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Abstract

This paper examines capacity-constrained oligopoly pricingwith sellers who seekmyopic im-

provements. We employ theMyopic Stable Set solution concept and establish the existence of

a unique pure-strategy price solution for any given level of capacity. This solution is shown

to coincide with the set of pure-strategy Nash equilibria when capacities are large or small.

For an intermediate range of capacities, it predicts a price interval that includes the mixed-

strategy support. This stability concept thus encompasses all Nash equilibria and offers a

pure-strategy solution when there is none in Nash terms. It particularly provides a behav-

ioral rationale for different pricing patterns, including Edgeworth price cycles and states of

hyper-competition with supply shortages. We also analyze the impact of a change in firm

size distribution. A merger among the biggest firms may lead to more price dispersion as it

increases the maximum and decreases the minimum myopically stable price.
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1 Introduction

A common assumption in the literature on oligopoly pricing is that firms aim to maximize

their profits.1 In game-theoretic terms, players are presumed to select best-responses to each

other’s choices. Although it may be reasonable to assume such maximizing behavior, there are

compelling arguments for why sellers sometimes make suboptimal decisions. They simply need

not be fully rational, for instance, or make mistakes. Also, they might lack the information to

identify their most preferred alternative. For example, a firm may not be able to precisely deter-

mine its profit-maximizing price ex ante and regret its decision ex post, i.e., after it has observed

the actual choices of its competitors.

With this in mind, this paper offers a novel perspective on oligopoly pricing by postulating

that sellers are myopic and simply aim to improve upon their current situation. Specifically, we

analyze a model of price competition with capacity constraints under the assumption that firms

choose better- rather than best-responses. This in particular means that they can, but may not,

behave like the neoclassical profit-maximizing firm.

Under this assumption, we employ the solution concept of Myopic Stable Set (MSS), which

was recently introduced by Demuynck, Herings, Saulle and Seel (2019). A set of price profiles

is myopically stable when it satisfies three conditions: deterrence of external deviations, asymp-

totic external stability andminimality. The ‘deterrence of external deviations’ requirement holds

when none of the sellers gains bymoving from a price profile in theMSS to a price profile outside

the MSS. ‘Asymptotic external stability’ ensures that from any price profile outside the set it is

possible to get arbitrarily close to a price profile inside theMSS through a sequence of domination

steps. Finally, ‘minimality’ holds when the MSS is minimal with respect to set inclusion.

We establish the existence of a unique MSS for any given level of capacities. In terms of

characterization, we show that if the set of pure-strategy Nash equilibria is nonempty, then it

coincides with the MSS. A corollary to this is that the MSS reduces to the pure-strategy Nash

solutions that exist for sufficiently large or small production capacities. If capacities are in an

intermediate range, then typically there is no pure-strategy Nash equilibrium. In these cases,

there is a mixed-strategy Nash equilibrium, the support of which is shown to be contained in the

MSS. The MSS therefore also permits price dispersion, but the range of possible ‘sales’ is wider

than in a mixed-strategy Nash equilibrium.

The perspective taken in this paper has several advantages over the standard Nash approach

to oligopoly pricing and to capacity-constrained price competition in particular. For example,

the MSS solution concept rests on a less-stringent behavioral assumption since sellers are sup-

posed to behave myopically and choose better- rather than best-responses to rivals’ prices. Yet,

they nevertheless charge precisely the same prices as they would have in a pure-strategy Nash

1An in-depth discussion of classical models of oligopoly pricing is provided by Vives (1999).
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equilibrium. Moreover, the MSS offers a solution in pure strategies when there is none in Nash

terms. In these cases, and similar to the mixed-strategy solution, the MSS comprises a range of

prices. In fact, we find that it permits larger price fluctuations than in a mixed-strategy Nash

equilibrium. Yet, this price dispersion results from sellers following pure rather than random

strategies.2 This set solution is therefore a unifying concept in that it encompasses all the exist-

ing pure- and mixed-strategy Nash equilibria in an intuitive and natural fashion.

By offering a behavioral foundation for oligopoly pricing, this research contributes to the

emerging literature on behavioral industrial organization as recently reviewed by Heidheus and

Kőszegi (2018). Thus far, research in this field hasmainly focused on psychological factors on the

demand side. As indicated by Tremblay and Xiao (2020), however, there is increasing attention

for analyzing behavioral aspects on the supply side. The application of the MSS stability concept

to oligopoly pricing contributes to this research agenda. In particular, it helps shedding light on

some real-world economic phenomena such as price dispersion, supply shortages and Edgewor-

thian price cycles. We, for example, examine how the MSS would be affected by a change in firm

size distribution (e.g., through a merger). The maximum myopically stable price is shown to in-

crease only when the merger becomes the new industry leader in terms of production capacity.

This may additionally lead to a decline in the minimummyopically stable price, and therefore to

a larger price dispersion, when the smallest firm does not take part in the merger. By contrast, a

merger among the smallest firms may reduce the range of myopically stable prices as it may not

affect the upper bound and increase the lower bound of the MSS.3

The MSS also provides a rationale for different types of pricing patterns, including the fol-

lowing two interesting possibilities: (1) A state of hyper-competition with corresponding supply

shortages, and (2) Edgeworth-like price cycles. Myopic oligopoly pricing can lead to a state of

hyper-competition in which sellers collectively price below the market-clearing price. The logic

is roughly as follows. Starting from a market-clearing situation, the biggest market player may

have an incentive to hike its price and operate as a monopolist on its contingent demand curve.

This creates an incentive for smaller producers to hike their own prices and (approximately)

match the price of the largest firm. The biggest supplier can now improve its situation by shav-

ing its price below the prices of its smaller-sized rivals, leaving the latter worse off than in the

initial market-clearing situation. This, in turn, makes prices below the market-clearing price a

better-response. Myopic oligopoly pricing may therefore induce a (temporary) state of hyper-

competition inwhichmyopic sellers endup setting a price belowmarket-clearing levels. TheMSS

consequently provides a rationale for rationing, i.e., a situation in which demand exceeds supply.

2Several authors have argued that mixed strategies might be implausible in the context of oligopoly pricing games.

See Friedman (1988) and, more recently, Edwards and Routledge (2019).
3The MSS stability concept thus provides a pure-strategy rationale for price dispersion. See also the recent work

by Myatt and Ronayne (2019), who offer a theory of stable price dispersion with pure strategies.
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The MSS moreover offers an explanation for the emergence and magnitude of Edgeworth-like

price cycles. Edgeworth (1925) pointed out the possibility of producers not being able to meet

their demand.4 If so, prices may never stabilize but instead oscillate indefinitely between some

upper and lower bound. More specifically, his analysis hints at the emergence of asymmetric

price cycles that essentially consist of two parts. If prices are relatively high, then sellers have an

incentive to slightly undercut each other. This leads prices to decrease gradually until a floor is

reached (the price war phase). At that point, firms have an incentive to hike their price and act as

a monopolist on their residual demand curve (the relenting phase). This latter incentive comes

from (i) the fact that cheaper suppliers will not meet all demand forthcoming to them, and (ii)

part of these unserved customers still prefers to buy at the higher price. This in turn provides

an incentive for low-priced sellers to hike their price, which induces a new cycle.5 Several em-

pirical studies have documented the existence of Edgeworth-like price cycles in practice. Eckert

(2003) and Noel (2007a,b), for example, provide evidence of such ‘sawtooth shape’ price pat-

terns in Canadian retail gasoline markets. Among other things, they show that large firms are

likely to initiate the relenting phase through a price hike, whereas small firms take the lead in

the price war phase. Wang (2008) reports on collusive price cycles in an Australian retail gaso-

line market.6 More recently, Zhang and Feng (2011) and Hauschultz and Munk-Nielsen (2020)

have shown the presence of Edgeworth-like price patterns in online search-engine advertising

and pharmaceutical markets, respectively.

This paper is naturally related to the rich body of theoretical work on capacity-constrained

price competition, a literature that basically can be divided in two parts. One focuses on the ex-

istence and characterization of the mixed-strategy Nash equilibrium. Such mixed-strategy solu-

tions have been provided by Beckmann (1965), Levitan and Shubik (1972), Osborne and Pitchik

(1986), Allen and Hellwig (1986), and Deneckere and Kovenock (1992), amongst others. An-

other part aims to restore the existence of a pure-strategy Nash equilibrium by rationalizing why

residual demand for a high-priced seller would be significantly reduced or even eliminated. For

example, Dixon (1990) shows that producers may no longer have an incentive to act as a monop-

olist on their contingent demand curve when there are cost to turning customers away. Other

solutions along this line include Dixon (1992), Tasnádi (1999) and, more recently, Edwards and

4Edgeworth (1925) examines price competition under capacity constraints. Edgeworth (1922) considers the equiv-

alent case in which suppliers are not willing to meet the demand forthcoming to them. This may occur when the pro-

duction technology exhibits decreasing returns to scale, for example. Note also that, since the MSS is a static solution

concept, it essentially provides an intuitive explanation for particular price patterns following myopic better-responses.

For an analysis and discussion of Edgeworthian price cycles based on myopic best-responses, see De Roos (2012).
5Absent capacity constraints, Maskin and Tirole (1988) show how asymmetric price cycles may emerge in equilib-

rium when firms pick prices sequentially from a grid.
6De Roos and Smirnov (2021) analyze theoretically the pricing behavior of a less than all-inclusive price cartel and

provide a rationale for collusive Edgeworth-like price cycles. There is also evidence for asymmetric price cycles in

European retail gasoline markets. See, e.g., Foros and Steen (2013) and Linder (2018).
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Routledge (2019). All this work concentrates on Nash solutions and is consequently based on

best- rather than better-responses, which is the focus of our analysis.7

Capacity-constrained price competition has also been studied in controlled experimental lab-

oratory settings. Kruse, Rassenti, Reynolds, and Smith (1994), for example, conducted a series

of twenty experiments to test the wide variety of theoretical pricing predictions. Among other

things, they find a general price decline during the first periods. Towards the middle or the end,

however, they observe patterns of upward and downward price swings. This is confirmed by

Fonseca and Normann (2013) who also find prices to move up and down for a wide range of

capacities. Interestingly, they conclude that:8

...the data are better explained by Edgeworth-cycle behavior. Not only are average

prices closer to the predicted Edgeworth-cycle prices, but we cannot reject the hypothesis

that firms are engaging in some form of myopic price adjustment.

The behavioral foundation that we present in this paper advances our understanding of such

complex pricing dynamics by providing a simple and relatively uncontroversial rationale for the

observed pricing patterns.

The remainder of the paper is organized as follows. The next section presents the model.

Section 3 offers a detailed description of the MSS solution concept. Section 4 contains our main

findings. These findings are illustrated by means of a linear demand example in Section 5. Sec-

tion 6 concludes. The proofs are relegated to the Appendix.

2 Model

Consider a homogeneous-goodprice-setting oligopolywith a finite set of firms: N “ t1, . . . , nu

with n ě 2. Each firm i P N has a production capacity ki ą 0 and produces to order at con-

stant marginal cost, which we normalize to zero. Without loss of generality, we assume that

k1 ě k2 ě . . . ě kn ą 0 so that firm 1 is the (weakly) largest and firm n is the (weakly) smallest

firm in the market. Total industry capacity is given byK “
ř

iPN ki andK´i “
ř

jPNztiu kj is the

combined production capacity of all firms other than i.

Let market demand be given by the functionD : R` ÝÑ R`. We make the standard assump-

tions that Dp.q has a finite upper bound (Dp0q) and is twice continuously differentiable, with

D1p.q ă 0. There is a choke price α ą 0 and therefore Dp.q “ 0 at prices larger or equal than α.

7It is worth noting that both better- and best-response dynamics are well-known concepts in the game-theoretic

literature on learning. A central issue in this work is whether, and under what conditions, better- and best-response

adjustments lead to convergence to an equilibrium. See, for example, Milgrom and Roberts (1990), Monderer and

Shapley (1996), Friedman and Mezzetti (2001) and Arieli and Young (2016).
8Fonseca and Normann (2013, p. 201), italics is ours.
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Sellers pick prices simultaneously and we denote supplier i’s strategy space by Pi “ r0,8q so

that P “
ś

iPN Pi is the set of all possible strategy profiles.

Since products are homogeneous, consumers prefer to buy from a supplier setting the lowest

price. As firms may face capacity constraints, however, it is possible that only part of them will

be served in which case higher-priced sellers might still receive demand. To specify individual

(residual) demand, let Ωppiq “ tj P N |pj “ piu and ∆ppiq “ tj P N |pj ă piu denote the set of

firms that price at and below pi, respectively. Furthermore, let p´i “ pp1, . . . , pi´1, pi`1, . . . , pnq

indicate the prices of all firms other than i. Demand for firm i’s products is then given by

Dippi, p´iq “ Dppiq when all its competitors charge a strictly higher price. If there is at least

one other seller setting the same price, then its demand is:

Dippi, p´iq “ max

$
&
%

kiř
jPΩppiq

kj

¨
˝Dppiq ´

ÿ

jP∆ppiq

kj

˛
‚, 0

,
.
- .

Finally, if firm i sets the strictly highest price in the industry, its demand is:

Dippi, p´iq “ max tDppiq ´ K´i, 0u .

Thus, (i) customers first visit the lowest-priced seller(s) at the set prices, (ii) at equal prices,

demand is allocated in proportion to production capacity, and (iii) rationing is efficient.9

Profits are then given by:

πippi, p´iq “ pi ¨ mintki, Dippi, p´iqu, for all i P N.

