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Abstract : Bitcoin has received a lot of attention from both investors and analysts, as
it forms the highest market capitalization in the cryptocurrency market. The use of para-
metric GARCH models to characterise the volatility of Bitcoin returns is widely observed
in the empirical literature. In this paper, we consider an alternative approach involving
non-parametric method to model and forecast Bitcoin return volatility. We show that the
out-of-sample volatility forecast of the non-parametric GARCH model yields superior per-
formance relative to an extensive class of parametric GARCH models. The improvement
in forecasting accuracy of Bitcoin return volatility based on the non-parametric GARCH
model suggests that this method offers an attractive and viable alternative to the com-
monly used parametric GARCH models.
JEL codes : C01
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1 Introduction

The cryptocurrency market continues to be a potential source of financial instability
and its impact on the financial market still remains uncertain. Different from other fi-
nancial assets which are regularized, there is no formal regulation for cryptocurrencies.
Cryptocurrencies also differ significantly from other financial assets on the financial mar-
ket and thus creates great prospects for investors and market players in terms of portfolio
analysis, risk management and even consumer sentiment analysis.

In the cryptocurrency market, volatility modelling is important in measuring the ris-
kiness of an investment. Volatility can be define as a measure of the dispersion in a
probability density. Market players and investors are therefore interested in accurate es-
timation of volatility in the cryptocurrency market. This is as a result of the correlation
between volatility and returns on investment. It is notable that volatility is not directly
observable and as a result there is increasing need for efficient model that can capture the
price volatility in the cryptocurrency market. Estimating the volatility of Bitcoin is very
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crucial since Bitcoin has the highest market capitalization in the cryptocurrency market.

A few studies have already been conducted on the financial and statistical characte-
ristics of Bitcoin. One group of economists has been focusing on price discovery in the
Bitcoin market, for example, Brandvold et al. (2015) and Bouoiyour et al. (2016) reveal
some lead-lag relationship between Bitcoin prices, transactions use, and investors’ attrac-
tiveness. Other studies also show that Bitcoin price is subject to unique factors which
are substantially different from those affecting conventional, financial assets, such as in-
ternet search, information on google trends, and word-of-mouth information on social
media.In fact, as Bitcoin is mainly used and viewed as an asset rather than a currency,
and the Bitcoin market is currently highly speculative, and more volatile and susceptible
to speculative bubbles than other currencies. Moreover, the presence of long memory and
persistent volatility justifies the application of GARCH-type models.

The purpose of this paper is to utilize time series techniques to predict the future
returns and prices of Bitcoin. At the same time, we want to examine the effectiveness of
the popular GARCH model in economics and financial world. As Bitcoin gradually has
had a place in the financial markets and in portfolio management, time series analysis
is a useful tool to study the characteristics of Bitcoin prices and returns, and extract
meaningful statistics in order to predict future values of the series.

In this paper, we will leave the functional form of the variance process as unspecified
and attempt to estimate it as an additive nonparametric mean. We show that the non-
parametric model can capture the leverage effect from the negative news and outperform
two of the parametric GARCH family models most commonly considered. In their paper,
Tjøstheim and Auestad (1994) worked the possibility of identifying nonlinear time series
models using nonparametric methods. Härdle and Chen (1995) present a selective review
of the approaches that based on nonparametric model building procedure in time series
analysis. They point that nonlinear and nonparametric time series analysis is useful in
order to deal with the limitations of the ARMA models with constant mean. Härdle, et
al., (1997) review some developments in modern nonparametric techniques for time series
analysis.

Engle and Gonzalez- Rivera (1991) addresses semi-parametric ARCH model by intro-
ducing a more efficient estimator based on a nonparametric estimated density. They also
evaluate the loss of efficiency of the quasi- maximum likelihood estimator, which falsely
assumes normality. Buhlmann and McNeil (2002) proposed a nonparametric approach to
GARCH modeling. Hou and Suardi (2012) considered Buhlmann and McNeil (2002)’s
nonparametric approach to model and forecast crude oil price return volatility. They use
4845 daily observations on crude oil spot prices from West Texas Intermediate, from 6
January 1992 to 30 July 2010, in their application. According to their results on forecas-
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ting accuracy, the nonparametric GARCH model has superior performance to parametric
GARCH models. They prefer their nonparametric approaches because of the non norma-
lity of distribution of oil prices.

Another important reason in the development of nonparametric models is the lag
selection procedure. The usual nonparametric models have less than satisfactory perfor-
mance when dealing with more than one lag especially in the curse of dimensionality
case. Alternative lag selection criteria have been studied for nonlinear autoregressive pro-
cesses. Tjøstheim and Auestad (1994) mention heteroscedasti city in financial returns and
propose to use a nonparametric version of the final prediction error (FPE). Tschernig
and Yang (2000) derived a nonparametric version of the Final Prediction Error for lag
selection in nonlinear autoregressive time series under very general conditions including
heteroscedasticity. Wang et al. (2012) proposed a new efficient semi-parametric GARCH
modeling of volatility by taking account lag selection procedure.

The rest of the paper is organised as follows. Section 2 describes the parametric and
nonparametric GARCH models. Section 3 provides the forecast methodology. Section 4
provides a summary statistics of the data and the empirical results. Section 5 concludes.

2 Econometric models

2.1 GARCH model

The GARCH model of Bollerslev (1986) is the most widely used model for the volatility
estimation.The GARCH models have been very successful in the literature because of
their simple specification and easy interpretability. As pointed out by Bera and Higgins
(1993), most of the applied financial works show that GARCH (1,1) provides a flexible
and parsimonious approximation to the conditional variance dynamics and is capable of
representing the majority of financial series. The GARCH (1,1) model is written as,

Rt = µ+ εt, with εt = σt.zt; zt ∼ N(0, 1)

The equation for the conditional variance of the residuals is defined as :

σ2
t = α0 + α1.ε

2
t−1 + β1.σ

2
t−1 (1)

Where α0 > 0,α1 ≥ 0 and β1 ≥ 0 are constants and the ARCH(1) model corresponds
to β1 = 0. The constraint α1 + β1 < 1 implies that the unconditional variance of the
return series ε is finite and the conditional variance σ2

t evolves over time. It also provides
the necessary and sufficient condition for the stochastic process σt; t ∈ Z to be a unique
strictly stationary process with E(σ2

t ) < ∞.
Two key properties can be noted from (1). First, a large ε2t−1 or σ2

t−1 gives rise to a large
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σ2
t and this generates the volatility clustering that is commonly known in financial time

series. Second, the tail distribution is thicker than that of a normal distribution.

2.2 EGARCH Model

Despite their popularity, ARCH and GARCH models suffer from several weaknesses
and drawbacks. Nelson (1991) criticized the GARCH models in three aspects : First, pa-
rameters are restricted to be positive at every time point ; Second, it fails to accommodate
asymmetry effect (or leverage effect) ; and Third, measuring the persistence of the shocks
on volatility is difficult. Nelson (1991) proposed the exponential GARCH (EGARCH) that
accommodates the drawbacks of a standard GARCH model. The the first-order EGARCH
(or EGARCH(1,1)) process specifies the model as

Rt = µ+ εt, with εt = σt.zt; zt ∼ N(0, 1)

The equation for the conditional variance of the residuals is defined as :

log(σ2
t ) = α0 + α1.g(εt−1) + β1. log(σ

2
t−1) (2)

Where εt follows the normal law is a weak white noise and the function g(.) verified.

g(εt−1) = α.εt−1 + γ(|εt−1| − E(|εt−1|)) (3)

Here the coefficient γ signifies the leverage effect of shocks on the volatility. The key
advantage of the EGARCH model is that the positive restrictions are not needed to be
imposed on the variance coefficients. The coefficients γ need to be negative for evidence
of asymmetric effects.

2.3 GJR-GARCH Model

In the simple GARCH (1,1) approach good news and bad news, i.e. positive and nega-
tive shocks, have the same impact on the conditional variance. Many studies have found
evidence of asymmetry in stock price behavior, i.e., negative surprises seem to increase
volatility more than positive surprises. To allow asymmetric effects in the volatility, Glos-
ten et al. (1993) add an additional term in the conditional variance and formulate the so
called GJR model. The GJR (1,1) is specified as follows,

Rt = µ+ εt, with εt = σt.zt; zt ∼ N(0, 1)

The equation for the conditional variance of the residuals is defined as :

σ2
t = α0 + α1.ε

2
t−1 + γ.(Iεt−1<0.ε

2
t−1) + β1.σ

2
t−1 (4)
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Where zt denotes a weak white noise of zero mean and constant variance over time, and
the coefficients α1, β1 and γ are real parameters et Iεt−1<0 denotes the indicator function
such that

Iεt−1<0 = 1 si εt−1 < 0
= 0 sinon.

The structure of this model indicates that a positive εt−1 contributes α1.ε
2
t−1 to σt,

whereas a negative εt−1 has a larger impact of (α1 + γ).ε2t−1 with γ > 0. Therefore, if
parameters γ is significantly positive, then negative innovations generate more volatility
than positive innovations of equal magnitude. The main feature of this model is that a
negative shock has a larger impact than a positive shock and hence, it captures the leverage
effect. Like the GARCH model, the GJR-GARCH model captures the volatility clustering.
Also, it can be shown that the unconditional distribution presents excess kurtosis even
under the Gaussian distribution.

2.4 Nonparametric ARCH Models

The starting point of the data generating process of a strictly stationary discrete-time
stochastic process Rt defined on some probability space is the general univariate non-linear
stochastic regression model given by

Rt = m(Rt−1, . . . , Rt−p) + σ(Rt−1, . . . , Rt−p)ǫt, t = 1, ..., T (5)

Where m(Rt−1, ..., Rt−p) = E(Rt/Rt−1 = r1, . . . , Rt−p = rp) is the nonlinear autoregressive
conditional mean (smooth) function, σ2(Rt−1, . . . , Rt−p) = V ar(Rt/Rt−1 = r1, . . . , Rt−p =
rp) represents the nonlinear autoregressive conditional variance (smooth) function, and
ǫt is an independent and identically distributed (i,i,d) sequence of random variables with
E(ǫt/Rt−1, . . . , Rt−p) = 0 ,V ar(ǫt/Rt−1, . . . , Rt−p) = 1 and independent of Rt−1, . . . , Rt−p.

The model (5) is known as the Nonparametric Autoregressive Conditional Heterosce-
dastic NARCH-model see Fan and Yao (1998).This model is the most flexible nompara-
metric time series model because it does not impose any (parametric) particular form on
the conditional mean and volatility functions. However,due to the well-known ”curse of
dimensionality” problem, to assume a certain level of structure on the conditional function
m(.) and σ(.). In this current study, we employ the first-order conditional heteroscedastic
nonlinear autoregressive NARCH (1,1) model

Rt = m(Rt−1) + σ(Rt−1)ǫt, t = 2, ..., T (6)

where Rt are observed and depend on Rt−1 with lag 1, m(Rt−1) is the trend function of
NARCH-model, σ(Rt−1) is the heteroscedastic function of NARCH-model, and ǫt denotes
a random variable in the error term, with mean zero and variance one. Following Fan
and Yao (1998) if Rt is a stationary process, the conditional variance function can be
decomposed as

σ2 = E(R2
t /Rt−1 = r)− (E(Rt/Rt−1 = r)2 = g(r)−m(r)2
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such that the conditional variance estimate is based on the nonparametric estimation of
g(r) and m(r) given by σ̂2(r) = ĝ(r)− m̂(r)2.
A way to obtain estimates of functions g(r) and m(r) is by applying the popular Nadaraya-
Watson estimator given by :

m̂(Rt−1) =

∑T

t=2 K(Rt−1 − r)/h)Rt
∑T

t=2 K(Rt−1 − r)/h)

ĝ(Rt−1) =

∑T

t=2 K(Rt−1 − r)/h)R2
t

∑T

t=2 K(Rt−1 − r)/h)

The function K(·) is usually a symmetric probability density and examples of com-
monly used kernel functions are the Gaussian kernel K(t) = (

√
2π)−1 exp(−t2/2) and the

Epanechnikov kernel K(t) = max{3
4
(1− t2), 0} and h is bandwidth parameter (smoothing

parameter) .

2.5 Nonparametric GARCH Models

We propose to apply this nonparametric method that does not require the specification
of the functional form of the volatility and that does not regard to the distributional form
of the innovation distribution. Moreover, nonparametric GARCH models allow the condi-
tional covariance matrix of the dependent variables to follow a flexible dynamic structure.
The stationary stochastic process {εt; 1 < t < n} has the nonparametric GARCH(1,1)
form given in (Bühlmannand McNeill, 2002) :

Rt = µ+ εt, with εt = σt.zt; zt ∼ N(0, 1)

The equation for the conditional variance of the residuals is defined as :

σ2
t = f(εt−1, σ

2
t−1) (7)

In the nonparametric GARCH approach the exact form of f is unspecified and is estimated
using a bivariate nonparametric smoothing technique which is less sensitive to model
misspecification such as neglected asymmetric volatility.
Assuming that {εt; 1 < t < n} coming from a process satisfying (7), the estimation
of a nonparametric GARCH model is applied with the following steps as proposed in
(Bühlmann and McNeill, 2002) :
1- Firstly, at the m=0 step, an estimate of volatility {σ̂2

t,0; 1 < t < n} is obtained by
fitting an ordinary parametric GARCH(1,1). Then the predictions from the GARCH(1,1)
model are extracted which gives the {σ̂2

t,0; 1 < t < n} estimates for the m=0 step of the
algorithm. Since the first value is not estimated in returns, it is set as equal to the mean.
2- In the m=1 step, ε2t is regressed with a nonparametric smoothing technique against
εt−1 and σ̂2

t−1,0 which are obtained from the parametric GARCH(1,1). The squared values
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of the residuals are obtained from the ARIMA model and the lagged values are the first
lag of the residuals of the ARIMA model. The estimated variance of the return series is
obtained from the previous step of the algorithm.
3- At the m’th step, the algorithm is repeated and the σ̂2

t−1,m is estimated by εt−1 and
σ̂2
t−1,m−1 .

3 Forecast performance measures

While there are several different measurements for evaluating volatility forecasting
performances,the mean square error (MSE) and the mean absolute error (MAE) are used
in this study. When the true underlying volatility process is unobservable, we adopt the
suggestion to use (σ2

t = Rt − R̄)2 as a proxy for latent volatility in this scenario. The
MAE and MSE for n step ahead forecast are defined as follows :

MSE =
1

N

N
∑

t=1

((Rt+n − R̄)2 − ĥt(n))
2

MAE =
1

N

N
∑

t=1

|(Rt+n − R̄)2 − ĥt(n)|

where Rt+n : the return over horizon n steps ahead at current time t ,
R̄ : the mean of return ,
ĥt(n) : the forecasted conditional variance over horizon n steps ahead at current time t.

4 Empirical Results

4.1 Data description

In this study, we apply the previously described different parametric and nonpara-
metric GARCH to estimate variance function for Bitcoin returns. The data used are the
closing price was selected as the price of Bitcoin because it reflected all the activities of
Bitcoin for each trading day. Historical daily closing price of Bitcoin was extracted from
02/01/2017 to 30/04/2021 at https ://finance.yahoo.com/ and consisted of 1580 trading
days.

In order to assess and compare the predictive performance of the Nonparametric
GARCH model with various parametric models, the data is further divided into an in-
sample group (from January 2, 2017 to April 30, 2021) and an out-of-sample group (from
May 1, 2021 to June 10, 2021). The whole sample has 1540 observations and the last 40
are used for out-of-sample forecasts.
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Figure 1 – Closing price and return series of Bitcoin.

Titre Mean Min Max St.dev Skew Kurt JB
Bitcoin 0.2636 -49.7278 22.7602 4.338 -0.968 16.626 12108.26

Table 1 – Descriptive statistics of return series of Bitcoin

Now, assume Pt and Pt−1 represents the current day and previous day price of Bitcoin,
then the return series/log returns (Rt) and multiplied by 100 as follows

Rt = ln(
Pt

Pt−1

) ∗ 100.

Table 1 presents the descriptive statistics of the return series of Bitcoin with the
Jarque-Bera test for normality which is calculated as

JB = T.(
skew2

6
+

(kurt− 3)2

24
)

where T is the sample size, skew and kurt are the sample skewness and kurtosis respecti-
vely.
Under the null that the data is normal iid, JB is asymptotically distributed as chi-square
with 2 degrees of freedom. The tests rejected the normality at 5% significance level. The
return series of Bitcoin is negatively skewed. This indicates that the returns of Bitcoin
is non-symmetric. The negative value of the skewness indicates that the distribution of
Bitcoin return series is skewed to the left. The positive excess kurtosis (16.626) indicates
that the returns are leptokurtic. That is, the returns series has a fatty tail.

Figure 1 shows the time series plot of Bitcoin price (left Figure) and the return series
(right Figure) of Bitcoin for the time period. Figure 2 is the histogram and the normal
quantile-quantile (q-q) plot of the return series for the same time period.
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Figure 2 – Histogram and normal q-q plot of return series of Bitcoin.

Ljung box test LM test ADF test
P-value 0.0019 0.00152 0.01

Table 2 – Test of Auto Regressive Conditional Heteroscedasticity (ARCH) effect.

The Augmented Dickey Fuller (ADF) test (Dickey and Fuller, 1979) is used to test
for stationarity. From Table 2, the null hypothesis of statonarity is accepted at 5% -level
of significance. Hence, there is no need to difference the return series. To apply GARCH
models to the Bitcoin returns series, the presence of stationarity and ARCH effects in
the residual return series are tested. The Ljung-box and Lagrange multiplier (LM) test
(Engle, 2001) are used to test for the presence of ARCH effects in the data.The Ljung-box
and LM test are presented in Table 2. From the Ljung box test, the null hypothesis of
“no autocorrelation” in the squared residuals is rejected at 5% significance level. That is,
there is dependency in the squared returns series of Bitcoin. Using the LM test, the null
hypothesis of “no ARCH effects” is rejected at 5% significance level. From the Ljung box
and LM test, it can be concluded that the volatility ARCH effect is very much present in
the return series. Hence, the GARCH models are used to model the returns series data.

4.2 Estimation results

The data descriptive statistics indicate that an appropriate model of Bitcoin returns
volatility should account for its time-varying nature and the departure from normality in
Bitcoin returns distribution. All estimations and computations are done in R Statistical
Environment (R, 2008) using " rugarch" R package developed by and Ghalanos (2013)
the "KernSmooth" R package developed by Wand and Ripley (2007). The parametric
GARCH models are estimated with the Bollerslev and Wooldridge (1992) quasi-maximum
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GARCH EGARCH GJR-GARCH
Normal Student-t Normal Student-t Normal Student-t

µ 0.327
(3.385)

0.264
(3.870)

0.282
(2.848)

0.237
(3.645)

0.257
(2.633)

0.267
(3.916)

ω 1.243
(5.464)

0.316
(1.921)

4.973
(1.107)

0.046
(1.582)

1.402
(5.214)

0.258
(1.474)

α 0.128
(6.290)

0.113
(5.442)

0.114
(4.369)

0.1357
(5.503)

0.084
(4.612)

0.120
(5.190)

β 0.818
(35.613)

0.885
(39.055)

0.7545
(16.155)

0.910
(58.616)

0.802
(31.269)

0.896
(33.643)

γ 0.1858
(1.313)

−0.1402
(−1.574)

0.101
(3.257)

−0.0369
(−1.384)

log.likelihood -4338.704 -4135.845 -4329.967 -4123.559 -4331.529 -4134.896
AIC 5.661 5.398 5.653 5.385 5.653 5.398
BIC 5.67 5.416 5.674 5.409 5.671 5.419
Q(20) 4.889 5.2496 5.8857 5.176 5.278 4.9664

Table 3 – In-sample estimations of the GARCH, EGARCH, and GJR models

likelihood method which gives robust standard errors.

We first fit the series from 02/01/2017 to 30/04/2021 with the standard GARCH(1,1)
model. Considering the existence of the asymmetry effects in the cyrpto markets, we also
fit the data with the EGARCH and GJR models. For all these models, the innovations
are assumed to be both Gaussian,and student-t distributed. The estimated parameters
and Ljung-Box Q-statistics tests of the standardized residuals are presented in Table 3.

Table 3 shows the results of the maximum likelihood estimate (MLE) of GARCH(1,1),
EGARCH(1,1), and GJR-GARCH(1,1) models for Bitcoin returns using Normal and
student t-distribution. From the table, the log-likelihood value (-4123.559) is maximum
for GJR-GARCH(1,1) model. The values of the two information criterions (AIC= 5.385 ,
BIC=5.409 ) of EGARCH(1,1) are minimum as compared to GARCH(1,1)-t and GJR.GARCH(1,1)-
t. These results indicate thatEGARCH(1,1)-t model is the optimal model to describe the
volatility of the return series of Bitcoin.

Note that all parameters of the conditional volatility are significant at the 5% signifi-
cance level. The coefficient of lagged variance β shows very high volatility persistence. The
sum of α and β from the GARCH model are close to 1, which supports the evidence of
volatility clustering. The P-values of Ljung-Box Q-statistic test at the lag 20 of standardi-
zed residual series from all models fail to suggest the autocorrelation at a 5% significance
level. Thus all models appear to be adequate in describing the linear dependence in the
return and volatility series.

The estimated value of the leverage parameters γ of the EGARCH and GJR models
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Model Law MSE MAE
GARCH Normal 456.52 10.65

Student-t 525.85 10.69
EGARCH Normal 433.8 10.63

Student-t 449.32 10.97
GJR-GARCH Normal 450.65 10.65

Student-t 511.81 10.68
N-ARCH Normal 433.30 10.3

N-GARCH Normal 430.73 10.29

Table 4 – Goodness-of-fit for out-of-sample forecasts

with Gaussian/t distributed innovations is : 0.1858/ − 0.1402 and 0.10/ − 0.0369, res-
pectively. All these parameters are significant at the 5% level with the exception of the
γ from the EGARCH model with Gaussian errors. The significance of the parameters
indicates the existence of asymmetry effect i.e., bad news (negative shock) has a larger
impact on return volatility than good news (positive shock). It is also worth noting that
the leverage effect estimated from models fitted with t distributed innovation is higher
than the ones with normal distributed innovations. The existence of the asymmetry effect
as in other mature stock markets in the world may be a positive sign for market efficiency
and completeness.

4.3 Forecast results

The performance of the out-of-sample volatility forecasts of various models are summa-
rized in Table 4. It is clear from this table that among different models, the GARCH model
performs the worst according to all goodness-of-fit measures and the N-GARCH model
performs the best in delivering the lowest forecast error. Compared with the GARCH
model, the EGARCH model improves the volatility estimation by capturing the leverage
effects. For the GJR model, it slightly improves the result from the GARCH estimation.
This is perhaps not surprising because the asymmetric effect in Bitcoin market is not as
strong . However, this may indicate that the EGARCH model can capture more leverage
effect than the GJR model. When looking at the N-ARCH model, we observe a significant
improvement of the N-ARCH model compared with the EGARCH model with Gaussian
errors. In addition, all loss functions from the N-GARCH model do not differ from the
ones with N-ARCH model.

To demonstrate the importance of our results and the application of the N-GARCH
model in practice, we calculate the forecasted return intervals which are based on one
day ahead out-of-sample forecasts. The out-of-sample period is from May 1, 2021 to June
10, 2021. The realized volatility is calculated as σ̂t =

√

(Rt − R̄)2 , where Rt are the log
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Figure 3 – The estimated volatility from in-sample volatility estimation
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return at time t. Figure 3 plots the volatility for the in-sample period. The red lines are
the realized volatility , while the blue lines are the estimated volatility. The three volatility
plots are for the N-GARCH model , EGARCH, and GJR models. Again, it can be seen
from these plots that the N-GARCH model performs better than the EGARCH and the
GJR models in capturing the rise and fall movements of return volatility.

5 Conclusion

GARCH modeling builds on advances in the understanding and modeling of volatility.
It takes into account excess kurtosis (i.e. fat tail behavior) and volatility clustering, two
important characteristics of financial time series, which are also observable in the Bitcoin
case. It’s theoretically able to provide accurate forecasts of variances and covariances of
returns through modeling time-varying conditional variances. As a consequence, GARCH
models have become quite popular in diverse fields as risk management, portfolio mana-
gement and asset allocation, option pricing, foreign exchange, and the term structure of
interest rates.

In this paper, we intend to predict the future prices of Bitcoin, one of the most widely
used and traded cryptocurrency, and study the predictive power of GARCH model on the
Bitcoin return/price series. From the predicted results, we have realized that although
GARCH models are useful across a wide range of financial and economical applications,
they are not a quite effective and suitable model candidate in studying the Bitcoin re-
turn/price series. One of the main reasons is that GARCH models are parametric specifi-
cations that operate best under relatively stable market conditions. Although GARCH is
explicitly designed to model timevarying conditional variances, GARCH models often fail
to capture highly irregular phenomena, including wild market fluctuations (e.g., crashes
and subsequent rebounds), and other highly unanticipated events that can lead to signi-
ficant structural change, which are exactly what has been going on in the Bitcoin market
recently.

In this paper an application of a nonparametric GARCH model to Bitcoin return
volatility has been proposed. The nonparametric smoothing technique uses a general ad-
ditive function of lagged innovations and volatilities to estimate the unobserved diffusion
process. Although the volatility model is estimated nonparametrically, its specification
resembles the widely used parametric GARCH models of Bitcoin return volatility. The
empirical applications to daily Bitcoin prices document significant improvement in the
out-of-sample predictive power of the non- parametric model over an extensive class of
GARCH models. Careful attention is paid to the use of loss functions that are robust to
the squared returns proxy which is used to measure realised volatility. The superiority in
the out-of-sample volatility predictive performance of the nonparametric GARCH model
is further verified. The results suggest that the nonparametric GARCH model with its im-
proved forecasting accuracy over the parametric counterparts is worthy to be considered
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as a useful alternative method of modelling Bitcoin return volatility. For future research,
we intend to apply this technique to Value-at-Risk computations and illustrate the po-
tential benefits that can be derived from applying this model in the context of hedging
against extreme price fluctuation in cryptocurrency market.
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