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Abstract: This study contributes to the literature of energy economics by divulging the nature of 
scale and technique effects on energy consumption, considering foreign direct investment (FDI) 
as one of considerable factors of energy demand. The Chinese provincial data over the period of 
2000–2018 are used for empirical analysis. In doing so, we have applied the Westerlund and 
Edgerton (2008) cointegration test using cross-sectional dependence and structural breaks, and 
bootstrapped quantile regression to decompose scale and technique effects. The empirical results 
show the presence of cointegrating association among the model parameters, in the presence of 
cross-sectional dependence and structural breaks. The quantile regression results indicate that the 
scale effect exerted by FDI is negative at lower quantiles of energy consumption, and positive at 
upper quantiles. Moreover, scale and technique effects exerted by FDI are positive and negative, 
respectively, at lower quantiles of energy consumption, and negative and positive, respectively, 
at higher quantiles. The results of this study are expected to help in designing the energy policies 
in China, keeping the quantum of energy consumption at various provinces in mind, and, 
thereby, ensuring the sustainability in energy consumption. 
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• We analyze the scale and technique effects on energy consumption from FDI. 
• Chinese provincial data over the period of 2000–2018 are used. 
• Bootstrapped quantile regression is used.  
• Scale effect exerted by FDI reverse with quantiles. 
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Abbreviations 

 

BRICS:  Brazil, Russia, India, China, and South Africa 
CD:   Cross-Sectional Dependence 
CO2:   Carbon Dioxide 
DOLS:  Dynamic Ordinary Least Square 
EKC:   Energy Kuznets Curve  
FDI:   Foreign Direct Investment 
FMOLS:  Fully Modified Ordinary Least Square 
GCC:   Gulf Cooperation Council 
GDP:   Gross Domestic Product 
IEA:   International Energy Agency 
LM:   Lagrange Multiplier 
MENA:  Middle East and North Africa 
MINT:  Mexico, Indonesia, Nigeria, and Turkey 
OECD:  Organisation for Economic Co-operation and Development 
OLS:   Ordinary Least Square 
SDG:   Sustainable Development Goal 
UN:   United Nations 
UNDP:  United Nations Development Programme 
USA:   United States of America 
VIF:   Variance Inflation Factor 
 

I. Introduction 

Global warming has become the most important issue over the years and ever-increasing carbon 
dioxide (CO2) emissions have accelerated the debate among practitioners, international agencies, 
policy makers and academicians to discuss the strategies and collective action on how to reduce 
CO2 (Benjamin & Lin, 2020; Skytt, Nielsen, & Jonsson, 2020; Wang & Su, 2020). The growing 
population and increased use of energy in the world has made the environmental mitigation task 
even more difficult. This dilemma has prompted practitioners, policy makers and researchers to 
develop better understanding about energy consumption and environmental degradation to 
overcome the issue. This necessitates exploring new techniques and ways how energy efficiency 
can be improved to reduce the ecological footprints resulting from consumption of energy 
derived from fossil fuels. Despite the several efforts to mitigate the global warming issue, the 
rising trends of CO2, as a result of increased economic activities mostly in Asia, are posing a 
serious threat to the planet. According to the United Nations (UN), energy-related CO2 
emissions have increased to a record level globally, up to 415 parts per million in May 2019 
(UNDP, 2019). Increased use of coal in power generation, particularly, in China, India and the 
US has contributed 85 % of the net increase in emissions (IEA, 2018). These ever-increasing 
CO2 emissions have drawn considerable attention among international agencies, practitioners, 
academicians and policy makers in both developed and developing economies. Being the second 
largest economy of the world, China is a leading emitter of CO2, accounting for 18–35 % of 
global emissions (BP, 2019; Hoesly et al., 2018; Shuai et al., 2018; Zheng et al., 2018). The 
rapid growth in the Chinese economy has increased energy consumption and CO2 emissions, 
which is a great policy concern. It is crucial to find the ways how to reduce CO2 emissions to 
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combat environmental pollution and global warming challenges faced by the people living in one 
of the fastest growing economy in the world (Zhang & Cheng, 2009). 
 
The Chinese energy sector and its emissions have global implications both in the short run and 
the long run (Andrews-Speed & Zhang, 2019). The short-run policy implications are viewed in 
terms of its role in affecting the global demand and supply of energy raw materials, energy 
technologies and the rising levels of pollution as a result of energy consumption whereas the 
long-run implications emphasize the need of CO2 emissions reduction. Being the largest 
commercial energy consumer in the world with 23 % of the world’s total consumption in 2017, 
China has become the main actor in the international energy sector so far this century (BP, 
2019). The changing composition of the Chinese economy due to the continuous growth in gross 
domestic product (GDP), expansion in trade volumes, increase in FDI, shifts in economic 
structure, and the ongoing urbanization in the country seem the main factors contributing to CO2 
emissions. The increased greenhouse gas emissions as a result of economic growth are causing 
global climate change. A substantial literature has documented the relationship between CO2 
emissions and economic growth. However, the evidence suggests that the development and 
economic growth lead to structural transformation in energy production (Grossman and Krueger, 
1995). The use of energy and CO2 emissions are influenced by various factors such as the level 
of FDI, the use of efficient techniques or technologies, capital and labor among others. A 
considerable literature focuses on the effects trade and FDI on energy consumptions and CO2 
emissions (Shahbaz & Sinha, 2019; Bu, Li, & Jiang, 2019; Wang, 2017; Yildirim, 2014). 
Likewise, increased economic output is also one of the driving factors contributing to emissions 
(Ma et al., 2019; Sinha et al., 2018, 2019). Several studies have focused on structural 
decomposition approach that relies on input-output tables and index decomposition approach 
based on aggregation methods such as mean Divisia Index (Sinha, 2017; Chong, Ma, Li, Ni, & 
Song, 2015; Cornillie & Fankhauser, 2004; Ramachandra & Shwetmala, 2012). However, few 
studies have focused on detailed decomposition analysis by accounting for multiple factors 
simultaneously. 
 
The change in structural composition of the Chinese economy is influencing the energy demand 
of the country. It is important to explore what factors are causing the increased pollution as a 
result of CO2 emissions (Sharif et al., 2020c; Liobikienė & Butkus, 2019; Shahbaz, Gozgor, 
Adom, & Hammoudeh, 2019; Tsurumi & Managi, 2010). The question is whether the shifting 
economic structure is helping to reduce emissions or not? What kind of technologies and 
innovations can help to reduce emissions? What are the impacts of adoption of CO2 emissions 
reduction technologies on the economy? What could be the policy response and implications of 
energy consumption in the short run and the long run? These important policy questions need to 
be addressed explicitly for effective climate change mitigation policies. This paper contributes to 
the energy literature on four issues: (i) The income and technique effects are estimated by 
considering FDI and composition effect as determinants of energy demand in China; (ii) The unit 
root analysis is conducted by applying the Weak Cross-Sectional Dependence unit root test 
(Chudik and Pesaran, 2015); (iii) The Westerlund and Edgerton (2008) cointegration approach is 
applied considering cross-sectional dependence and structural breaks to examine cointegration 
between energy demand and its determinants; and (iv) Bootstrapped quantile regression is 
applied to examine the impact of the scale effect, the technique effect, the composition effect and 
the FDI effect on energy consumption. Our empirical analysis reveals the presence of 
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cointegration between energy demand and its determinants. Moreover, the quantile regression 
analysis confirms that the scale effect and the technique effect exerted by the income effect on 
energy demand negatively and positively, simultaneously. The composition effect declines 
energy demand at the lower (medium) quintiles but increases it at higher quintiles. The scale and 
the composition effects exerted by FDI change with the level of quantiles, i.e., the scale effect 
has a positive impact and the composition effect has a negative impact on energy demand until 
the median, and the impacts are reversed beyond the median. The detailed decomposition using 
provincial data allows us to examine the underlying factors explaining Chines energy 
consumption precisely. 
 
The remainder of the paper is organized as follows. Section II provides an overview of the 
literature on energy consumption and economic growth (and FDI) issues. Section III presents 
details about the empirical modelling and the data collection. The empirical methods are 
described in Section IV. The empirical results and their discussion are provided in Section-V. 
Section-VI presents conclusions with policy implications.  
 

II. Literature Review 

The relationship between energy consumption and economic growth has been extensively 
studied both in developing and developed economies (Al-mulali, Weng-Wai, Sheau-Ting, & 
Mohammed, 2015; Apergis & Payne, 2009; Gozgor, Lau, & Lu, 2018; Salahuddin & Gow, 2019; 
Shahbaz, Hye, Tiwari, & Leitão, 2013; J.-H. Yuan, Kang, Zhao, & Hu, 2008; Sharif et al., 2020 
a, b). The literature on energy consumption and economic growth mostly focused on testing the 
causal relationship between the two variables. However, the findings of these studies have been 
mixed and inclusive from a policy perspective due to diverse political, institutional and economic 
settings (Ozturk, 2010). Most of the studies on causality between energy and economic growth 
(also called the energy-growth nexus) rely on testing the four main hypotheses: i) growth 
hypothesis, i.e., energy promotes economic growth; ii) the conservation hypothesis, i.e., 
economic growth leads to energy use; iii) the feedback hypothesis i.e., two-way causality 
between energy and economic growth; and iv) the neutrality hypothesis, i.e., no relationship in 
either way between energy and growth (Ahmad et al., 2020). Yet, there is no unanimous 
consensus on the direction of causality between energy consumption and economic growth. 
These causal relationships between environmental pollutants and economic growth, and/or the 
link between energy consumption and economic growth, are generally drawn on the validity of 
the energy Kuznets curve (EKC) hypothesis. The EKC hypothesis postulates the inverted-U 
relationship between energy consumption and economic output (e.g., GDP) which was first 
discussed by Nobel Laureate Simon Kuznets (Kuznets, 1955). The relationship between energy 
consumption and economic growth was first tested on USA data (Kraft & Kraft, 1978). Since the 
seminal paper of Kraft and Kraft, an abundant literature has focused on the EKC hypothesis 
testing using data from different countries and a detailed survey can be found in (Dinda, 2004; 
Özokcu & Özdemir, 2017; Ozturk, 2010; Stern, 2004).    
 
The controversy in the role of energy in economic growth has been a long-standing issue in the 
energy and growth nexus literature. Since the seminal work of Kraft and Kraft (1978), there has 
been exponential growth in the empirical evidence on energy consumption and economic 
growth. Grossman and Kruger (1995) examine the relationship between per capita income and 
different environmental indicators; however, they did not confirm any evidence on 
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environmental quality deterioration with economic growth. Stern (2004) provides a chronology 
of EKC studies of both past and recent developments. A number of studies raised theoretical 
issues of EKC implementation (Arrow et al., 1995; Cole & Elliott, 2003; Dinda, 2005; Lucas, 
Wheeler, & Hettige, 1992; Stern, Common, & Barbier, 1996). For instance, Arrow et al., (1995) 
argue that the environmental damage does not have negative repercussions on future income 
because of absence of the feedback assumption. Further, based on the Heckscher-Ohlin theorem, 
they argued that the reduction in environmental pollution in developed countries and further 
increase in environmental pollution in developing economies may be the result of specialization. 
On the other hand, Cole and Elliot (2003) argue that the capital-intensive production activities in 
the developed world comparatively pollute more in the absence of regulation differentials. On 
similar lines, various studies investigated the energy-environmental Kuznets curve using time-
series and panel data, which also provided mixed results. For example, in case of 76 developing 
economies, Van Benthem (2015) applied ordinary least squares regression for examining the 
relationship between energy intensity and economic growth. The empirical evidence confirms 
the existence of an S-shaped association between energy intensity and economic growth. Using 
the Arellano-Bond-Bover model, Menegaki et al. (2015) reported that economic growth declined 
energy intensity initially but that it increased after a threshold level of real GDP per capita (i.e., 
U-shaped association between energy intensity and economic growth). Pablo-Romero and Jesús 
(2016) applied panel data methods using Latin American and the Caribbean data to investigate 
association between energy consumption and economic growth and validated the absence of an 
energy Kuznets curve. Burke and Csereklyei (2016) used panel data of 132 countries and noted 
the existence of a U-shaped relationship between energy consumption and economic growth. 
Pablo-Romero et al. (2018) applied Dynamic OLS (DOLS) and Fully Modified OLS (FMOLS) 
approaches to examine the presence of an energy Kuznets curve using data for transition 
economies. Their empirical results indicated that an energy Kuznets curve was not valid.  
 
Dong and Hao (2018) used China’s provincial data for the period of 1996–2013 to investigate 
the association between energy (electricity) consumption and economic growth by considering 
the role of urbanization and trade openness in an energy demand function. By applying the 
Generalised Method of Moments, they confirmed that the association between energy 
consumption and economic growth was inverted U-shaped, i.e., an energy Kuznets curve. Chai et 
al. (2019) unveiled the relationship between energy (coal) consumption and economic growth by 
applying the Logarithmic Mean Divisia Index decomposition method. Their empirical findings 
showed the validation of the energy Kuznets curve between coal consumption and economic 
growth. Dong et al. (2019) added capital, population density and FDI as additional factors 
affecting energy consumption in an energy demand function for the Chinese economy. They 
noted that an energy Kuznets curve was not present in China. We note that empirical evidence is 
mixed on the presence of an energy Kuznets curve in China.  
 
Recently, there have been significant developments in EKC analysis, which can be classified into 
three main categories (Stern, 2004). First, the empirical evidence on environmental performance 
in developing economies and policy issues have been discussed by relating the environmental 
quality with economic development, which is based on the “pollution heaven hypothesis” 
(Dasgupta, Laplante, Wang, & Wheeler, 2002). For example, in case of the Gulf Cooperation 
Council (GCC), Al-mulali and Tang (2013) applied the Pedroni cointegration approach and 
reported the existence of a pollution heaven hypothesis. Similarly, Shahbaz et al. (2015) used 
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data for high-, middle- and low-income countries to examine the association between FDI and 
CO2 emissions by applying the FMOLS approach. They found the existence of a positive 
relationship between FDI and CO2 emissions which further confirmed the pollution heaven 
hypothesis. For the Turkish economy, Koçak and Şarkgüneşi (2018) applied cointegration (that 
was suggested by Maki, 2012) and the DOLS approaches and found that FDI contributes to CO2 
emissions, thus, confirming the presence of the pollution heaven hypothesis. Using data from 
Chinese cities, Lui et al. (2018) applied a spatial lag model and a spatial error model for 
examining the association between FDI and CO2 emissions. They noted that the effect of FDI on 
CO2 emissions depends on environmental pollutants but the pollution heaven hypothesis and the 
pollution halo hypothesis were present. Shao et al. (2019) revisited the pollution heaven 
hypothesis in the case of BRICS and MINT countries by applying the panel vector correction 
method. They found that FDI has negative impact on CO2 emissions which validated the 
absence of pollution heaven hypothesis. Finally, Liu et al. (2019) used data for 29 Chinese 
provinces to examine the presence of an environmental Kuznets curve by including FDI as an 
additional determinant in CO2 emissions function. They applied parametric econometric 
approaches and reported the validation of EKC in Chinese. Their empirical evidence also 
suggested an inverted N-shaped association between FDI and CO2 emissions. The second 
development was based on improved econometric methods that further took into account four 
issues, namely: i) heteroscedasticity; ii) simultaneity; iii) omitted variable bias; and iv) co-
integration issues (Holtz-Eakin & Selden, 1995; Stern & Common, 2001; Stern et al., 1996). The 
third development focused on decomposition analysis (Liobikienė & Butkus, 2019; Shahbaz et 
al., 2019; Stern, 2002). For example, Tsurumi and Managi (2010) decomposed an environmental 
Kuznets curve into scale, technique and composition effects for using data of 205 developed and 
developing countries by considering energy consumption as an additional factor affecting CO2 
emissions. They noted that the scale effect was positively linked with CO2 emissions but the 
technique effect was indifferent. Liobikien and Butkus (2019) examined the scale, technique and 
composite effects of economic growth, urbanization, trade and FDI on carbon emissions by 
applying a GMM estimator on data from 147 countries over the period, 1990–2012. They noted 
that the scale effect GDP (urbanization) had positive (no) impact on CO2 emissions. Their 
empirical results showed insignificant impacts of the technique and the composite effects of FDI 
on CO2 emissions. In the case of the US economy, Shahbaz et al. (2019) applied bounds testing 
approach and vector error correction model (VECM) Granger causality for decomposing the 
effect of economic growth, FDI and trade openness on CO2 emissions for the period, 1965–
2016. Their empirical results indicated a positive impact of the scale effect exerted by real GDP 
and FDI on CO2 emissions but the technique and the composite effects negatively affected 
environmental degradation.  
  
An intensive literature has investigated the relationship between energy consumption and 
economic growth both at the national and provincial levels. These studies have investigated 
different factors affecting energy consumption and economic growth, including international 
trade, labor, capital, technology and industrialization (Chang, 2010; Hao, Wang, Zhu, & Ye, 
2018; Sattich & Freeman, 2019; Shuai et al., 2018; J.-H. Yuan et al., 2008; J. Yuan, Zhao, Yu, & 
Hu, 2007; M. Zhang, Bai, & Zhou, 2018; X.-P. Zhang & Cheng, 2009; B. Zheng et al., 2018; W. 
Zheng & Walsh, 2019). For instance, Zhang and Cheng (2009) investigated the direction of 
causality between energy consumption, CO2 emissions and economic growth using annual 
Chinese data on 30 provinces and concluded that there was a unidirectional causality in the long 
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run. They confirmed that CO2 emissions and energy consumption did not affect economic 
growth. Zhang et al. (2018) analyzed the relationship between Chinese coal consumption and 
economic growth. Their decomposition analysis suggests that technological innovation and 
efficient utilization of coal technology, coupled with development of the modern energy 
industry, can help energy conservation and reduction in environmental pollution. 
 
III. Empirical Modelling and Data  

The empirical investigation of determinants of energy demand is as old as the energy-growth 
nexus. For empirical investigation of influencing factors to energy demand, researchers have 
applied econometric approaches by using time-series and panel data at regional and provincial 
levels. By employing an energy demand function, an energy environmental Kuznets curve is also 
empirically investigated but obtained mixed results. For example, Van Benthem (2015) noted S-
shaped, Menegaki et al. (2015) and Burke and Csereklyei (2016) found U-shaped, Dong and Hao 
(2018) noted inverted-U shaped linkages between economic growth and energy consumption.2 
Dong et al. (2019) indicated the importance of FDI while investigating the relationship between 
economic growth and energy consumption. FDI is also one of the important factors influencing 
energy demand by stimulating economic activity, resulting an increase in real GDP per capita, 
which is termed the scale effect. Emerging and developing countries introduce flexible economic 
policies to attract FDI for reaping positive externalities that, in turn, may have effects on per 
capita income (Shahbaz and Rahman, 2012). FDI has positive externalities such as 
improvements in productive efficiency, technological advancements, and enhancements in 
human and managerial skills, increasing learning-by-doing capacity, introduction of methods for 
increasing production and providing access to global markets. Hence, such positive externalities 
not only affect domestic production but also impact energy demand via the scale effect (Rahman 
and Shahbaz, 2011, Shahbaz et al., 2018). FDI introduces advanced technology in the host 
country, thus, increasing production. The adoption of new energy efficient technology not only 
affects domestic production but also energy demand, which is also termed as the technique effect 
(Shahbaz et al., 2018; Cole, 2006; Antweiler et al., 2001; Arrow, 1962). We note that the use of 
advanced technology produces more output with reduced energy consumption compared with 
obsolete technology.  
 

The production pattern for energy intensive goods is fostered by the dynamic structural changes 
in an economy. Due to the sequential patterns of this dynamism, the economies initially move 
from the traditional to the industrial sector. This phenomenon is the outcome of economies of 
scale in term of skill base, transaction costs, and production, which may lead to a more efficient, 
but less energy-intensive economies, through the negative composite effect (Stern, 2004; Lee, 
2013) which, therefore, leads to a net comparative advantage of the economies across the 
international markets (Cole, 2006). The major factors influencing the comparative advantage 
such as the capital-labor ratio, environmental sustainability regulations and availability of skilled 
human capital drives the effective localization of economies for a higher steady state. Moreover, 
if sectoral composition of economy is gauged through industrial contributions in the GDP, we 
may trace the composite effects of FDI on structural dynamism of an economy. Therefore, the 
composition effect also has an important implication for energy consumption in the energy 

 
2 Dong et al. (2019) introduced capital and population density in energy demand function by inserting FDI as well 
and noted that the energy Kuznets curve is not valid for the Chinese economy.  
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demand function. The composition effect increases energy demand if the capital-labor ratio is 
energy-intensive but declines energy demand if the capital being used for production is energy 
efficient. The impact of the composition effect depends on the value of the capital-labor ratio. 
The general form of the energy demand function is modeled as follows:  
 𝐸𝑖𝑡 = 𝑓(𝑌𝑖𝑡, 𝑌𝑖𝑡2, 𝐾𝑖𝑡 , 𝐹𝑖𝑡)       (1) 

 

For empirical analysis, we transformed all the variables into natural-log form. The natural-log 
linear-specification provides empirically efficient and reliable empirical results compared with a 
simple linear specification. The transformation of the variables into natural-logs directly provides 
elasticity estimates with respect to the independent variables. The empirical model for the energy 
demand function is modelled as follows:   
 𝑙𝑛 𝐸𝑖𝑡 = 𝛼0 + 𝛼1 𝑙𝑛 𝑌𝑖𝑡 + 𝛼2 𝑙𝑛 𝑌𝑖𝑡2 + 𝛼3 𝑙𝑛 𝐾𝑖𝑡 + 𝛼4 𝑙𝑛 𝐹𝑖𝑡 + 𝜀𝑖𝑡  (2) 

 

Where 𝑙𝑛, 𝐸𝑖𝑡, 𝑌𝑖𝑡, 𝑌𝑖𝑡2, 𝐾𝑖𝑡 and 𝐹𝑖𝑡 represent the natural-log, energy consumption, the scale effect, 
the technique effect, the composition effect and FDI, and 𝜀𝑖𝑡 is the residual error that is assumed 
to be normally distributed. We have included squared terms of FDI in augmented the energy 
demand function to examine whether the association between FDI and energy consumption is 
inverted U-shaped or U-shaped. The relationship between FDI and energy demand is inverted U-
shaped if the scale effect is dominated by the technique effect, otherwise it is U-shaped. It is 
argued that FDI increases energy demand by boosting economic activity and, later on, energy 
consumption declines due to adoption of advanced and energy efficient technology for 
production (Dong et al., 2019, Dong and Hao 2018). The revised augmented energy demand 
function is modelled as follows: 
 𝑙𝑛 𝐸𝑖𝑡 = 𝛽0 + 𝛽 𝑙𝑛 𝑌𝑖𝑡1 + 𝛽 𝑙𝑛 𝑌𝑖𝑡22 + 𝛽 𝑙𝑛 𝐾𝑖𝑡3 + 𝛽 𝑙𝑛 𝐹𝑖𝑡4 + 𝛽 𝑙𝑛 𝐹𝑖𝑡25 + 𝜀𝑖𝑡 (3) 

 
Following Cole (2006), Ling et al. (2015) and Shahbaz et al. (2019), we measure the scale effect 
and the technique effect using real GDP per capita and the square of the real GDP per capita. The 
composition effect is measured by the capital-labor ratio as suggested by Cole (2006), Tsurumi 
and Managi (2010) and Ling et al. (2015).3 It is argued that the scale effect increases energy 
demand if 𝛽1 > 0 otherwise it decreases energy consumption. If 𝛽2 < 0 then this shows the 
presence of negative association between the technique effect and the energy consumption, i.e., 
the technique effect decreases energy demand, otherwise the technique effect increases energy 
consumption, i.e., 𝛽2 > 0 if the technology used is energy intensive. If 𝛽3 > 0, then this 
indicates that the composition effect increases energy consumption, otherwise it declines if 𝛽3 <0. The relationship between FDI and energy consumption is inverted U-shaped if 𝛽4 > 0, 𝛽5 <0, otherwise it is U-shaped if 𝛽4 < 0, 𝛽5 > 0. 
 

 

3 Panayotou (1997) suggested that the “industrial contribution to GDP” was an appropriate measure for the 
composition effect. 
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The data for provincial energy consumption, GDP, gross fixed capital formation measure of 
capital, labor, FDI from China Statistical Yearbook4. We use total population for transforming 
all the variables into per capita units. The log-linear specification is used for our empirical study.    
 
VI. Methodological Framework 

VI.I. Cross-Sectional Dependence Test 

The examination of cross-sectional dependence (CD) in the panel data is of utmost important, 
because the presence of the same might produce biased and inconsistent empirical results 
(Phillips and Sul, 2003). In reality, countries are connected with each other via different 
channels, e.g., economic, social, political, bilateral trade, and board sharing5. These forms of 
associativity among the countries might result in CD among the model variables. The 
significance of this test lies in determining the generation of unit root and cointegration tests. The 
first-generation unit root and cointegration tests assume the presence of cross-sectional 
independence that might not be true in the present geopolitical scenario. To address this issue, 
we use the CD test developed by Chudik and Pesaran (2015). The following equation is used to 
examine the presence of CD in the data: 
 𝐶𝐷 = √2𝑇/𝑁(𝑁 − 1){∑ ∑ 𝜌𝑖𝑗𝑁𝑗=𝑖+1𝑁−1𝑖=0 }     (4) 
 
where N indicates the cross-sections in the panel data; T represents the time span; and 𝜌𝑖𝑗is the 
correlation coefficient between units i and j. Under the null hypothesis of weak cross-sectional 
dependence, this statistic weakly converges to normal distribution and the CD statistic of 
equation (4) validates the applicability of the first-generation unit root and cointegration tests, 
whereas rejection of the null hypothesis indicates the applicability of the second-generation unit 
root and cointegration tests. 
 
VI.II. Cointegration Test with Structural Breaks 

The cointegration test of Westerlund and Edgerton (2008) accommodates structural breaks along 
with cross-sectional dependence and employed the procedure involved in the LM unit root test, 
devised by Schmidt and Philips (1992). The significance of this test is in determining the 
possible structural breaks persisting in the cointegrating association, in the presence of cross-
sectional dependence. These structural breaks might bring forth significant insights regarding the 
nature of cointegrating association among the model parameters. The null hypothesis of this test 
is the absence of cointegration among the data, against the alternate hypothesis of cointegration 
in the presence of structural breaks. The model involved is given by: 
 𝑦𝑖𝑡 = 𝐴𝑖 + 𝜇𝑖𝑡 + 𝛼𝑖𝐷𝑖𝑡 + 𝑥𝑖𝑡′ 𝐵𝑖 + (𝐷𝑖𝑡𝑥𝑖𝑡)′𝑏𝑖 + 𝜀1𝑖𝑡    (5) 
 
 𝑥𝑖𝑡 = 𝑥𝑖𝑡−1 + 𝜀2𝑖𝑡        (6) 
 
where cross-sections are denoted by i = 1, …, N; periods in the time series are denoted by t = 1, 
…, T; 𝑥𝑖𝑡is the set of independent covariates; Dit is the dummy variable indicating the presence 
of structural break; (Ai, ai) and (Bi, bi) are model intercepts and slopes before and after the 

 
4 http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ 
5 It signifies to be in the board of directors of firms from other nations. 
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structural break, respectively; and ɛit is independent and identically distributed (i.e., i.i.d) 
allowing the cross-sectional dependence among the unforeseen conjoint factors Ct. 
 
 𝜀2𝑖𝑡 = 𝜌𝑖′𝐶𝑡 + 𝑚𝑖𝑡        (7) 
 𝐶𝑖𝑡 = 𝜔𝑗𝐶𝑗𝑡−1 + 𝑛𝑖𝑡        (8) 
 
 𝜙𝑖(𝐿)𝛥𝑚𝑖𝑡 = 𝜙𝑖𝛥𝑚𝑖𝑡−1 + 𝜌𝑖𝑡      (9) 
 
where 𝜙𝑖(𝐿) = 1 − ∑ 𝜙𝑖,𝑗𝐿𝑗  is a scalar polynomial with lag length L; and ρi is the vector of 
factor loading parameters. Therefore, the test statistics, reported by Westerlund and Edgerton 
(2008) are given by: 
 𝐿𝑀𝜙(𝑖) = 𝑇𝜙̂𝑖(𝛾𝑖 𝛿𝑖⁄ )       (10) 

 𝐿𝑀𝜏(𝑖) = 𝑇 = 𝜙̂𝑖 𝑆𝐸(𝜙̂𝑖)⁄        (11) 
 
where 𝜙̂𝑖is the estimated value of 𝜙𝑖 with standard error of 𝜎̂𝑖, and 𝛾̂𝑖2 is the estimated long-run 
variance of mit. 
 
VI.III. Quantile Regression Test 

To estimate the long-run association among the model parameters, we have employed the 
quantile regression test of Koenker and Hallock (2001). This method is used to curtail the sum of 
squared residuals through an optimization function across the quantiles. Following the central 
limit theorem, objective of the optimization problem is the unconstrained minimization of the 
quantile-wise weighted median. 
 𝑚𝑖𝑛𝜀∈𝑅 ∑ ∑ 𝑞𝑡(𝑦𝑖𝑡 − 𝜀𝑖𝑡)𝑡𝑖         (12) 
 
In Equation (12), the term 𝑞𝑡(𝑦𝑖𝑡 − 𝜀𝑖𝑡) denotes the quantile regression function. Similarly, the 
minimization of the quantile-wise weighted mean can be carried out in the following manner: 
 𝑚𝑖𝑛𝜇∈𝑅 ∑ ∑ (𝑦𝑖𝑡 − 𝜇)𝑗𝑖 2       (13) 
 
Now, this function provides the unconditional distribution of the sample mean that is spanned 
across xit sample points of ßi to be the sample mean for each cross-section. In the quantile 
regression function, the central tendency of the residual errors and the sample mean theoretically 
coincides at the median, i.e., at median, µ → ε. In this view, Equation (13) can be written as 
follows: 
 𝑚𝑖𝑛𝜇∈𝑅 ∑ ∑ 𝑞𝑡(𝑦𝑖𝑡 − 𝜀𝑖𝑡)𝑗𝑖 2       (14) 

 
This optimization problem consists of the set of regressors xit, that have sample mean and 
residual errors coinciding at ε, i.e., µ → ε. Through the bootstraps, iterations of the quantile 
regression try to reduce the value of ε. 
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V. Empirical Results and Discussion 

As the first step towards the empirical analysis, we have computed the summary statistics of 
model parameters, and results are noted in Table-1. All the model parameters are log-
transformed. The volatility in energy consumption is lower than scale effect, i.e., lnYit and 
composition effect, i.e., lnKit. The volatility in FDI i.e., lnFit is less than volatility occurs in 
squared of real GDP per capita i.e., lnYit

2 and FDI i.e., lnFit
2. The correlation matrix shows that 

the model parameters are highly correlated. For instance, positive (negative) correlation is found 
between scale effect (technique effect) and energy consumption. Composition effect is 
negatively correlated with energy consumption. The correlation between FDI (squared of FDI) 
and energy consumption is positive (negative). The high correlation between the variables gives 
an impression that there might be a problem of multicollinearity in the data, and owing to that, 
we have computed variance inflation factor (VIF) for all the model parameters. The 
computational outcomes are reported in Table-2. We find that the model parameters suffer from 
multicollinearity in the base form, and it is evident from the low tolerance values. To rectify this 
issue, all the model parameters are orthogonally transformed. After the transformation, the 
tolerance values become unity, which indicates that the model parameters no longer suffer from 
the issue of multicollinearity. The rest of the analysis has been carried out on the orthogonally 
transformed dataset. 

 
<Place for Table 1> 
<Place for Table 2> 

 

For assessing the integrating properties of the variables, we need to conduct panel unit root tests. 
However, before conducting these tests, we need to consider the possibilities of cross-sectional 
dependence in the data, and therefore, applicability of these tests can be ascertained. Henceforth, 
we have conducted Chudik and Pesaran (2015) weak cross-sectional dependence test, and 
empirical results are described in Table-3. The empirical evidence shows that there is cross-
sectional dependence among all variables. This empirical evidence is significant in terms of 
assessing the integrating properties of the variables. Moreover, this empirical analysis elucidates 
that the regions under consideration of the present study are associated through several channels, 
and any shock given to the variables in any of the regions might affect the one in the other 
regions. Owing to this phenomenon, for inspecting the integrating properties, we use the panel 
unit root tests, which assume cross-sectional dependence in the data. To inspect the integrating 
properties of the variables, we have employed Herwartz and Siedenburg (2008) and Herwartz et 
al. (2017) panel unit root tests, which account for the cross-sectional dependence in the testable 
hypotheses. The empirical results documented in Table-4, show that after the first differentiation, 
the variables turn out to be first-order integrated i.e. I(1). This integration property can be 
considered as robust, as the property revealed via this battery of tests take account of the cross-
sectional dependence in the data. 

 
<Place for Table 3> 
<Place for Table 4> 

 
For proceeding further with the analysis, we need to validate the long run association between 
energy demand and its determinants, post that we will be able to assess the long run coefficients. 
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Now, the long run association between the variables can be validated through the cointegration 
method, and among the available set of techniques under cointegration method, we need to 
choose the one with the assumption of cross-sectional dependence. Moreover, given the period 
of the study, it can be assumed that there might be certain socio-economic and political 
transformations in the regions. Therefore, there might be possible structural breaks in the data. 
The chosen cointegration technique should be able to take account of those unknown structural 
breaks in the data. In consequence of these intentions, we have employed Westerlund and 
Edgerton (2008) cointegration test, which takes into account of unknown structural breaks, as 
well as cross-sectional dependence. This test is also able to produce robust estimates in presence 
of heteroscedasticity and serial correlation. The results are reported in Table-5, which are 
obtained for (a) no shift, (b) level shift, and (c) regime shift. In all the three cases, the test 
statistics reveal the presence of significant cointegration association between energy demand and 
its determinants during 2000-2017 for Chinese provinces. 

 
<Place for Table 5> 

 
While conducting the Westerlund and Edgerton (2008) cointegration test, we have also found 
several structural breaks appearing across the provinces under consideration (see Table 6). We 
will try to analyze these structural breaks, from both Chinese and global perspective. In 2002, 
Chinese economy experienced a shift in political regime, when Hu Jintao became the head of the 
Communist Party of China by substituting Jiang Zemin. This shift in the leadership had an 
impact on the overall socio-economic structure of the nation (Scobell, 2003). Moreover, since 
2002, the world started experiencing nearly double-digit growth in oil consumption. However, in 
2014, global crude oil prices experienced a sharp descent, and the impact of this descent was 
visible in Chinese economy. Similarly, 2014 was also the year, when China hosted several 
international sports events, which also influenced the economic operations via several channels. 
These events caused shocks in economic growth and its drivers, and therefore, these years have 
appeared as potential structural breaks in the model parameters. 
 

<Place for Table 6> 
 
After asserting the long-run association between energy consumption and its determining factors, 
we employed bootstrap quantile regression to assess the impact of scale effect and technique 
effect, composition effect and FDI on energy consumption. The empirical results are reported in 
Table-7 and the plots of empirical models are shown in Figure-1 and 2. Let us begin with Model-
I. We find that, except for 9th quantile, scale effect increases the energy consumption, implying 
that a 1% rise in scale effect is exerted by real GDP per capita increases energy consumption by 
1.185-3.068%, given ceteris paribus. The positive scale effect implies that economic expansion is 
generating more demand for energy, which is in turn being translated into higher energy 
consumption. This phenomenon might be warranted by considering the nature of economic 
growth in an industrialized economy, which is characterized by high-energy demand. On the 
flipside, except for 9th quantile, technique effect decreases energy consumption, i.e., a 1% rise in 
technique effect is exerted by square of real GDP per capita decreases in energy consumption by 
0.0182-0.1056%, given ceteris paribus. The negative technique effect implies that technologies 
employed to boost industrial output are effective in bringing down the level of energy 
consumption, and thereby ensuring energy efficiency. However, while mentioning this, it should 
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also be observed that the turn-around points for the inverted U-shaped EKCs achieved in Model-
I are much higher compared with the maximum real GDP of the sample. It signifies that the 
achievement of lowered energy consumption might not be possible in near future, as the 
provinces under consideration might take several years to reach the turn-around points. It also 
depicts the inefficacy of environmental regulations in reducing environmental damages done 
through ambient air pollution and loss of energy efficiency. This segment of results is similar to 
Shahbaz et al. (2016), who found that scale and technique effects are exerted on energy demand, 
which follow an inverted U-shaped pattern for Malaysia, thereby indicating their unsustainable 
energy-led growth pattern. When we observe this scenario in comparison with the results 
obtained for 9th quantile, it becomes clearer that provinces with higher energy consumption fail 
to internalize the negative externalities via economic growth trajectory. Perhaps that is the reason 
the scale effect exerts negative impact on energy consumption in this case, whereas the impact of 
technique effect is positive.  
 
By looking into the FDI effect, we find that it has a negative impact on energy consumption for 
lower quantiles, and the effect turns out to be positive in higher quantiles. This segment of the 
results is in line with the findings of Doytch and Narayan (2016), where they found the impact of 
FDI on nonrenewable energy consumption for low-income countries, and positive impact for 
high-income countries. If energy consumption is considered as a proxy for economic growth, 
then the result of this study complies with our finding. If we discuss the results obtained for real 
GDP and FDI, then we can see that the results converge towards the intrinsically developed and 
imported environmentally degrading production technologies being used in China. While 
boosting industrial growth, the policymakers in China are bringing forth negative externalities by 
degrading environmental quality, and the existing policies are proving to be ineffective in 
internalizing those externalities. This scenario can be seen in case of the OECD countries, as 
shown by Pazienza (2019). This work shows an extension of this segment of the results, by 
demonstrating the negative impact of FDI on environmental quality. This claim is further 
validated against the impact of composition effect on energy consumption. Composition effect, 
i.e., capital-labor ratio is negative for lower and medium quantiles, and positive for higher 
quantiles. This signifies that higher energy consumption is visible for capital-intensive industries, 
where the labor-intensive industries are prone to be characterized by lower energy consumption. 
Therefore, production technologies used by capital-intensive industries are not energy efficient, 
and therefore, they contribute to environmental degradation. This segment of the results 
contradicts the findings of Apergis et al. (2015), who found the capital-intensive industries to be 
more energy efficient than labor-intensive industries for OECD countries. The major reason 
behind this difference in results might lie in the nature of economic growth, level of industrial 
innovation, and the approach towards sustainable development between the OECD countries and 
China. 
 
Once, we have analyzed the test outcome for Model-I, we will now proceed with Model-II. The 
basic difference between these two models is that Model-II captures the technique effect exerted 
by FDI. In presence of the technique effect, scale effect of FDI has undergone a transformation. 
The FDI-energy consumption association is inverted U-shaped for the lower quantiles, and U-
shaped for higher quantiles. However, the turn-around points of FDI need special mention in this 
case. For the lower quantiles, in presence of inverted U-shaped association, the turn-around 
points are quite low, and for the higher quantiles, in presence of U-shaped association, the 
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turnaround points are quite high. For lower quantiles, the results fall in the similar lines with the 
findings of Shahbaz et al. (2019), who found the similar impacts of scale and technique effects of 
FDI on environmental quality for the MENA countries. This phenomenon brings forth several 
insights regarding the technology import perspective. Existing and intrinsically developed 
production technologies are proving to be environmentally deteriorating, and the negative 
externalities caused by these technologies can be internalized by the import of green 
technologies. This is the reason, when the GDP-energy consumption and FDI-energy 
consumption associations are coming out to be opposite in nature. However, continuous import 
of green technologies might put pressure on the fiscal balance of the nation, and therefore, 
policymakers might ignore the environmental aspects for boosting economic growth (see Sinha 
et al., 2020 a, b). Perhaps that is the reason the coefficients of scale and technique effects exerted 
by GDP and the coefficient of composition effect are showing the sign of robustness across the 
two models. 
 
Lastly, as a robustness check, we have employed instrumental variable quantile regression on the 
two empirical models. The test outcome stated in Appendix 1 demonstrates that the estimated 
coefficients for both the models are robust and significant. 
 

<Place for Table 7> 
<Place for Figure 1> 
<Place for Figure 2> 

 
VI. Conclusions and Policy Implications 

By far, we have looked into the empirical association between energy consumption, scale and 
technique effects exerted by GDP and FDI, and composition effect exerted by capital-labor ratio 
for 30 Chinese provinces over the period of 2000-2018. In empirical pursuit, we have employed 
the second-generation unit root tests for investigating the integration property of the model 
parameters. Subsequent to this, long-run cointegrating association among the model parameters 
was assessed by Westerlund and Edgerton (2008) panel cointegration test. Finally, bootstrapped 
quantile regression was utilized to examine the impacts of scale and technique effects by GDP 
and FDI and composition effect by capital-labor ratio on energy consumption. The robustness of 
long run coefficients has been checked by instrumental variables quantile regression. 
 
The results show that scale effect exerted by GDP stimulates energy consumption, whereas 
technique effect exerted by the same leads to fall in energy consumption. On the flipside, scale 
effect exerted by FDI diminishes energy consumption at lower quantiles and stimulates at higher 
quantiles. However, technique effect exerted by FDI affects energy consumption just in the 
opposite manner compared with that of scale effect. The composition effect exerted by capital-
labor ratio has a negative impact on energy consumption for low and medium quantiles, and the 
impact becomes positive for high quantiles. Now, based on these model outcomes, we will 
discuss the suitable policies in pursuit of sustainable development in China, and the policies will 
be divulged in terms of the Sustainable Development Goals (SDGs). 
 
China is one of the fastest growing industrial economies across the globe, and economic growth 
pattern of China is reflected in its energy, environment, and trade policies. Achieving economic 
growth through industrial progression seems to be primary concern in China, and therefore, 



16 

 

environmental sustainability issues are gradually taking a backseat. In such a situation, the new 
economic policies should be designed in such a way that the negative externalities created by the 
current policies can be internalized, while causing no harm to economic growth pattern. 
Continuous dependence on the fossil-fuel-based energy consumption might lead towards not 
only the depletion of nonrenewable natural resources, but also the deterioration of environmental 
quality by causing ambient air pollution and diminishing the ecological balance. Moreover, the 
reliance on the imported outdated technologies might give short-run economic benefits at the 
cost of sustainable long run economic development. Therefore, the policymakers should start 
investing on the discovery of alternate clean energy solutions, while catalyzing the research and 
development within the nation for developing cleaner production technologies. While doing this, 
the policymakers should gradually remove the harmful subsidies on fossil fuel consumption, and 
restrict the sanctions to captive coal-based power plants. Imposition of environmental taxation 
policies on industries might discourage them from using the environmental deteriorating 
technologies. At the same time, the policymakers should also introduce subsidies in interest rates 
on credits for green projects, and for firms with low CO2 footprint. This will also encourage the 
industries to implement green technologies in their production processes. While both of these 
policies will be in place, the industries will look into the import of green technologies, and 
foreign firms trying to open the plants in China will have to follow the environmental norms, 
which are set through credit policies to industries. In this way, the trade route will be used for 
importing of green technologies. When these policies are in place, then China will be able to 
address the issues of environmental degradation (objective of SDG 13). At the same time, 
gradual rise in the demand of green energy will allow China to achieve clean and affordable 
energy for both industry and households (objective of SDG 7). These policy moves need to be 
devised at the first phase of implementation. 
 
Once the first phase policies are implemented, the second phase of policies need to implemented, 
to stabilize the policies devised in the first phase. In this phase, it should be remembered that 
when fossil fuel-based energy consumption will fall, the mining and coal-based power 
production industry would face a fall in demand, which will be translated into unemployment 
issues. This problem might appear in the short run. If the policymakers ponder upon encouraging 
people-public-private partnerships in designing the clean energy solutions at the grassroots level, 
then it might create several green jobs. Moreover, this move by the policymakers is required, as 
the demand of renewable energy will gradually rise with the shift from nonrenewable to 
renewable energy solutions, and the renewable energy infrastructure might not to be able to cater 
to the rise in demand. Therefore, the surplus labor from the mining and coal-based power 
production industry might be employed in these places. In this way, the policymakers should be 
able to tackle the issue of unemployment arising out of the shift of energy solutions. Once these 
policy measures are implemented, China will be able to provide affordable and clean energy 
solutions, tackle environmental issues, sustain ecological balance, while providing sustainable 
jobs to the labors. The policies devised at this phase, will help China in achieving the sustained 
economic growth (objective of SDG 8). 
 
As a final step to institutionalize the policies devised in the previous two phases, China should 
move into the third phase of policy implementation. One of the ways to institutionalize the 
policies is to educate the people about them, and to achieve this at the grassroots level, 
policymakers should make amendments in the educational curriculum to educate the people 
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about environmental benefits of green energy, and energy efficiency. This educational reform 
should be complemented by the environmental regulations for protecting public goods and 
controlling environmental degradation. This move will enhance the quality of education in China 
(objective of SDG 4). 
 

Data Availability statement: The data that support the findings of this study are available in 
China Statistical Yearbook at http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ . 
 

http://www.stats.gov.cn/english/Statisticaldata/AnnualData/
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Table-1: Summary Statistics and Correlation 

Variables tEln  tYln  2ln tY  tKln  tFln  2ln tF  

Obs. 510 510 510 510 510 510 
Mean 0.8595 9.7278 95.1329 11.3165 8.6904 77.2534 
Std. Dev. 0.5684 0.7100 13.8340 0.8417 1.3166 23.5886 
Min -1.1027 7.9165 62.6704 9.4589 5.7966 33.6004 
Max 2.1144 11.3933 129.8076 12.9252 12.2137 149.1746 

tEln  1.0000      

tYln  0.7191 1.0000     
2ln tY  -0.7134 0.9991 1.0000    

tKln  -0.6047 0.6124 0.5985 1.0000   

tFln  0.4289 0.8193 0.8223 0.2562 1.0000  
2ln tF  -0.4206 0.8096 0.8151 0.2217 0.9965 1.0000 

 

 

Table-2: Variance Inflation Factors (VIF) and Tolerance 

Variables 
Before transformation After transformation 

VIF Tolerance VIF Tolerance 

tEln  2.60 0.3852 1.00 1.0000 

tYln  1305.25 0.0008 1.00 1.0000 
2ln tY  1269.12 0.0008 1.00 1.0000 

tKln  2.93 0.3415 1.00 1.0000 

tFln  330.75 0.0030 1.00 1.0000 
2ln tF  335.45 0.0030 1.00 1.0000 

 
 

 

        Table-3: Chudik and Pesaran (2015) Weak Cross-Sectional Dependence Analysis 

Variables Test statistic p-value Variables Test statistic p-value 

tEln  78.359 0.000 tKln  85.945 0.000 

tYln  85.987 0.000 tFln  85.896 0.000 
2ln tY  85.965 0.000 

2ln tF  85.612 0.000 
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Table-4: Second-Generation Unit Root Analysis 

Variables 
Herwartz and Siedenburg (2008) Herwartz et al. (2017) 

Level First Diff. Level First Diff. 

tEln  1.0312 -0.0095a 2.1723 -3.4907a 

tYln  1.0101 0.7707a 3.0593 -2.5007a 
2ln tY  1.0197 0.7722a 3.1498 -1.4208a 

tKln  1.0126 0.7808a 3.2936 -1.4708a 

tFln  1.0111 0.3183a 2.7776 -4.7506a 
2ln tF  1.0204 0.3015a 2.7115 -4.9706a 

Note: a significant value at 1%. 

 
 
 

Table-5: Westerlund and Edgerton (2008) Cointegration Analysis 

 Model 1 Model 2 Model 3 
Test Test Statistic p-value Test Statistic p-value Test Statistic p-value 

LM  -5.870 0.000 -3.452 0.000 -2.448 0.007 

LM  -8.509 0.000 -3.429 0.000 -3.796 0.000 
Note: Model (1): model with a maximum number of 5 factors and no shift.  
Model (2): model with a maximum number of 5 factors and level shift.  
Model (3): model with a maximum number of 5 factors and regime shift. 
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Table-6: Structural Breaks in Westerlund and Edgerton (2008) Cointegration Test 

Provinces No Shift Mean Shift Regime Shift 

Beijing 2002 2004 2004 
Tianjin 2002 2004 2005 
Hebei 2002 2002 2001 
Shanxi 2002 2003 2003 
Neimenggu 2002 2001 2001 
Liaoning 2002 2001 2001 
Jilin 2002 2003 2001 
Heilongjiang 2002 2001 2014 
Shanghai 2002 2002 2014 
Jiangsu 2002 2002 2014 
Zhejiang 2002 2002 2014 
Anhui 2002 2005 2014 
Fujian 2002 2007 2014 
Jiangxi 2002 2007 2007 
Shandong 2002 2007 2007 
Henan 2002 2002 2005 
Hubei 2002 2002 2008 
Hunan 2002 2002 2002 
Gaunggong 2002 2002 2002 
Guangxi 2002 2002 2003 
Hainan 2002 2002 2004 
Chongqing 2002 2001 2003 
Sichuan 2002 2014 2003 
Guizhou 2002 2014 2005 
Yunnan 2002 2014 2014 
Shannxi 2002 2014 2014 
Gusu 2002 2004 2014 
Qinghai 2002 2005 2014 
Ningxia 2002 2001 2014 
Xinjiang 2002 2003 2014 
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Table-7: Results of Bootstrap Quantile Regression Analysis 

Variables Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q0.8 Q0.9 

Model I 

tYln  2.6512a 3.0683a 2.6104a 1.9275b 2.6171a 1.1994 1.1847b 1.5212a -0.9664a 
2ln tY  -0.0892a -0.1056a -0.0822a -0.0487 -0.1056b -0.0182 -0.0408c -0.0606b 0.1004a 

tKln  -0.0478c -0.0786a -0.0737a -0.0280 -0.0389a 0.1305c 0.1205a 0.1998a 0.0026b 

tFln  -0.1607a -0.2229a -0.2339a -0.2379a 0.0074 0.0296 0.0663a 0.0463 0.0003 

Constant -14.8914a -16.3995a -14.0853a -11.0163b -14.6150a -11.3110 -7.9502a -10.1100a -9.5336a 
          

Shape of EKC 
Inverted U-

shaped 
Inverted U-

shaped 
Inverted U-

shaped 
Inverted U-

shaped 
Inverted U-

shaped 
Inverted U-

shaped 
Inverted U-

shaped 
Inverted U-

shaped 
U-shaped 

Turnaround Point 28,44,752.27 20,38,929.77 78,68,244.23 Very large 2,40,763.88 Very large 20,19,544.10 2,82,421.27 123.07 
          
Model II 

tYln  6.8672a 5.8524a 5.6713a 4.9262a 8.7988a 3.9006a 4.6062a 2.5947b -0.9853a 
2ln tY  -0.1381a -0.0856a -0.0707a -0.0333b -0.3623a -0.1569b -0.1954a -0.1065b 0.0944a 

tKln  -1.0781a -1.0896a -1.1284a -1.1347a -0.1219a 0.0451 0.0603 0.1949a 0.0460a 

tFln  1.1168a 1.1085a 1.1414a 1.1406a -2.3549a -1.3645a -1.2523a -0.3778 -0.0401a 
2ln tF  -0.1052a -0.1042a -0.1076a -0.1076a 0.1074a 0.0659a 0.0611a 0.0172 0.0039a 

Constant -32.6273a -27.6524a -26.5795a -22.7841a -39.1212a -15.9015a -19.7860a -14.1985a -9.7614a 
          
Shape of EKC 
(with respect to ln Yit) 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

U-shaped 

Turnaround Point Very large Very large Very large Very large 1,87,770.44 2,50,248.66 1,31,477.58 1,95,182.47 184.70 
Shape of EKC 
(with respect to ln Fit) 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

Inverted U-
shaped 

U-shaped U-shaped U-shaped U-shaped U-shaped 

Turnaround Point 201.94 204.20 201.12 200.37 57,712.07 31,344.91 28,224.74 58,838.88 170.89 
Note: regressions have been run with 200 bootstrap replications and 95% confidence level. 
a significant value at 1%. 
b significant value at 5%. 
c significant value at 10%. 
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