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Abstract

This article completes an axiomatic approach of utilities streams. The approach is

more precisely based upon the robust pre-orders that open the scope for α-MaxMin

representations. A general T-steps Temporal Bias axiom is first introduced, that

encapsulates stationarity and 1-step present bias, aka quasi-hyperbolic discount-

ing, as special cases. A detailed chara­erisation of the sets of probabilities that

represent the weights of the future values of the utilities stream is then completed.

This is first achieved for the close future pre-order where a generalised pi­ure of

present biases in brought into evidence. This is complemented for the distant fu-

ture pre-order where it proved that, under the same system of axioms, the weights

of the tail of the utility stream now correspond to Banach limits, who, in the eval-

uation of distant future, can be considered as the counterpart of the geometric

discount rates in the evaluation of close future. The whole result is eventually

given in an explicit α-Maxmin representation.

Keywords: Axiomatisation, Myopia, Multiple Discounts, α−MaxMin Citeria, Tem-

poral Biases, Banach Limits, Infinite Dimensional Topologies.

JEL Classi�cation: D11, D15, D90.
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1. Introduction

1.1 Motivation and Concerns

The introdu­ion by Gilboa & Schmeidler (1989) of the multiple priors approach to

choice under uncertainty and the relevance of the associated worst scenario case and

Maxmin criteria has been at the very inception of the numerous contemporaneous

developments of the ambiguity literature. While this approach at remains the cor-

nerstone of most studies, one of its strongest limits was pointed out by Ghirardato,

Maccheroni & Marinacci (2004) who emphasised the need for a generalised cri-

terion that would distinguish ambiguity from ambiguity attitude and support as an

alternative the use of an elaborated version labelled α-Maxmin. Such preferences

generalise the well-known α-MaxMin rule of Hurwicz (1951) to settings of uncer-

tainty where the subje­ive perception of ambiguity can be described by a set of

probability measures and the attitude towards ambiguity by a parameter α which

describes the relative weight put on pessimism versus optimism. Its empirical rele-

vance in an experimental environment having been argued and been the obje­ of

numerous studies, these are surveyed in Trautmann & van de Kuilen (2015).

The central aim of this study is then to examine the scope for such a represen-

tation when one is concerned with discounted infinite utility streams instead of

choice under uncertainty over a range of states of the world. While this somewhat

echoes some of the concerns of Chambers & Echenique (2018), this study aims at

broadening the scope of their analysis in three distin­ regards.

First, and along the above concerns, by completing an alternative approach that

enables for extending their MinMax one to the larger class of α-MaxMin criteria.

Second, and in contradistin­ion with their work and most of the axiomatic ap-

proaches of discounting, this study also ambitions at taking explicit account of the

arbitrarily remote components of the utility streams, its purpose being to provide

a pi­ure of the different classes of representations that are required to deal with

the distant components of the utilities stream in comparison with the more stan-

dardly considered near future ones. It is to be emphasised that this article aims at
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building another α-MaxMin class of criteria for chara­erising this distin­ion.

Finally, while the original purpose of Chambers & Echenique (2018) was more

to analyse how regular discounting criteria could accommodate the existence of

diverging opinions between several experts, a large part of the literature has been

involved with the anomalies and temporal biases that resulted from experimental

studies. This had led to a renewal of interest for the present biased quasi-hyperbolic

discounting representation, first introduced by Phelps & Pollack (1968) but more

recently brought to the fore by Laibson (1997). This does also correspond to the

third regard through which this article aims at extending their study, i.e., encom-

passing potentially general temporal biases within a multiple discounts represen-

tation.

1.2 The Approach and the Results

This contribution echoes the decision under uncertainty literature by focusing on

the scope for α-MaxMin criteria and is anchored on an environment that indire­ly

relates to it. It is more dire­ly aimed at completing an axiomatic approach to the

evaluation of infinite utility streams, the whole argument being cast for discrete time

sequences. It is based upon robust or unanimous orders, a given utility stream

being robustly better than an alternative one if and only if such a comparison is

unanimous among a set of linear orders that can be understood as a set of possible

evaluations. Each sub-order is shown to constitutes upon two separate components:

a first that belongs to the set of σ−additive measures on ℕ and a second part that

belongs to the set of purely finitely additive measures1 and is usually called a charges

set.

Elaborating upon the properties of the robust pre-order and asssuming that its

embeded degree of optimism does not decrease with respe­ to some robustness com-

parisons, the order is proved to assume a so-called α-MaxMin criterion representa-

tion, the evaluation of a given utility stream depending only on its best and worst

evaluations.

Under the extra assumption that every sub-order satisfies some impatience and con-

1For a detailed exposition, see Bhaskara Rao & Bhaskara Rao (1983).
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sistency properties, the σ−additive part of the sub-orders satisfies a delay-stationary

property, i.e., the evaluation, beginning after a delay of a certain periods, does not

depend upon the date of evaluation. Interestingly, when this assumption is ex-

tended to encompass the scope for temporal biases, while its first feature keeps

on chara­erising some impatience property, its second one now features some

T∗−delay stability. Otherwise stated, if a combination is robustly better than a con-

stant sequence, it remains robustly better if it is moved forward into the future, the

effe­ according to the robust order becoming lower over time.

A further T∗−delay equivalence assumption is considered, that postulates the exis-

tence of a delay such that a delayed sequence of an alternative sequence would be

equivalent to the original one while hedging with another delayed sequence. This

equivalence can be understood in the sense that the chance to improve robustly

the situation through hedging would remain unmodified. While, for the stationary

configuration T∗ = 0, the sequence of discount fa­ors is proved to assume a geo-

metrical representation, that sequence is shown to be associated to a representation

that features a generalised version of quasi hyperbolic discounting for an arbitrary

value of T∗.

Focusing then on the finitely additive measures that feature the distant future robust

pre-order and do correspond to the remaining part of the sub-orders representation,

it is established, under assumptions that are remarkably close from the previous

σ-additive components, that the weights of the tail of the utility stream build from

Banach limits.2 The evaluation of a utilities stream under a Banach limit does not

change if it is shifted one (ou many) period(s) to the future. Interestingly, this

property echoes the evaluation of close future under systems of geometrical discount

rates, where the comparison between two sequences does not depend on the period

of departure. This property of stability, or, in another word, anonymity, makes the

Banach limits, in the evaluation of distant future, the counterpart of the geometrical

discount rates in the evaluation of close future.

The whole information on the sub-orders representation is eventually given in an

2For intuition about Banach limits, one can have in mind the lower-bound, the infimum limit and
the upper-bound, the supremum limit of utilites streams. These fun­ions satisfy every properties
of Banach limits charges, minus the linearity. For a careful definition, see page 55 in Becker & Boyd
(1997).
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explicit α-Maxmin representation. This eventually allows for a subtle decomposi-

tion of the robust orders and a precise description of α-MaxMin representations.

1.3 Related Literature

The early and most influential attempts towards the axiomatisation of α-Maxmin

criteria that would replace the ambiguity averse decision maker of Gilboa & Schmei-

dler (1989) by a more plausible mix of ambiguity-averse and ambiguity-seeking

tendencies were due to Kopylov (2003) and Ghirardato, Maccheroni & Marinacci

(2004). This representation has become extremely successful and went on being

used on a common basis in numerous experimental studies where the weight α and

the set of beliefs were then often interpreted as simple parameterisations of the

decision maker’s ambiguity attitude and perception of ambiguity, that was presum-

ably key to its widespread use in applied experimental studies.

Numerous topics have further recently been under study. To name just a few of

some insightful contributions, the generic non-uniqueness of the weighted repre-

sentation has led Frick, Iijima & Le Yaouanq (2021) and Chateauneuf, Qu, Ver-

gopoulos & Ventura (2021) to be interested in the uniqueness of the α-MaxMin

representation. While the first convincingly incorporates obje­ive rationality into a

α-MaxMin expe­ed utility model of choice under ambiguity can overcome several

challenges faced by the baseline model without obje­ive rationality, the second

completes a rigorous appraisal of the scope for falsibiability of the α-Maxmin rep-

resentation. In separate regards, while Beißner, Lin & Riedel (2020) have been

interested in their conne­ion with time consistency, Beißner &Werner (2021) have

completed an original appraisal of their differentiability properties.

As a result of the importance of this representation for inter-temporal analysis, the

examination of the axiomatics of the underpinnings of the discounted forms of

utility have been the obje­ of numerous efforts. While the pioneer study Koop-

mans (1972) keeps on playing an irreplaceable in this regard and while Dolmas

(1995) brought an interesting clarification and Fishburn & Rubinstein (1982) an

englightning alternative, this line of research is conveniently summed up in the in-

fluential work of Bleichrodt, Rohde & Wakker (2008). Since the prominent work of
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Laibson (1997), a parallel range of efforts have been aimed at identifying the un-

derpinnings of associated temporal biases and anomalies, noticeable efforts in this

dire­ion being due Chakraborty (2017) and Montiel Olea & Strzalecki (2014).

It is however worth pointing out that, while the multiple priors approach of Gilboa

& Schmeidler (1989) has brought a complete renewal of the topics, methods and

aims of choice under uncertainty, it was not before Wakai (2007) and, perhaps

more prominently, Chambers & Echenique (2018), that it got adapted to inter-

temporal choice. In parallel with the α-MaxMin current approach, two recent stud-

ies have been interested in such representations : while the first, due to Bich, Dong

& Wigniolle (2021), has extended the Chambers & Echenique (2018) system of

axioms to the scope for 1-step present bias and quasi-hyperbolic discounting, the

second, due to the same authors as the current one, Drugeon & Ha-Huy (2021b),

follows an alternative, more abstra­ and less aimed at representation results, that

focuses on recursive time-dependent orders and the scope for therein defining mul-

tiple time-varying discount fun­ions.

Finally, and as a result of its technical complexity of infinite dimensional topologies,

the role of arbitrarily remote components of the utilities sequences, that is here

completed in a simplified form through the use of finitely additive measures and

charges, has been the obje­ of a limited number of contributions due to Brown &

Lewis (1981), Sawyer (1988), Gilles (1989), Drugeon & Ha-Huy (2021a) and,

very recently, de Andrade, Bastianello & Orrillo (2021).

1.4 Contents

Se­ion 2 describes the basic axioms required for a decomposition between the

close future and the remote future as well the robust pre-order �∗ and then com-

pletes an early extended α-MaxMin representation. Se­ion 3 strengthens these

results by achieving an α-MaxMin representation for Temporally-Biased Multiple

Discounts. The proofs are given in the Appendix.
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2. Basic Axioms, the Robustness Pre-Order �∗ &

an Extended α-Maxmin Decomposition

2.1 Fundamentals, Elementary Axioms & Construction of the

Index Function

This paper considers an axiomatic approach to the evaluation of infinite utility

streams, the whole argument being cast for discrete time sequences. To avoid

confusion, letters like x ,y ,z will be used for sequences (of utils) with values in

ℝ; a notation c✶, c ∗✶, d✶ will be used for constant sequences, where ✶ denotes

(1,1, . . . , ). A notation λ,η,μ will also be used for constant scalars.

For every x ∈ ℓ∞ and T ≥ 0, let x [0,T] = (x0,x1, . . . ,xT) denote its head T + 1

first components and x [T+1,∞[ = (xT+1,xT+2, . . .) its tail starting from date T+1. For

eaxmpla, given constant c and a sequence x , (x [0,T] ,y [T+1,+∞[) denotes the sequence

(x0,x1, . . . ,xT,yT+1,yT+2, . . .).

The properties in the subsequent axiom F are well-known in the literature. A

more detailed discussions about their significations can be found in Chambers &

Echenique (2018), Bich, Dong &Wigniolle (2021), or Drugeon &Ha-Huy (2021a).

Axiom F. The order � satisfies the following properties:

(i) Completeness For every x ,y ∈ ℓ∞, either x � y or y � x .

(ii) Transitivity For every x ,y ,z ∈ ℓ∞, if x � y and y � z , then x � z . Denote as

x ∼ y the case where x � y and y � x . Denote as x ≻ y the case where x � y

and y � x .

(iii) Monotonicity If x ,y ∈ ℓ∞ and xs ≥ ys for every s ∈ ℕ, then x � y .

(iv) Non-triviality There exist x ,y ∈ ℓ∞ such that x ≻ y .

(v) Archimedeanity For x ∈ ℓ∞ and b✶ ≻ x ≻ b′✶, there are λ,μ ∈]0,1[ such that

(1 − λ)b✶ + λb′✶ ≻ x and x ≻ (1 − μ)b✶ + μb′✶.
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(vi) Weak convexity For every x ,y ,b✶ ∈ ℓ∞, and λ ∈ ]0,1], x � y ⇔ (1 − λ)x + λb✶ �

(1 − λ)y + λb✶.

Under these conditions, the order � can be represented by an index fun­ion I

which is homogeneous of degree 1 and constantly additive: For every constant

b ∈ ❘, λ ≥ 0, I(λx + b✶) = λI(x) + b .

2.2 Sub-Orders and the Decomposition

As this is detailed in Drugeon & Ha-Huy (2021a, Ex. 1-2), the axiom F is general,

and one can constru­ complicated orders satisfying it. To a better understanding

of the properties, one should add additional stru­ure on �. The following axiom

assumes that there exists an independtly evaluation of the close future componants and

the distant future components of the utility stream.

Axiom G1. For any x ∈ ℓ∞

(i) take any constant d ∈ ℝ, either, for any ϵ > 0, there exists T0(ϵ) such that for

any z ∈ ℓ∞, for every T ≥ T0(ϵ):
(

z [0,T] ,x [T+1,∞[

)

�
(

z [0,T] ,d✶[T+1,∞[

)

− ϵ✶, or,

for any ϵ > 0, there exists T0(ϵ) such that for any z ∈ ℓ∞, for every T ≥ T0(ϵ):
(

z [0,T] ,d✶[T+1,∞[

)

�
(

z [0,T] ,x [T+1,∞[

)

− ϵ✶.

(ii) take a constant c ∈ ℝ, either, for any ϵ > 0, there exists T0(ϵ) such that, for

any z ∈ ℓ∞ and for every T ≥ T0(ϵ),
(

x [0,T] ,z [T+1,∞[

)

�
(

c✶[0,T] ,z [T+1,∞[

)

− ϵ✶,

or there exists T0(ϵ) such that, for any z ∈ ℓ∞ and for every T ≥ T0(ϵ),
(

c✶[0,T] ,z [T+1,∞[

)

�
(

x [0,T] ,z [T+1,∞[

)

− ϵ✶.

Under axiom G1, the evaluation of an utilites stream can be decomposed as the

combination of two values that respe­ively relate to the close future and distant

future values of this this stream.

De�nition 2.1. The close future order �c and the distant future order �d are respec-

tively defined as:

(i) For any x ,y ∈ ℓ∞, the satisfa­ion of x �c y if and only if for any ϵ > 0, there

exists T0(ϵ) such that, for any sequence z ∈ ℓ∞ and for every date T ≥ T0(ϵ),
(

x [0,T] ,z [T+1,∞[

)

�
(

y [0,T] ,z [T+1,∞[

)

− ϵ✶.
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(ii) For any x ,y ∈ ℓ∞, the satisfa­ion of x �d y if and only if, for any ϵ > 0, there

exists T0(ϵ) such that, for any z ∈ ℓ∞ and for every T ≥ T0(ϵ):
(

z [0,T] ,x [T+1,∞[

)

�
(

z [0,T] ,y [T+1,∞[

)

− ϵ✶.

In Drugeon & Ha-Huy (2021a), under the axiomG1, the sub-orders �c and �d are

shown to satisfy the axiom F, and can thus be represented correspondingly by the

index fun­ions Id and Ic satisfing the constant additive and homogeneity of degree one

properties. While the fun­ion Ic indeed satisfies a weak version of tail-insentivity

property, the fun­ion Id does not change its value upon the mere modification of a

finite number of components in the utilities stream.3 The value of the overall index

fun­ion finally emerges as a convex combination of the two values of sub-order

index fun­ions, with a convexity parameter that itself depends on the utilities

stream. Precisely, there exists 0 ≤ λ ≤ λ ≤ 1 such that, for any x ∈ ℓ∞, the index I

assumes one of the two following decompositions :

(i) I(x) = min
λ≤λ≤λ

[

(1 − λ)Ic (x) + λId (x)
]

,

(ii) I(x) = max
λ≤λ≤λ

[

(1 − λ)Ic (x) + λId (x)
]

.

As an example, consider the order � being represented as follows, with 0 ≤ λ ≤

λ ≤ 1 and D a compa­ subset of ]0,1[:

I(x) = min
λ≤λ≤λ

[

(1 − λ)min
δ∈D

(

(1 − δ)

∞
∑︁

s=0

δsxs

)

+ λ lim inf
s→∞

xs

]

.

In such an example, the initial order � can be decomposed into to two sub-orders

�c and �d with two associated index fun­ions available as:

Ic (x) = min
δ∈D

(

(1 − δ)

∞
∑︁

s=0

δsxs

)

,

Id (x) = lim inf
s→∞

xs .

3For every x ,z ∈ ℓ∞, limT→∞ Ic
(

x [0,T] ,z [T+1,∞[

)

= Ic (x) and Id
(

x [0,T] ,z [T+1,∞[

)

= Id (z ) .
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2.3 The Robustness Pre-Order �∗

In order to reach more explicit properties for the index fun­ion I, consider a pre-

order, as opposed to the earlier complete order, �∗, featuring the robustness of the

order �: whatever the mixture with a common component, the comparison would

not be modified. In the same spirit as Gilboa & Schmeidler (1989), this approach

leads to a chara­erization of the order � by a set of probability charges belonging

to (ℓ∞)
∗.

De�nition 2.2. Let the pre-order �∗ be defined by

x �∗ y if, for every 0 ≤ λ ≤ 1,z ∈ ℓ∞,λx + (1 − λ)z � λy + (1 − λ)z .

It is first to be noticed that, in the general case, the pre-order �∗ is not complete.

Lemma 2.1 presents the fundamental properties of the pre-order �∗.

Lemma 2.1. Assume that axiom F is satisfied. For every x ,y : x �∗ y if and only if either

of the two following assertions is satisfied:

(i) For every z ∈ ℓ∞,x + z � y + z .

(ii) There exists z ∈ ℓ∞, x + z �∗ y + z .

The understanding of the properties of the pre-order �∗ is important in the analysis

of the order � and proposition 2.1 will clarify its precise status. The initial order

� can be considered as a family of linear sub-orders, the pre-order �∗ featuring

the particular one that deals with robustness or unanimity. This pre-order �∗ can

be considered as depi­ing an unanimous class of preferences: a given sequence x

is robustly preferred to another sequence y if and only if any sub-preference to the

order � prefers x to y . These sub-preferences are a convex set with a measure

belonging to (ℓ∞)
∗, defined as the normalized positive polar cone of the set x such

that x �∗ 0✶.

Recall that the dual space of ℓ∞,4 i.e., the set of real sequences such that sups |xs | <

+∞, can be decomposed into the dire­ sum of two subspaces,ℓ1 andℓ
d
1
: (ℓ∞)

∗ = ℓ1⊕

4The set of real continuous linear fun­ions on ℓ∞.
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ℓ d
1
. The subspace ℓ1 satisfies σ-additivity. The subspace ℓ d

1
, the disjoint complement

of ℓ1, is the one of finitely additive measures defined on ℕ. More precisely, for

each measure ϕ ∈ ℓ d
1
, for any x ∈ ℓ∞, the value of ϕ · x depends only on the distant

behaviour of x , and does not change if there only occurs a change in a finite number

of values xs , s ∈ ℕ.

Proposition 2.1. Assume that axiom F is satisfied. There exists a convex set Ω of

weights
(

(1 − λ)ω,λϕ
)

which can be considered as finitely additive probabilistic measures

on ℕ where:

(i) 0 ≤ λ ≤ 1,

(ii) ω = (ω0,ω1,ω2, . . .) is a probability measure, i.e., a sequence of weights, belonging to

ℓ 1,

∞
∑︁

s=0

ωs = 1,

with ωs ≥ 0 for every s .

(iii) ϕ is a charge in ℓ 1
d
satisfying ϕ(ℕ) = 1, ϕ(A) ≥ 0 for every A ⊂ ℕ,

such that, for every x ,y ∈ ℓ∞, x �∗ y if and only if, for any
(

(1 − λ)ω,λϕ
)

∈ Ω,

(1 − λ)

∞
∑︁

s=0

ωsxs + λϕ · x ≥ (1 − λ)

∞
∑︁

s=0

ωs ys + λϕ · y .

It is worth emphasizing that the value λ can change between different measures

and the charges ϕ can be considered as a purely finitely additive measure on ℕ: for

every finite subset A ⊂ ℕ, ϕ(A) = 0.

The property (iii) is the most important one, which establishes the chara­erization

of Ω. The sequence x is ensuingly robustly better than the sequence y if and only

if it is confirmed unanimously by every probability charges in Ω.
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2.4 MaxMin and α−MaxMin Representations

Define, for each x ∈ ℓ∞, define b
∗
x , b

∗x as the best and worst evaluation of sequence

x :

b∗x = sup
{

b ∈ ℝ such that x �∗ b✶
}

= inf
(

(1−λ)ω,λϕ
)

∈Ω

(

(1 − λ)ω · x + λϕ · x
)

,

b∗x = inf
{

b ∈ ℝ such that b✶ �∗ x
}

= sup
(

(1−λ)ω,λϕ
)

∈Ω

(

(1 − λ)ω · x + λϕ · x
)

.

For any x ∈ ℓ∞, define the degree of pessimism in distant future associated with x :

the value ax satisfying

I(x) = axb
∗
x + (1 − ax )b

∗x
.

The value ax is unique if b
∗
x < b

∗x . The value ax can be considered as the pessimism

degree associated with the sequence x ∈ ℓ∞, as 1−ax the optimism degree associated

with x . It is natural to study the case where the optimism degree does not decrease

in respe­ to the robustness order �∗.

Axiom G 2. Consider x ,y ∈ ℓ∞ satisfying b∗x < b∗x , and b∗x < b∗y . If y �∗ x then

ax ≥ ay .

Along Proposition 2.2, under the assumption that the degree of pessimism cannot

increase with respe­ to the robust pre-order �∗, the index of distant future order

assumes a α−MaxMin representation:

Proposition 2.2. Assume that axioms F, G1 and G2 are satisfied. For any x ∈ ℓ∞

such that b∗x < b∗x , ax is equal to a constant a
∗. For any x , the distant index assumes the

following representation:

I(x) = a∗b∗x + (1 − a∗)b∗x

= a∗ sup
Ω

(

(1 − λ)ω · x + λϕ · x
)

+ (1 − a∗) inf
Ω

(

(1 − λ)ω · x + λϕ · x
)

.
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Remark 2.1. Following two distin­ approaches, Frick, Iijima & Le Yaouanq (2021)

and Chateauneuf, Qu, Vergopoulos & Ventura (2021) have been recently interested

in the uniqueness of the α-MaxMin representation. In this regard, it is to be empha-

sised that the current representation unambiguously avoids this falsifiability line of

criticism in that all of the sets being determined through the orders �, �c and �d

as the positive polar cones with respe­ to the robust orders, they are uniquely

determined, this uniqueness result extending to the parameter a∗ in the above (as

well as to the subsequent coefficients a∗c and a
∗
d
in Proposition 3.3).

3. An α-MaxMin Representation for

Temporally-Biased Multiple Discounts & the Role

of Banach Limits

3.1 Temporal Bias Axiom

In order to better chara­erize the set Ω, consider axiom G1 which chara­erizes

the impatience and the stability properties of the pre-order �∗.

Axiom A 1. Impatience and T∗−delay stationarity Fix T∗ ≥ 0. Given x ∈ ℓ∞ and a

constant b .

(b✶[0,T∗] ,x) �
∗ b✶ ⇒ (b✶[0,T∗] ,x) �

∗ (b✶[0,T∗+1] ,x) �
∗ b✶.

More precisely, Axiom A1 states that

(i) The case T∗ = 0 corresponds to the Stationarity property:

x �∗ b✶ ⇒ x �∗ (b ,x) �∗ b✶.

(ii) The case T∗ = 1 corresponds to the Quasi-hyperbolic discounting property:

(b ,x) �∗ b✶ ⇒ (b ,x) �∗ (b ,b ,x) �∗ b✶.

12



(iii) The case T∗ ≥ 1 can be considered as a T∗-steps quasi-hyperbolic discounting

property:

(b✶[0,T∗] ,x) �
∗ b✶ ⇒ (b✶[0,T∗] ,x) �

∗ (b✶[0,T∗+1] ,x) �
∗ b✶.

In axiomA1, the first �∗ chara­erizes impatience whereas the second one features

T∗−delay stability. Otherwise stated, if a combination is robustly better than a

constant sequence, it remains robustly better if it is moved forward into the future,

the effe­ according to the order �∗ becoming lower over time.

3.2 Representation of the close future pre-order �∗
c

3.2.1 Fundamental Properties

De�nition 3.1. