ∆̂Sl, ∆̂Sm and ∆̂Sh denote the

difference integrated over the price interval [$0, $150], [$150, $500] and [$500, $1000],

respectively. To test the significance of these differences, we calculate the p-values of

the functional test defined in (18) for each interval.

Those statistics are reported in Table 6 for peak hours starting at 18:00 and 19:00

during the first day of each of the four identified events. We find evidence that the dom-

inant firm has increased (November 19th and November 23rd), more or less maintained

(December 13th), or decreased (February 16th) its supply significantly.

[Table 6]

Analogous statistics for the residual demand are reported in Table 14 in Appendix

B. The integrated difference is now taken between the constructed “naive” counterfac-

tual function and the residual demand prediction, ∆̂RDt =
∫ p

p

(
RDt(p)− R̂D

⋆

t (p)
)
dp

over the same price intervals. Those values measure the strategic reaction of rival firms

to reneging for low-, mid-and high-range prices. We find that there are no significant

deviations in many hours, however for some hours, rival firms seem to have strongly

reacted to the outages. For example on February 16th, competitors reduced their offers

for low and high prices by as much as 300 MW in addition to the outage. Rivals have

hence largely contributed to the price jump observed during this event.

The supply and residual demand predictions are used to compute counterfactual

market outcomes. Table 7 reports the corresponding price and output impacts of

reneging. Price impacts are consistently large, and output impacts are often significant.

The latter are positive in many hours and sometimes negative.

[Table 7]
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Testing the model’s predictions. Our theoretical model has four testable impli-

cations: 1) the magnitude of strategy shifts are positively related to the elasticity of

residual demand; 2) price impacts are negatively related to the elasticity of residual

demand; 3) output impacts are positively related to the elasticity of residual demand;

and, 4) negative supply shifts are profitable only to benefit from a large discontinuity

jump in the residual demand function.

To test the first three predictions, we regress ∆̂St, ∆̂P t and ∆̂Qt onto a constant and

the slope of residual demand functions. An increase in the slope implies a less elastic

function hence smaller strategy shifts, lower quantity cuts and larger price jumps. The

first three columns in Table 8 show that the empirical results are in line with those

theoretical predictions.

The last prediction follows from Proposition 6. Discontinuous residual demand

functions can create incentives to shift the supply strategy to the left to reach the

discontinuity jump. To test this, we construct a variable Stepsize, which measures

the size of the price step (in $) if the firm’s strategy is at a discontinuity jump in

its residual demand function, and is otherwise equal to zero.47 The last two columns

of Table 8 show regression results of 1∆̂St<0, a dummy equal to 1 when (integrated)

supply shifts are negative, onto a constant, the slope of RD and Stepsize.48 Results

show that negative shifts tend to coincide with supply strategies which “target” large

discontinuity jumps in the residual demand function.

[Table 8]

47This feature occurs relatively often in our data, suggesting that the firm has much information
about its residual demand.

48Similar results are obtained for off-peak hours (see Table 15 in Appendix B). As a falsification
test, we run the same regressions using the testing set and find that those variables are, as expected,
no more significantly correlated with the predicted changes (see Table 16 in Appendix B).
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3.4 Evaluating the Impacts

Firm-level impacts. The firm-level hourly gross gains from reneging are defined as

∆̂Πt = PtQt − P̂tQ̂
⋆
t , (19)

and, as ∆̂Π× = ∆̂Πt/P̂tQ̂
⋆
t in relative terms. Those gains result directly from reneging,

i.e. from the outage-induced displacement of the residual demand function, but also

indirectly through the firm’s supply strategy shift and the possible strategic reactions

of its competitors.

We isolate the direct effect of reneging on revenues. To do so, we estimate equi-

librium outcomes based on counterfactual residual demand functions accounting for

reneging but assuming no strategic reaction. These functions are obtained as before.

We train separate models specified like (17) to predict the supply functions of plants

under PPAs (see Table 17 in the Appendix). The counterfactual residual demand of

interest is then defined as R̃D
⋆

t = Dt − (R̂S
⋆

t −
∑

r∈Rt
Ŝr
t ), with Rt being the set of

plants under outage in t. The counterfactual equilibrium (P̃t, Q̃
⋆
t ) is determined by

the condition Ŝ⋆
t (P̃t) = R̃D

⋆

t (P̃t). The direct gains from reneging are hence given by

P̃tQ̃
⋆
t − P̂tQ̂

⋆
t , whereas indirect gains are PtQt − P̃tQ̃

⋆
t .

Table 9 reports the results for peak and off-peak hours aggregated by event, and

the share of direct gains from reneging. The firm’s total gains from manipulations at

peak are evaluated at almost $15 million, and $20 million at off-peak. Direct gains

from reneging make the bulk of those revenues (80%). However, strategic responses

generated about 70% of revenues during the first event.49 This result confirms that

strategic bidding can exacerbate substantially the market impacts of reneging. There-

fore, neglecting strategic effects can lead to greatly underestimate market impacts.

49The gains were sizable in many hours. For example, at 18:00 on November 19, 2010, we find extra
revenues of above 350,000$, a 9-fold increase of counterfactual hourly revenue.
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[Table 9]

These estimates abstract from potential cost savings related to output changes,

financial forward contracts, and outage costs. Cost changes, though probably small,

could be accounted for using the estimates from Brown and Olmstead (2017). However,

forward contracts can substantially reduce those gains if a large share of the firm’s

output is committed to be supplied at the forward price. Data on forward contracts

being difficult to obtain, we neglect this aspect.50 Outage costs consist of the foregone

revenues from reneged commitments and penalty charges, which could be calculated

if one had detailed information on the contractual arrangements. However, the firm

would have had to shut down the plant for maintenance anyway, although at off-peak

to avoid large market impacts. The firm would have incurred some costs anyway due

to the design of availability incentive payments.

Welfare impacts. Short-run demand being inelastic, the only impact of strategic

reneging on total welfare results from the inefficiencies on the supply-side. More ex-

pensive production units are used instead of cheap coal-fired plants under outage, which

undermines the system efficiency and brings up prices. However, this cost inefficiency

is likely to be small, because reneging affects only a tiny fraction of the total supply.

We hence choose to focus only on the “redistributive” impacts of the outages, which

corresponds to the transfer from buyers to sellers given by T̂t =
(
Pt − P̂t

)
Dt and

T̂×t = T̂t/P̂tDt in relative terms. It corresponds to a transfer from retailers/consumers

to producers in absence of financial forward contracts. In their presence, the total is

unchanged but gains and losses are distributed differently. For example, Capital Power,

the supplier whose complaint initiated the regulatory investigation, made considerable

losses because of its net buying position in the spot market during several of the events.

50Hortaçsu and Puller (2008) propose a method to estimate forward positions from marginal cost
estimates and bid functions.
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The direct effect of reneging on this transfer is defined by
(
P̃t − P̂t

)
Dt. The re-

maining part of the transfer,
(
Pt − P̃t

)
Dt, is generated by the strategic responses to

reneging. Table 10 reports the transfers for each event for peak and off-peak hours.

The manipulations caused total power procurement costs to increase by roughly $135

million for peak hours and $200 million for off-peak hours over the period. This corre-

sponds to an increase of 20 percentage points in 5 months. We find nonetheless that the

impacts on procurement costs vary substantially across hours and events. The direct

effects of reneging are large (79% of total transfer), albeit the strategic component is

also sizable in some cases.

The share of the surplus T̂t that the firm was able to capture during the events

is sometimes well above its market share – which is around 10%. For example, on

November 23, the firm captured up to 25% of the windfall producer revenues. By

making use of its informational advantage, the firm increased markedly its supply to

profit from the large price increase caused by reneging. Conversely, the firm may find

it profitable to reduce its market share to make reneging profitable. For example, the

firm captured only 8% of the surplus at 17:00 on November 21 (Figure 2).

[Table 10]

It turns out that neglecting strategic effects can lead to vastly underestimated

market impacts, not only by failing to account for a large share of the impacts, but

also by using the wrong reference point.51 We evaluate TransAlta’s undue profits from

manipulations at $35 million, a figure that is “only” 30% larger than the disgorgement

penalty set by the regulator. In contrast, the estimated “welfare impact” of AUC

(2015) amounts to around $100 million, less than one-third of our estimate. The $56

million settlement covers only 17% of the latter. The remaining $274 million, which

51We compare the outcomes of the supply-residual demand pair with reneging, (St(1), RDt(1)),
to those without reneging, (St(0), RDt(0)). Neglecting strategic effects leads to consider outcomes
generated by a deviation, i.e. (St(1), RDt(1) +R) instead of (St(0), RDt(0)) (AUC, 2015).
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consists of windfall revenues to suppliers who benefited from the manipulation, will

never be recovered by ratepayers.

As the theory shows, the ability to strategically renege has impacts on futures con-

tract prices, and in turn on spot prices through equilibrium effects. These impacts can

be difficult to quantify empirically, and even more so due to the inherent lack of data

on financial forward contracts. Our model predicts that forward prices must have in-

creased in response to expectations of higher spot prices caused by the manipulations.

Yet, it shows that part of the price discrepancy created by the firm’s conduct may

remain in equilibrium. A spot price premium might even had prevailed in equilibrium

over the long run, had the firm been able to continue this strategy. Evidence shows

that TransAlta’s traders noticed that (month-ahead) forward prices for March 2011

increased by 30% above expectations, reflecting the impacts of the strategic outages

(AUC, 2015). Those overvalued forward contracts were seen as another trading op-

portunity. The firm planned to take a net buying position on the spot market, then

reverse its outage and bidding strategies to maintain spot prices as low as possible.

In absence of regulatory intervention, the firm would have optimized its informational

advantage about forced outages by alternating these two strategies over time.

Even though we account for strategic behaviors in the spot market, our analysis

neglects the general equilibrium effects, such as the consequences for forward markets.

Our figures should hence be seen as lower bounds of the harm resulting from reneging.

4 Conclusion

We study incentives to manipulate sequential markets arising from imperfect commit-

ment. We show how a supplier with market power would modify its supply strategy

upon anticipating a potentially profitable deviation to its commitments. Our model

provides guidance for the detection of potential misconduct related to strategic reneg-
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ing. In an application to Alberta’s electricity market, we confirm our theoretical pre-

dictions and estimate that this commitment problem had harmful welfare consequences

for consumers. Albeit long-term contracts were primarily implemented in the province

to mitigate potential market power issues, they created powerful incentives to manip-

ulate markets. This downside of sequential markets that we evidence constitutes a

serious issue beyond this specific case.

Our analysis shows that strategic reneging can take various forms. The findings sug-

gest that the firm strategically curtailed wind power during episodes of large demand.

This illustrates how long-term renewable contracts, like feed-in tariffs, provide firms

with a free channel for undue profits. The extensive use of long-term contracts without

delivery obligations, as means to support the development of intermittent renewables,

will lead to similar issues if contracts are concentrated within the hands of otherwise

large suppliers. This stresses the importance of facilitating renewable investment from

entrants rather than incumbent firms, and of the centralization of wind dispatch by

the system operators.

We argue that these issues can occur beyond electricity markets. The method

outlined in this research is a step towards the development of tools for the detection of

market manipulations. It also illustrates how theoretical models and machine learning

methods can complement each other for regulatory purposes. We claim that, with

all its limits, the implications of this research should extend to all markets that are

somehow interrelated (not only through time) and subject to imperfect commitment.
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Tables and Figures

Table 1: Alberta market and firm characteristics
Market shares (%) Capacity (%) Fuel shares (%)
2010-11 to 2011-03 2011

TransCanada 20.9 4.2 Coal 46.9
ENMAX 18.3 6.5 Natural Gas 36.0
Capital Power 11.8 11.8 Wind 6.1
TransAlta 10.4 36.7 Hydro 6.1
ATCO 8.2 16.2 Other 4.9
Fringe 30.4 24.5

This table shows market shares of capacity for which a firm can submit offer bids versus capacity
ownership by firm (%) as well as capacity shares by fuel type (%). Market shares are calculated
as average share of available capacity over total capacity. Capacity shares are based on ownership
rather than offer controls. Values for fuel shares are taken from Brown and Olmstead (2017).

46



Table 2: Summary statistics

Training set Testing set Events
Mean Std Mean Std Mean Std

Peak
Demand: D (GWh) 8.47 0.51 8.38 0.52 8.82 0.30
Price: P (CAD) 129.4 208.6 117.7 197.6 506.0 305.8
Available Cap: K (GW) 9.46 0.41 9.43 0.42 9.55 0.48
Wind TA: WTA (MWh) 141 131 162 140 79 130
Wind Total: W (MWh) 258 218 292 237 138 228
Observations: n 402 154 44
Off-Peak
Demand: D (GWh) 7.79 0.63 7.80 0.65 8.10 0.57
Price: P (CAD) 46.2 75.1 46.5 86.0 154.2 256.9
Available Cap: K (GW) 9.21 0.44 9.22 0.45 9.42 0.41
Wind TA: WTA (MWh) 135 129 142 125 69 117
Wind Total: W (MWh) 251 217 263 211 130 204
Observations: n 1991 787 220

Notes: This table shows descriptive statistics (mean and standard deviation) of the main vari-
ables. TA refers to TransAlta, the alleged manipulator.
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Table 3: Strategic timing of forced outages

(1) (2) (3)
Capacity (TransAlta) 0.49 0.51 0.51

(0.00) (0.00) (0.00)
Low wind (< 5%) 0.08 0.09 0.08

(0.00) (0.00) (0.00)
Demand (GWh) −0.02 −0.02

(0.10) (0.11)
RD slope (linear) −0.04

(0.13)
Monday −0.04 −0.03 −0.03

(0.00) (0.01) (0.01)
Tuesday 0.02 0.03 0.03

(0.04) (0.01) (0.01)
Thursday 0.04 0.05 0.05

(0.00) (0.00) (0.00)
12am-8am dummies −0.05,−0.04 −0.06,−0.05 −0.06,−0.05

(0.03, 0.05) (0.01, 0.02) (0.01, 0.02)
Observations 3598 3598 3598
R2 0.34 0.34 0.34

Notes: This table shows the estimation results of equation (12). The dependent variable is
a binary variable equal to 1 in all hours during strategic outage events. Low wind is a binary
variable equal to 1 when wind power generation is below 5% of maximum annual production.
All regressions include hour of the day fixed effects, day of the week fixed effects and week fixed
effects. In the last row, we report the range of estimates for the hourly dummies between 12am
and 8am. The p-values for H0 : β = 0 are reported in parentheses. Only statistically significant
dummies are reported.
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Table 4: Strategic wind curtailment

(1) (2) (3) (4) (5)
Wind Speed 1 1.29 −0.82 −0.82 −0.81 −0.81

(0.00) (0.00) (0.00) (0.00) (0.00)
Wind Speed 2 2.50 0.57 0.57 0.57 0.58

(0.00) (0.00) (0.00) (0.00) (0.00)
Wind Speed 3 2.08 0.46 0.48 0.47 0.48

(0.00) (0.00) (0.00) (0.00) (0.00)
Wind ENMAX 1.64 1.63 1.64 1.63

(0.00) (0.00) (0.00) (0.00)
Wind SUNCOR −0.47 −0.47 −0.52 −0.52

(0.00) (0.00) (0.00) (0.00)
Demand (GWh) −12.86 −10.82

(0.00) (0.01)
Reneging dummies No No Yes No Yes
F-stat 1.48 1.19
H0 : ∀l βl = 0 (0.13) (0.29)

Observations 3555 3555 3555 3555 3555
R2 0.63 0.83 0.83 0.83 0.83

Notes: This table shows the estimation results of equation (13). The dependent variable is
TransAlta’s wind power production in MWh. All regressions include hour of the day fixed effects,
day of the week fixed effects and week fixed effects. The three wind speed measures are taken
from nearby weather stations, for which there are 43 missing values in total. Rivals’ wind outputs
are also used as controls. P-values for H0 : β = 0 are reported in parentheses. The F-test of
H0 : βl = 0 ∀l is also reported.
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Table 5: Model performance (Peak hours)

Training set Testing set Reneging set
n 402 154 44
Parameters 141

S RS S RS S RS RS
MI-. Bias 0.3 −0.2 0.2 6.7 9.7 −423 −41
MI-. Abs. Bias 18.2 45.9 21.5 69.9 41.9 430.6 125.7
MI-. Rel. Abs. Bias 2.1% 0.6% 2.5% 0.9% 4.7% 5.6% 1.5%
RMISE 23.2 64.2 28.0 100.7 51.7 536.2 177.4
Rej. Rate (Asymp.) 0.027 .007 .078 .058 .409 1 .386
Rej. Rate (BS) .025 .007 .071 .052 .432 1 .341
Zero parameters 24 18
λCV 2.770 3.426

Coverage probabilities RS R̂S RS R̂S RS R̂S RS
Price 0.99 0.98 0.96 0.93 0.89 0.05 0.05
Output 0.98 0.97 0.95 0.95 0.84 0.45 0.48

Notes: This table shows statistics of model performance separately for the training set, testing set
and reneging set. The reneging set includes all hours for days when reneging occurred. MI refers
to Mean Integrated, RMISE refers to the root-mean-integrated-squared-errors. Zero parameters
is the number of parameters set to zero by the algorithm (for each of the 52 price values).
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Figure 1: November 19, 2010 18:00
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Figure 2: November 21, 2010 17:00
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Table 6: Estimated supply strategy shifts

∆̂Sl ∆̂Sm ∆̂Sh ∆̂Sl ∆̂Sm ∆̂Sh

Nov 19 Nov 23
18:00 55.7 72.2 55.3 47.7 75.4 58.8

(0.03) (0.01) (0.06) (0.05) (0.01) (0.05)
19:00 55.6 73.3 54.7 55.3 83.4 66.0

(0.03) (0.01) (0.06) (0.02) (0.00) (0.02)
Dec 13 Feb 16

18:00 6.3 11.7 5.2 −55.8 −38.2 −62.8
(0.79) (0.67) (0.99) (0.03) (0.18) (0.03)

19:00 34.8 48.4 40.2 −106.1 −60.1 −112.2
(0.20) (0.09) (0.19) (0.00) (0.02) (0.00)

Notes: This table shows estimates of supply shifts for two peak hours during the first day of
each outage events. P-values for H0 : ∆̂S(p) = 0, ∀p ∈ [$0, $150] (∆̂Sl), [$150, $500] (∆̂Sm) and

[$500, $1000] (∆̂Sh) are reported in parentheses.
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Table 7: Estimated price and output impacts

Nov 19 Nov 23 Dec 13 Feb 16

∆̂P ∆̂Q ∆̂P ∆̂Q ∆̂P ∆̂Q ∆̂P ∆̂Q
18:00 363 69.8 327 77.9 831 46.5 405 13.4

(0.00) (0.01) (0.02) (0.01) (0.00) (0.07) (0.00) (0.25)
19:00 183 70.6 208 107.8 364 47.8 785 47.5

(0.00) (0.01) (0.01) (0.00) (0.00) (0.05) (0.00) (0.17)

Notes: This table shows estimates of price and output impacts for two peak hours during the
first day of each outage events. Bootstrapped p-values are reported in parentheses.
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Table 8: Strategy shifts, market impacts, and residual demand (Peak hours)

∆̂S ∆̂Q ∆̂P 1∆̂S<0 1∆̂S<0

RD slope (linear) −79.21 −44.02 379.46 0.71
(0.00) (0.03) (0.00) (0.00)

Stepsize 0.06 0.09
(0.05) (0.01)

Observations 44 44 44 44 44
R2 0.33 0.10 0.22 0.35 0.14

Notes: This table shows regression results of five models, where the dependent variables are:
strategy shifts, output impacts, price impacts, and a dummy equal to one if strategy shifts are
negative. Stepsize measures the size of the price step when supply and residual demand intersect
at a discontinuity jump, and is equal to zero otherwise. P-values for H0 : β = 0 are reported in
parentheses.
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Table 9: Profitability of the manipulations

∆̂Π ∆̂Π× ∆̂Π ∆̂Π× ∆̂Π ∆̂Π× ∆̂Π ∆̂Π×

Peak Nov 19-21 Nov 23 Dec 13-16 Feb 16-18
Gains (M$) 2.26 ×5.1 0.98 ×0.6 6.21 ×13.8 5.05 ×1.4
Reneging 25% 104% 78% 106%
Off-Peak
Gains (M$) 0.22 ×0.2 1.22 ×1.9 4.12 ×2.9 14.75 ×2.9
Reneging 76% 72% 52% 80%
Total
Gains (M$) 2.48 ×1.5 2.19 ×1.0 10.33 ×5.6 19.80 ×2.3
Reneging 30% 85% 67% 87%

Notes: This table shows the gross gains from manipulations for peak and off-peak hours in each
event. The values for hourly gains are expressed in 1,000$. Reneging represents the share of gains
caused by reneging alone (direct gains) the remaining share is associated with the equilibrium

effect (indirect gains from strategic response of both the firm and its rivals). ∆̂Π× denotes the
relative change.
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Table 10: Welfare impacts

T̂ T̂× T̂ T̂× T̂ T̂× T̂ T̂×

Peak Nov 19-21 Nov 23 Dec 13-16 Feb 16-18
Transfer (M$) 21.8 ×4.6 7.7 ×0.5 58.0 ×12.4 46.3 ×1.3
Direct effect 27% 110% 81% 101%

Off-Peak
Transfer (M$) 1.84 ×0.1 12.3 ×1.8 40.0 ×2.7 145.7 ×2.9
Direct effect 88% 86% 72% 81%

Total
Transfer (M$) 23.7 ×1.3 20.0 ×0.8 97.9 ×5.0 192.1 ×2.2
Direct effect 33% 92% 76% 85%

Notes: This table shows the transfer caused by the manipulations for peak and off-peak hours
in each event. The values for hourly gains are expressed in 1,000,000$. “Direct effect” represents
the share of the total transfer caused by reneging alone, the remaining share is associated with
the strategic response. T̂× denotes the relative change.
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A Mathematical Appendix

Proposition 1 (Sequential markets under uncertainty) In equilibrium, the mo-

nopolist’s forward commitments Q⋆
1 and final output Q⋆

1+Q⋆
2 decrease with its marginal

cost 1/B and the slope of its residual demand b. In addition,

• (Forward seller) Q⋆
1 ≥ 0 if only if α ≥ α = B+b

2B+b
;

• (Spot seller) Q⋆
2 ≥ 0 if and only if p⋆2 ≥ C(Q⋆

1 +Q⋆
2); and,

• (Forward premium) p⋆1 ≥ E[p⋆2] if only if α ≥ α;

Proof 1 (Proof of Proposition 1) Solving backward, we consider first the profit-

maximization problem of the monopolist in period 2, when uncertainty is resolved.

Given p1 and Q1, the problem writes

max
Q2

Π = p1Q1 +
1

b
(A−Q1 −Q2)Q2 −

∫ Q1+Q2

0

C(Q)dQ. (20)

The first-order condition is

∂Π

∂Q2

= 0 =
∂p2
∂Q2

Q2 + p2 − C(Q1 +Q2)

=
1

b
(A−Q1 − 2Q2)−

1

B
(Q1 +Q2)

(21)

and the quantity supplied in period 2 is thus

Q⋆
2 =

B

2B + b
A−

B + b

2B + b
Q1. (22)

Result 2 follows from the first-order condition in (21) which can be rewritten Q⋆
2/b =

p⋆2 − (Q⋆
1 +Q⋆

2) /B.
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In period 1, the expected profit maximization program is given by

max
Q1

E[Π] =
1

b
(αE[A]−Q1)Q1+E

[
1

b
(A−Q1 −Q⋆

2)Q
⋆
2

]
−E

[∫ Q1+Q⋆

2

0

C(Q)dQ

]
.

(23)

Making use of the envelope theorem, the first-order condition is

∂E[Π]

∂Q1

= 0 =
∂p1
∂Q1

Q1 + p1 + E

[
∂p2
∂Q1

Q⋆
2

]
− E [C(Q1 +Q⋆

2)]

=
1

b
(αE[A]− 2Q1 − E[Q⋆

2])−
1

B
(Q1 + E[Q⋆

2]) ,

(24)

or equivalently

∂E[Π]

∂Q1

=
1

b

{
αE(A)−

3B + 2B

2B + b
Q1 −

B + b

2B + b
E(A)

}
= 0. (25)

The quantity supplied in period 1 is such that

Q⋆
1 =

B

2B + b
αE[A]−

B + b

2B + b
E[Q⋆

2]. (26)

From (22), in equilibrium, the monopolist’s forward sales are

Q⋆
1 =

(2α− 1)B − (1− α)b

3B + 2b
E[A]. (27)

which yields the first result, and its total output is

Q⋆
1 +Q⋆

2 =
B

2B + b
(A− E[A]) +

(1 + α)B

3B + 2b
E[A]. (28)

The forward price is

p⋆1 = (1 + α)
B + b

3B + 2b

E[A]

b
, (29)
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and the spot price is

p⋆2 =
A

b

B + b

2B + b
+

E[A]

b

(
B

2B + b
−

(1 + α)B

3B + 2b

)
. (30)

The spread between the forward and spot markets depend on the realization of demand

and the forward demand αE[A]. It is given by

p⋆2 − p⋆1 =
A

b

B + b

2B + b
+

E[A]

b

(
B

2B + b
−

(1 + α)(2B + b)

3B + 2b

)
, (31)

and the expected price spread between the sequential markets is given by

p⋆1 − E[p⋆2] =

(
α−

B + b

2B + b

)
E(A)

b
−

B + b

2B + b

Q⋆
1

b

=
(2α− 1)B − (1− α)b

3B + 2b

E[A]

b
.

(32)

yielding Result 3 in the proposition.

Moreover, feasibility requires Q⋆
1 + Q⋆

2 ≥ 0 and q⋆1 + q⋆2 ≥ 0. From (28), the first

condition is satisfied if F (·) is such that

Pr(A < −
(2α− 1)B − (1− α)b

3B + 2b
E[A]) = 0, (33)

and the second condition is equivalent to A− (Q⋆
1+Q⋆

2) ≥ 0 which holds if F (·) is such

that

Pr(A <
B

B + b

(2α− 1)B − (1− α)b

3B + 2b
E[A]) = 0. (34)

Proof 2 ((Side result) Endogenous α in this context) Risk-neutral consumers choose

α to minimize their total expected expenditures to procure A. This problem is given by

min
α

E[TE] = αp1E[A] + E [p2 (A− αE[A])] . (35)
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The optimal share denoted α⋆ is characterized by the first-order condition

∂E [TE]

∂α
= 0 =

(
p1 + α

∂p1
∂α

− E[p2]

)
E(A) + E

[
∂p2
∂α

(A− αE[A])

]

=
1

b

(
αE[A]−Q1 + αE(A)− α

∂Q1

∂α
− E[A] +Q1 + E[Q2]

)
E(A) + E

[
∂p2
∂α

(A− αE[A])

]

=
1

b

(
(2α− 1)E[A]− α

∂Q1

∂α
+ E[Q2]

)
E(A)−

1

b
E

[
∂(Q1 +Q2)

∂α
(A− αE[A])

]

(36)

where
∂Q1

∂α
=

2B + b

3B + 2b
E(A),

E(Q2) =
(2− α)B + (1− α)b

3B + 2b
E(A),

∂Q1 +Q2

∂α
=

B

3B + 2b
E(A).

(37)

Substituting and rearranging yield

0 =
1

b
((2α− 1)(3B + 2b)− α(2B + b) + B + (1− α)b)

E(A)2

3B + 2b
,

0 =
1

b
(2α− 1)(2B + b)

E(A)2

3B + 2b
,

(38)

which implies that it is optimal for consumers to choose α⋆ = 1/2. This solution is

feasible only if the monopolist produces a positive output, i.e. if Q⋆
1 +Q⋆

2 ≥ 0 which is

guaranteed under the previous feasibility conditions on F (A).

Proposition 2 (All-or-nothing strategic reneging) In equilibrium, taking forward

commitments as given, there exists a demand threshold T such that R = µQ1 if and

only if A ≥ T , and R = 0 otherwise. In addition, T increases with τ and p1, and

decreases with µ and Q1.

Proof 3 (Proof of Proposition 2) We first show that the problem admits a corner

solution, then characterize the demand threshold T .
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Part 1 (Corner solution). The first-order condition with respect to Q2 is changed to

∂Π

∂Q2

= 0 =
∂p2
∂Q2

Q2 + p2 − C(Q1 −R +Q2)

=
1

b
(A−Q1 +R− 2Q2)−

1

B
(Q1 −R +Q2) ,

(39)

and thus we have

Q†
2 =

B

2B + b
A−

B + b

2B + b
(Q1 −R). (40)

The first-order condition with respect to R is

∂Π

∂R
= 0 = −(p1 + τ) +

∂p2
∂R

Q2 + C(Q1 −R +Q2)

= −(p1 + τ) +
1

b
Q2 +

1

B
(Q1 −R +Q2) ,

(41)

However, this condition does not characterize the optimal reneging strategy. The set of

first-order conditions does not characterize a maximum because we have (∂2Π/∂Q2
2)

2
=

− (2/b+ 1/B) < 0 and the determinant

∂2Π

∂Q2
2

∂2Π

∂R2
−

(
∂2Π

∂Q2∂R

)
= −

1

b2
< 0. (42)

To solve this problem, let us consider R to be fixed at the time of choosing Q2, so that

(40) holds. Substituting its expression into (41) yields

∂Π

∂R
= −(p1 + τ) +

(
1

b
+

1

B

)(
B

2B + b
A−

B + b

2B + b
(Q1 −R)

)
+

1

B
(Q1 −R) . (43)
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Differentiating with respect to R gives

∂2Π

∂R2
=

(
1

b
+

1

B

)(
B + b

2B + b

)
−

1

B

=
B

b(2B + b)
> 0,

(44)

that is the objective function is convex in R, leading to a corner solution. The optimal

reneging strategy is an all-or-nothing strategy, i.e. R⋆ = 0 or R⋆ = µQ1.

Part 2 (Demand threshold). Reneging is profitable for all A such that

Π†(A)− Π⋆(A) ≥ 0, (45)

which develops into

Π†(A)− Π⋆(A) =
2(B + b)A− B(2− µ)Q1

2b(2B + b)
µQ1 − (p1 + τ)µQ1 ≥ 0. (46)

If Q1 > 0, then reneging is optimal for all A ≥ T , where

T = (p1 + τ)
b(2B + b)

B + b
+

B

2(B + b)
(2− µ)Q1. (47)
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It is easily checked that this threshold satisfies

∂T

∂τ
=

b(2B + b)2

2B2 + b(3B + b)
> 0,

∂T

∂µ
= −

B(2B + b)

2(2B2 + b(3B + b))
Q1 < 0, and,

∂T

∂Q1

=
∂p1
∂Q1

b(2B + b)

B + b
+

B

2(B + b)
(2− µ)

=
−2(2B + b) + B(2− µ)

2(B + b)

= −
(2 + µ)B + 2b

2(B + b)
< 0.

(48)

The development in (46) is obtained from the addition of

∆p2Q
⋆
2 =

1

b(2B + b)2
(
B2A− B(B + b)(1− µ)Q1

)
µQ1, and,

p⋆2∆Q⋆
2 =

1

b(2B + b)2
(
(B + b)2A− B(B + b)Q1

)
µQ1,

which yields

∆p2Q
⋆
2 + p⋆2∆Q⋆

2 =
1

b(2B + b)2
(
(B2 + (B + b)2)A− B(B + b)(2− µ)Q1

)
µQ1,

and from which we finally obtain

∆p2Q
⋆
2 + p⋆2∆Q⋆

2 +∆C =
(2(B2 + (B + b)2 + 2Bb)A− (2B(B + b)− Bb)(2− µ)Q1)

2b(2B + b)2
µQ1

=
((4B2 + 2b(3B + b))A− B(2B + b)(2− µ)Q1)

2b(2B + b)2
µQ1.

Proposition 3 (Spot strategy) In equilibrium, if reneging is profitable (A ≥ T ), the

monopolist will shift its spot supply to Q†
2 > Q⋆

2 to optimize its profits, total production

decreases and, in addition,

• (Price impact) ∆p2 ≥ 0 increases with µ, Q1, 1/b, and B;
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• (Strategy shift) ∆Q2 ≥ 0 increases with µ, Q1, b and 1/B; and,

• (Cost savings) ∆C ≥ 0 increases with µ, Q1 and 1/b, and the effect of 1/B

depends on the relative cost advantage of the monopolist.

Proof 4 (Proof of Proposition 3) The first two results are directly obtained from

∆p2 =
B

b(2B + b)
µQ1

∆Q2 =
B + b

2B + b
µQ1,

and the third result follows from the expression

∆C =

∫ Q1+Q⋆

2

(1−µ)Q1+Q
†
2

C(Q)dQ =

∫ B

2B+b
(A+Q1)

B

2B+b
(A+(1−µ)Q1)

C(Q)dQ

=
1

2B

B2

(2B + b)2
(
(A+Q1)

2 − (A+ (1− µ)Q1)
2
)

=
B

2(2B + b)2
(
2µAQ1 + µ(2− µ)Q2

1

)

=
B

2(2B + b)2
(2A+ (2− µ)Q1)µQ1.

This expression is derived by combining and rearranging the following expressions:

Q1 +Q⋆
2 =

B

2B + b
(A+Q1),

(1− µ)Q1 +Q†
2 =

B

2B + b
(A+ (1− µ)Q1),

Q⋆
2 =

B

2B + b
A−

B + b

2B + b
Q1, and,

Q†
2 =

B

2B + b
A−

B + b

2B + b
(1− µ)Q1.

Proposition 4 (Equilibrium forward sales) In equilibrium, upon anticipating a pos-

itive probability of profitable reneging, the monopolist will shift its supply of forward

contracts to Q†
1 > Q⋆

1, the extent of which depends on the distribution of uncertainty.
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Proof 5 (Proof of Proposition 4) The first-order condition is

∂E[Π]

∂Q1

= 0, (49)

where
∂E[Π]

∂Q1

=
∂T

∂Q1

f(T )
(
Π⋆(T )− Π†(T )

)
+

∫ T

0

∂Π⋆(A)

∂Q1

dF (A)

+

∫ +∞

T

∂Π†(A)

∂Q1

dF (A).

(50)

The definition of T implies Π⋆(T ) = Π†(T ) and the condition becomes

∫ T

0

∂Π⋆(A)

∂Q1

dF (A) +

∫ +∞

T

∂Π†(A)

∂Q1

dF (A) = 0, (51)

The second-order condition is given by

∂2E[Π]

∂Q2
1

=
∂T

∂Q1

f(T )

(
∂Π⋆(T )

∂Q1

−
∂Π†(T )

∂Q1

)

+

∫ T

0

∂2Π⋆(A)

∂Q2
1

dF (A) +

∫ +∞

T

∂2Π†(A)

∂Q2
1

dF (A).

(52)

The first term is negative since ∂T
∂Q1

< 0, f(T ) > 0 and
(

∂Π⋆(T )
∂Q1

− ∂Π†(T )
∂Q1

)
> 0 since

∂Π†(T )− Π⋆(T )

∂Q1

=µ

[
(2(B + b)T − B(2− µ)Q1)

2b(2B + b)
− (p1 + τ)

]

=− µQ1

(
B(2− µ)

2b(2B + b)
+

∂p1
∂Q1

)

=− µQ1

(
B(2− µ)− 2(2B + b)

2b(2B + b)

)

=µQ1

(
(2 + µ)B + 2b

2b(2B + b)

)
> 0.

(53)

The two last terms of (52) are negative so the first-order condition characterizes a

maximum.
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The integrand of the first term in (51) can be developed into

∂Π⋆(A)

∂Q1

=
∂p1
∂Q1

Q1 + p1 +
∂p⋆2
∂Q1

Q⋆
2 − C(Q1 +Q⋆

2)

=
1

b
(αE(A)− 2Q1 −Q⋆

2)−
Q1 +Q⋆

2

B
,

=
αE(A)

b
−

2B + b

Bb
Q1 −

B + b

Bb
Q⋆

2,

=
αE(A)

b
−

2B + b

Bb
Q1 −

B + b

Bb

(
B

2B + b
A−

B + b

2B + b
Q1

)
,

=
αE(A)

b
−

3B + 2B

b(2B + b)
Q1 −

B + b

b(2B + b)
A.

(54)

Thus, we have

∫ T

0

∂Π⋆(A)

∂Q1

dF (A) =

(
αE(A)

b
−

3B + 2B

b(2B + b)
Q1 −

B + b

b(2B + b)
E[A|A ≤ T ]

)
F (T ). (55)

The integrand of the second term in (51) can be developed into

∂Π†(A)

∂Q1

= (1− µ)

[
∂p1
∂Q1

Q1 + p1 − C((1− µ)Q1 +Q†
2)

]
− µτ +

∂p†2
∂Q1

Q†
2

= (1− µ)

[
∂p1
∂Q1

Q1 + p1 −
1

b
Q†

2 − C((1− µ)Q1 +Q†
2)

]
− µτ

= (1− µ)

[
αE(A)

b
−

2B + b(1− µ)

Bb
Q1 −

B + b

Bb
Q†

2

]
− µτ

= (1− µ)

[
αE(A)

b
−

2B + b(1− µ)

Bb
Q1 −

B + b

Bb

(
B

2B + b
A−

B + b

2B + b
(1− µ)Q1

)]
− µτ

= (1− µ)

[
αE(A)

b
−

(
2B + b(1− µ)

Bb
−

(B + b)2(1− µ)

Bb(2B + b)

)
Q1 −

B + b

b(2B + b)
A

]
− µτ

=
(1− µ)

b

[
αE(A)−

(3 + µ)B + 2b

(2B + b)
Q1 −

B + b

(2B + b)
A

]
− µτ

(56)
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Thus, we have

∫ +∞

T

∂Π†(A)

∂Q1

dF (A) =(1− µ)

(
αE(A)

b
−

(3 + µ)B + 2b

b(2B + b)
Q1 −

B + b

b(2B + b)
E[A|A > T ]

)
(1− F (T ))

− µτ (1− F (T )) .

(57)

Combining and rearranging yields the equivalent expression of the first-order condition

(1− µ (1− F (T )))

b

{
αE(A)−

3B + 2B

2B + b
Q1 −

B + b

2B + b
E(A)

}
+

µ (1− F (T ))

b

{
B + b

2B + b
(E[A|A > T ]− E(A))−

(1− µ)B

2B + b
Q1 − bτ

}
= 0.

(58)

From (25), the first term in (58) is equal to zero for Q⋆
1. Furthermore, we have

T ≤ E[A|A > T ] hence the second term between braces admits as minimum bound

B + b

2B + b
(T − E(A))−

(1− µ)B

2B + b
Q1 − bτ. (59)

Substituting p1 by its expression into (47) yields

T = αE(A)
2B + b

B + b
−Q1

(2 + µ)B + 2b

2(B + b)
+ τb

2B + b

B + b
, (60)

which substituting into (59) and rearranging yields another expression for this bound

E(A)
B(2α− 1)− b(1− α)

2B + b
−Q1

4−µ

2
B + b

2B + b
. (61)

It is easily checked that this bound is positive at Q⋆
1. Therefore for any parameter values

(provided that Q⋆
1 is positive) the solution of (58) will be above Q⋆

1.

Proposition 5 (Equilibrium forward premium) In equilibrium, there is a forward

premium p†1 ≥ E[p†2] if and only if α ≥ α > α, and p†1 < E[p†2] otherwise. In addition,

α < 1 in absence of a forward adjustment, i.e. if Q†
1 = Q⋆

1.
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Proof 6 (Proof of Proposition 5) The results are easily checked from (32) and its

analog under imperfect commitment is given by

p†1 − E[p†2] =

(
α−

B + b

2B + b

)
E(A)

b

−

(
B + b

2B + b
+ µ(1− F (T ))

B

2B + b

)
Q†

1

b
.

(62)

Assuming further that Q†
1 = Q⋆

1, the condition for a forward premium to be sustained,

i.e. p†1 ≥ E[p†2], simplifies to

(
α−

B + b

2B + b
−

(1 + µ(1− F (T )))B + b

2B + b

B

3B + 2b

)
E(A)

b
≥ 0. (63)

Under this assumption, the threshold level of contracting α is hence such that

α < α = α +
(1 + µ(1− F (T )))B + b

2B + b

B

3B + 2b
≤ α +

B

3B + 2b
< 1. (64)

Proposition 6 (Piecewise linear residual demand) In equilibrium, if the resid-

ual demand is a piecewise linear function with a discontinuity at Qk
2 < Q⋆

2, there exists

a demand threshold Ã above which it is profitable to trigger the price step ∆c by pro-

ducing Qk
2 instead of Q⋆

2. In addition,

• (Spot) The threshold Ã decreases with ∆c, and increases with k and Q1;

• (Forward) The firm will also reduce its forward commitments to Qk
1 < Q⋆

1; and,

• (Reneging) The price step makes strategic reneging profitable for lower values of

demand, i.e. there exists T̃ < T above which strategic reneging is profitable for

any demand A for large enough values of ∆c.

Proof 7 (Proof of Proposition 6) Following the specification of the fringe’s marginal

cost function, let us define Qk
2 = A−Q1−k as the dominant player’s maximum volume
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of spot sales such that the fringe marginal cost is q/b+∆c (i.e. on the upper segment).

The equilibrium condition in the spot market is changed to:

Q2 = A−Q1 + b∆c− bp2 for any 0 ≤ Q2 ≤ Qk
2,

Q2 = A−Q1 − bp2 for any Q2 > Qk
2.

Over the interval where Q2 ∈
[
0, Qk

2

]
the price is given by

p2 =
1

b
(A−Q1 + b∆c−Q2)

hence the profit function is given by

Π = p1Q1 + p2Q2 −

∫ Q1+Q2

0

C(Q)dQ

= p1Q1 +
1

b
(A−Q1 + b∆c−Q2)Q2 −

1

B

∫ Q1+Q2

0

QdQ.

Part 1. Optimal strategy without reneging. The optimal strategy is given by

∂Π

∂Q2

=
1

b
(A−Q1 + b∆c− 2Q2)−

1

B
(Q1 +Q2)

so that

Q2 =
B

2B + b
(A+ b∆c)−

B + b

2B + b
Q1

if Q2 ≤ Qk
2, and Q⋆

2 defined in (22) if Q2 > Qk
2.

For given values of A and Q1, we have Q2 > Q⋆
2 because ∆c > 0 although the

feasibility conditions dictate that the strategy Q2 prevails over Q2 ∈
[
0, Qk

2

]
and Q⋆

2

prevails for “large” values of Q2 (Q2 > Qk
2). Observe that:

• If Q⋆
2(A,Q1) < Qk

2(A,Q1) then the optimal strategy over
[
Qk

2; +∞
[
is Qk

2 (the
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profit function is decreasing on [Q⋆
2; +∞[ ∩

[
Qk

2; +∞
[
).

• If Q2(A,Q1) > Qk
2(A,Q1) then the optimal strategy over

[
0;Qk

2

]
is Qk

2 (the profit

function is increasing on
[
0;Q2

]
∩
[
0;Qk

2

]
).

There are three cases:

1. If Q⋆
2 < Qk

2 < Q2 then the optimal strategy is Qk
2.

2. If Q⋆
2 < Q2 < Qk

2 then the optimal strategy is Q2.

3. If Qk
2 < Q⋆

2 < Q2 then we must compare profits for Qk
2 and Q⋆

2.

We compare the profits in each case to characterize this case. Let Π⋆, Q⋆
2 and Qk

2 be

given as above and define

δ = Q⋆
2 −Qk

2,

that can be positive or negative. By definition

p2(Q
k
2) =

1

b

(
A−Q1 −Qk

2

)

=
1

b

(
A−Q1 −Q⋆

2 −
(
Qk

2 −Q⋆
2

))

= p⋆2 +
δ

b

if Q2 > Qk
2. The lower price at the step (at Qk

2 + ε) is thus p⋆2 + δ/b. The upper price
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is p⋆2 + (δ/b) + ∆c. The profit obtained with strategy Qk
2 writes

Πk = p1Q1 + p2Q
k
2 −

∫ Q1+Qk

2

0

C(Q)dQ

= p1Q1 +

(
p⋆2 +

δ

b
+∆c

)
(Q⋆

2 − δ)−
1

B

∫ Q1+Q⋆

2
+δ

0

QdQ

= p1Q1 +

(
p⋆2 +

δ

b
+∆c

)
(Q⋆

2 − δ)−
1

2B
(Q1 +Q⋆

2 − δ)2

= p1Q1 + p⋆2Q
⋆
2 +

[
∆cQ⋆

2 +

(
p⋆2 +∆c−

Q⋆
2

b

)
δ −

δ2

b

]

−
1

2B

[
(Q1 +Q⋆

2)
2 − 2δ (Q1 +Q⋆

2) + δ2
]

= Π⋆ +

[
∆cQ⋆

2 −

(
p⋆2 +∆c−

Q⋆
2

b

)
δ −

δ2

b

]
−

1

2B

[
−2δ (Q1 +Q⋆

2) + δ2
]
.

It is therefore profitable to choose Qk
2 rather than Q⋆

2 if

∆cQ⋆
2 > δ

{
−

1

2B
[2 (Q1 +Q⋆

2)− δ] +

[
p⋆2 −

1

b
Q⋆

2 +
δ

b
+∆c

]}
.

Since Q⋆
2 is optimal we know that it satisfies:

p⋆2 −
1

b
Q⋆

2 =
1

B
(Q1 +Q⋆

2)

from the FOC in (21) therefore the previous inequality boils down to:

∆cQ⋆
2 > δ

[
∆c+

(
1

2B
+

1

b

)
δ

]

which yields the condition

∆cQk
2 >

(
1

2B
+

1

b

)
δ2. (65)

Observe that a negative shift from Q⋆
2 to Qk

2 to trigger ∆c is more likely when Qk
2 is

large, ∆c is large, δ is small, b is large (RD is less elastic).
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Let us denote W = ∆cQk
2 −

(
1
2B

+ 1
b

)
δ2 and differentiate to obtain

∂W

∂A
= ∆c+

B + b

Bb
δ > 0 (66)

since δ > 0 when Qk
2 < Q⋆

2. Moreover,

∂2W

∂A2
< 0, (67)

thus there is a threshold level of demand Ã such that for all A > Ã (assuming δ > 0

though), Qk
2 yields larger profits than Q⋆

2 and reversely for lower values of A. This

threshold is characterized by

W = ∆cQk
2 −

(
1

2B
+

1

b

)
δ2 = 0

↔ ∆c(Ã−Q1 − k) =

(
1

2B
+

1

b

)(
k −

B + b

2B + b
Ã+

B

2B + b
Q1

)2

.

(68)

Total differentiation and rearrangement yield the relation between this threshold and

forward commitments

0 <
dÃ

dQ1

=
∆c+ 1

b
δ

∆c+ B+b
Bb

δ
< 1. (69)

Part 2. Strategy on forward markets. A complete characterization of the optimal

forward strategy requires solving several cases depending on the distribution of demand.

To gain intuition of the effect of discontinuities on the forward strategy, we only focus

on a specific case where demand is distributed so that Qk
2 < Q⋆

2, i.e. A < 2B+b
B+b

k+ B
B+b

Q1.
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In this case, the expected profit is given by

E[Π] =

∫ Ã

0

(
p1Q1 + p⋆2Q

⋆
2 −

∫ Q1+Q⋆

2

0

C(Q)dQ

)
dF (A)

+

∫ +∞

Ã

(
p1Q1 + pk2Q

k
2 −

∫ Q1+Qk

2

0

C(Q)dQ

)
dF (A).

(70)

Differentiating with respect to Q1, making use of the definition of Ã and applying the

envelope theorem yield

∂E[Π]

∂Q1

=

∫ Ã

0

(
p1 −

(
1

b
+

1

B

)
(Q1 +Q⋆

2)

)
dF (A) +

∫ +∞

Ã

(
p1 −

(
1

b
+

1

B

)(
Q1 +Qk

2

))
dF (A)

−

∫ +∞

Ã

(
∂pk2
∂Q2

Qk
2 + pk2 −

Q1 +Qk
2

B

)
dF (A) = 0

=

∫ +∞

0

(
p1 −

(
1

b
+

1

B

)
(Q1 +Q⋆

2)

)
dF (A)

+

∫ +∞

Ã

(
1

b
+

1

B

)
δ −

(
pk2 −

Q1 +Qk
2

B

)
dF (A).

(71)

The integrand of the second term can be rewritten

δ

b
+

Q⋆
2 −Qk

2

B
− pk2 +

Q1 +Qk
2

B

=−
Qk

2

b
− (pk2 − p⋆2)− p⋆2 +

Q⋆
2

b
+

Q1 +Q⋆
2

B

=−
Qk

2

b
− (pk2 − p⋆2) < 0,

(72)

where the inequality holds for the considered case. Therefore the second integral is

negative and it must be that the first integral is positive for the first-order condition (71)

to hold. Following the previous result for Q⋆
1, it implies that the equilibrium forward

commitment is Qk
1 < Q⋆

1 in this case.

Part 3. Reneging under non-linear residual demand. The complete characterization of

strategic reneging in this setting involves solving multiple cases. The most interesting
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case is when reneging would not be profitable without taking advantage of the price jump

created by the step function. That is when exerting market power in the spot market

and reneging on forward contracts are complementary means to achieve a price impact.

We focus on this case by assuming that, for A = T ,

• Q†
2 − Q†k

2 = ǫ > 0: reaching the step requires to produce less than the optimal

amount Q†
2 in presence of reneging; and

• ∆cQk
2 <

(
1
2B

+ 1
b

) (
Q⋆

2 −Qk
2

)2
: the strategy Q⋆

2 yields larger profits than Qk
2 hence

the firm will not take advantage of the price step in absence of reneging.

The first assumption implies Qk
2 < Q⋆

2 because

Q†
2 −Q†k

2 = k −
B + b

2B + b
A+

B

2B + b
(Q1 −R)

=
(
Q⋆

2 −Qk
2

)
−

B

2B + b
R.

(73)

In words, without reneging reaching the step also requires producing less than the opti-

mal amount Q⋆
2. This assumption is used to focus on the values of demand for which

the step is at the left of the optimal output level in both cases. For some A, the increase

in profits from combining both reneging and taking advantage of the price step can be

written as

Π†k(A)− Π⋆(A) = Π†(A)− Π⋆(A) + p†k2 Q†k
2 − p†2Q

†
2 +

∫ Q1−R+Q
†
2

Q1−R+Q
†k
2

C(Q)dQ. (74)

Recall that at A = T the firm is indifferent between choosing R = 0 and R = µQ1. At

A = T , the above hence simplifies to

Π†k(T )− Π⋆(T ) = p†k2 Q†k
2 − p†2Q

†
2 +

∫ Q1−R+Q
†
2

Q1−R+Q
†k
2

C(Q)dQ, (75)

where the second term on the right-hand-side is positive under the previous assumptions.
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It can be developed into

∫ Q1−R+Q
†
2

Q1−R+Q
†k
2

C(Q)dQ =
1

B

(
Q1 −R +

Q†
2 +Q†k

2

2

)
ǫ. (76)

Let us now turn to the first term. We have

p†k2 Q†k
2 − p†2Q

†
2 = (p†k2 − p†2)Q

†k
2 − p†2(Q

†
2 −Q†k

2 ), (77)

where at A = T ,

p†k2 − p†2 =
1

b
(T − (Q1 −R)−Q†k

2 ) + ∆c− p†2

=
k

b
+∆c− p†2

=
k

b
+∆c− (p1 + τ)−

B

2B + b

R

2b

=
ǫ

b
+∆c,

(78)

and

Q†
2 −Q†k

2 = k − bp†2 = ǫ. (79)

Making use of these expressions yields

p†k2 Q†k
2 − p†2Q

†
2 =

(ǫ
b
+∆c

)
Q†k

2 − p†2ǫ. (80)

Thus, we have Π†k(T )− Π⋆(T ) > 0 if and only if

(ǫ
b
+∆c

)
Q†k

2 − p†2ǫ+
1

B

(
Q1 −R +

Q†
2 +Q†k

2

2

)
ǫ > 0, (81)
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which can be rearranged into

∆cQ†k
2 >

(
p†2 −

(
Q†k

2

b
+

Q1 −R

B
+

Q†
2

2B
+

Q†k
2

2B

))
ǫ

=

(
p†2 −

Q†
2

b
−

Q1 −R +Q†
2

B

)
ǫ+ (Q†

2 −Q†k
2 )

(
1

b
+

1

2B

)
ǫ

=

(
1

b
+

1

2B

)
ǫ2,

(82)

where the last equality comes from the definition of ǫ and the first-order condition for

Q†
2. Therefore, for any ǫ > 0, there exists ∆c such that this condition is satisfied. This

condition is not mutually exclusive with ∆cQk
2 <

(
1
2B

+ 1
b

) (
Q⋆

2 −Qk
2

)2
since Qk

2 < Q†k
2

and Q⋆
2 − Qk

2 > Q†
2 − Q†k

2 . We have shown that there is ∆c > 0 such that Π†k(T ) −

Π⋆(T ) > 0 for some ǫ > 0. Now we want to show that Π†k(A) − Π⋆(A) ≥ 0 for all

A ≥ T̃ with T̃ < T . First, it is easy to show that ∂2Π†k(A)−Π⋆(A)
∂A2 < 0. The desired result

hence holds if ∂Π†k(A)−Π⋆(A)
∂A

|A=T > 0. We have,

∂Π†k(A)− Π⋆(A)

∂A
=

∂p†k2 Q†k
2

∂A
−

∂p⋆2Q
⋆
2

∂A
+

∂Q⋆
2

∂A

Q1 +Q⋆
2

B
−

∂Q†k
2

∂A

Q1 −R +Q†k
2

B

= p†k2 −

(
p⋆2

B

2B + b
+Q⋆

2

B + b

b(2B + b)

)
+

B

2B + b

Q1 +Q⋆
2

B
−

Q1 −R +Q†k
2

B

= p†k2 −
B

2B + b

(
p⋆2 −

Q⋆
2

b
−

Q1 +Q⋆
2

B

)
−

Q⋆
2

b
−

Q1 −R +Q†k
2

B

= p†k2 −
Q⋆

2

b
−

Q1 −R +Q†k
2

B

= ∆c+
k

b
−

Q⋆
2

b
−

Q1 −R +Q†k
2

B
.

(83)

Furthermore, at A = T , we have k = ǫ+ B+b
2B+b

T − B
2B+b

(Q1 −R), hence k/b = ǫ/b+ p†2.

77



Substituting into the above yields

∂Π†k(A)− Π⋆(A)

∂A
|A=T = ∆c+

ǫ

b
+ p†2 −

Q⋆
2

b
−

Q1 −R +Q†k
2

B

> ∆c+
ǫ

b
+ p⋆2 −

Q⋆
2

b
−

Q1 −R +Q†k
2

B

> ∆c+
ǫ

b
+ p⋆2 −

Q⋆
2

b
−

Q1 +Q⋆
2

B

> ∆c+
ǫ

b

> 0.

(84)

These results characterize the conditions that it is profitable to choose R > 0 and

trigger the step by changing output from Q⋆
2 to Q†k

2 . It is interesting to note that when

Q⋆
2 > Q†k

2 the output is reduced when reneging occurs. This happens when ǫ > B+b
2B+b

R.
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B Additional Empirical Results

B.1 More details on inference

We test the null hypothesis formalized in (18) using the Cramer-Von Mises statistic

CVMS =
∫ 1000

0
∆̂St(p)

2dp. Remark that ∆̂St(p) = ût(p) is obtained from the vector

approximation ût. This vector is asymptotically distributed as a multivariate normal.

Thus, CVMS asymptotically follows a weighted χ2 distribution which weights depends

on the eigenvalues of the asymptotic covariance of ût. We estimate this covariance

matrix using the testing set (and not the training set). P-values are computed from

an approximate asymptotic distribution.52 The same approach is used to conduct

inference on ∆̂RDt.

Besides, we test the null hypotheses

H0 : ∆̂P t = 0, and, H0 : ∆̂Qt = 0. (85)

The distribution of those equilibrium values depends non-linearly on the joint distri-

bution of supply and residual demand functions. We propose to use a parametric

bootstrap to approximate their distributions. The random draws are taken from the

multivariate normal distribution using the covariance of error vectors for supply and

residual demand (estimated using the testing set). This aims at accounting for the

correlation between the two functions. The procedure is as follows. Separately for

each hour t in the sample, we draw 10,000 multivariate normal random vectors u
Sb

t

and u
RDb

t to construct Ŝ⋆b
t and R̂D

⋆b

t . Then, for each draw we compute the equilibrium

price and firm’s output (P̂ b
t , Q̂

⋆b
t ). Finally, we use the quantiles of the bootstrapped

distribution to construct confidence intervals and to compute p-values for the CVM

52A more formal treatment of functional testing procedures is proposed in Benatia (2018b) and
Carrasco, Florens and Renault (2014).
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statistics.

B.2 Additional results

Table 11: Timing of strategic outage events

Date Time Facility Event PPA Buyer
Event 1 Nov 19, 2010 17:00 Sundance 5 -385 MW Capital Power

Nov 22, 2010 03:00 Sundance 5 +385 MW Capital Power
Event 2 Nov 23, 2010 09:00 Sundance 2 -150 MW TransCanada

Nov 24, 2010 00:00 Sundance 2 +150 MW TransCanada
Event 3 Dec 13, 2010 17:00 Sundance 2 -280 MW TransCanada

17:00 Keephills 1 -387 MW ENMAX
Dec 14, 2010 16:00 Sundance 6 -401 MW Capital Power
Dec 15, 2010 21:00 Keephills 1 +387 MW ENMAX
Dec 16, 2010 18:00 Sundance 2 +280 MW TransCanada

23:00 Sundance 6 +401 MW Capital Power
Event 4 Feb 16, 2011 17:00 Keephills 2 -387 MW ENMAX

Feb 18, 2011 21:00 Keephills 2 +387 MW ENMAX

Notes: This table provides a summary of the timing of outage events investigated by the regu-
lator. Most outages/derates lasted about two days. Timing is only indicative as plants gradually
decrease/increase output, possibly over a few hours, to be fully offline/online.
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Table 12: Demand, weather conditions and seasonality

Demand (GWh)
Temperature 0.05 Monday 0.32

(0.00) (0.00)
Dew Point Temp −0.08 Tuesday 0.35

(0.00) (0.00)
Humidity 0.02 Wednesday 0.38

(0.00) (0.00)
Wind Speed −0.00 Thursday 0.36

(0.00) (0.00)
12am-8am dummies −0.73,−0.29 Friday 0.34

(0.00, 0.00) (0.00)
9am to 4pm dummies 0.14, 0.50 Saturday 0.04

(0.00, 0.00) (0.01)
5pm to 8pm dummies 0.42, 0.77

(0.00, 0.00)
9pm to 11pm dummies 0.34, 0.61

(0.00, 0.00)
Observations 3555
R2 0.87

Notes: This table shows the estimation results of Dt = β′WEATHERt + α′Xt + ut, where
WEATHERt is a set of weather variables and Xt a set of time dummies for hours of the day,
days of the week, and week fixed-effects. The dependent variable is total demand. Hours fixed-
effects are reported as a range. P-values are reported in parentheses.
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Table 13: Model performance (Off-peak hours)

Training set Testing set Reneging set
n 1991 787 220
Parameters 157

S RS S RS S RS RS
MI- Bias .4 −.3 .7 −.1 −5.4 −328 14
MI- Abs. Bias 17.5 51.6 18.7 53.5 28.6 346.2 91.0
MI- Rel. Abs. Bias 2.2% .7% 2.4% .7% 3.6% 4.5% 1.1%
RMISE 23.6 72.1 24.9 74.4 36.2 46.9 132.1
Rej. Rate (Asymp.) .054 .060 .070 .061 .223 .741 .323
Rej. Rate (BS) .052 .058 .070 .058 .214 .741 .323
Zero parameters 17 15
λCV .532 2.354

Coverage probabilities RS R̂S RS R̂S RS R̂S RS
Price .96 .93 .96 .93 .29 .35 .23
Output .96 .96 .95 .95 .80 .70 .67

Notes: This table shows statistics of model performance separately for the training set, testing
set, and reneging set. The reneging set includes all hours for days when reneging occurred. In
the reneging set, reneging occurred in 71% of hours. The remaining observations are hours before
or after the outages during days where reneging occurred in some hours. MI refers to Mean
Integrated. RMISE refer to the root-integrated-mean-squared-errors. Zero parameters is the
number of parameters set to zero by the algorithm (for each of the 52 price values).

Table 14: Estimated changes in residual demand

∆̂RDl ∆̂RDm ∆̂RDh ∆̂RDl ∆̂RDm ∆̂RDh

Nov 19 Nov 23
18:00 32.8 123.0 194.1 44.5 −125.7 2.2

(0.07) (0.18) (0.04) (0.20) (0.34) (0.58)
19:00 94.7 194.0 269.6 28.2 −145.1 −17.5

(0.03) (0.06) (0.01) (0.21) (0.26) (0.59)
Dec 13 Feb 16

18:00 −77.7 −174.6 −141.6 62.2 −68.8 52.9
(0.25) (0.13) (0.21) (0.32) (0.64) (0.72)

19:00 −67.0 −83.9 −91.2 277.9 44.8 378.0
(0.41) (0.44) (0.32) (0.00) (0.33) (0.00)

Notes: This table shows estimates of deviations in residual demand for two peak hours during

the first day of each outage events. P-values for H0 : ∆̂RD(p) = 0, ∀p ∈ [$0, $150] (∆̂RDl),

[$150, $500] (∆̂RDm) and [$500, $1000] (∆̂RDh) are reported in parentheses.
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Table 15: Strategy shifts, market impacts, and residual demand

∆̂S ∆̂Q ∆̂P 1∆̂S<0 1∆̂S<0

Peak
RD slope (linear) −79.21 −44.02 379.46 0.71

(0.00) (0.03) (0.00) (0.00)
Stepsize 0.06 0.09

(0.05) (0.01)
Observations 44 44 44 44 44
R2 0.33 0.10 0.22 0.35 0.14
Off-Peak
RD slope (linear) −59.55 −61.88 205.33 0.85

(0.00) (0.00) (0.00) (0.00)
Stepsize 0.03 0.04

(0.16) (0.12)
Observations 220 220 220 220 220
R2 0.24 0.14 0.04 0.18 0.01

Notes: This table shows regression results of five models, where the dependent variables are:
strategy shifts, output impacts, price impacts, and a dummy equal to one if strategy shifts are
negative. Stepsize measures the size of the price step when supply and residual demand intersect
at a discontinuity jump and is equal to zero otherwise. P-values for H0 : β = 0 are reported in
parentheses.

Table 16: Strategy shifts, market impacts, and residual demand (Robustness check)

∆̂S ∆̂Q ∆̂P 1∆̂S<0 1∆̂S<0

Peak
RD slope (linear) 14.02 8.55 −70.32 −0.19

(0.12) (0.43) (0.13) (0.29)
Stepsize −0.03 −0.04

(0.30) (0.26)
Observations 154 154 154 154 154
R2 0.02 0.00 0.02 0.02 0.01
Off-Peak
RD slope (linear) −5.57 −3.85 −40.93 0.04

(0.25) (0.45) (0.04) (0.74)
Stepsize 0.05 0.05

(0.10) (0.10)
Observations 787 787 787 787 787
R2 0.00 0.00 0.01 0.00 0.00

Notes: This table shows regression results of five models on the testing set, where the dependent
variables are: strategy shifts, output impacts, price impacts, and a dummy equal to one if strategy
shifts are negative. Stepsize measures the size of the price step when supply and residual demand
intersect at a discontinuity jump and is equal to zero otherwise. P-values for H0 : β = 0 are
reported in parentheses.
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Table 17: Model performance (PPA Plants)

Training set Testing set Reneging set
Peak Off-Peak Peak Off-Peak Peak Off-Peak

Sundance 2
MI- Bias 0.8 1.0 1.8 0.5 −76.1 −63.3
MI- Abs. Bias 5.2 4.0 5.7 4.6 78.3 66.6
Mean Avail. Cap 74.9 81.6 97.9 81.4 113.1 121.1
RMISE 9.5 8.3 11.1 9.6 134.8 123.3
Sundance 5
MI- Bias 0.9 0.8 1.6 0.5 −89.5 −70.4
MI- Abs. Bias 3.5 3.5 4.6 3.9 94.1 73.1
Mean Avail. Cap 386.0 380.9 370.2 376.4 281.7 298.7
RMISE 6.3 7.2 8.4 7.8 171.8 156.7
Sundance 6
MI- Bias −0.0 −0.0 −0.1 0.0 −70.0 −69.7
MI- Abs. Bias 0.6 0.7 0.6 0.7 70.9 70.8
Mean Avail. Cap 381.3 376.0 377.8 375.3 224.9 243.5
RMISE 1.6 2.4 1.9 2.6 164.1 163.8
Keephills 1
MI- Bias 0.0 0.0 0.0 0.0 −66.0 −69.9
MI- Abs. Bias 1.1 0.8 1.1 0.8 67.0 70.6
Mean Avail. Cap 376.6 379.6 382.1 380.2 307.6 313.5
RMISE 2.7 2.7 2.8 2.9 149.9 163.1
Keephills 2
MI- Bias 0.2 0.1 0.7 0.1 −82.5 −76.2
MI- Abs. Bias 1.4 0.9 2.2 0.9 83.6 77.3
Mean Avail. Cap 357.2 355.6 351.5 351.1 308.0 295.1
RMISE 4.6 4.9 6.0 5.0 136.7 139.4

Notes: This table shows statistics of model performance for supply strategies of PPA plants
which reneged. We report statistics separately for the training set, testing set, and reneging set.
The reneging set includes all hours for days when reneging occurred. In the reneging set, reneging
occurred in 71% of hours of off-peak hours. The remaining observations are hours before or
after the outages during days where reneging occurred in some hours. Mean Available Capacity
is expressed in MW. MI refers to Mean Integrated. RMISE refer to the root-integrated-mean-
squared-errors.
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