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Abstract 

 

Given the developing nations are moving towards attaining the sustainable energy future, the 
reliance on renewable energy solutions is rising. Therefore, the dependence on traditional fossil 
fuel-based solutions is getting reduced, and this might have an impact on the energy market 
commodities. Analyzing this impact might divulge several insights regarding the portfolio 
decisions, in presence of the transformations in developmental trajectory. In this study, we 
analyze the cross-quantile dependence of the returns on the energy market commodities and 
the market returns for Indian financial market over July 31, 2008 to March 31, 2020. For this 
purpose, we adopt a novel three-stage methodology comprising Dynamic Conditional 
Correlation GARCH, Cross-quantilogram, and Wavelet Coherence-based models. We find that 
the market returns have negative effect on returns on the energy market commodities. This 
impact has been found to be asymmetric in nature. Moreover, the moderating impact of policy 
uncertainty has been analyzed has been analyzed through partial cross-quantilogram approach, 
and the outcome shows that the impact remains same under extreme market conditions. The 
findings have significant portfolio decisions in an energy transition context. 
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1 Introduction 

Since the 2000s, there has been a rising concern about environmental health across the nations. 

Myopic industrialization over the ages has already resulted in increased pollution and depletion 

of non-renewable resources. Especially, the depletion of fossil fuels poses a serious question 

mark over civilization and industrial growth. Currently, fossil fuels contribute an 

overwhelming 90% of the world’s energy consumption.2 The current consumption rate 

indicates a gloomy future that the world will be out of all the fossil fuels by the next 50-70 

years.3 Recognizing the importance of this alarming condition, all the nations have started 

devising the appropriate measure to combat this crisis. Sustainable Development Goals (SDG) 

adopted by United Nations in 2015 depict this global initiative.4 In this context, exploration 

and use of alternative or renewable energy resources emerge as one of the most effective 

solutions. Specifically, SDG 7 aims at achieving the global use of 175-gigawatt renewable 

sources by 2022.5 Various government as well as business organizations have started taking 

appropriate measures. For instance, the use of renewable energy led to around 26 % of the 

global electricity generation in 2018 and is expected to rise to 45 % by 2040.6  

Though the renewable energy sources can bring a desirable solution to the environmental 

crisis, it causes another problem in the energy market. The increasing use of renewable energy 

sources can lead to a huge demand-supply mismatch in the oil and gas sector. Already, the 

global financial crisis along with the great recession in 2008 left an unprecedented negative 

impact on the oil and gas sector. It led to a price drop of USD 150 to 35 per barrel, a fall in the 

stock price, and reduced consumption of fossil fuels in 2008.7 Further, SDGs of the business 

practices have already raised the investors’’ uncertainty, leading to a 14-percentage point 

decrease in the foreign direct investment to the developing economy countries in 2017.8 In this 

background, the extensive use of renewable energy sources can add more uncertainty to the 

investment decisions in the energy portfolio design. These real-life phenomena signify the 

 
2 Retrieved from: https://www.conserve-energy-future.com/various-fossil-fuels-facts.php 
3 Retrieved from: https://octopus.energy/blog/when-will-fossil-fuels-run-
out/#:~:text=While%20fossil%20fuels%20were%20formed,time%20%E2%80%93%20just%20over%20200%2
0years.&text=If%20we%20keep%20burning%20fossil,will%20be%20depleted%20by%202060. 
4 Retrieved from: https://www.undp.org/content/undp/en/home/sustainable-development-goals.html 
5 Retrieved from: https://in.one.un.org/page/sustainable-development-goals/sdg-7/ 
6 Retrieved from: https://www.c2es.org/content/renewable-energy/ 
7 Retrieved from: https://www.investopedia.com/ask/answers/052715/how-did-financial-crisis-affect-oil-and-
gas-sector.asp 
8 Retrieved from: https://unctad.org/news/investor-uncertainty-looms-over-sustainable-development-goals 
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importance of investigating the effect of the rising adoption of renewable energy sources on 

the uncertainty in the oil and gas sector. 

The uncertainty in the oil and gas market has remained an area of interest for scholars over 

the ages. Researchers focus on different issues such as the relationship between financial stress 

and policy uncertainty (Reboredo and Uddin, 2015), the dynamic relationship between crude 

oil returns and uncertainty indices (Aloui et al., 2016), the co-movement and causality of 

economic policy uncertainty and crude oil prices (Sun et al., 2020), etc. However, it highlights 

several interesting research opportunities. For instance, as per the SDG Progress Report 

(United Nations, 2019), emerging economies around the world are moving towards attaining 

the objectives of SDG 7. In this pursuit, these nations are trying to achieve the full potential of 

renewable energy solutions. As a result, dependence on fossil fuel-based solutions is gradually 

decreasing. Further, if we look at the Indian scenario, then it can be observed that the Indian 

economy is striving to achieve sustainable development by gradually shifting away from fossil 

fuel-based solutions, as reliance on this energy solution is turning out to be a predicament to 

achieve the SDG objectives (ADB, 2019; UNESCAP, 2019). Looking at the persisting energy 

security and energy poverty issues in India, NITI Aayog (2019) has mentioned that the 

dependence of the Indian economy on fossil fuel-based solutions might create a hindrance in 

attaining the developmental trajectory. Moreover, reliance on fossil fuel-based solutions might 

make the Indian economy vulnerable to price fluctuations, which are majorly driven by global 

demand and supply considerations. To tackle this issue, the policymakers might need to 

introduce import substitution policies that can incentivize organizations to shift from existing 

imported fossil fuel-based production processes to renewable energy solutions-based ones. The 

recent report by World Bank (Artuc et al., 2019) highlights this issue and opines this solution 

in the Indian context should be benchmarked for other emerging economies in Asia. However, 

this initiative might have implications for the prices of the energy market commodities. Also, 

it might have a consequential impact on the market dynamics. In contrast, it can also be 

hypothesized that the prevailing market dynamics exert a negative externality on the energy 

commodity prices. Therefore, while India is treading along the path of attaining the objectives 

of SDG 7, the financial market might react to it differently. These conflicting objectives might 

influence the portfolio decision of the investors. Further, it is worthwhile to mention that the 

economic and socio-political stability of India is uncertain following the financial crisis in 

2008, the economic slowdown in 2011, political transformation in 2014, and the growing 

unemployment scenario. It motivates us to address the following research question: 
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Research question: What are the possible dynamics between financial market and energy 

commodities under policy uncertainty? 

The contributions of this work are as follows: 

Given India is making progress towards attaining the objectives of SDG 7, the traditional 

energy sector is facing a demand shrinkage, while it is a major driver of Indian economic 

growth. At the same time, renewable energy solutions are also garnering considerable attention. 

A reflection of this situation might be experienced in the energy market, as well as in the 

associated portfolios. Hence, in this work, we investigate the relationship between the financial 

market and energy commodities under policy uncertainty. Here, we analyze the dependence 

structure of the returns on the energy market commodities and the market returns for the Indian 

financial market over July 31, 2008, to March 31, 2020. For this purpose, we adopt a novel 

three-stage methodology comprising Dynamic Conditional Correlation GARCH (DCC-

GARCH), Cross-quantilogram, and Wavelet Coherence-based models to investigate the 

dependence structure of the return series, measure the tail-dependence in the correlational 

structure, and explore the lead-lag relationship between the series, respectively. The proposed 

approach ensures robustness. Our analysis reveals several important insights. First, there is a 

long-term relationship between energy commodities and energy index. Second, returns on 

energy commodity prices have a positive effect on market returns, while market returns 

negatively influence the returns on energy commodity prices. Third, still Indian industrial 

practices involve fossil fuel-based energy consumption, thus highlighting an obstacle to 

achieving the objectives of SDG 7. From the perspective of Indian investors, these insights can 

be useful to design their portfolio comprising energy stocks.  

The article is organized as follows. Section 2 presents a summarized literature review. 

Section 3 describes the methodology. Section 4 explains data, results, and insights obtained 

from the analysis. Section 5 concludes the paper by discussing contributions and future 

research avenues. 

2 Literature review 

2.1 Scholarly works related to effect of uncertainty on the oil and gas sector 

As per our exploration, a few researchers focus on the relationship between EPU and oil shocks 

(Rehman, 2018; Degiannakis et al., 2018).  In the context of the USA, Andreasson et al. (2016) 

study the interaction between commodity futures returns (Energy, metal, and agricultural) and 

five driving factors, including the VIX and economic policy uncertainty for 1990-2014. In a 
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similar background to the USA, Aloui et al. (2016) study the dynamic relationship between 

crude oil returns and uncertainty indices for 2000-2014. They find a unidirectional relationship 

between the VIX and commodity futures prices, and the policy uncertainty and commodity 

return (crude oil and natural gas). However, a bi-directional relationship is observed for heating 

oil. Andreasson et al. (2016) study the interaction between commodity futures returns (Energy, 

metal, and agricultural) and five driving factors, including the VIX and economic policy 

uncertainty for 1990-2014.  Ji et al. (2018) investigate the impact of uncertainties (economic, 

financial, and energy) on the S&P 500 Global Clean Energy Index (CEX), crude oil and natural 

gas of the USA for 2007-2017. Uddin et al. (2018) investigate the casual interrelationships 

between various types of geopolitical, economic, and financial uncertainty indices and oil 

markets of the USA and Europe for 1990-2015. Badshah et al. (2019) investigate the 

relationship between the stock (S&P 500 index) and commodity markets (commodities 

included in Dow Jones Commodity Index) for 1999-2016 and observe a positive relationship 

between the economic policy uncertainty and commodity markets and a negative relationship 

between the VIX and commodity markets. Zhang et al. (2019) study the influence of the USA 

and China on key international markets, namely, stock, credit, energy, and commodity markets. 

They also investigate the interaction between economic policy uncertainty (as a measure of 

policy stance) and various markets and observe that the USA holds a dominant position in all 

the markets and China’s economic policy uncertainties are found to be responsive to US 

economic policy uncertainties. They observe a negative (positive) dependence between 

uncertainty measures and oil returns (during certain periods such as before the financial crisis 

and Great Recession). Lee et al. (2019) study the impact of country risk (i.e., economic risk, 

financial risk, and political risk) on energy commodity futures prices using quantile regression 

for 1994-2017. They find that for crude oil and heating oil, the economic risks (financial risks) 

are significantly positive (negative) in the lower quantiles, but the effects turn significantly 

negative (positive) in the upper quantiles of the commodity returns. On similar lines, Zhu et al. 

(2020) demonstrate that the economic policy uncertainty of both domestic and other countries 

can affect crude oil prices. They study the effect of economic policy uncertainty on China's 

commodity futures (metal and agricultural) using the panel quantile regression approach. The 

EPU shocks (both local and US EPU) were differentiated into positive and negative 

components and the market conditions were classified as bearish, normal, and bullish. They 

find that the impact of EPU shocks (both local and US EPU) on commodities was 

heterogeneous across quantiles and sectors. They observe a common feature that the US EPU 

shocks have significant positive effects in bullish commodity markets (metal and agricultural). 
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Sun et al. (2020) perform a multi-country study to understand the relationship between 

uncertainty and crude oil. They study co-movement and causality of economic policy 

uncertainty and crude oil prices (West Texas Intermediate) on 10 countries (G7 countries, 

China, Brazil, and Russia) for 1997-2017 using wavelet coherence method and scale-by-scale 

linear Granger causality tests. They opine that the weak interaction between EPU and oil prices 

in the short-term and strong interaction in the mid-term and long-term. They also find a 

significant strong interaction at the financial and political events such as terrorist attack (2001), 

Iraq war (2003), global financial crisis (2008), Arab spring (2011), and European Sovereign 

Debt Crisis.   

2.2 Scholarly works related to methodologies applied to measure the effect of uncertainty 

on the oil and gas sector  

Our analysis reveals the existence of diverse approaches in the relevant scholarly works. For 

instance, Reboredo and Uddin (2015) study the impact of financial stress and policy uncertainty 

on conditional return distributions for the most tradable energy and metal commodities of the 

USA applying Quantile regression-based method for 1994-2015. Balcilar et al. (2017) 

investigate the predictive ability of economic policy uncertainty (EPU) and equity market 

uncertainty (EMU) on oil returns and volatility of oil returns of the USA applying bivariate 

quantile causality test-based method for 1986-2014. Yao and Sun (2018) examine the static tail 

dependence structure between the economic policy uncertainty (EPU) index and several 

financial markets of the USA applying copulas-based method for 1992-2016. Degiannakis et 

al. (2018) study the relationship between uncertainty (financial and economic) and oil shocks 

(supply-side, aggregate demand, and oil specific demand shocks) in the USA for 1994-2015 

using the structural VAR (SVAR) model and a time-varying parameter VAR (TVP-VAR) 

model. They find that oil supply shocks do not exercise any significant impact on uncertainty 

indicators (SVAR model) and the uncertainty responses to the three oil price shocks are 

heterogeneous (TVP-VAR model). Ma et al. (2018) apply high-frequency tick data (West 

Texas Intermediate futures contract with a maturity of 1 month traded on NYMEX) for 2010-

2014 to study the impact of economic policy uncertainty on the forecasting of crude oil futures 

relative volatility, and find that adding economic policy uncertainty to the Heterogeneous 

Autoregressive Model of the Realized Volatility (HAM-RV) increases the forecast accuracy of 

the crude oil futures markets. Chen et al. (2019) explore the dynamic relationship between the 

Brent oil market and EPU of Brazil, India, Russia, and China applying the Wavelet-based 

BEKK-GARCH approach for 2003-2018.  Shaikh (2019) investigate the effect of economic 



7 

 

policy uncertainty (EPU) on the 14 VIX-based volatility measures of the USA applying 

GARCHX and Markov switching models for 2001-2018. Shahzad et al. (2019) adopt a 

nonlinear auto-regressive distributed lag cointegration-based approach to investigate the 

impact of the oil price shocks on economic policy uncertainty, stock market uncertainty (VIX), 

treasury rates, and investor (bullish and bearish) sentiment in the USA for 1995-2015. They 

conclude that oil demand shocks affect economic policy uncertainty and stock market 

uncertainty, oil supply shocks affect treasury rates, and both oil demand shocks and oil supply 

shocks affect investor sentiment. To understand the change in the relationship between 

economic policy uncertainty and oil returns after the global financial crisis, Lei et al. (2019) 

apply the MIDAS quantile regression-based approach to study the risk perception of traders in 

crude oil spot and futures markets for 1986-2018. In the background of the USA, Qadan and 

Idilbi-Bayaa (2020) apply the threshold-GARCH, structural vector autoregression, and 

causality models for 1990-2017 to study the relationship between the economic uncertainty 

and the risk appetite of equity investors.  

Our analysis of the existing literature review indicates that the Indian Financial market and 

energy commodities have not been paid enough attention. Also, most of the research articles 

adopt a single methodology. The summary of the existing scholarly works and contributions 

of this article is presented in Table 1. 

Table 1 Summarized description of the literature. 

[Insert Table 1 Here] 

3 Methodology 

In this study, we investigate the dependence structure between the Indian financial market and 

energy commodities. For this purpose, we incorporate a system of approaches. This system of 

approaches helps in addressing the research problem in several ways. First, the dependence 

structure might follow a dynamic time-dependent correlation structure contingent upon the 

market volatility. It facilitates the first-level understanding of the connectedness between the 

returns on market and selected indices. Second, after discovering the dynamic time-dependent 

correlation structure, it is important to explore whether the returns demonstrate any tail-

dependence in their correlational structure or not. As the tail-dependence demonstrates the 

changes in the correlational structure based on market exigencies, it is important to understand 

this phenomenon. Third, after observing the correlational structure, the findings can be 

triangulated based on their co-movement pattern over the short-run and long-run. While the 

tail-dependence in the correlational structure might reveal the possible positive or negative 
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association between the return series, the co-movement patterns also can disclose the lead-lag 

relationship between them. 

Given the three ways the system of approaches will address the research problem, we select 

multiple methods as follows. First, we apply a Dynamic Conditional Correlation GARCH 

model (DCC-GARCH) model to capture the dependence structure of the return series. Next, 

upon confirmation of the dynamic time-dependent correlation structure revealed from the 

DCC-GARCH method, we incorporate a Cross-quantilogram approach to measure the tail-

dependence in their correlational structure. Finally, after analyzing the correlational structure 

between the series with the dynamic and extreme conditions, we adopt a Wavelet Coherence-

based approach to explore the lead-lag relationship between the series. Precisely, this 

methodological schema has been utilized in the study for attaining the research objective. 

3.1 Description of DCC GARCH 

Time-varying volatilities of financial assets move in tandem, and their closeness varies across 

assets and markets. This closeness is directly related to the systemic risk. For this reason, we 

apply a DCC-GARCH model to analyze the time-varying volatility of time series. 

The variance fluctuates over time. Also, it shows properties such as the small volatility 

changes are followed by small changes and large volatility changes are followed by large 

changes and volatility tends to be autocorrelated which means today’s volatility depends on 

past volatility. Based on these properties, Engle (1982) develops the ARCH model that captures 

the time-varying volatility. Later, Bollerslev (1986) introduces the GARCH models that 

capture the volatility clustering and forecast future volatilities. The idea that the conditional 

covariance matrix can be decomposed into conditional standard deviations and a conditional 

correlation matrix leads Bollerslev (1990) to introduce the Constant Conditional Correlation 

(CCC) model. Here, the conditional standard deviation is time-varying and the conditional 

correlation is assumed to be constant over time. Engle and Sheppard (2001) extend this model 

in the form of Dynamic Conditional Correlation (DCC), where both the conditional standard 

deviation and conditional correlation are time-varying. Thus, it can be deduced that the DCC-

GARCH model is a generalization of the CCC-GARCH model, which allows the correlation 

matrix to depend on the time. DCC–GARCH model separate the volatility fluctuations from 

returns, leaving the standardized residuals, which are independently and identically distributed 

(i.i.d.). 

The DCC-GARCH model can be defined as follows rt = μt + at. 
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at = Ht1/2zt. Ht = DtRtDt. 
where, rt is a n × 1 vector of log returns of n assets at time t. μt is a n × 1 vector of conditional means that shows the expected value of the conditional rt. at is a n × 1 vector of unpredictable residuals that shows mean-corrected returns of n assets at 

time t, i.e., E[at] = 0 and Cov [at] =  Ht.  Ht is a n × n symmetric positive-definite matrix that shows conditional variances of at at time 

t.   Ht1/2
 is any n × n matrix at time t such that Ht is the conditional variance matrix of at. Ht1/2

 

may be obtained by a Cholesky factorization of Ht.  Dt is a n × n diagonal matrix of conditional standard deviations of at at time t. Rt is a n × n conditional correlation matrix of at at time t.   ztis a n × 1 vector of i.i.d errors such that E[zt] = 0 and E[ztztT] = I. 
The mean part of the DCC-GARCH model [μt] is independently modelled using 

Autoregressive Moving Average (ARMA) model as follows. 

                                             μt =  μ + ∑ Airt−iPi=1 + ∑ Bjϵt−jQj=1 .                                         (1)   

Where Ai and Bj are diagonal matrices.  

The elements in the diagonal matrix Dt are standard deviations from univariate GARCH 

models and can represented in the following manner. 

                                            Dt = [  
  √h1t 0 ⋯ 00 √h2t ⋱ ⋮⋮ ⋱ ⋱ 00 … 0 √hnt]  

  .                                                (2) 

where,  hit = δi0 + ∑ δiqai,t−q2 + ∑ γiphi,t−pPip=1Qiq=1 . Rt is the conditional correlation matrix of the standardized disturbances ϵt, i.e., ϵt = Dt−1at ~ N(0, Rt).  Since Rt is a correlation matrix, it is symmetric and can be expressed as 

follows. 

 

                                Rt = [  
  1 ρ12,t ρ13,t ⋯ ρ1n,tρ12,t 1 ρ23,t ⋯ ρ2n,tρ13,t ρ23,t 1 ⋱ ⋮⋮ ⋮ ⋱ ⋱ ρn−1,n,tρ1n,t ρ2n,t ⋯ ρn−1,n,t 1 ]  

  .                                       (3) 
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The elements of Ht = DtRtDt can be expressed in the following manner 

                                                       [Ht]ij = √hithjtρij.                                                          (4) 

where, ρii = 1. 

Ensuring Ht and Rt to be positive definite, Rt can be decomposed into the following elements. 

                                                         Rt = Qt∗−1QtQt∗−1,                                                          (5) 

                                              Qt = (1 − α −  β)Q̅ + αϵt−1ϵt−1T + βQt−1.                              (6) 

where Q̅ is the unconditional covariance matrix of the standardized errors ϵt. Q̅ = Cov[ϵtϵtT] = E[ϵtϵtT] =  1T ∑ϵtϵtT.T
t=1  

The parameters α and β are scalars, and Qt∗ is a diagonal matrix with the square root of the 

diagonal elements of Qt at the diagonal. Qt∗−1 is the inverted diagonal matrix with the squared 

root diagonal elements of Qt. 
                                                   Qt∗ = [  

  √q11t 0 ⋯ 00 √q22t ⋱ ⋮⋮ ⋱ ⋱ 00 ⋯ 0 √qnnt]  
  .                                    (7) 

Qt∗ rescales the elements in Qt to ensure |ρij| =  | qijt√qiitqjjt|  ≤ 1. 

 Further, Qt has to be positive definite to ensure Rt to be positive definite. The scalars α and β must satisfy α ≥ 0, β ≥ 0 and α + β < 1. 

The correlation structure can be extended to the general DCC (M, N)-GARCH model in the 

following manner. 

   Qt = (1 − ∑ αm − ∑ βnNn=1Mm=1 )Qt̅̅ ̅ + ∑ αmat−1at−1TMm=1 + ∑ βnQt−1.Nn=1                      (8) 

The conditional correlation between energy market and uncertainty at time t can be defined 

as follows. 

 

                          ρij,t = (1−α− β)q̅ij+αϵi,t−1ϵj,t−1+βqij,t−1[(1−α− β)q̅ii+αϵi,t−12 +βqii,t−1]1/2[(1−α− β)q̅jj+αϵj,t−12 +βqjj,t−1]1/2.                 (9) 

The parameters of Ht assuming the Gaussian distribution for the standardized error zt are given 

by the following likelihood function as follows. 

               ln(L(θ)) =  − 12  ∑ nln(2π) + 2ln (|Dt|Tt=1 ) +  ln (|Rt|) + atTDt−1Rt−1Dt−1at.       (10) 

This is estimated in two steps. In the first step, Rt is replaced by I which results in a quasi-

likelihood function as given below 
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                          ln(L1(∅)) =  ∑ (− 12  ∑ [ln(hit) + ait2hit] + constantTt=1 )ni=1 .                       (11) 

The parameters set ∅, hit, ϵt, and Q̅ are calculated using the first function. The parameters α and β are estimated in the second step as follows. 

                 ln(L2(φ)) =  − 12  ∑ (nln(2π) + 2 ln(|Dt|) + ln(|Rt|) + ϵtTRt−1ϵt)Tt=1 .           (12) 

3.2 Description of Cross-Quantilogram 

Linton and Whang (2007) introduce quantilogram that measures the directional predictability 

in different parts of the distribution of a single stationary time series. Later, Han et al. (2016) 

introduce cross-quantilogram that measures the quantile dependence between two time series, 

predict one time series using other, and measures the systemic risk.  

For two events r1,t and r2,t−k, where {r1,t  <  q1,t(τ1)} and {r2,t−k  <  q2,t−k(τ2)}, qi,t(τi) 

being either τi conditional or unconditional quantile of ri,t. The quantile hit is given by {1[ri,t  <  qi,t(. )]} for i = 1,2, … where 1[. ] denotes the indicator function that take the value 

one when its argument is true, and zero otherwise. The cross-quantilogram is the cross-

correlation of the quantile-hit processes and is defined as follows: 

            ρτ(k) =  E [ψτ1 (r1,t− q1,t(τ1))ψτ2(r2,t−k− q2,t−k (τ2))]√E [ψτ12  (r1,t− q1,t(τ1))]√E [ψτ22 (r2,t−k− q2,t−k (τ2))] , for k = 0,±1,±2,…        (13) 

Where, ψτi (ri,t − qi,t(τi)) = 1[ri,t  <  qi,t(τi)] − τ1.  
A sample cross-quantilogram can be expressed in the following manner ρ̂τ(k) =  ∑ ψτ1Tt=k+1 (r1t− q̂1,t(τ1))ψτ2 (r2,t−k− q̂2,t−k(τ2))√∑ ψτ12Tt=k+1 (r1t− q̂1,t(τ1))√∑ ψτ22Tt=k+1 (r2,t−k− q̂2,t−k(τ2)),  for k = 0,±1,±2,…         (14) 

The dependence between two events {q1,t(τ1l )  <  r1,t  <  q1,t(τ1u)} and {q2,t−k(τ2l )  < r2,t−k  <  q2,t−k(τ2u)} for arbitrary quantile ranges [τ1l , τ1u] and [τ2l , τ2u] can be obtained by 

replacing τi with [τil, τiu] in ψτi (ri,t − qi,t(τi)) = 1[ri,t  <  qi,t(τi)] − τ1  in the following 

manner. 

   ψ[τil,τiu] (ri,t − qi,t([τil, τiu])) = 1[qi,t(τil)  <  ri,t  <  qi,t(τiu)] − (τiu − τil).                   (15) 

While considering dependence from an event {q2,t−k(τ2l )  ≤  r2,t−k  ≤  q2,t−k(τ2u)} to an 

event {q1,t(τ1l )  ≤  r1,t  ≤  q1,t(τ1u)}, ρτ(k) = 0, shows no dependence or directional 

predictability. ρτ(k)  ≠ 0, shows existence of quantile dependence or directional predictability.   

The null and alternative hypothesis for testing the directional predictability of events up to p lags {r2,t−k  ≤  q2,t−k(τ2) ∶ k = 1,… , p} for {r1t  ≤  q1,t(τ1)} are as follows 
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Null hypothesis H0: ρτ(1) = ⋯ = ρτ(p) = 0 

Alternative hypothesis H1 ∶  ρτ(k)  ≠ 0 for some k ∈  {1, … , p} 
The hypothesis can be tested using Box-Pierce type test statistic Q̂τ(p) = T ∑ ρ̂τ2(k)pk=1  or 

Box-Ljung version Q̌τ(p) ≡ T(T + 2)∑ ρ̂τ2pk=1 (k)/(T − k). Portmanteau test statistics Q̂τ(p) for 

a specific quantile is a special case of the sup-version test statistic: 

                                                supτ∈Τ Q̂τ(p) = supτ∈Τ T∑ ρ̂τ2(k).pk=1                                                (16)                            

where Τ is the range of quantiles we are interested in evaluating the directional predictability, ∀τ∈ Τ, and (k, τ)  ∈  {1, … , p} × Τ with fixed p. 

In order to control the impact of the exogenous factors on the hypothesized relationship 

between two events r1,t and r2,t−k, the partial cross-quantilogram method is employed. This 

method is capable of encompassing the events between the temporal frame of t and t − k, such 

that r1,t ≤ q1,t(τ1) and r2,t−k − q2,t−k(τ2). The control variables of the empirical model are 

introduced in this method as: ct ≡ [ψ(r3,t (r3,t − q3,t(τ3))) , …ψ(rn,t (rn,t − qn,t(τn)))]T    (17) 

Where, n denotes the size of the matrix of exogenous control factors. Now, the correlation 

structure among the model parameters, in presence of exogenous control factors can be defined 

in expected values term as: Rτ̅−1 = E(jt(τ̅)j(τ̅))−1 = Kτ̅       (18) 

Where, jt(τ̅) = [ψ(r1,t − q1,t(τ1)), …ψτ,n(rn,t − qn,t(τn)]τ    (19) 

This mathematical specification signifies the quantile hit process. Following Han et al. (2016), Kτ̅ can be expressed as: ρτ̅|c(k) = Kτ̅,12/√Kτ̅,11. Kτ̅,22        (20) 

This cross-quantile correlation method thus defined can take account of the moderating impact 

of the exogenous control parameters. 

3.3 Description of wavelet coherence 

As Fourier transform is able to entirely decomposing stationary time-series, wavelets might be 

utilized to analyze nonstationary time-series. This method allows for time conservation for 

localized information, and thereby, permitting comovement being computed in the frequency 

domain. The present study has adapted the wavelet coherence approach by Goupillaud et al. 

(1984) and Torrence & Compo (1998). The spectral properties of a time series data are 
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discovered through the wavelet transform, while preserving the transformations in the temporal 

structures of the data. This method allows the time series data to be disintegrated into several 

frequencies. The Morlet wavelet function employed in this study can be represented as the 

following: ϖ(t) = π−14e−iϖte−12t2         (21) 

Where, 𝑒 represents the non-dimensional frequency. Tiwari et al (2013) divulged that the 

continuous wavelet transformation (CWT) is able to reveal the time series properties of the 

data. Besides, Aguiar-Conraria and Soares (2014) mentioned that the CWT helps the cross-

wavelet analysis to unveil the frequency domain interface between two time series. The CWT 

for a discrete-time series can be explained as follows: ϖk,f(s) =  ρt√s ∑ xn′N−1n′=0 ϖ∗ ((n′ − m) ρts )       (22) |Wnx(s)|2 portrays the wavelet power spectrum, which divulges the variance of the data. At the 

borders of the finite length signals, the distortion of this spectrum creates the Cone of Influence. 

This power spectrum can be described as: D(|Wnx(s)|2ρx2 < p)  =  12 PfXz2        (23) 

Where, Fourier frequency describes the range of the mean spectrum (Pf), ρ signifies variance, 

and Xz2 demonstrates two series, i.e., p < Pf, at 1 for real wavelets and 2 for the complex 

wavelets for z. The comovement between r1,t and r2,t is explored using the wavelet coherence: Rn(s) =  |S(s−1Wnr1r2(s))|2S(s−1|Wnr1)|12)S(s−1|Wnr2|12)        (24) 

Where, S is the levelling operator. The phase difference φ of series (r1, r2) is explored by the 

wavelet coherence as: φ = tan−1 (E{Wnr1r2}G{Wnr1r2}) and φ ∈ [−π, π]      (24) 

Where, the imaginary and real component operators are designated by G and E. r1 leads r2, 

when φ ∈ [0, π2]. r2 leads r1, when φ ∈ [− π2 , 0]. On the other hand, the anti-phase alteration 

occurs, when r1 leads r2, φ ∈ [−π,− π2], and r2 leads r1, when φ ∈ [π2 , π]. 
Now, analysis of the results of CWT entails understanding the phase diagram, which 

demonstrates the directional arrows for the hypothesized association. The Figure 1 depicts the 

phase diagram, which is having four quadrants. If the CWT between r1 and r2 is analyzed, then 

the direction arrows along the four quadrants will signify the following: 
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1. First quadrant: If the directional arrows are within the first quadrant, then it signifies that 

both the signals are in-phase, i.e., they will move in the same direction. Moreover, in this 

quadrant, r1 will lead r2. 

2. Second quadrant: If the directional arrows are within the second quadrant, then it signifies 

that both the signals are out-of-phase, i.e., they will move in the opposite directions. Just 

like the previous case, in this quadrant also, r1 will lead r2. 

3. Third quadrant: If the directional arrows are within the third quadrant, then it signifies that 

both the signals are out-of-phase, i.e., they will move in the opposite directions. Moreover, 

in this quadrant, r2 will lead r1, i.e., the lead-lag association will reverse. 

4. Fourth quadrant: If the directional arrows are within the fourth quadrant, then it signifies 

that both the signals are in-phase, i.e., they will move in the same direction. Like the 

previous case, in this quadrant also, r2 will lead r1. 

Fig.1 Phase diagram of the Wavelet transformation. 

[Insert Figure 1 Here] 

4 Data analysis and results 

In this work, we analyze the cross-quantile dependence of the returns on the energy market 

commodities and the market returns for the Indian financial market over July 31, 2008, to 

March 31, 2020, using the proposed methodology presented in Section 3.  For this purpose, 

daily percentage returns of crude oil, natural gas, energy index, economic policy uncertainty 

(EPU), volatility index (VIX), and stock market index are used. The daily closing prices for 

crude oil and natural gas are collected from National Commodity and Derivatives Exchange 

(NCDEX). The daily closing prices for energy are obtained from India Energy Exchange (IEX). 

The daily closing prices for the VIX and stock market index are collected from the National 

Stock Exchange (NSE). The monthly data for economic policy uncertainty is obtained from 

the www.policyuncertainty.com, and this data is converted into daily data using the quadratic 

match-sum process. 

4.1 Results of DCC-GARCH model 

We first analyze the time-varying correlations between the various time series using the DCC-

GARCH model to understand the long-term   relationship. Once the long-term   relationship is 

established, we further probe the relationship between the time series at various quantiles using 

heat maps and cross quantilogram. This approach is useful to understand how the crude oil, 

natural gas, and energy index contribute to (and affected by) the systemic risk. 
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Table 2 Descriptive statistics. 

[Insert Table 2 Here] 

The descriptive statistics presented in Table 2 show negative mean returns for crude oil and 

natural gas. Negative mean returns are the result of sudden shocks that leads to high variability 

in the absence of autocorrelation and ARCH effects. The energy index returns are positive and 

vary less than the individual energy commodities. The specific composition of the energy index 

causes the less variability in returns. The energy index shows the autocorrelation and ARCH 

effects. The variability in the returns of the EPU and VIX is much lower than the individual 

commodities and energy index. Both EPU and VIX return series exhibits autocorrelation.  The 

stock index returns are the least volatile across all the time series under study. Also, it shows 

autocorrelation and ARCH effects. The significant values of the skewness, kurtosis, and 

Jarque-Bera tests for all the time series reveal the non-normality in the returns. 

Figure 2 depicts the returns of the time series. We observe that the variability in the returns 

for crude oil is more than the natural gas. The presence of shock in the natural gas returns 

attributes to a higher variance. The effect of the shock is reflected in the returns of the energy 

index too. The energy index returns and market returns highlight the presence of volatility 

clustering, i.e., high returns and low returns follow the high and low returns, respectively. The 

EPU and VIX seem to be regularly affected by the news leading to small shocks in both upward 

and downward directions. Initially, both EPU and VIX follow a similar path. Later, their paths 

reverse, i.e., the high variation in EPU coincides with the low variation in VIX. Also, Figure 2 

reveals that the information in EPU does not reflect in the stock market. Similarly, less variation 

in the EPU parallels high variation in the stock market at the beginning of the analysis.   

Fig.2 Plots of the return series. 

[Insert Figure 2 Here] 

The DCC-GARCH model reveals the long-term relationship between the energy 

commodities and energy index with the EPU, VIX, and stock market. Table 3 shows the short-

term (dcca1) and long-term (dccb1) conditional correlation parameters (with covariance 

targeting) between the various return pairs. All the returns pairs show significant long-term   

dynamic conditional correlations. Five pairs, viz., OIL-MKT, GAS-EPU, EN-EPU, EN-VIX, 

and EN-MKT, show non-significant short-term dynamic conditional correlations. The 

association has been graphically represented in Figure 3a. This empirical evidence falls in the 

similar lines with the findings of Cevik et al. (2020), who used EGARCH approach and found 

crude oil prices have significant effects on stock market returns for Turkey. 

Table 3 Joint conditional correlation between the returns of the time series. 
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[Insert Table 3 Here] 

Fig. 3a Dynamic conditional correlation of crude oil, natural gas and energy index with EPU 

and VIX. 

[Insert Figure 3a Here] 

The dynamic correlation between the OIL-EPU pair moves between negative and positive 

values frequently. However, for the last one and half years the dynamic correlation has been 

positive. It shows that the uncertainty observed from the news influences the oil prices both 

positively and negatively. This piece of the findings extends the findings of Chen et al. (2019) 

for the BRIC economies. Dynamic conditional correlation between the OIL-VIX pair moves 

from a period of positive dynamic conditional correlation to periods of negative dynamic 

conditional correlation. Overall relationship is significant in the short and long-term. Dynamic 

conditional correlation between the GAS-EPU is near to zero with two positive and one 

negative instances, where the dynamic correlation moves between -0.4 to 0.4. Dynamic 

conditional correlation between the GAS-VIX is near to zero with one positive and negative 

instances where the dynamic correlation moves between -0.1 to 0.3. However, the appearances 

of sudden positive and negative dynamic correlation in the GAS-EPU pair are opposite to the 

GAS-VIX pair. Dynamic conditional correlation between the EN-EPU pair is positive and 

seems to be near 0.01 while the dynamic conditional correlation between the EN-VIX pair is 

negative (except once stance to be positive) and lies between 0.00 to -0.02. The direction of 

the dynamic conditional correlation between the EN-EPU and EN-VIX pairs is opposite. This 

can be caused by the diversified nature of the energy portfolio. The association has been 

graphically represented in Figure 3b. This section of the output can be considered as an 

extension of the findings by Ji et al. (2018), who used time-varying copula-GARCH model and 

found negative dependence between energy returns and uncertainty changes. 

Fig. 3b Dynamic conditional correlation of crude oil, natural gas and energy index with stock 

market 

[Insert Figure 3b Here] 

Dynamic conditional correlation calculated using the volatility between oil and market is 

positive except for two instances. The dynamic correlation is near zero for the entire period 

and significant in the long-term. The dynamic correlation observed for the OIL-MKT pair is 

much smaller than the OIL-EPU and OIL-VIX pairs. Dynamic conditional correlation between 

gas and market is positive except for a few instances (lies between -0.01 and 0.02) and 

significant in both long-term and short term. The high fluctuations in the short-term exhibit the 

relationship between gas and market is different from the relationship between oil and market. 
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The dynamic conditional correlation between energy and market is positive (lies between 0.005 

and 0.06) and significant in the long-term. The dynamic correlations in the three returns pairs, 

viz., OIL-MKT, GAS-MKT, and EN-MKT are significant in the long-term and show a distinct 

relationship with the stock market. From a larger macroeconomic perspective, this result 

extends the findings of Sinha (2017), who used multivariate GARCH and found rise in the oil 

import leads to depreciation of dollar-rupee exchange rate. 

The dynamic correlation explains the time-varying relationship between the time series and 

shows how the two series are related. A significant long-term dynamic correlation between 

OIL-MKT, GAS-MKT, and EN-MKT pairs and the absence of the linear relationship adds 

more complexity to understand the relationship. The long-term significant dynamic correlation 

implies that oil, gas, and energy impact the market in the long-run. Here, it is interesting to 

observe how the energy commodities contribute to (and get impacted) the systemic risk.   

After this, we analyze how cross-quantilogram (Han et al., 2016) between energy 

commodities and the stock market influence each other under extreme market conditions. First, 

the heatmaps reveal the quantile-based relationship. Second, cross-quantilograms between the 

energy commodities and market (with and without considering EPU and VIX as the state 

variables) unveil the systemic risk. 

4.2 Cross-quantilogram estimates 

Following the methodological framework adopted by Uddin et al. (2019), we apply the cross-

quantilogram method for various quantiles of the returns on market prices qMARKET(rMARKET). 

Specifically, we focus on rMARKET = rENERGY = 0.05, 0.15… 0.85, 0.95. These selected 

quantiles individually specify different states of returns on market and energy prices and vice 

versa. Figure 4a explains how different lags of returns on market prices affect the returns on 

oil, natural gas, and energy prices. The heatmap in the diagram denotes the power of 

dependence between returns of the market and the returns of energy commodity prices, whereas 

quantiles of both the variables indicate different market conditions, i.e., low, middle, and high 

quantiles explain the bearish, normal, and bullish market conditions, respectively. Moreover, 

following Han et al. (2016) and Todorova (2017), the present study uses 1000 bootstrapping 

iterations. Also, the color bar on the right-hand side of the heatmap explains the strength and 

direction of the relationship between the market and different energy prices. In each of the 

heatmaps, the horizontal axis and the vertical axis show the quantile of returns on market prices 

and the quantiles of returns on different energy commodity prices, respectively.     
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We first focus on the impacts of returns on market prices [1 day period] (rMARKET = rENERGY) and confirm that returns on market prices predict returns on energy prices. The 

findings confirm that the returns on market prices have a positive effect on returns on all energy 

commodity prices in the majority of the quantile combinations. This empirical outcome extends 

the finding of Ewing et al. (2018) for the US economy. However, the highest positive effect of 

returns on market prices on returns on energy commodity prices is reflected on the low to high 

quantiles, i.e., mostly during bearish and bullish market conditions. This effect turns negative 

and also persists in 5 lags [1 week period]. During this period, the effect of returns on market 

prices is negative on returns on energy commodity prices. Alongside the negative effect, the 

intensity is strong in the nexus of market-energy price returns compared to the returns on 

market vis-a-vis oil prices and returns on market vis-à-vis gas prices. Also, the effect of returns 

on market prices on returns energy commodity prices is almost the same in 22 and 66 lags [1 

month and 1 quarter period]. In this period, the effect of returns on market prices is negative 

for the returns of all the three energy commodity prices. However, the effect is strong in the 

market-gas return relationship than the returns on other energy commodity prices. This 

directional nature of the market returns on the returns of energy commodity prices following a 

tail-dependence approach extends the finding of Scarcioffolo and Etienne (2021), who used 

cross-quantilogram and quantile Granger causality tests and found positive and significant 

spillover effects from crude oil to natural gas during bearish market conditions. 

Fig. 4a Cross-quantilogram correlation between market returns (Y-variable) and returns on 

energy market commodities (X-variable). 

[Insert Figure 4a Here] 

In Figure 4b, the present study finds the directional predictability from oil, gas, and energy 

prices to market prices for lags of 1, 5, 22, and 66 days. The findings are positive for the entire 

quantile distribution. It signifies that the oil, gas, and energy prices have a positive effect on 

market prices returns. This specific finding extends the findings of Nusair and Al-Khasawneh 

(2018), who used quantile regression and found oil price shocks to have asymmetric effects on 

stock returns in case of the GCC countries. It suggests that an increase in oil, gas, and energy 

prices leads to market returns as well. Because of the substitution effect, the increase in the 

energy prices, the energy-dependent firms start looking for alternative inexpensive energy 

sources. This occurrence enhances the need for a market, which, in turn, raises the returns of 

energy-related firms. Alternatively, the decrease in the prices of oil, gas, and energy has a 

negative impact on market prices returns. This result is in similar lines with the findings of Kim 

et al. (2019), who used extreme bounds analysis and found before the financial crisis in 2008, 
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energy prices exerted a moderate negative effect on future stock returns. As the oil, gas, and 

energy prices are an operational source for energy, in the situation of the energy price drop, 

energy-related firms are likely to swiftly substitute energy for market sources. This activity 

could decrease the need for stocks which eventually decreasing the market returns.                  

Fig. 4b Cross-quantilogram correlation between market returns (X-variable) and returns on 

energy market commodities (Y-variable). 

[Insert Figure 4b Here] 

4.3 Partial cross-quantilogram in presence of policy uncertainty and volatility 

As mentioned earlier, to understand the true tail-dependence nature of correlation structure, the 

association needs to be analyzed with exogenous moderations. Following Uddin et al. (2019), 

we employ the partial cross-quantilogram method to investigate the moderating effect of other 

exogenous factors on the association between the series. In this section, we evaluate the 

predictability structure of market returns and different energy prices after adjusting policy 

uncertainty measures, i.e., the equity market volatility (VIX) and economic policy uncertainty 

(EPU). Notionally, EPU and VIX could impact the market returns through their influence on 

the projected cash flow and the interest rate. Figures 4a-4c of the study present the connection 

between market returns and energy commodity returns adjusted for the EPU and VIX. In the 

estimation of partial cross quantilogram, the EPU and VIX are integrated as a control variable 

to tackle any interdependence among the factors due to essential uncertainty linked with the 

fluctuation of the VIX or EPU. Moreover, Figures 5a-5c show the dependence strength for 

different lags (1 lag and 22 lag). In these figures, the initial two columns present the findings 

after adjusting for EPU, and the remaining columns explain the findings after adjusting VIX. 

We observe that the returns on oil, natural gas, and energy prices have positive effects on 

market price returns across all quantiles of conditional distribution after controlling for the EPU 

and VIX. On the other hand, it can also be seen that the negative impact of the returns on market 

on returns on energy commodity prices increases after controlling for the EPU and VIX. This 

segment of the findings extends the outcomes obtained by Uddin et al. (2019), who used cross-

quantilogram approach and found cross-quantile dependence of renewable energy stock returns 

on aggregate stock returns is robust even after controlling for economic policy and equity 

market uncertainties. Similar results are also obtained for lag 22. Moreover, the current study 

also finds that the positive effects occurring in the extreme quantiles (i.e., bearish and bullish) 

are higher in the 1-day period, as compared to the 1-month period. It indicates that the 

maximum changes occur during the daily fluctuation as compared to monthly. 
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Fig. 5a Cross-quantilogram correlation between market returns and returns on oil prices after 

controlling for policy uncertainty and volatility index. 

[Insert Figure 5a Here] 

Fig. 5b Cross-quantilogram correlation between market returns and returns on gas prices 

after controlling for policy uncertainty and volatility index. 

[Insert Figure 5b Here] 

Fig. 5c Cross-quantilogram correlation between market returns and returns on energy prices 

after controlling for policy uncertainty and volatility index. 

[Insert Figure 5c Here] 

As we analyze the outcomes presented in Figures 5a-5c, we find the factors are not very 

overpowering. This subjective contrast may show that risk factors (EPU and VIX) convey no 

or few facts with respect to energy-market returns dependability. This outcome is in a similar 

line with the findings of Han et al. (2016). This outcome also shows that systemic risk is a 

major driver of the cross-quantile correlation. As the essential risk leftovers to a great extent 

unaltered even after adjusting the EPU and VIX, it can be inferred that the endogenous 

interrelationship across energy-market nexus (not the risk measures) is the significant 

contributor to the main risk. 

4.4 Robustness check of the estimates 

Finally, we use the wavelet coherence method to evaluate the robustness of the estimates. The 

main rationale behind the selection of this method is its capability of assessing the co-

movement of the parameters over their respective frequency domains. As the DCC-GARCH 

and cross-quantilogram models are used over the temporal domain, analyzing the co-movement 

over the frequency domain helps in triangulating the study findings. The wavelet coherence 

between (a) market returns and oil price returns, (b) market returns and energy price returns, 

and (c) market returns and natural gas price returns are computed using 1000 iterations for each 

of the pairs. These results are reported in Figures 6a-6c. In the figures, the color code ranges 

from blue to red. This color range signifies the strength of the co-movement from being low to 

high, respectively. 

We first explain the wavelet coherence between market returns and oil price returns 

presented in Figure 6a. It shows that the market returns and oil price returns are largely in-

phase, both in the short-run and long-run. During the beginning of the study period, they are 

temporarily out-of-phase for two years. In the short-run, the market returns lead to oil price 

returns, while the oil price returns lead to market returns in the long-run. It indicates that market 
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and oil price returns show significant co-movement both in the short-run and long-run. The 

directional nature of co-movement is negative during the first two years of the study period, 

and then it becomes positive. This finding falls in similar lines with the cross-quantilogram 

results for market returns and oil price returns. Similarly, the wavelet coherence between 

market returns and energy price returns presented in Figure 6b shows that the market returns 

and energy price returns are largely in-phase, both in the short-run and long-run. Just like the 

previous scenario, they are also out-of-phase for the initial two years. In the short-run, market 

returns lead to energy price returns, while the energy price returns lead to market returns in the 

long-run. It indicates that market and energy price returns exhibit significant co-movement for 

both in the short-run and long-run. The directional nature of co-movement is negative during 

the first two years of the study period, and then it becomes positive. This finding falls in similar 

lines with the cross-quantilogram results for market returns and energy price returns. Lastly, 

the wavelet coherence between the market returns and gas price returns presented in Figure 6c 

shows that the market returns and gas price returns are largely out-of-phase, both in the short- 

and long-run. During both periods, the market returns lead to gas price returns. The directional 

nature of co-movement is positive during the first one and half years of the study period, and 

then it becomes negative. This finding falls in similar lines with the cross-quantilogram results 

for market returns and gas price returns. 

Fig. 6a Wavelet coherence between Market returns and Oil price returns. 

[Insert Figure 6a Here] 

Fig. 6b Wavelet coherence between Market returns and Energy price returns. 

[Insert Figure 6b Here] 

Fig. 6c Wavelet coherence between Market returns and Natural Gas price returns. 

[Insert Figure 6c Here] 

4.5 Insights and discussion 

Our study presents several significant findings. We observe that the energy commodities show 

a positive impact on the market returns. This phenomenon signifies that Indian industrial 

growth is still dependent on fossil fuel-based energy consumption, thus highlighting the 

unsustainable growth pattern. This argument can be traced back to the famous “Limits to 

Growth” discourse (Meadows et al., 1972). This unsustainability characteristic might deter 

India from attaining the objectives of SDG 7. It has been identified by the Indian policymakers. 

The recent annual report of NITI Aayog (2021) discusses the development of the “State Energy 

Index” to measure the accessibility and affordability of clean energy solutions. In line with this 

policy reorientation, the Indian industries are gradually embarking on energy innovation to 
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achieve energy efficiency. Also, the industries are bringing transformations in their existing 

production processes to accommodate cleaner energy solutions (Tiwari et al., 2021; Shahbaz 

et al., 2021). As a result of this industrial reorientation, the demand for commercial fossil fuel-

based energy is gradually declining. A reflection of this scenario is visible in terms of the 

negative impact of the market returns on the returns on prices of the energy commodities. Even 

in the presence of policy uncertainty and volatility in the financial market, the industrial 

sentiment is turning out to be pro-clean energy. 

These prevailing conditions in the Indian industrial sector divulge some probable indications 

regarding the movement of the Indian financial market. While the prevailing energy 

consumption pattern is accelerating industrial growth, the returns on energy commodity prices 

are driving the market returns. However, this driving force might not be sustainable, as this 

positive impact is not getting reciprocated. The growing demand of cleaner energy solutions 

creates a negative impact on the returns on energy commodity prices. Given the uncertainties 

in the Indian financial market, the rising negative impact might create a negative sentiment for 

the fossil fuel-based energy commodities and open up prospects for renewable energy 

commodities. Also, it is observed that the market-energy relationship is not contingent upon 

the exigencies, thus highlighting the robustness of this relationship. Hence, the findings might 

have significant implications for the portfolio decisions of Indian investors. 

5 Conclusion 

The gradually rising dependence on renewable energy solutions and the replacement of fossil 

fuel-based solutions have reshaped the investment scenario in India. This reorientation has been 

catalyzed by endogenous policy-level uncertainties. As the firms are gradually moving towards 

adopting renewable energy solutions and the economy is moving towards attaining the 

objectives of SDG 7, the mobilization of capital is directed towards the renewable energy 

generation firms. Contrary to the literature, this study looks into the dynamics of the energy 

commodity market, given the renewable energy adoption is on the rise. Methodologically, this 

study adds to the literature by divulging the quantile dependence structure for analyzing the 

dynamics at a granular level. 

To achieve the research objectives of the study, we analyze the dependence structure of 

energy commodity returns on market returns. Here, we employ a novel cross-quantilogram 

correlation approach, which can capture the dependence structure at extreme market 

conditions. We also incorporate a novel partial cross-quantilogram correlation approach to 

assess the moderating impact of policy uncertainties captured through the economic policy 
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uncertainty and volatility index. The study outcomes suggest that the market returns have a 

negative impact on the energy commodity returns under extreme market conditions. When the 

dependence structure is reversed, this impact is reversed. However, in the presence of policy 

uncertainty, it is observed that the market-energy associations do not change during extreme 

market conditions. 

The findings divulge significant implications for the investors. As India is moving towards 

a sustainable energy future, investments are mobilized towards renewable energy generation 

projects. As a result, the firms are gradually embracing these solutions. Therefore, the 

economic growth trajectory depicted through the market movements demonstrates a negative 

impact on the fossil fuel-based energy commodity returns. Even under uncertain market 

conditions, firms try to rely on renewable energy solutions. It shows that even under extreme 

market conditions, the investors should avoid putting energy commodities and market index 

under a portfolio as it might increase the risk profile of the investor. Under normal market 

conditions, the energy commodities can be hedged against the market index, as the downside 

risk of the energy commodities can be averted under these circumstances. During bearish 

market conditions, downside systemic risk can be hedged against any of the energy 

commodities. This holding can provide profitable outcomes for a single-day trading window, 

as the dependence might diminish for longer holding durations. While saying this, it should 

also be noted that the investors might need to look into a long-term holding strategy, as the 

downside risk of the portfolio might be mitigated over a longer holding period. During a longer 

holding period, the dependence structure gradually diminishes. Therefore, the downside risk of 

the energy commodities can be averted. From this perspective, oil can serve as a safer 

investment compared to gas and energy, as the market-oil dependence is the lowest during the 

longer holding period. Lastly, we recommend that the investors need to shift towards renewable 

energy stocks, as the capital mobilization towards renewable energy firms might reduce the 

downside risk of the portfolio, as against holding the traditional fossil fuel-based energy 

commodities. Given the objective of the policymakers to attain the objectives of SDG 7, it can 

be expected that returns on fossil fuel-based energy commodities might face diminishing 

returns in the future. Hence, the market-energy dependence structure might change with larger 

development and diffusion of renewable energy solutions. From the perspective of long-term 

returns, the investors might progressively select to replace the fossil fuel-based energy 

commodities with renewable energy commodities. 
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Figure 1: Phase diagram of the Wavelet transformation 
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Figure 2: Plots of the return series 
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Figure 3a: Dynamic conditional correlation of crude oil, natural gas and energy index 

with EPU and VIX 
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Figure 3b: Dynamic conditional correlation of crude oil, natural gas and energy index 

with stock market 
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Figure 4a: Cross-quantilogram correlation between market returns (Y-variable) and returns on energy market commodities (X-

variable) 
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Figure 4b: Cross-quantilogram correlation between market returns (X-variable) and returns on energy market commodities (Y-

variable) 
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Figure 5a: Cross-quantilogram correlation between market returns and returns on oil prices after controlling for policy uncertainty and 

volatility index 
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Figure 5b: Cross-quantilogram correlation between market returns and returns on gas prices after controlling for policy uncertainty 

and volatility index 
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Figure 5c: Cross-quantilogram correlation between market returns and returns on energy prices after controlling for policy uncertainty 

and volatility index 
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Figure 6a: Wavelet coherence between Market returns and Oil price returns 
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Figure 6b: Wavelet coherence between Market returns and Energy price returns 
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Figure 6c: Wavelet coherence between Market returns and Natural Gas price returns 
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Table 1: Descriptive statistics 

 Mean Minimum Maximum Standard Deviation Skewness Kurtosis Jarque-Bera LB(10) Arch LM Test 
Crude Oil -0.023 -2132.787 3834.499 137.459 10.818*** 352.109*** 15157046*** 6.166  0.7277 
Natural Gas -12.600 -29110.079 3256.038 574.194 -45.234*** 2265.716*** 626212375*** 0.0066  0.0067 
Energy Index 0.093 -40.774 70.357 5.459 0.844*** 21.566*** 57005*** 1806.3*** 400.79*** 
EPU 0.124 -41.069 73.341 4.221 4.635*** 92.728*** 1057757*** 816.01*** 1.3166 
VIX 0.030 -26.293 44.695 2.364 2.702*** 85.426*** 892397*** 830.88*** 1.0235 
Stock Index 0.031 -12.980 17.744 1.355 0.118*** 18.410*** 41297*** 35.086*** 321.91*** 

Note: 
LB (10) is Ljung-Box Q test statistics for 10 lags.  

***, ** and * indicate the significance level at 1%, 5%, 10% respectively. 

Table 2: Joint conditional correlation between the returns of the time series 

  Estimate Std. Error t value Pr(>|t|) 
OIL-EPU [Joint]dcca1 0.119* 0.069 1.728 0.084 
OIL-EPU [Joint]dccb1 0.835*** 0.053 15.640 0.000 
OIL-VIX [Joint]dcca1 0.169*** 0.037 4.574 0.000 
OIL-VIX [Joint]dccb1 0.815*** 0.025 32.771 0.000 
OIL-MKT [Joint]dcca1 0.002 0.006 0.305 0.761 
OIL-MKT [Joint]dccb1 0.828*** 0.126 6.562 0.000 
GAS-EPU [Joint]dcca1 0.018 0.026 0.698 0.485 
GAS-EPU [Joint]dccb1 0.839*** 0.046 18.255 0.000 
GAS-VIX [Joint]dcca1 0.004* 0.002 1.934 0.053 
GAS-VIX [Joint]dccb1 0.980*** 0.003 289.960 0.000 
GAS-MKT [Joint]dcca1 0.009*** 0.002 4.008 0.000 
GAS-MKT [Joint]dccb1 0.876*** 0.077 11.396 0.000 
EN-EPU [Joint]dcca1 0.000 0.003 0.000 1.000 
EN-EPU [Joint]dccb1 0.921*** 0.224 4.118 0.000 
EN-VIX [Joint]dcca1 0.001 0.003 0.230 0.818 
EN-VIX [Joint]dccb1 0.988*** 0.008 130.888 0.000 
EN-MKT [Joint]dcca1 0.002 0.005 0.359 0.720 
EN-MKT [Joint]dccb1 0.978*** 0.017 56.758 0.000 
*** and * indicate the significance level at 1% and 10% respectively. 
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Appendix 1: Summarized description of the literature 

Authors Data Technique Context Objective 

Reboredo and Uddin 
(2015) 

4 January 1994 to 10 
February 2015 

Quantile regression USA 
Impact of financial stress and policy uncertainty on conditional return 
distributions for the most tradable energy and metal commodities   

Badshah et al. (2019)  
20 January 1999 to 30 

September 2016 
ADCC-GARCH model USA 

examine the effect of policy uncertainty and the state of the economy on 
the time-varying correlations between the stock and commodity markets 

Andreasson et al. (2016)  May 1990 to April 2014 
Linear and Non-linear 

Causality tests 
USA 

examine the influence of speculation and economic uncertainty on 
commodity prices 

Chen et al. (2019) 
January 2003 to January 

2018 
Wavelet-based BEKK-

GARCH approach 
Brazil, India, Russia and 

China 
to investigate the dynamic relationship between the Brent oil market and 
EPU 

Zhu et al. (2020) March 2006 to May 2018 Panel quantile regression China 
to investigate the effect of economic policy uncertainty (EPU) on China’s 
agricultural and metal commodity futures returns across quantiles 

Zhang et al. (2019)  
February 1995 to 
September 2017 

Pairwise Granger-
causality tests and VAR  

USA and China 
how the economic policy uncertainty of USA and China interact and affect 
the financial markets. 

Aloui et al. (2016)  
4 January 2000 to 12 May 

2014 
Copulas USA 

to examine the dynamic relationship between crude oil returns and 
uncertainty indices. 

Yao and Sun (2018)  
1 January 1992 to 31 

December 2016 
Copulas USA 

to examine static tail dependence structure between the economic policy 
uncertainty (EPU) index and several financial markets 

Sun et al. (2020)  
January 1997 to August 

2017 

Wavelet coherence 
method and scale-by-
scale linear Granger 

causality tests 

G7 countries, China, Brazil 
and Russia 

to study the co-movement and causality of economic policy uncertainty 
and crude oil prices (West Texas Intermediate)  

Degiannakis et al. (2018)  
January 1994 to March 

2015 

Structural VAR (SVAR) 
model and a time-varying 

parameter VAR (TVP-
VAR) model 

USA 
to study the relationship between uncertainty (financial and economic) and 
oil shocks (supply-side, aggregate demand, and oil specific demand 
shocks) 

Rehman (2018)  
January 1995 to 
December 2015 

Structural VAR 
framework 

China, India, US, Europe, 
France, Germany, Italy, UK, 

Spain , Japan 

to investigate the oil shocks (global oil price shock, oil supply shock, and 
aggregate demand shock) on economic policy uncertainty in low and high 
volatility states 

Shahzad et al. (2019)  
January 1995 to 
December 2015 

Nonlinear auto-regressive 
distributed lag 

cointegration approach 
USA 

to study the oil price shocks on economic policy uncertainty, stock market 
uncertainty (VIX), treasury rates, and investor (bullish and bearish) 
sentiment 

Lei et al. (2019)  
1 February 1986 to 30 

June 2018 
MIDAS quantile 

regression 
USA 

to study the risk perception of traders in the crude oil spot and futures 
markets 

Qadan and Idilbi-Bayaa 
(2020)  

January 1990 to 
September 2017 

Threshold-GARCH, 
structural vector auto 

USA to study how the risk appetite affect oil returns and oil volatility 
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regression, and causality 
models 

Balcilar et al. (2017)  
2 January 1986 to 8 

December 2014 
Bivariate quantile 

causality test 
USA 

to analyze the predictive ability of economic policy uncertainty (EPU) and 
equity market uncertainty (EMU) on oil returns and volatility of oil returns 

Ma et al. (2018)  
2 January 2010 to 31 

April 2014 

Heterogeneous 
Autoregressive Model of 
the Realized Volatility 

(HAM-RV) 

USA 
to explore how EPU index can be effectively used to gain larger economic 
values in the oil futures market 

Shaikh (2019)  
January 2001 to March 

2018 
GARCHX and Markov 

switching model  
USA 

to study the impact of economic policy uncertainty (EPU) on the 14 VIX-
based volatility measures 

Uddin et al. (2018)  
April 1990 to December 

2015 
Wavelet (Entropic 

MODWT) 
USA and Europe 

to study the casual interrelationships between various types of geopolitical, 
economic, and financial uncertainty indices and oil markets 

Ji et al. (2018)  
10 May 2007 to 13 April 

2017 
Copula-based CoVaR 

approach 
USA 

to study the impact of uncertainties (economic, financial and energy) on 
S&P 500 Global Clean Energy Index (CEX), crude oil and natural gas 

Lee et al. (2019)  January 1994 to July 2017 Quantile regression USA 
to study the impact of country risk (i.e., economic risk, financial risk, and 
political risk) on energy commodity futures prices (crude oil, heating oil, 
and natural gas) 
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