To facilitate the ensuing analysis, we denote firm i’s profit by πℓ
i ppiq when pi is the strictly low-

est price and by πh
i ppiq when pi is the strictly highest price in the industry. Furthermore, we

assume that πh
i ppiq “ pipDppiq ´ K´iq is strictly concave when there is residual demand for the

highest-priced firm (i.e., when Dppiq ą K´i) and we write p˚
i “ argmaxpi π

h
i ppiq to indicate

the corresponding residual profit-maximizing price.10 Also, assuming that K ă Dp0q, let p be

the price for which market demand equals total production capacity (Dppq “ K) and let p “ 0

when K ě Dp0q. We refer to p as the market-clearing price.11 Figure 1 provides a graphical

illustration.

The next result relates an individual price choice to the market-clearing price p. Specifically,

it shows that if industry capacity is sufficiently small (i.e., K ă Dp0q), then πippi, p´iq “ piki

9Such a surplus maximizing scheme is also used by Levitan and Shubik (1972), Kreps and Scheinkman (1983),

Osborne and Pitchik (1986) and Edwards and Routledge (2019), amongst others.
10We assume strict concavity for analytical convenience. Strictly speaking, it would be sufficient to impose a weaker

requirement such as single-peakedness.
11To economize on notation, we refer to p sometimes as a price and sometimes as a price profilewith all firms pricing

at p. It is clear from the context what is meant. Note further that, since production is to order, there are in fact many

market-clearing prices in this model.
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pi

πi

p D´1pk2q D´1pk1qp˚
1

π1ppq

πh
1 pp˚

1q

πh
1

πℓ
1

Figure 1: An illustration of firm 1’s profit function when n “ 2.

provided that Dppiq ě K. That is, a firm produces at capacity whenever there is excess demand

at the set price.

Lemma 1. If 0 ă pi ď p, then πippi, p´iq “ piki, for all i P N .

As is well-known, existence of a pure-strategyNash equilibrium in capacity-constrained pric-

ing games critically depends on available production capacities.12 If capacities are large enough

in relation to market demand, then there is a symmetric ‘Bertrand-type’ pure-strategy solution

in which all sellers price at cost. A pure-strategy equilibrium also exists when capacities are suf-

ficiently small in the sense that market demand is elastic at all prices above p.13 In that situation,

all suppliers charge the same market-clearing price and produce at capacity. Finally, for an in-

termediate range of production capacities, there is no pure-strategy Nash solution. There does

exist a mixed-strategy equilibrium, however, which will be elaborated on in Section 4.3 below.

3 Solution Concept

In the following, we do not take the standardNash approach. Instead, we employ the solution

concept of Myopic Stable Set which is based on the idea that sellers may simply aim to improve

upon their situation and not necessarily maximize their profits. In this section, we introduce this

equilibrium concept in detail.

12See, for example, Chapter 5 of Vives (1999).
13For a detailed analysis of this possibility, see Tasnádi (1999).
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Consider a price profile p “ pp1, . . . , pnq P P . We say that an alternative price profile p1 P P

dominates pwhen there is a firm that can unilaterally deviate to p1 and earn a higher profit under

p1 than under p. That is, given the strategy profile p, this firm has a better-reply since it can

myopically improve itself by inducing price profile p1.

Definition 1. Let p, p1 P P be two price profiles. The price profile p1 dominates p, p1
ą p, if there exists a

firm i P N such that πipp
1q ą πippq and p1

´i “ p´i.

Next, given some price profile p P P , we write fppq to describe the subset of P consisting of

all dominating price profiles in conjunction with p:

fppq “ tpu Y tp1 P P |p1
ą pu.

Given f , let the set of pure-strategy Nash equilibria be denoted by:

NE “ tp P P |fppq “ pu.

To capture the better-reply dynamics that can be generated by the firms, we define the κ-fold

iteration fκppq as the subset of P that contains all the price profiles obtained by a composition of

dominance correspondences of length κ P N. Thus, p1 P fκppq when there is a p2 P P such that

p1 P fpp2q and p2 P fκ´1ppq. Note further that if κ ď t, then fκppq Ď f tppq, for all κ, t P N. We

indicate the set of prices that can be reached from p by a finite number of dominations by fNppq:

fNppq “
ď

κPN

fκppq.

Given p1, p P P , we say that a price profile p1 asymptotically dominates p when, starting from p,

it is possible to get arbitrarily close to p1 through a finite number of myopic improvements.

Definition 2. A price profile p1 P P asymptotically dominates p P P if there exists a number κ P N and

a price profile p2 P fκ ppq such that ||p1 ´ p2|| ă ǫ for all ǫ ą 0.

We denote by f8ppq the set of all strategy profiles in P that asymptotically dominate p. Formally,

f8ppq “ tp1 P P |@ǫ ą 0, Dκ P N, Dp2 P fκppq : ||p1 ´ p2|| ă ǫu.

Notice that the set f8ppq coincides with the closure of the set fNppq.

We now have all the ingredients available to define the Myopic Stable Set (MSS) for the

capacity-constrained pricing game:

Definition 3. LetG “ tN, pPi, πiqiPNu be a capacity-constrained pricing game as specified in Section 2.

The set M Ď P is a Myopic Stable Set when it is closed and satisfies the following three conditions:

i. Deterrence of External Deviations: For all p P M, fppq Ď M.
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ii. Asymptotic External Stability: For all p R M, f8ppq X M ‰ H.

iii. Minimality: There is no closed setM 1 Ĺ M that satisfies conditions i and ii.

Suppose there is a set M of myopically stable price profiles. ‘Deterrence of External Deviations’

means that no firm can profitably deviate to a price profile outside M . ‘Asymptotic External

Stability’ requires that any price profile outsideM is asymptotically dominated by a price profile

in M . Hence, from any price profile outside M it is possible to get arbitrarily close to one in M

by a finite number of myopic improvements. Finally, ‘Minimality’ means that there is no smaller

(closed) set for which the first two conditions are met. Roughly speaking, the MSS can thus be

pictured as a set of price profiles that, once entered through the dominance dynamics, is never

left.

4 Results

For normal form games, Demuynck, Herings, Saulle and Seel (2019) prove the existence of

a unique MSS when the strategy space is compact and the payoff functions are continuous. The

continuity assumptions are not satisfied in the capacity-constrained pricing model, however. In

this section, we show that this game also possesses a uniqueMSS for any given level of capacities.

Moreover, we characterize this solution and compare it to the set of pure-strategy Nash equilib-

ria as well as to the support of the mixed-strategy Nash equilibrium. Among other things, we

establish that the MSS encompasses all existing Nash equilibrium solutions.

4.1 Pricing Equilibria with Large or Small Capacities

We begin with exploring the relationship between the MSS and the set of pure-strategy Nash

equilibria. Towards that end, denote a subset of sellers S Ď N minimal when
ř

jPSztiu kj ě Dp0q,

for all i P S. That is, each combination S has sufficient capacity to meet market demand at a zero

price when a member leaves the coalition. To facilitate the analysis, let us now characterize the

set of pure-strategy Nash equilibria.14

• IfK´1 ě Dp0q, then

NE “
!
p P P |p P

ś
iPSt0u ˆ

ś
iPNzSr0,8q

)
.

• IfK ď Dpp˚
1q, then

NE “
 
p P P |pi “ p ą 0, for all i P N

(

14Vives (1986) provides conditions for non-emptiness of the set of symmetric pure-strategy Nash equilibria under

a surplus maximizing scheme. In Proposition 1, we additionally admit asymmetric pure-strategy Nash equilibria.
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• IfK ą Dpp˚
1q orK´1 ă Dp0q, then

NE “ tHu.

Proposition 1. Let G be a capacity-constrained pricing game as specified in Section 2. The set NE is the

set of pure-strategy Nash equilibria of G.

Simply put, there are two types of pure-strategy Nash equilibria. If industry capacity is suf-

ficiently large, then there is a set of pure-strategy solutions, all of which have firms making zero

economic profit. One solution in this case is the symmetric ‘Bertrand-type’ pure-strategy equi-

librium in which all firms price at cost. There are also many asymmetric equilibria in which part

of the firms price above cost and have no demand. If aggregate capacity is sufficiently small, then

there is a symmetric pure-strategy Nash equilibrium in which each firm sets its price equal to the

market-clearing price.

To better illustrate the relation between the MSS and the set of pure-strategy Nash equilibria,

we now introduce the so-called weak improvement property.

Definition 4. A normal form game satisfies the weak improvement property when NE ‰ H and f8ppqX

NE ‰ H for each price profile p R NE.

A normal form game possesses the weak improvement property when any non-Nash equilibrium

strategy profile converges to a Nash equilibrium through a finite sequence of myopic improve-

ments. Demuynck, Herings, Saulle and Seel (2019) extend previous results by Monderer and

Shapley (1996), Friedman and Mezzetti (2001) and Dindõs and Mezzetti (2006) by showing

that supermodular games (Friedman and Mezzetti, 2001) and pseudo-potential games (Dubey,

Haimanko and Zapechelnyuk , 2006), including games of strategic complements or substitutes

with aggregation (e.g., Cournot oligopolies), exhibit theweak improvement property. The capacity-

constrained pricing model does not belong to any of the aforementioned game classes, however.

Nevertheless, we establishwith the next proposition that this type of games also exhibit the weak

improvement property.

Proposition 2. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-

strategy Nash equilibria NE is nonempty, then this game exhibits the weak improvement property.

This result states that any price profile that is not a pure-strategy Nash equilibrium is asymp-

totically dominated by the pure-strategy solution(s). That is, from any price profile not in NE

it is possible to get arbitrarily close to a pure-strategy equilibrium by a finite number of myopic

improvements.15

15It is noteworthy that Proposition 2 is consistent with Bőrgers (1992) who shows that the market-clearing price

survives iterated elimination of strictly dominated strategies when the pn ´ 1q firms have sufficient capacity to meet

demand when pricing at marginal costs.
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Using the preceding results, we now show that the set of pure-strategy equilibria coincides

with the MSS whenever the former is nonempty.

Theorem 1. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-

strategy Nash equilibria NE is nonempty, then NE is the unique Myopic Stable Set.

The above approach captures the potential pricing dynamics of the game. This includes prices

that may emerge under myopic improvements and in particular also the pure-strategy Nash

equilibrium prices. More specifically, following Proposition 2, there is a price path of myopic

improvements from any non-Nash price profile to a pure-strategy Nash profile. Once the pricing

dynamics enters the set NE, however, there is no way out. Indeed, by the very nature of a Nash

equilibrium, none of the sellers can profitably deviate to a price profile outside NE. Combining

these two forces yields the result of Theorem 1; that is, there is a unique MSS that coincides with

the set of pure-strategy Nash equilibria NE.

4.2 Myopic Stability with Intermediate Capacities

As indicated above, the set of pure-strategyNash equilibria is empty in the capacity-constrained

pricing model when capacities are in an intermediate range (i.e., whenDpp˚
1q ă K ă Dp0q `k1).

We now proceed with analyzing the MSS for these types of cases. To that end, we introduce two

notions that are useful in the ensuing analysis; the iso-profit price and the hyper-competitive

price.

Definition 5. For each firm i P N , the iso-profit price is:

pi “

$
&
%
min

 
pi P Pi|π

h
i ppiq “ p ¨ ki with pi ‰ p

(
if Dp0q ą K´i ą Dpp˚

i q ´ ki,

p otherwise.

Given that all its competitors charge a lower price, the iso-profit price of firm i is the lowest price

above the market-clearing price p for which it receives the same profit as when it would price at

p. It should be emphasized that the iso-profit price differs from the market-clearing price only

when the following two conditions hold. First, firm imust face residual demand for some prices

(i.e.,Dp0q ą K´i). Second, its residual profit-maximizing price must exceed the market-clearing

price, which requires a sufficiently large capacity (i.e., ki ą Dpp˚
i q ´ K´i). If either of the two

conditions is violated, then the iso-profit price coincides with the market-clearing price.

Adetailed analysis of the various scenarios is provided in Lemma2below. Part (i) of Lemma2

gives conditions under which the iso-profit price exceeds the market-clearing price and shows

that the iso-profit price is increasing in capacity. Part (ii) and (iii) describe when the iso-profit

price coincides with the market-clearing price, which is the case when the firm is sufficiently

10



small. Part (ii) captures the possibility that a firm faces residual demand, but where its residual

profit-maximizing price is lower than the market-clearing price. Part (iii) shows the possibility

that a firm faces no residual demand at any price. In all cases, it holds that the iso-profit price of

the largest firm is strictly positive and above the market-clearing price.

Lemma 2. Suppose there is no pure-strategy Nash equilibrium.

(i) If Dp0q ą K´i ą Dpp˚
i q ´ ki, for all i P N , and ki ą kj , for any i, j P N , then pi ą pj ą p ě 0.

(ii) For all i P Nz t1u, if ki ď Dpp˚
i q ´ K´i, then pi “ p. For firm 1, p1 ą p.

(iii) If Dp0q ď K´m with n ě m ą 1, then pi “ p “ 0 for each firm i “ m,m ` 1,m ` 2, ..., n weakly

smaller thanm.

Let us now introduce the hyper-competitive price.

Definition 6. For each firm i P N , the hyper-competitive price is:

rpi “
!
mintpi P Pi|π

h
i pp1q “ pi ¨ ki

)
.

In words, the hyper-competitive price is the lowest price for which a firm obtains the same profit

as when it sets the iso-profit price of the largest seller, given that this iso-profit price is the strictly

highest price in the market.

Lemma 3 presents some useful properties. Part (i) shows that hyper-competitive prices are

(weakly) below the market-clearing price whenever the latter is strictly positive. Part (ii) estab-

lishes a positive relationship between the hyper-competitive price and firm size. Part (iii) states

that the hyper-competitive price is zero for a highest-priced firm not facing residual demand.

Lemma 3. Suppose there is no pure-strategy Nash equilibrium.

(i) If K ă Dp0q and each firm i P Nzt1u is strictly smaller than firm 1, then 0 ă rpi ă p and rp1 “ p.

(ii) IfK ă Dp0q and ki ą kj , then rpi ą rpj , for all i, j P N .

(iii) If Dp0q ď K´i, then rpi “ p “ 0, for all i P N .

Finally, Lemma 4 relates the iso-profit and hyper-competitive prices to a firm’s profit. Part (i)

of Lemma 4 states that, given that the largest supplier sets its iso-profit price, all his rivals can

profitably raise their price from the market-clearing price p to some higher price weakly below

firm 1’s iso-profit price. Part (ii) complements this by showing that if firm 1 prices below p1 and

any highest priced seller i other than firm 1 prices at p1, then the latter can myopically improve

by reducing its price below the market-clearing price.

Lemma 4. Suppose there is no pure-strategy Nash equilibrium. For all i P Nzt1u:

(i) If p1 “ p1, then πippi, p´iq ą πippq for pi P pp, p1q.

(ii) If p1 ă p1, then πippi, p´iq ą πh
i pp1q for pi P prpi, ps.

11



pi

πi

rp2 p p1 D´1pk1q D´1pk2q

π1ppq

π2ppq

π2pp1q

Figure 2: An illustration of the iso-profit price p1 and the hyper-competitive price rp2.

A graphical illustration is provided in Figure 2.

Now that we have introduced the iso-profit and hyper-competitive prices as well as some of

the corresponding properties, we can analyze the MSS when capacities are in an intermediate

range. Specifically, we show in the following that the MSS is given by:

M “

"
p P P

ˇ̌
ˇ̌ p̃i ď pi ď p1, @i P N

*
. (1)

Theorem 2. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-

strategy Nash equilibria NE is empty, thenM as given in (1) is the unique Myopic Stable Set.

In the following, we provide some intuition for this set solution by discussing it in relation to

three economic phenomena: (1) Edgeworth Price Cycles, (2) Hyper-competition, and (3) Merg-

ers.

4.2.1 Edgeworth Price Cycles

In Figure 3, the MSS is given by the shaded area. In principle, this area admits different

types of pricing patterns. The red arrows represent one particular better-response price path.

12



Starting at point ‘c’ firms are undercutting each other’s prices until point ‘a’. At ‘a’, firm 1 hikes

its price to p1 at point ‘b’. This, in turn, makes it a better-response for firm 2 to price slightly

below p1. As this example illustrates, the MSS naturally captures Edgeworth-like price cycles

and consequently provides a clear rationale for such ‘sawtooth shape’ price patterns.

p1

p2

p

p

p1

rp2

p1

a b

c

Figure 3: An illustration of the Myopic Stable Set when n “ 2 and k1 ą k2.

4.2.2 Hyper-competition

Another striking possibility is that a smaller supplier may find it in his interest to set a price

below the market-clearing price. Such a scenario is depicted in Figure 4. As before, suppose that

there are two sellers who price close to the market-clearing price at ’a’. By hiking its price, firm 1

may then induce a price profile at ’b’. This, in turn, may trigger firm 2 to slightly undercut firm 1’s

price, which leads to a price profile around ’c’. In particular, firm 2 may set a price p1
2 P pp2, p1s.

Slightly undercutting p1
2 may then constitute a better-response for firm 1, which results in a price

profile at, say, ’d’. Yet, in that case it is profitable for firm 2 to reduce its price from p1
2 to some

price p2
2 P pp̃2, ps below the market-clearing price. This would result in a price profile around ‘e’.
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Firms can leave such a hyper-competitive state by raising their price to the market-clearing level,

which in turn may induce similar pricing dynamics.16

p1

p2

p

p

p1

rp2

p1

p2

a b

c
d

e

Figure 4: An illustration of the Myopic Stable Set when n “ 2 and k1 ą k2.

The MSS therefore provides a rationale for ‘price wars’ where all but the largest seller set a

price below the market-clearing price.

Corollary 1. If each firm i P Nzt1u is strictly smaller than firm 1, then there exists a price profile p P M

with p1 “ p and pi P rp̃i, pq.

Note that such hyper-competitive price profiles are Pareto-dominated in that all producerswould

be better-off (and no one worse off) when pricing weakly above the market-clearing price. More-

over, this result highlights the possibility of an equilibrium shortage, i.e., a situation in which

market demand exceeds aggregate supply.

16Note that this possibility strongly relies on the assumption of firms following myopic better responses since a

hyper-competitive price like at ‘e’ does not constitute a best-response to ‘c’.
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4.2.3 Mergers

How is the MSS affected when there is a change in firm size distribution? We address this

question by analyzing the impact of a merger. In the context of our model, a merger is taken

to mean a transformation of two or more firms into a single, larger, entity. We consider two

cases: (i) merging parties establish a firm with a production capacity that exceeds the capacity

of the biggest pre-merger supplier (Proposition 3), and (ii) merging parties form a firmwith less

production capacity than the largest pre-merger supplier (Proposition 4). In the following, let

KS “
ř

iPS ki denote the joint capacity of a merger between a strict subset of firms S Ă N .

We start with scenario (i) in which the merger becomes the new industry leader in terms of

production capacity. The next proposition shows that this induces a wider range of myopically

stable prices when the smallest firm is not taking part in the merger. Specifically, it raises the

upper bound since there is a new largest firm post-merger that has a higher iso-profit price.

This, in turn, creates a downward pressure on the hyper-competitive prices of the non-merging

parties. All else equal, this effect is more pronounced the larger the merger.

Proposition 3. Consider a merger between a subset of firms S Ă N and suppose thatKS ą k1.

(i) The merger increases the upper bound of the Myopic Stable SetM . Moreover, the upper bound is rising

with the size of the merger.

(ii) IfDp0q ă K ă Dp0q ` k1, then the merger has no effect on the lower bound of the Myopic Stable Set

M .

(iii) If Dpp˚
1q ă K ă Dp0q, then the merger leads to a decrease of the non-merging parties’ hyper-

competitive prices.

Let us now turn to scenario (ii), which is the possibility that the merger does not affect the

size of the largest firm in the industry. In this case, there is a contraction of the MSS when the

smallest firm is involved in the merger. Specifically, since the iso-profit price of the biggest sup-

plier remains unaffected, the upper bound of the MSS does not change. By contrast, the hyper-

competitive prices of the merging parties increase so that the merger leads to a (weak) increase

of the minimum myopically stable price.

Proposition 4. Consider a merger between a subset S Ă N of firms and suppose thatKS ă k1.

(i) The merger has no effect on the upper bound of the Myopic Stable SetM .

(ii) IfDp0q ă K ă Dp0q ` k1, then the merger has no effect on the lower bound of the Myopic Stable Set

M .

(iii) IfDpp˚
1q ă K ă Dp0q, then the merger leads to an increase of the merging parties’ hyper-competitive

prices.

In sum, any merger that excludes the smallest firm and becomes the industry leader in terms

of production capacity induces a broader range of myopically stable prices. In particular, the
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upper bound of the MSS increases, whereas the hyper-competitive prices of the non-merging

parties decrease. By contrast, there is a (weakly) narrower range of myopically stable prices

when the merger does not become the biggest industry player. In that case, the upper bound of

theMSS is not affected, whereas the hyper-competitive prices of themerging parties are replaced

by a single higher hyper-competitive price of the merger. Although the analysis is conducted

assuming a single merger, results would be similar in case of multiple mergers. This is because

the critical driver of the above findings is the impact on the MSS upper and lower bounds. The

key question is therefore whether or not there is a merger that takes over the leading position in

the industry.

4.3 Equilibria in Pure and Mixed Strategies

Theorem 1 and Theorem 2 establish the existence and characterization of a unique Myopic

Stable Set for any given level of capacities. In particular, they offer a pure-strategy solution when

there is none in Nash terms. Let us now conclude this section by relating the MSS as derived

above to the mixed-strategy Nash equilibrium. The existing literature has repeatedly shown that

there is a Nash equilibrium in mixed strategies under fairly weak assumptions.17 Specifically,

since in the above capacity-constrained pricing model demand is continuously decreasing and

residual profit functions are continuous and strictly concave, there exists an equilibrium inmixed

strategies without ‘holes’ when capacities are within an intermediate range, i.e., when Dpp˚
1q ă

K ă Dp0q ` k1.18 We now consider this mixed-strategy equilibrium in more detail.

To begin, recall that there exists a unique residual profit-maximizing price p˚
i for each firm

i P N . By construction of the contingent demand functions Dppiq ´ K´i, it then follows that

pm ě p˚
1 ě p˚

2 ě ... ě p˚
n, where pm is the monopoly price. Note that pm approaches p˚

1 when

K´1 approaches zero.19 Since none of the sellers has an interest in charging a price in excess of

p˚
1 , this price constitutes the upper bound of the mixed-strategy support. Let the lower bound be

indicated by ppi, where ppi ‰ p˚
i is the price solving

p˚
i rDpp˚

i q ´ K´is “ min tppiki, ppi ¨ D pppiqu .

The mixed-strategy support is therefore given by:

K “
ź

iPN

rppi, p˚
1s Ă P .

17Maskin (1986) provides a general analysis and discussion of these existence conditions.
18See, e.g., Deneckere and Kovenock (1992) and, more recently, Tasnádi (2020).
19Since for any i, j P N , p˚

i and p˚
j are such that:

Dpp˚
i q ` p

˚
i D

1pp˚
i q “ K´i and Dpp˚

j q ` p
˚
j D

1pp˚
j q “ K´j ,

and thereforeK´i ă K´j ô p˚
i ą p˚

j by concavity of firms’ (residual) profit functions.
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Let us now relateK to theMSS. Recall that in this case there is a uniqueMSS given by the setM

(Theorem 2). The next result shows that theMSS permits larger price fluctuations in comparison

to the mixed-strategy equilibrium.

Theorem 3. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-

strategy Nash equilibria NE is empty, then K Ă M .

The intuition underlying this finding is as follows. Regarding the upper bound, with random

strategies no firm puts mass on prices above the maximizer of its (residual) profit function. By

contrast, the MSS permits such prices since prices in excess of the maximizer may still constitute

a better-response. The story is to some extent similar for the lower bounds. To see this, notice

that in a mixed-strategy equilibrium none of the sellers prices below p because either it can sell

its entire capacity at p or p “ 0. As there are no pure-strategy Nash equilibria in this case, there

is at least one firm that would be willing to hike its price when all firms price at p. It can be easily

verified that this holds for the largest firm. Since the higher-priced firm has residual demand, the

lower-priced firms are capacity-constrained. This provides an incentive to also raise their prices,

which in turn implies that no seller puts mass on prices weakly below p. By contrast, following

the definition of the MSS upper bound p1, p must be part of the MSS since profits are the same

at both prices. In fact, and as illustrated in Figure 2 and Figure 3 above, it is quite possible that

one or more sellers have a better-response below p.

In sum, the above analysis shows thatmyopic sellers set the sameprice as their profit-maximizing

counterparts when production capacities are either ‘large’ or ‘small’. For an intermediate range

of capacities, the set of mixed-strategy profiles is a subset of theMSS. TheMSS thus encompasses

all Nash solutions. The next section provides an example illustrating these findings.

5 Example

Let us examine a Bertrand-Edgeworth duopoly with linear market demand: Dppq “ 1 ´ p.

Demand for the products of firm i, i “ 1, 2 and i ‰ j, is then described by the following demand

structure:

Dippi, pjq “

$
’’’’’&
’’’’’%

1 ´ pi if pi ă pj ,

ki
ki`kj

p1 ´ piq if pi “ pj ,

maxt0, 1 ´ pi ´ kju if pi ą pj .

(2)

It is assumed that k1 ą k2 so that firm 1 is strictly larger in terms of capacity. Below, we derive the

MSS for the entire range of production capacities and compare it to the standard Nash solution.
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5.1 Nash Equilibria

Let us begin with the situation where capacities are ‘large’ so that a pure-strategy Nash equi-

librium exists. Specifically, this is the case when each seller can serve the whole market at the

competitive price, i.e., when k1 ą k2 ě 1. The Nash equilibrium is then such that both firms

charge a price equal to marginal cost and therefore (by Theorem 1):

M “ NE “ tp0, 0qu.

A pure-strategy Nash equilibrium also exists when capacities are sufficiently small. Specifically,

this is true when k1 ď k1, where k1 solves the following equality:

k1 “ Dpp˚
1q ´ k2. (3)

In our linear example, firm 1’s residual profit-maximizing price is:

p˚
1 “

1

2
p1 ´ k2q .

Substituting in (3) and rearranging gives the threshold value k1 “ p1 ´ k2q {2. Thus, for k1 ď k1

(or, equivalently, k2 ď 1 ´ 2k1), there is a pure-strategy solution for which the market clears.

Moreover, by Theorem 1, this pure-strategy Nash equilibrium coincides with the MSS:

M “ NE “ tp1 ´ k1 ´ k2, 1 ´ k1 ´ k2qu.

For the capacity ranges specified above there exists no nondegenerate mixed-strategy Nash

equilibrium. Let us now turn to the possibility where there is a nondegenerate Nash equilibrium

in mixed strategies. This is the case when k1 ą k1 and 1 ą k2 ą 1 ´ 2k1. To determine the lower

bound of the mixed-strategy support, notice that firm 1 is indifferent between being the high-

and the low-priced firm when:20

πh
1 pp˚

1q “ p˚
1 ¨ p1 ´ p˚

1 ´ k2q “
1

4
p1 ´ k2q2 “ πℓ

1 ppp1q “ pp1 ¨ mintk1, 1 ´ pp1u,

so that

pp1 “
1

4k1
p1 ´ k2q2 when k2 ď 1 ´

a
1 ´ p2k1 ´ 1q2,

and

pp1 “
1

2
´

1

2

b
2k2 ´ k2

2
when 1 ´

a
1 ´ p2k1 ´ 1q2 ă k2 ď 1.

The mixed-strategy support of this Bertrand-Edgeworth game is therefore given by:

rpp1, p˚
1s “

«
p1 ´ k2q2

4k1
,
1 ´ k2

2

ff
or rpp1, p˚

1s “

„
1

2
´

1

2

b
2k2 ´ k2

2
,
1 ´ k2

2


,

depending on the capacity levels.

20Note that in this duopoly example pp1 exceeds pp2, so that pp1 is the lower bound of the mixed-strategy support. For

a detailed analysis, see Deneckere and Kovenock (1992).
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5.2 Myopic Stable Set

Let us now derive the MSS for this intermediate range of capacities. By Theorem 2, we know

that the upper bound of the MSS is the price p1 solving

πh
1 pp1q “ p1 rDpp1q ´ k2s “ π1

`
p
˘
,

whereas the lower bound for the largest firm (firm 1) is given by:

p “ max
 
0, D´1pk1 ` k2q

(
. (4)

We therefore need to distinguish two cases.

The first iswhere combined production capacity is sufficiently large to serve thewholemarket

at the competitive price: k1 ` k2 ě 1. In this case, p “ 0 and p1 is the price that solves

πh
1 pp1q “ p1 rDpp1q ´ k2s “ π1

`
p
˘

“ 0,

which implies

Dpp1q “ k2, and therefore p1 “ D´1pk2q “ 1 ´ k2.

In this case, p “ 0 is also the MSS lower bound for firm 2. Thus, when 1 ą k1 ě 1 ´ k2, the MSS

is symmetric and given by:

M “
“
0, D´1pk2q

‰
ˆ
“
0, D´1pk2q

‰
“ r0, 1 ´ k2s ˆ r0, 1 ´ k2s .

Observe that an increase in k2 lowers the upper bound of the MSS since it reduces the residual

demand for firm 1’s products when it is the high-priced seller. This, in turn, makes that the

‘optimal high price’ is lower leaving fewer prices that qualify as a better-response.

Now consider the other possibility where k1 ` k2 ă 1 so that p “ 1´ k1 ´ k2 ą 0. In this case,

the upper bound of the MSS is obtained by solving

p ¨ p1 ´ p ´ k2q “ p1 ¨ p1 ´ p1 ´ k2q,

which is equivalent to

k1 ¨ p1 ´ k1 ´ k2q “ p1 ¨ p1 ´ p1 ´ k2q,

and therefore p1 “ k1. In contrast, the lower bound of the MSS differs across firms. For firm 1

this lower bound is the same as in the previous case. For firm 2, however, it is the price rp2 given
by:

πh
2 pp1q “ p1 rD pp1q ´ k1s “ rp2 ¨ k2
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with rp2 ‰ p1. This price solves k1 p1 ´ 2k1q “ rp2k2, which gives rp2 “ k1 p1 ´ 2k1q {k2 ă p. Thus,

when 1 ´ k2 ą k1 ą p1 ´ k2q{2, the MSS is asymmetric and given by:

M “
“
p, p1

‰
ˆ rrp2, p1s “ r1 ´ k1 ´ k2, k1s ˆ rk1 p1 ´ 2k1q {k2, k1s .

Notice that k1 has a positive impact on the size of the MSS since it reduces the lower bounds

while increasing the upper bounds (Proposition 3).21 Also, and in contrast to the previous case,

k2 has a positive impact on the size of the MSS by reducing the lower bounds.

5.3 Comparison

To conclude, let us now compare the range of the mixed-strategy support rpp1, p˚
1s with the

price range of the MSS for all (relevant) capacity levels. Figures 5 and 6 provide a graphical

illustration.

k1

pi

k1 0.53 1.11k˚
1

pp1

p˚
1

p̃2

p1

Figure 5: Myopic Stable Set in a linear demand duopoly with k2 “ 9

10
k1.

In Figure 5, the MSS is depicted by the solid (thick) black line for every level of k1 and k2

(expressed as a function of k1, which in this figure is k2pk1q “ 9

10
¨ k1). Starting from the left, for

sufficiently small capacities there is a pure-strategyNash equilibrium that coincideswith theMSS

(Theorem 1). For this specific example, this is true as long as k1 ď k1 « 0.345.22 At that point,

21Note that p̃2 is decreasing in k1 for k1 ą 1{4, which holds true in this case.
22This threshold value can be computed by using k1 “ k

1
“ p1´k2q

2
and k2 “ 9

10
k1. Combining gives k1 « 0.345

and k2 « 0.31.
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the market-clearing price p (indicated by the thin solid line) starts to fall below the maximizer

of πh
1 (indicated by the straight dashed line). This provides an incentive for firms to hike their

price and become the high-priced firm.

The increase in capacities not only undermines the existence of a pure-strategyNash solution;

it also widens the range of better-responses. To see this, recall that p1 is the lowest price above p

for which firm 1 obtains the same profit. Therefore, and due to the fact that the profit function is

strictly concave and has a unique maximum (see Figure 1 and Figure 2), the MSS upper bound

(p1) is increasing and the MSS lower bound (rp2) is decreasing in the gap between p˚
1 and p. This

range of better-response prices is rising until k1 « 0.53, the capacity level at which p becomes

zero.23 Beyond that point, p remains zero. Since profits at p are zero, profits at p1 must be zero

too. Note that residual demand for the high-priced seller gradually decreases when capacities

grow further. This implies that the residual demand choke price is declining and therefore p1

declines as well. The range of better-response prices is narrowing until k1 ě 10

9
and k2 ě 1.

At that point, the MSS coincides with the pure-strategy Nash equilibrium in which both firms

charge a price of zero.

k1

pi

k1 0.750.25

pp1

p˚
1

p1

p̃2

Figure 6: Myopic Stable Set in a linear demand duopoly with k2 “ 1

4
.

The MSS can be compared to the mixed-strategy support rpp1, p˚
1s. A non-degenerate Nash

equilibrium in mixed strategies exists when capacities are within the intermediate range 0.345 «

23This maximum MSS price interval is reached at k1 “ 1 ´ k2. Using k2 “ 9

10
k1, this gives k1 « 0.53.
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k1 ď k1 ă 10

9
. In Figure 5, the mixed-strategy support is the vertical distance between the dashed

lines. The upper bound of the support is given by the maximizer of the residual profit function

πh
1 , which is linearly decreasing in k1. Notice that for this range of capacities, the upper bound

of the MSS, p1, is higher than p˚
1 , because there are prices in excess of this maximizer that still

constitute a better-response to the market-clearing price. Note further that the mixed-strategy

support depends quadratically on k1 and reaches its maximum at k˚
1 « 0.618. Finally, observe

that the lower bound of the mixed-strategy support, pp1, exceeds both p and rp2. Figure 5 thus

visualizes how the MSS strictly includes the support of the mixed-strategy Nash equilibrium

(Theorem 3).

Figure 6 gives another illustration of the same linear demand duopoly example, but this time

the capacity level of the smallest firm is kept fixed at k2 “ 1

4
. Starting at k1 “ 0.25, this means

that the difference in firm size is growing when k1 increases. The threshold value at which the

existence of a pure-strategy equilibrium breaks down is at k1 “ p1´k2q
2

“ 0.375. At that point, the

range of better-responses widens until k1 “ 0.75 for the same reasons as before. Yet, and unlike

the scenario in Figure 5, p1 is not declining and remains constant for larger values of k1. This is

because k2 is constant, which means that the residual demand for firm 1 when it is the higher

priced seller is constant too. This, in turn, implies that themaximizer is independent of k1 as well

as the iso-profit price p1.

Similar to the case depicted in Figure 5, Figure 6 also visualizes how the mixed-strategy sup-

port (given by the vertical distance between the dashed lines) is strictly included in the MSS as

indicated by the solid (thick) black line (Theorem 3). Furthermore, Figure 6 illustrates the pos-

itive relationship between the size of the MSS and the size of the biggest market player when

capacities are in an intermediate range (Proposition 3).

5.4 Merger in a Symmetric Oligopoly

Let us conclude this section by illustrating the impact of a merger on the MSS. To that end,

we consider a simple linear demand oligopoly with n identical firms. Each firm has a production

capacity k ą 0 so that total industry capacity is given by K “ nk. The demand structure is the

n-firm version of the duopoly demand specification presented above. In what follows, our focus

is on the situation where there is no pure-strategy Nash equilibrium. That is, capacities are in an

intermediate range: Dpp˚
1q ă K ă Dp0q ` k, which implies 1{ pn ` 1q ă k ă 1{ pn ´ 1q.

5.4.1 Pre-merger

To specify the MSS, recall that the upper bound is given by the iso-profit price (Theorem 2),

which is the price p that solves:

πh
i ppq “ p rDppq ´ pn ´ 1q ks “ πi

`
p
˘
.
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The lower bound of the MSS is given by:

p “ max
 
0, D´1pnkq

(
. (5)

As before, we need to distinguish two cases. The first iswhen total industry capacity is sufficiently

large to meet market demand at the competitive price: n ¨ k ě 1 or k ě 1{n. In this case it holds

that 1{ pn ´ 1q ą k ě 1{n and p “ 0 so that the iso-profit price is determined by:

πh
i ppq “ p rDppq ´ pn ´ 1q ks “ πi

`
p
˘

“ 0,

which implies

Dppq ´ pn ´ 1q k “ 0 ùñ p “ D´1ppn ´ 1q kq “ 1 ´ pn ´ 1q k.

Thus, in this case the MSS is symmetric and given by:

M “ r0, 1 ´ pn ´ 1q ksn .

Now consider the second possibility where 1{ pn ` 1q ă k ă 1{n and p ą 0. In this case, it

holds that Dppq “ 1 ´ p “ nk so that p “ 1 ´ nk ą 0. The iso-profit price is then obtained by

solving:

p ¨ p1 ´ p ´ pn ´ 1q kq “ p ¨ k “ p1 ´ nkq ¨ k,

which gives p “ k. Moreover, each firm’s hyper-competitive price coincides with the market-

clearing price pre-merger. Taken together, the MSS is therefore given by:

M “
“
p, p

‰n
“ r1 ´ nk, ksn .

5.4.2 Post-merger

We now consider the impact of a merger between a subset of firms S Ă N on the MSS M ,

where 1 ă s ă n is the number of firms involved in the merger. Since the merger becomes

the largest industry player, the post-merger upper bound of the MSS is given by ps, where the

subscript ‘s’ indicates the merged entity. This iso-profit price is the price solving:

πh
s ppq “ ps rDppsq ´ pn ´ sq ks “ πs

`
p
˘
.

Like in the pre-merger situation, we need to distinguish two cases. One is where total pro-

duction capacity is sufficient to serve the market at the competitive price: pn ´ sq ¨ k ` ps ¨ kq ě 1

or k ě 1{n. In this case, p “ 0 and the iso-profit price of the merger (ps) is the price that solves:

πh
s ppq “ ps rDppsq ´ pn ´ sq ks “ πs

`
p
˘

“ 0,
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which implies

Dppsq ´ pn ´ sq k “ 0, ps “ D´1ppn ´ sq kq “ 1 ´ pn ´ sq k.

The lower bound remains p “ 0 so that the MSS post-merger (M 1) is given by:

M 1 “ r0, 1 ´ pn ´ sq kspn´s`1q .

Since the lower bound remains unaffected and the upper bound increases with the size of the

merger, there is a wider range of myopically stable prices in this case.

The second situation is one with a strictly positive market-clearing price: p “ 1´nk ą 0. The

iso-profit price of the merged entity is then given by:

πh
s ppsq “ ps rDppsq ´ pn ´ sq ks “ πs

`
p
˘

“ p1 ´ nkq sk,

which implies ps “ sk.

pi

pj

p

0.05

ps“1

0.095

p “ 0.05

ps“1 “ 0.095

ps“5

0.455

ps“5 “ 0.455

ps“7

0.728

ps“7 “ 0.728

ps“9

0.819

ps“9 “ 0.819

Figure 7: Effect of mergers on MSS coordinates tpi, pjuiPS, jPNzS for n “ 10, s “ 1,s “ 5,s “ 7,s “

9 and k “ 0.091

Regarding the lower bound, recall that the hyper-competitive price of the largest seller coin-

cides with the market-clearing price. Hence, for the merging firms, the hyper-competitive price
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remains themarket-clearing price in this case. Next, let us determine the hyper-competitive price

of the non-merging parties, rpj for j P NzS, who are the smallest industry members post-merger:

rpj ¨ k “ πh
j ppsq “ ps rD ppsq ´ pn ´ 1q ks ,

which implies

rpj “ s r1 ´ sk ´ pn ´ 1q ks .

Taken together, the MSS post-merger is therefore:

M 1 “
“
p, sk

‰
ˆ rs p1 ´ pn ` s ´ 1q kq , skspn´sq .

Notice that ps “ sk ą p “ k for any s ą 1 so that the upper bound of the MSS monotonically

increases in the size of the merger. As to the lower bound, these hyper-competitive prices are

concave in s and reach there maximum at p1 ´ k pn ´ 1qq{2k, which is smaller than 1. Hence,

the lower bound is decreasing in merger size until it reaches zero. Figure 7 provides a graphical

illustration of how the MSS expands with the size of the merger.

In sum, this example shows how a merger can (weakly) reduce the lower bound and strictly

increase the upper bound of theMSS, thereby inducing awider range ofmyopically stable prices.

6 Concluding Remarks

Within the growing body ofwork on behavioral industrial organization, there is an increasing

focus on behavioral aspects of the firm. In this paper, we have relaxed the common assumption

that firms are pure profit-maximizers and supposed that sellers seek myopic improvements in-

stead. Under this assumption, we addressed a classic and persistent question in economics: How

are prices determined in industries with a few powerful firms? To analyze this oligopoly pricing

problem, we employed the Myopic Stable Set solution concept within the context of a capacity-

constrained pricing game and established the existence of a unique MSS for any given level of

capacities. This result was then compared with the standard Nash solution.

Amain takeaway from our analysis is that the less demanding behavioral assumption of firms

choosing myopic better-responses does not affect existing pure-strategy Nash price predictions.

If the set of pure-strategy Nash equilibria is nonempty, like when capacities are sufficiently large

or small, it coincides with the MSS. With moderate-sized capacities, the Nash equilibrium is in

mixed strategies. For these cases, all prices in the mixed-strategy support are part of the MSS.

This set solution therefore offers an alternative foundation for oligopoly pricing. Moreover, we

have shown that theMSS provides a rationale for different types of pricing patterns. In particular,

it gives an explanation for the emergence andmagnitude of Edgeworth-like price cycles aswell as

states of hyper-competition in which supply falls short of market demand. We have also shown

how the MSS can be affected by changes in market structures.
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We see several avenues for future research. One is to use the notion of MSS within the

context of other oligopoly models. A potentially interesting variation on this paper’s capacity-

constrained pricing model would be to assume that production precedes sales. Another avenue

is to analyze oligopoly pricing under different behavioral assumptions such as heterogeneity in

rationality or competition among quasi-myopic agents.24 Finally, and especially because theMSS

is rich enough to permit heterogeneous pricing, we can imagine it to serve as a foundation for

further empirical and experimental work.
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Bőrgers, Tilman (1992) Elimination of Dominated Strategies in a Bertrand-Edgeworth Model”,

The Review of Economic Studies, 59, 1, 163–176; 9

Demuynck, Thomas, P. Jean-JacquesHerings, RiccardoD. Saulle andChristian Seel (2019a), “The

Myopic Stable Set for Social Environments,” Econometrica, 87, 111–138; 1, 8, 9, 36

Deneckere, Raymond J andDanKovenock (1992), “Price Leadership, ”Review of Economic Studies,

59(1), 143-162; 3, 16, 18

De Roos, Nicolas and Vladimir Smirnov (2021), “Collusion, Price Dispersion, and Fringe Com-

petition,”European Economic Review, 132; 3

De Roos, Nicolas (2012), “Static Models of the Edgeworth Cycle,” Economics Letters, 117(3), 881-

882; 3
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Appendix: Proofs

Proof of Lemma 1. Suppose that Dp0q ą K so that p ą 0. Since Dppq “ K and demand is

decreasing in price, it holds that Dppiq ě K when pi ď p. This means that Dppiq ě ki and

Dppiq ´ K´i ě ki. It also implies that kiř
jPΩppiq kj

´
Dppiq ´

ř
jP∆ppiq

kj

¯
ě ki, because Dppiq ě

K ě
ř

jPΩppiq
kj `

ř
jP∆ppiq

kj . Hence, if 0 ă pi ď p, then firm i P N always produces at capacity

and therefore πi “ piki. �

Proof of Proposition 1. If K´1 ě Dp0q, then p “ 0. To begin, suppose all firms set the same

price. If all price at some p1 ą p “ 0, then none of them is capacity-constrained sinceK ą K´1 ě

Dp0q ą Dpp1q. Hence, each seller has an incentive to (marginally) undercut his rivals. If all price

at p “ 0, then firm 1 has no incentive to deviate since K´1 ě Dp0q. It would therefore face no

residual demand at a price above zero. As the largest firm has no incentive to deviate, none of

the firms has an incentive to deviate. We conclude that, whenK´1 ě Dp0q, there is a symmetric

pure-strategy Nash equilibrium with all firms pricing at p “ 0.

In addition, there are many asymmetric pure-strategy Nash equilibria, which have in com-

mon that there is a subset of sellers who price at zero. To see this, suppose that, by contrast,

all set a price strictly above zero. Suppose further there is one firm charging the strictly highest

price. In that case, this firm faces no demand sinceK´1 ě Dp0q. Hence, it would be better off by

charging a lower price, e.g., match the price of the lowest-priced firm(s).

Suppose then that there are two or more sellers who set the strictly highest price. If they

face no residual demand, there is again an incentive to deviate, e.g., they would be better off by

matching the lowest price in the industry. Yet, if they do face residual demand, then they are not

capacity-constrained. To see this, suppose the highest-priced sellers set a price p1 ą 0. They are

then not capacity-constrained when:

kiř
jPΩpp1q kj

¨
˝Dpp1q ´

ÿ

jP∆pp1q

kj

˛
‚ă ki ðñ Dpp1q ă

ÿ

jPΩpp1q

kj `
ÿ

jP∆pp1q

kj “ K,

which holds since K ą Dp0q ą Dpp1q.

Next, note that in this case undercutting p1 slightly is beneficial when:

pp1
i ´ ǫq ¨ mintki, Dpp1

i ´ ǫq ´
ÿ

jP∆pp1
i´ǫq

kju ą p1
i ¨

kiř
jPΩpp1

iq
kj

¨
˝Dpp1

iq ´
ÿ

jP∆pp1
iq

kj

˛
‚,

with ǫ ą 0 and sufficiently small. If the undercutting seller is capacity-constrained, then cutting
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its price to p1
i ´ ǫ is beneficial when:

pp1
i ´ ǫqki ą p1

i

kiř
jPΩpp1

iq
kj

¨
˝Dpp1

iq ´
ÿ

jP∆pp1
iq

kj

˛
‚ðñ

p1
i ´ ǫ ą p1

i

1ř
jPΩpp1

iq
kj

¨
˝Dpp1

iq ´
ÿ

jP∆pp1
iq

kj

˛
‚ðñ

p1
i ´ p1

i

1ř
jPΩpp1

iq
kj

¨
˝Dpp1

iq ´
ÿ

jP∆pp1
iq

kj

˛
‚ą ǫ ðñ

p1
i

»
–1 ´

1ř
jPΩpp1

iq
kj

¨
˝Dpp1

iq ´
ÿ

jP∆pp1
iq

kj

˛
‚
fi
fl ą ǫ.

Note that the LHS is positive when the term inside the square brackets is positive. That is,

1 ą
1ř

jPΩpp1
iq
kj

¨
˝Dpp1

iq ´
ÿ

jP∆pp1
iq

kj

˛
‚ðñ K “

ÿ

jPΩpp1
iq

kj `
ÿ

jP∆pp1
iq

kj ą Dpp1
iq,

which holds.

If the undercutting seller is not capacity-constrained, then cutting its price to p1
i´ǫ is beneficial

when:

pp1
i ´ ǫqDpp1

i ´ ǫq ą p1
i

«
kiř

jPΩpp1
iq
kj

Dpp1
iq

ff
ðñ

p1
iDpp1

i ´ ǫq ´ ǫDpp1
i ´ ǫq ą p1

i

«
kiř

jPΩpp1
iq
kj

Dpp1
iq

ff
ðñ

p1
iDpp1

i ´ ǫq ´ p1
i

«
kiř

jPΩpp1
iq
kj

Dpp1
iq

ff
ą ǫDpp1

i ´ ǫq ðñ

p1
i ´

kiř
jPΩpp1

iq
kj

Dpp1
iq

Dpp1
i ´ ǫq

p1
i ą ǫ ðñ

p1
i

«
1 ´

kiř
jPΩpp1

iq
kj

Dpp1
iq

Dpp1
i ´ ǫq

ff
ą ǫ.

The LHS is strictly positive when:

Dpp1
i ´ ǫq ą

kiř
jPΩpp1

iq
kj

Dpp1
iq,

which holds becauseDpp1
i ´ ǫq ą Dpp1q and ki ă

ř
jPΩpp1

iq
kj . Hence, also in this case, each of the

highest-priced sellers would have an incentive to (marginally) lower his price. We conclude that

in equilibrium there is a subset of firms that price at zero.

For such a subset S to emerge in equilibrium it must hold that none of the firms i P S has an

incentive to hike its price. Note that this is true for each subset that is minimal, i.e., each coalition
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S for which it holds that
ř

jPSztiu kj ě Dp0q, for all i P S. Moreover, all sellers who are not part

of such a minimal subset can charge any price since all prices give zero profits.

Taken together, therefore, the set of (a)symmetric pure-strategy Nash equilibria whenK´1 ě

Dp0q is given by:

NE “

$
&
%p P P

ˇ̌
ˇ̌p P

ź

iPS

t0u ˆ
ź

iPNzS

r0,8q

,
.
- .

Now suppose that K´1 ă Dp0q. We can distinguish two cases: p1q K ě D p0q so that p “ 0,

and p2q K ă D p0q so that p ą 0.

Case (1): If K ě D p0q ą K´1, then p “ 0. We argue that there can be no pure-strategy

Nash equilibrium in this case. To begin, note that there is no symmetric pure-strategy Nash

equilibrium. If all firms would price at 0, then firm 1 would have an incentive to hike its

price since K´1 ă D p0q. If all sellers would price at some p1 ą p “ 0, then none of them

is capacity-constrained since K ě D p0q ą D pp1q. Consequently, each supplier has an

incentive to (marginally) undercut its rivals. We conclude that there is no symmetric pure-

strategy Nash equilibrium in this case.

Let us now argue that there does not exist an asymmetric pure-strategy Nash equilibrium

either. First, notice that in such an equilibrium no firm can set a price at 0. Since K´1 ă

D p0q, this clearly holds for firm 1 as this firm always has a price above zero for which

its (residual) demand is positive. However, given that firm 1 prices above zero, there is

no combination of firms (other than firm 1) with a combined capacity sufficient to meet

market demand at a price of zero. This implies that each firm that prices at zero has an

incentive to hike its price. We conclude that there is no asymmetric pure-strategy Nash

equilibrium in which one or more firms price at zero.

Suppose then that each firm prices above zero. In this case, there are one or more firms

setting the strictly highest price. These sellers either face no demand in which case they

have an incentive to set a lower price or they do face residual demand. By the same logic

as above, however, none of them would be capacity-constrained and each of them has an

incentive to (marginally) lower its price. We conclude that there is no (a)symmetric pure-

strategy Nash equilibrium whenK ě D p0q ą K´1.

Case (2): If K´1 ă K ă D p0q, then p ą 0. We first argue that in this case there cannot be an

asymmetric pure-strategy Nash equilibrium. If there was, then one or more firms would

be charging the strictly highest price, say p1. If 0 ă p1 ď p, then lower-priced sellers could

profitably raise their price till p1, because in this case it holds that K ď D pp1q. Suppose

then that p1 ą p and that there are two or more firms charging the strictly highest price.
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These sellers are not capacity-constrained sinceK ą Dpp1q when p1 ą p. In this case, and as

shown in the first part of this proof, each has an incentive to (marginally) lower its price.

This leaves the possibility of a single highest-priced firm. Following a similar logic as above,

this firm cannot be capacity-constrained or have zero demand in equilibrium. In case it

would be capacity-constrained, lower-priced firms could profitably raise their prices. In

case of zero demand, the highest-priced seller could profitably deviate to a lower price.

The only possibility is therefore that there is a single highest-priced seller with positive

residual demand who is not producing at capacity. Suppose then that this highest-priced

seller is pricing at p1 ą p. This implies that lower-priced suppliers are capacity-constrained

and therefore could raise their prices below, but arbitrarily close to p1. However, in that

case, the highest-priced seller has an incentive to match the price of his rivals, because:

p1 ki

K
D
`
p1
˘

ą p1
`
D
`
p1
˘

´ K´i

˘
ðñ

ki

K
D
`
p1
˘

ą D
`
p1
˘

´ K´i ðñ

K´i ą D
`
p1
˘ „

1 ´
ki

K


ðñ K´i ą D

`
p1
˘ „K´i

K


ðñ K ą D

`
p1
˘
,

which holds. We conclude that if there is a pure-strategy Nash equilibrium in this case,

then it must be symmetric.

Suppose therefore that all firms charge the same price. If all price at p1 ă p, then each firm

can profitably deviate to a higher price (Lemma 1). In a similar vein, if all price at p1 ą p,

then K ą D pp1q so that each has an incentive to (marginally) undercut its rivals.

This leaves all firms pricing at p as the candidate equilibrium. Clearly, since all sellers

produce at capacity in this case, none has an incentive to cut price. Moreover, ifK ď Dpp˚
1q,

then none of the firms has an incentive to hike its price. To see this, suppose thatK “ Dpp˚
1q

so that p “ p˚
1 . Since its first-order condition for a maximum is satisfied at p “ p˚

1 , firm 1

does not have an incentive to hike its price:

Bπh
1 ppq{Bp1 “ Dppq ´ K´1 ` pD1ppq “ Dpp˚

1q ´ K´1 ` p˚
1D

1pp˚
1q “ 0.

As for all other firms, i P Nz t1u, note that p˚
1 ě p˚

2 ě ... ě p˚
n by strict concavity of the

residual profit functions. Therefore, it holds that:

Bπh
i ppq{Bpi “ Dppq ´ K´i ` pD1ppq ă 0,

which implies that none of the firms has an incentive to raise price. Finally, note that if

K ă Dpp˚
1q, then p ą p˚

1 so that firm 1’s marginal residual profit is negative at p and

therefore also for its smaller capacity rivals. Hence, also in this case none of the firms has

an incentive to hike its price. We conclude that there is a unique symmetric pure-strategy

Nash equilibrium whenK ď Dpp˚
1q and it has all firms pricing at p ą 0. �
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Proof of Proposition 2. The proof is by construction. Following the definition of NE as provided

in Section 4.1, we distinguish two cases and consider each case in turn.

Case (1): Suppose thatK´1 ě Dp0q. To show that f8ppqXNE ‰ H for each p R NE, we proceed

in four steps.

Step 1: Following the proof of Proposition 1, if K´1 ě Dp0q, then there are two types of

non-Nash price profiles: (i) a price profile with some firms pricing at zero, or (ii) a price

profile with all firms pricing above zero. In case of (ii), move to Step 2. In case of (i), let S

be the set of sellers who price at zero and let p P P zNE be the corresponding price profile.

Since the price profile p is not a Nash equilibrium, the largest member of S can profitably

raise its price. Note that the resulting price profile is also not a Nash equilibrium so that

we can repeat the argument. We conclude that there exists a sequence, which results in all

firms charging a strictly positive price.

Step 2: Following Step 1, there exists a profitable price path from a non-Nash price profile

with some firms pricing at zero to a non-Nash price profile with all firms pricing strictly

above zero. Let p1 P P zNE be a non-Nash price profile with all firms charging a strictly

positive price. We can again distinguish two cases: (i) all sellers set the same strictly pos-

itive price, or (ii) there are two or more firms charging a different strictly positive price.

In case of (ii), move to Step 3. In case of (i), note that since K ą Dp0q it is profitable for

each firm to (marginally) undercut the price of its competitors. Hence, there is a profitable

deviation in this case resulting in a price profile consisting of two or more different prices.

Step 3: Let p2 P P zNE be a price profile resulting from Step 1 and Step 2. That is, p2

exclusively consists of prices above zero and contains at least two different prices. We can

again distinguish two cases: (i) there are two or more firms charging the strictly highest

price, or (ii) there is a single seller setting the strictly highest price. In case of (ii), move to

Step 4. In case of (i), and following the proof of Proposition 1, the highest-priced firms are

not capacity-constrained and can profitably undercut their highest-priced rivals.

Step 4: By steps 1,2 and 3, there is a sequence of myopic improvements from any non-

Nash price profile to a non-Nash price profile with (i) strictly positive prices only, and

(ii) a single strictly highest price. Let p be a given non-Nash price profile with these two

characteristics and let the single highest-priced seller be denoted by h. Note that, since

K´1 ě Dp0q, the highest-priced seller has no residual demand. Consequently, this firm

can profitably deviate to a price p˝
h lower than the lowest price in p and arbitrarily close

to zero: ||p˝
h ´ 0|| ă ǫ, for all ǫ ą 0. This would create a situation with a new highest-

priced firm (perhaps via Step 3) and the argument can be repeated. This implies that there

is a sequence of myopic improvements from the price profile p to a price profile with a

sufficient number of sellers pricing arbitrarily close to zero. That is, there is a κ ą 0 such
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that the κ-fold iteration of Step 4 generates a sequence:

p “ p0, p1 P fpp0q, p2 P fpp1q, ..., pκ P fppκ´1q,

where pκ is arbitrarily close to some p1 P NE: ||pκ´p1|| ă ǫ, for all ǫ ą 0. Then, by definition,

p1 P f8ppq so that f8ppq X NE ‰ H.

Case (2): Now suppose that K ď Dpp˚
1q so that all firms pricing at p ą 0 is the unique pure-

strategyNash equilibrium (Proposition 1). To begin, note that each seller who prices below

p can profitably raise his price to p (Lemma 1). The remaining type of non-Nash price

profile to consider is therefore one with all prices weakly above and at least one strictly

above p.

If there are two or more firms charging the strictly highest price (above p), then the situa-

tion is comparable to Step 2 and Step 3 of Case (1) above. That is, a highest-priced seller

can profitably deviate to a price (marginally) below the highest price. The resulting price

profile is then one with a single strictly highest price. The maximum profit for this highest-

priced firm (as before, indicated with subscript h) is obtained when it sets its residual

profit-maximizing price, i.e., the price p˚
h solving:

Dpp˚
hq ´

ÿ

jP∆pp˚
h

q

kj ` p˚
hD

1pp˚
hq “ 0.

Note that the solution to thismaximization problemwould be no differentwhen all its com-

petitors price at p. Since all firms pricing at p is a pure-strategy Nash equilibrium, however,

it must hold that πh
hpp˚

hq ď πhppq. This implies that a single highest-priced seller canmyopi-

cally improve by charging p and produce at capacity. This argument can be finitely repeated

until all firms price at p. We conclude that if K ď Dpp˚
1q, then p P fNppq X NE ‰ H, which

implies f8ppq X NE ‰ H. �

Proof of Theorem 1. The set NE as defined in Section 4.1 is a MSS when it is closed and satisfies

deterrence of external deviations, asymptotic external stability, and minimality.

Closedness: If K ď Dpp˚
1q, then the pure-strategy Nash equilibrium is a singleton, which is

closed. IfK´1 ě Dp0q, then the set NE is given by:

NE “

$
&
%p P P

ˇ̌
ˇ̌p P

ź

iPS

t0u ˆ
ź

iPNzS

r0,8q

,
.
- .
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Hence, it is effectively the product of a finite number of closed sets, which is closed.

Deterrence of External Deviations: Notice that the set of pure-strategy Nash equilibria is effec-

tively the set of undominated strategy profiles: NE “ tp P P |fppq “ pu, which implies that no

firm can profitably deviate to a price profile outside NE.

Asymptotic External Stability: This condition holds by Proposition 2, which establishes that the

capacity-constrained pricing game exhibits the weak improvement property. Hence, from any

price profile not in NE it is possible to get arbitrarily close to a pure-strategy equilibrium by a

finite number of myopic improvements.

Minimality: Since the set NE is closed and the previous two conditions hold, minimality follows

directly fromCorollary 3.11 in Demuynck, Herings, Saulle and Seel (2019); a mirror result which

effectively shows that MSS Ě NE when the set of pure-strategy Nash equilibria is nonempty.

Combining the above, we conclude that the set NE is a MSS. It remains to be shown that it is also

the unique MSS.

Uniqueness: Suppose there would be another MSS,M , different from NE. As NE is a MSS, first

note that neither M Ą NE, nor NE Ą M , because otherwise the minimality requirement would

be violated for either M or NE. Moreover, note that neither M X NE “ H, nor M X NE ‰ H

withM ‰ NE. If so, then there would be a price profile inNE that is not inM . Yet, for each price

profile inNE it holds that no firm has a profitable deviation to a price profile outsideNE, which

implies that the Asymptotic External Stability condition would be violated for M . We conclude

thatM “ NE and therefore that NE is the unique MSS. �

Proof of Lemma 2. Let us prove each of the three cases in turn.

(i) For each i P N , ifDp0q ą K´i ą Dpp˚
i q ´ki, thenDppq ą Dpp˚

i q because either (1)K ă Dp0q

and p ą 0 so that Dppq “ K ą Dpp˚
i q, or (2) K ě Dp0q and p “ 0 so that Dppq “ Dp0q ą

Dpp˚
i q. Hence, in this case, p˚

i ą p ě 0. Since the residual profit functions are strictly

concave and have a unique maximizer at p˚
i , it follows that the iso-profit price is at the

decreasing part of the residual profit function: pi ą p˚
i ą 0, for all i P N .

Let us now show that the iso-profit price is increasing with firm capacity. To that end,

consider two firms i and j with ki ą kj and suppose that p ą 0. Suppose further that they
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both pick a price p from
`
0, D´1pK´iq

˘
. Comparing their residual profits gives:

πh
i ppq ´ πh

j ppq “ p pDppq ´ K´iq ´ p pDppq ´ K´jq

(6)

“ p pK´j ´ K´iq “ p pki ´ kjq ą 0.

Moreover, for p ą 0 and following Definition 5 of the iso-profit price, it must hold that:

πh
i ppiq ´ πh

j

`
pj
˘

“ p pki ´ kjq ą 0. (7)

To show that pi ą pj ą 0, suppose the opposite, i.e., pj ą pi, in view of a contradiction. As

established above, firms’ residual profits are decreasing at their iso-profit price so that:

πh
i

`
pj
˘

ă πh
i ppiq for pj ą pi,

and, therefore:

πh
i

`
pj
˘

´ πh
j

`
pj
˘

ă πh
i ppiq ´ πh

j

`
pj
˘

“ p pki ´ kjq .

Notice, however, that:

πh
i

`
pj
˘

´ πh
j

`
pj
˘

“ pj
`
Dppjq ´ K´i

˘
´ pj

`
Dppjq ´ K´j

˘

“ ´pj pK ´ kiq ` pj pK ´ kjq “ pj pki ´ kjq ą p pki ´ kjq ,

which contradicts the previous result that πh
i

`
pj
˘

´ πh
j

`
pj
˘

ă p pki ´ kjq.

Now suppose p “ 0. In this case, and again following Definition 5, it holds that:

πh
i ppiq “ pi pDppiq ´ K´iq “ p ¨ ki “ 0,

which implies that the iso-profit price of firm i is given by:

pi “ D´1pK´iq ą 0,

and, therefore:

D´1pK´iq ą D´1pK´jq ą 0,

for every i, j P N with ki ą kj . We conclude that if ki ą kj , then pi ą pj ą 0, for all i, j P N .

Notice that this also shows that firm 1 has the highest iso-profit price.
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(ii) Suppose now that Dpp˚
i q ´ K´i ě ki, for all i P Nz t1u. Since in this case Dpp˚

i q ě K, it

follows thatDpp˚
i q ě K ” Dppq for every i ‰ 1, which implies that p ě p˚

i . Since in this case

every firms i (except firm 1) sells at capacity (see Lemma 1), its profit line pki intersects the

residual profit πh
i either at the maximum or at the decreasing part. Consequently, the only

price for which p ¨ ki “ πh
i ppiq is the market-clearing price p at which the residual profit of

firm i reaches its peak and declines afterward at any higher price pi ą p. Finally, recall that

in case of intermediate capacities: Dpp˚
1q ă K andDp0q ą K´1. Hence, for firm 1 it always

holds that p1 ą p˚
1 ą p.

(iii) The third situation to consider is when Dp0q ď K´m, with n ě m ą 1. In this case, it

holds that Dp0q ă K and therefore p “ 0. Notice that residual demand for firm m is zero

at all prices, which implies that all firms weakly smaller than firm m also face no residual

demand. We conclude that pi “ p “ 0 for each firm i “ m,m` 1,m` 2, ..., nwith capacity

ki ď km.

�

Proof of Lemma 3. Let us discuss the three cases in turn.

(i) Suppose that K ă Dp0q and that firm 1 is the strictly largest seller. In this case, p ą 0 and

the iso-profit price p1 is the price solving the following equation:

πh
1 pp1q “ p1 pDpp1q ´ K´1q “ p ¨ k1.

The hyper-competitive prices are given by:

πh
i pp1q “ p1 pDpp1q ´ K´iq “ p̃i ¨ ki.

Hence, it immediately follows that rp1 “ p. As to a firm i P Nz t1u, note that

p “
p1 pDpp1q ´ K´1q

k1
and rpi “

p1 pDpp1q ´ K´iq

ki
.

Comparing and rearranging gives:

p ´ rpi “
p1 pDpp1q ´ K´1q

k1
´

p1 pDpp1q ´ K´iq

ki
“ p1 ¨

pk1 ´ kiq rK ´ Dpp1qs

k1ki
ą 0,

which holds because p1 ą p and firm 1 is the strictly largest seller. We conclude that if

K ă Dp0q and each firm i P Nzt1u is strictly smaller than firm 1, then 0 ă rpi ă p and

rp1 “ p.

(ii) Given that Dp0q ą K and following the same steps as under (i) above, it holds that

rpi ´ rpj “ p1
pki ´ kjq rK ´ Dpp1qs

kikj
ą 0,

for any two firms i, j P N with ki ą kj .
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(iii) IfDp0q ď K´i, thenDp0q ď K and therefore p “ 0. Moreover, the residual demand of firm

i P Nz t1u at p1 is Dpp1q ´ K´i ď 0, which implies πh
i pp1q “ 0 and therefore rpi “ p “ 0.

�

Proof of Lemma 4.

(i): Suppose pi “ p1. We show that for all pi P Pi such that p ă pi ă p1 it holds that πippi, p´iq “

piki. The proof relies on the following claim:

Claim 1: For all i ‰ 1 such that pi P pp, p1q then firm i is capacity-constrained.

Proof. Since p1 “ p1 then either, (i) p “ 0, which implies Dpp1q ´
ř

jP∆pp1q kj “ 0, or (ii)

p ą 0, which implies Dpp1q ´
ř

jP∆pp1q kj ą 0. Taken together, this means:

Dpp1q ´
ÿ

jP∆pp1q

kj ě 0,

The above can be rewritten as

Dpp1q ´
ÿ

jP∆pp1qztiu

kj ě ki, for each i P Nzt1u.

Consider some firm i P Nzt1u that prices at pi P pp, p1q. Its demand is then generally given

by:

Dippi, p´iq “ max

$
&
%

kiř
jPΩppiq

kj

¨
˝Dppiq ´

ÿ

jP∆ppiq

kj

˛
‚, 0

,
.
- .

Note that since

Dpp1q ´
ÿ

jP∆pp1q

kj ě 0,

it holds that

Dppiq ´
ÿ

jP∆ppiq

kj ą 0,

since Dppiq ą Dpp1q and
ř

jP∆ppiq
kj ă

ř
jP∆pp1q kj for pi ă p1. Hence, each firm i P Nzt1u

faces strictly positive demand when pricing below p1. Note further that this also implies

that this firm is capacity-constrained when no other firm prices at pi, because

Dppiq ´
ÿ

jP∆ppiq

kj ą Dpp1q ´
ÿ

jP∆pp1qztiu

kj ě ki.
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because Dppiq ą Dpp1q and
ř

jP∆ppiq
kj ď

ř
jP∆pp1qztiu kj for pi ă p1.

Finally, suppose that there is at least one other firm pricing at pi P pp, p1q. In this case, firm

i is also capacity-constrained, because

kiř
jPΩppiq

kj

¨
˝Dppiq ´

ÿ

jP∆ppiq

kj

˛
‚ą ki ðñ

Dppiq ´
ÿ

jP∆ppiq

kj ą
ÿ

jPΩppiqztiu

kj ` ki ðñ

Dppiq ´
ÿ

jP∆ppiq

kj ´
ÿ

jPΩppiqztiu

kj ą ki.

This inequality holds, becauseDppiq ą Dpp1q and
ř

jP∆ppiq
kj`

ř
jPΩppiqztiu kj ď

ř
jP∆pp1q kj .

Since Claim 1 holds, we conclude that if pi is such that p ď pi ă p1, then πippi, p´iq “ piki

which is increasing in price. Hence, πippi, p´iq ą πippq when pi P pp, p1q and p1 “ p1, for

each firm i P Nzt1u.

(ii): By definition, rpi “ mintpi P Pi|πippiq “ πh
i pp1qu. By Lemma 1, we know that if 0 ă pi ď p,

then πi “ piki. Consequently, since πi is strictly increasing in pi in the range pp̃i, ps it holds

that πippi, p´iq ą πh
i pp1q for pi P pp̃i, ps �

The following Lemma 5 and Lemma 6 are used in the proof of Theorem 2.

Lemma 5. If p P M and p1 P f8ppq, then p1 P M .

Proof of Lemma 5. Towards a contradiction, suppose that p1 R M when p1 P f8ppq and p P M .

SinceM is closed, there is a δ ą 0 such thatBδpp1qXM “ H, whereBδ is the open ball with radius

δ. Furthermore, by the definition of f8, there is a κ P N and a pκ P fκppq such that pκ P Bδpp1q,

which means pκ R M . Since pκ P fκppq, there is a sequence p0, p1, ..., pκ of length κ such that

p0 “ p, p1 P fpp0q, ..., pκ P fppκ´1q.

Let κ1 P t1, ..., κu be such that pκ
1
is the first element in this sequence with the property that

pκ
1

R M . Hence, pκ
1´1 P M and pκ

1
P fppκ

1´1q, which violates deterrence of external deviations

ofM . Consequently, p1 P M . �

Lemma 6. Let πs

i ppiq denote the profit of firm i P N when at least one other firm j ‰ i is charging the

same price pi. Then, it holds that πs

i ppiq ą πh

i ppiq and πℓ
i ppiq ą πh

i ppiq for any pi P
`
p, α

˘
.
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Proof of Lemma 6. Let us start by showing that:

πs

i ppiq ą πh

i ppiq .

We can distinguish two cases: (1) the firms charging the same price are capacity-constrained,

or (2) the firms charging the same price are not capacity-constrained. Note that in either case

the single highest-priced firm is not capacity-constrained, because with pi P
`
p, α

˘
it holds that

K ą D ppiq. As to (1), we have that

πs

i ppiq ą πh

i ppiq ðñ piki ą pi

»
–Dppiq ´

ÿ

jP∆ppiq

kj

fi
fl ðñ K ą D ppiq ,

which holds. As to (2), we have that

πs

i ppiq ą πh

i ppiq ðñ pi
kiř

jPΩppiq
kj

»
–Dppiq ´

ÿ

jP∆ppiq

kj

fi
fl ą pi

»
–Dppiq ´

ÿ

jP∆1ppiq

kj

fi
fl ,

with ∆1ppiq ‰ ∆ppiq. This is equivalent to

kiř
jPΩppiq

kj

»
–Dppiq ´

ÿ

jP∆ppiq

kj ´
ÿ

jPΩppiq

kj `
ÿ

jPΩppiq

kj

fi
fl ą Dppiq ´

ÿ

jP∆1ppiq

kj ,

or

kiř
jPΩppiq

kj

»
–Dppiq ´ K `

ÿ

jPΩppiq

kj

fi
fl ą Dppiq ´

ÿ

jP∆1ppiq

kj .

Rearranging gives

ki

«
Dppiq ´ Kř

jPΩppiq
kj

ff
ą Dppiq ´

ÿ

jP∆1ppiq

kj ´ ki ðñ ki

«
Dppiq ´ Kř

jPΩppiq
kj

ff
ą Dppiq ´ K.

Since Dppiq ă K, the above simplifies to

kiř
jPΩppiq

kj
ă 1,

which holds. We conclude that πs

i ppiq ą πh

i ppiq when pi P
`
p, α

˘
.

Let us now show that:

πℓ

i ppiq ą πh

i ppiq .

Wecan again distinguish two cases: (1) the firm charging the lowest price is capacity-constrained,

or (2) the firm charging the lowest price is not capacity-constrained. As to (1), the story is the

same as above. As to (2), we have that

πℓ

i ppiq ą πh

i ppiq ðñ piD ppiq ą pi

»
–Dppiq ´

ÿ

jP∆ppiq

kj

fi
fl ,
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which holds because
ř

jP∆ppiq
kj ą 0. We conclude that πℓ

i ppiq ą πh

i ppiq when pi P
`
p, α

˘
. �

Proof of Theorem 2. First note that the set M is closed by definition. In the following, we show

that the setM also satisfiesDeterrence of External Deviations,Asymptotic External Stability andMin-

imality. Finally, we prove that M is unique.

Deterrence of External Deviations: Let p P M be some price profile inM . We show that there is

no profitable deviation to a price profile in P zM . Take any firm i P N and suppose that it is the

highest priced firm in the market. We have that eitherDp0q ą K´i orDp0q ď K´i. In the former

case, firm i has positive residual demand. Then, by strict concavity of πh
i , its profit is lowest in

M at p1. By Lemma 1 and Lemma 6, since πℓ
i ppiq ě πh

i ppiq and πsppiq ě πh
i ppiq for all pi P rrpi, p1s

there is no other price in the setM giving a lower profit. By definition of rpi, such a profit πh
i pp1q

is equivalent to the situation in which firm i charges rpi. We therefore conclude that, whenever

Dp0q ą K´i, the lowest profit for any firm i is obtained either at rpi or at p1 given that it is the

highest priced firm in the market. Note that if a firm i unilaterally deviates to a p1 P P zM , it must

be either that (a) p1
i ă rpi, or (b) p1

i ą p1. Consider first case (a). Then, by Lemma 1, this firm

will obtain πipp
1
iq ” p1

i ¨ ki ă πiprpiq ” rpi ¨ ki and therefore decreasing price below rpi is not an
improvement. Take now case (b). If firm i deviates with a p1

i ą p1, it holds that π
h
i pp1

iq ă πh
i pp1q

and therefore for any price p1
i ą p1 such deviation is unprofitable.

Finally, consider the case Dp0q ď K´i. By Lemma 3, we have that rpi “ 0. Then, the only

possible deviation to P zM for firm i is to some p1
i ą p1. However, profits are zero at all prices in

excess of p1 so that no firm has a profitable deviation to such a price.

Asymptotic External Stability: Consider a price profile p P P zM . We show that there exists a

p1 P M such that p1 P fN ppq. To begin, notice that if p P P zM , then there is at least one firm

pricing below its hyper-competitive price rpi or above firm 1’s iso-profit price p1.

LetLprpiq “ ti P N |pi ă rpiu be the set of sellers who are pricing below their hyper-competitive

price and letHpp1q “ ti P N |pi ą p1u be the set of sellers who price above firm 1’s iso-profit price.

Moreover, let λ ě 0 and η ě 0 denote the cardinality of Lprpiq and Hpp1q, respectively.

Step 1: If Lprpiq “ ∅, then Hpp1q ‰ ∅; In this case, proceed with Step 2. If Lprpiq ‰ ∅ then, for

each firm i P Lprpiq, pi ă rpi ď p, so that πippi, p´iq “ piki by Lemma 1. This implies that

each firm i P Lprpiq can profitably deviate to themarket-clearing price p P M , which induces

a sequence of price profiles:

p “ p0, p1 P f
`
p0
˘
, p2 P f

`
p1
˘
, ..., pλ P f

´
pλ´1

¯
.

If pλ P M , then the External Stability condition is met. If pλ R M , then proceed with Step 2.
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Step 2: Let pλ, withλ ě 0, be the price profile resulting fromStep 1. By construction, it holds that

Lprpiq “ ∅ andHpp1q ‰ ∅. SupposeDp0q ą K which implies that p ą 0. First, recall that rpi
is the price solving πiprpiq “ πh

i pp1q, for all i P N . This implies πh
i ppiq ď πh

i pp1q when pi ě p1,

because πh
i ppiq is strictly concave. Next, denote by hppλq P Hpp1q the firm charging the

highest price at pλ. Since pλh ą p1 by construction and following the previous observations

in combination with Lemma 1, firm hppλq has a profitable deviation to p. This induces a

new price profile pλ`1 in which case either all firms price weakly below p1, or there are still

one or more firms pricing above p1. In case of the former, the External Stability condition

is met, whereas in case of the latter we can repeat the argument. Denote by hppλ`1q the

firm charging the highest price at pλ`1. This firm has a profitable deviation to p ą rphppλ`1q.

Extending the above logic delivers a sequence:

pλ`1 P f
´
pλ
¯
, pλ`2 P f

´
pλ`1

¯
, ..., pλ`η P f

´
pλ`η´1

¯
.

Hence, by construction, pλ`η “ p1 P M , and therefore the External Stability condition is

met.

Finally, suppose that Dp0q ď K so that p “ 0. Consequently, K´1 ă D p0q for otherwise

all firms pricing at zero would constitute a pure-strategy Nash equilibrium. Now consider

some price profile p R M with at least one firm pricing above p1. If p is such that firm 1

prices at zero, then let this firm raise its price to p˚
1 , which is profitable and in the set M ,

because p˚
1 ă p1. Note that since K´1 ´ ki ă D p0q for any firm i other than firm 1, each

firm pricing at zero can profitably raise its price to p˚
1 . This results in a price profile with

all firms strictly pricing above zero.

Next, consider the highest price in the market. If there are two or more firms charging the

highest price, say pi, then they are not capacity-constrained since D ppiq ´
ř

jP∆ppiq
kj ă

ř
jPΩppiq

kj , which is equivalent to K ą D ppiq and this holds, because K ě D p0q. If their

profits are positive, then there is a myopic improvement by cutting their price slightly since

this gives a discrete increase in demand. This yields a situation in which one firm charges

the strictly highest price. AsD pp1q´K´1 “ 0 in this case, we have thatD pp1q´K´i ď 0 for

each firm i other than 1 and, therefore, D pp1
iq ´ K´i ă 0 for any p1

i ą p1 and i P N . Hence,

this single highest-priced firm receives zero profits and, hence, has a profitable deviation

to p˚
1 .

Minimality: Towards a contradiction, suppose that there exists a closed set M 1 Ł M satisfying

of External Deviations and External Stability. We distinguish two cases: either the -clearing price

profile p P M 1, or the -clearing price profile p R M 1.

Case 1: Suppose that p P M 1. Note that at p, if a firm i has a positive residual demand, then

it has a profitable deviation to any pi with p ă pi ă pi, by concavity of the residual profit
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functions. Note that this always holds for firm 1 (Lemma 2). Recall also that, by Lemma 2

we have that p1 ě ... ě pn. It follows that, from p, the largest price interval is effectively

determined by firm 1. Fix such a firm 1 and let it deviate to any p1 for which p ă p1 ă p1.

Thus, by the property of of external deviations ofM 1 and the fact that p P M 1, the following

price profiles are contained inM 1:

M 1
1 “ tp P P |p ď p1 ă p1, pj “ p, @j ‰ 1u Ď M 1.

Moreover, as firm 1 can charge a price in M 1 arbitrarily close to p1, then, by Lemma 5, the

following price profiles are also contained inM 1:

M 1
1 Ă M 1

2 “ tp P P |p ď p1 ď p1, pj “ p, @j ‰ 1u Ď M 1.

Now fix p1 “ p1 in M 1
2. Then, by Lemma 4, each firm i other than firm 1 has a profitable

deviation to any pi for which it holds that p ă pi ă p1. It then follows from the of external

deviations ofM 1 that

M 1
2 Ă M 1

3 “ tp P P |p ď pi ď p1, @i P Nu Ď M 1.

Next, fix some p P M 1
3 with pi “ p1 for some i ‰ 1 and p1 ă p1. In this case, it is implied

by Lemma 4 (ii) that this firm i has a profitable deviation to some price p1
i P

`
rpi, p

‰
. Note

that, since the choice of i is arbitrary and the fact thatM 1 satisfies the of external deviations

condition, it follows that

M 1
3 Ă M 1

4 “ tp P P |rpi ă pi ď p1,@i P Nu Ď M 1.

Finally, note that since firm i can charge a price inM 1 arbitrarily close to rpi, it must hold by

Lemma 5 that:

M 1
4 Ă M 1

5 “ tp P P |rpi ď pi ď p1,@i P Nu Ď M 1,

and thereforeM 1
5 “ M Ď M 1, a contradiction.

Case 2: Suppose now that the price profile p R M 1. Fix some p P M 1. We show that p P f8ppq.

It then follows from Lemma 5 that p P M 1, a contradiction.

Step 1: Let Lppq “ ti P N |pi ă pu be the set of sellers who are pricing below the market

clearing price. EitherLppq is empty or not. In case of the former proceedwith Step 2. In case

of the latter, note that each firm pricing below the market-clearing price has a profitable

deviation to p (Lemma 1). By letting each firm to deviate we induce a new price profile

p1 P fλppq for some λ ą 0, in which each firm prices weakly above the market-clearing
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price. Notice that, since M 1 satisfies of external deviations, it must hold that p1 P M 1. If

p1 “ p, then we have a contradiction concluding the proof. Otherwise proceed with 2.

Step 2: Let p be the price profile resulting from Step 1. Thus p is such that all firms weakly

price above p with at least one seller pricing strictly above p. In this second step, we show

there exists a path of myopic improvements such that the resulting price profile consists of

two prices. Specifically, this price profile has one or more firms charging the highest price

ph and one or more firms charging the lowest price ph ´ ε, with ε positive and sufficiently

small.

To begin, consider a lowest priced firm l. If this firm is not capacity-constrained, then all

higher priced sellers face zero residual demand. If pl “ p, then all higher priced sellers can

profitably match pl in turn. This, induces a new price profile p P fµppq for some µ ą 0, By

the µ-fold iteration of deterrence of external deviations we have that p P M 1, a contradiction

concluding the proof. If pl ą p, then each higher priced firm can profitably deviate to a

price pl ´ ǫ ě p for some ǫ ą 0. This results in a price profile with two prices: pl and pl ´ ǫ.

Next, suppose that there is a single lowest priced seller who is capacity-constrained. In this

case, we can distinguish two scenarios. Either, (i) it raises its price till p1
l for which kl “

D pp1
lq. That is, to the lowest price for which its capacity is non-binding, while remaining

the lowest priced firm in the market, or (ii) it raises its price till it matches the price of the

second lowest priced firm(s). We study the two cases separately.

Case (i): In this case, we are back in the first situation where none of the higher priced

firms faces residual demand. Hence, they can profitably lower their price to p1
l ´ ε. Again,

the result is a price profile with two prices: p1
l and p1

l ´ ε.

Case (ii): Let firm i be one of the lowest priced firms. Either, (iia) firm i raises its price

until it is no longer capacity-constrained, or (iib) firm imatches the next lowest prices firm.

We consider the two possibilities separately.

(iia): Firm i raises its price till p2
l for which it holds thatD pp2

l q´
ř

jP∆pp2
l q kj “ ki. This im-

plies that all firms pricing below p2
l can also profitably raise their price till p2

l , whereas

all firms pricing above p2
l face no residual demand. Hence, these higher priced firms

canmyopically improve by lowering their price to p2
l ´ǫ, which again results in a price

profile with two prices: p2
l and p2

l ´ ǫ.

(iib): Firm i raises its price to the price of the next lowest priced firm(s) in which case all

lower priced firms can do the same since they are capacity-constrained. This brings

us back either to the situation described under (iia) above or iterate (iib) until the

highest priced firms still face residual demand, in which case lower priced firms can

raise their price till ph ´ ǫ, where ph is the highest price in the market.
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Step 3: Let p P M 1 be the price profile resulting from the previous steps. Note that, by

construction, at p there are two groups of firms: the highest priced firmsHppq charging ph

and the lowest priced firms Lppq charging pl “ ph ´ ǫ. According to Step 2 we have two

cases: either (i) the lowest priced firm are not capacity-constrained or (ii) the lowest priced

firm are capacity-constrained. Let us consider the two cases separately.

Case (i): Sincewe are in the case such that the lowest pricedfirms are not capacity-constrained

then the residual demand of the highest priced firm(s) is zero and so its profit. Therefore,

each highest priced firm has a profitable deviation to a price pl ´ ǫ for an arbitrarily ǫ ą 0.

Such a deviation is profitable by the fact that πipphq “ 0 ă πippi, p´iq for any pi P pp, plq,

which is the case.

By letting each highest priced firm h P Hppq to deviate we induce a new price profile p1 P

f qppq for some q ą 0. Such a price profile is also characterized by two groups of firms:

the highest priced firmsHpp1q charging p1
h and the lowest priced firms Lpp1q charging p1

l. If

the lowest priced firms are capacity-constrained, then move to Case (ii), otherwise case (i)

applies again.

Case (ii): Sincewe are in the case such that the lowest priced firms are capacity-constrained

then the residual demand of the highest priced firm(s) is positive and so its profit.

At ph, an highest priced firm h has a profitable deviation undercutting pl “ ph ´ ǫ for some

ǫ ą 0 when

πhpph ´ 2ǫq ą πhpphq ðñ

khpph ´ 2ǫq ą
khř

jPΩpphq kj

»
–Dpphq ´

ÿ

jP∆pphq

kj

fi
fl pn ðñ

khph ´
khř

jPΩpphq kj

»
–Dpphq ´

ÿ

jP∆pphq

kj

fi
fl pn ą 2khǫ ðñ

ph

«
1 ´

Dpphq ´
ř

jP∆pphq kjř
jPΩpphq kj

ff
1

2
ą ǫ ðñ

Let denote by A the LHS of the above inequality, i.e.

A ” ph

«
1 ´

Dpphq ´
ř

jP∆pphq kjř
jPΩpphq kj

ff
1

2
.
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Note that A ą 0when

1 ´
Dpphq ą

ř
jP∆pphq kjř

jPΩpphq kj
ðñ

ÿ

jPΩpphq

kj ą Dpphq ´
ÿ

jP∆pphq

kj ðñ

ÿ

jPΩpphq

kj `
ÿ

jP∆pphq

kj “ K ą Dpphq,

which holds since ph ą p by Step 1.

Since the choice of ǫ in Step 2 and Step 3 was arbitrary, we conveniently fix ǫ P p0,Aq such

that each highest priced firm in Hppq has a profitable deviation to ph ´ 2ǫ ă ph ´ ǫ. Note

we can let each highest priced firm deviates by the same ǫ. Indeed, every round a highest

priced firm deviates and then A increases implying that ǫ is well defined.

The transition of each highest priced firm induces a new price profile p1 P fνppq for some

ν ą 0, characterized by two groups of firms: the highest priced firms charging p1
h and the

lowest priced firms charging p1
l. Since a lowest priced firm is capacity-constrained, Case

(ii) applies again.

Step 4: The iteration of previous steps constitutes a procedure which generates a sequence

p “ p1 P fpp0q, p2 P fpp1q, ..., pκ P fppκ´1q.

By construction, there exists a κ ą 0 such that ||pκ´p|| ă ǫ, for all ǫ ą 0. Then, by definition

of f8, it holds that p P f8ppq. By Lemma 5, it follows that p P M 1, a contradiction.

Uniqueness: Finally, we show that M is the unique MSS. By contrast, let us assume that there

is another MSS M 1. First, we show that M X M 1 ‰ ∅. Towards a contradiction, suppose that

M X M 1 “ ∅. Then, by asymptotic external stability of M 1, for all p P M there is p1 P M 1 such

p1 P f8ppq. Then, by closedness of M the intersection between the open ball around p1 with

radius ǫ and M is empty, i.e. Bǫpp
1q X M “ ∅. By definition of f8, there is κ P N and a p2 P P

such that p2 P fκppq and p2 P Bǫpp
1q. By κ-fold application of of external deviations, it holds

that p2 P M , but p2 P Bǫpp
1q, a contradiction. Thus M X M 1 ‰ ∅. In what follows we prove

that M Ď M 1. Equality follows from the minimality of M 1. As before, we have that either the

market-clearing price belong to the setM 1 or not.

(1): p P M 1. Then by Case 1 of the minimality proof,M 1 contains alsoMztpu.

Hence,M Ď M 1.

(2): p R M 1. This possibility is ruled out by Case 2 of the minimality proof. �
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Proof of Proposition 3. (i) The merger is assumed to become the new industry leader in terms

of production capacity. This implies an increase of the highest iso-profit price post-merger. To

see this, note that the iso-profit price of the largest firm is given by p1 “ D´1pK´1q. Since total

industry capacityK is constant, an increase in k1 implies an increase in the iso-profit price of the

largest seller. We conclude that the merger leads to an increase of the MSS upper bound and that

this effect is stronger the larger the merger, all else equal.

(ii) If Dp0q ă K ă Dp0q ` k1, then p “ 0. This also is the lower bound of the MSS in this case

and, since total industry capacity is unaffected by the merger, remains the lower bound.

(iii) If Dpp˚
1q ă K ă Dp0q, then p ą 0. In this case, the lower bound of the MSS is given by p

for the largest seller(s) and by the hyper-competitive price rpj for each firm j with strictly less

production capacity. Since the merger is assumed to be the single largest supplier, suppose that

there is one firm (firm 1) with strictly more capacity than each of its rivals. Using the definitions

of -competitive price and -clearing price, we can write:

rpi “
p1 pDpp1q ´ K´iq

ki
, p “

p1 pDpp1q ´ K´1q

k1
ùñ p ¨ k1 ` p1K´1 “ p1Dpp1q.

Combining gives:

rpi “
p1Dpp1q ´ p1K´i

ki
“

p ¨ k1 ` p1 pK´1 ´ K´iq

ki
,

and therefore

rpipk1, kiq “
1

ki
¨ pk1 ´

1

ki
p1 pk1 ´ kiq , (8)

for each i P Nz t1u.

Now consider a merger with joint capacity KS ą k1. Note that this is equivalent to an in-

crease of k1 assuming that total industry capacity K remains constant. Consequently, one can

evaluate the impact of the merger on the MSS by assessing the effect of an increase of k1. Total

differentiation of (8) with respect to k1 yields:

drpi
dk1

“
1

ki
¨

„
dp

dk1
k1 ´

dp1
dk1

pk1 ´ kiq ´
`
p1 ´ p

˘
, (9)

where, the first term dp{dk1 “ 0 (since K is constant) while the third is negative since p ă p1.

Regarding the second term, note that a small change in k1 affects the iso-profit price p1 “ p ¨

k1{ pDpp1q ´ K´1q as follows:

dp1
dk1

“
d
´

p¨k1
Dpp1q´K´1

¯

dk1
“

p rDpp1q ´ K´1s ´
´
dDpp1q
dp1

dp1
dk1

´ dK´1

dk1

¯
p ¨ k1

rDpp1q ´ K´1s2
.

Since dK´1

dk1
“ ´1, this simplifies to

dp1
dk1

“
p rDpp1q ´ Ks

rDpp1q ´ K´1s2 ` dDpp1q
dp1

p ¨ k1
ą 0.
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To see that it is positive note that the numerator is negative. The denominator is also negative

when

rDpp1q ´ K´1s2 ă ´
dDpp1q

dp1
p ¨ k1, (10)

which is equivalent to

d rDpp1q ´ K´1s

dp1

p1
Dpp1q ´ K´1

ă ´1, (11)

and this inequality holds because residual demand is elastic at p1. Hence, the second term is also

negative so that drpi
dk1

ă 0. That is, the merger leads to a decrease of the hyper-competitive prices

of non-merging parties. �

Proof of Proposition 4. (i) By assumption, the merger does not become the largest seller in the

industry. Hence, the upper bound of the MSS remains unaffected.

(ii) If Dp0q ă K ă Dp0q ` k1, then p “ 0. This also is the lower bound of the MSS in this case

and, since total industry capacity is unaffected by the merger, remains the lower bound.

(iii) If Dpp˚
1q ă K ă Dp0q, then p ą 0. In this case, all myopic stable prices are in the interval:

max trpi, 0u ď pi ď p1. The hyper-competitive prices of the merging parties are replaced by a

single, higher, hyper-competitive price post-merger. To see this, consider the effect of an increase

in capacity of a merging firm i (leavingK constant):

drpi
dki

“
k1

ki

ˆ
dp

dki
´

dp1
dki

`
p1 ´ p

ki

˙
`

dp1
dki

ą 0.

In this case, it holds that dp{dki “ 0, Bp1{Bki “ 0, p1 ą p ě 0, and therefore drpi{dki ą 0. �

Proof of Theorem 3. To prove thatK Ă M when the set of pure-strategyNash equilibria is empty,

we show that: (i) p1 ą p˚
i , and (ii) ppi ą p̃i, for all i P N .

Case (i): To begin, let us establish that p1 ą p˚
i . We can distinguish two cases: (1) p ą 0, and

(2) p “ 0.

(1) Suppose that p ą 0. If all price at p, then all produce at capacity. Hence, there is no

incentive to cut price. Since the set of pure-strategy Nash equilibria is empty, it then must

hold that at least one firm is willing to hike its price. It can be easily verified that when

the largest firm does not want to raise its price, none of the firms has an incentive to raise

price. Hence, firm 1 has an incentive to hike its price, which implies p ă p˚
1 . Moreover,

by strict concavity of πh
1 , firm 1’s residual profit function is increasing up to the (unique)

profit-maximizing price and decreasing at prices in excess of p˚
1 until its contingent demand
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is zero. Since firm 1’s profits are positive at p ą 0, this implies that p1 is on the decreasing

part of the residual profit function and therefore that p1 ą p˚
1 . Finally, by strict concavity of

πh
i , it holds that p

˚
1 ě p˚

i , for all i P Nz t1u, so that p1 ą p˚
i .

(2) Now suppose that p “ 0. Since the set of pure-strategy Nash equilibria is empty it

holds that K´1 ă Dp0q. Hence, firm 1 faces a strictly concave residual profit function

with a unique maximizer p˚
1 . Because it receives zero profits at p “ 0, it follows that p1 “

D´1pK´1q ą p˚
1 . Moreover, following the same logic as under (1) above, p˚

1 ě p˚
i and

therefore p1 ą p˚
i , for all i P Nz t1u.

Case (ii): Let us now turn to the lower bound and show that ppi ą p̃i, for all i P N . We again

distinguish two cases: (1) p ą 0, and (2) p “ 0.

(1) Suppose that p ą 0. Since each firm can sell its entire capacity at p, all prices be-

low p are strictly dominated. As p̃i ă p for all firms strictly smaller than firm 1, none of

these firms puts mass on its hyper-competitive price (or any lower price). Regarding the

largest firm(s), recall that they have an incentive to raise their price above p in this case,

which means πh
i pp˚

i q ą πh
i ppq. Consequently, none of the largest sellers puts mass on prices

weakly below p, which is their hyper-competitive price.

(2)Nowsuppose that p “ 0. SinceK´1 ă Dp0q, firm 1 can guarantee itself a strictly positive

profit independent of the prices set by its competitors. Hence, firm 1 puts zero mass on

p “ 0 in equilibrium. Yet, given that firm 1 prices strictly above 0, the same logic applies to

firm 2. That is, this firm can guarantee itself a strictly positive profit by pricing below but

arbitrarily close to the lower bound of firm 1’s mixed-strategy support. Consequently, firm

2 also puts zero mass on p “ 0 in equilibrium. This iterative domination argument can be

repeated till firm n. We conclude that when p “ 0, none of the firms puts mass on 0 in a

mixed-strategy Nash equilibrium.

Taken together, ppi ą p̃i, for all i P N , and therefore K Ă M . �
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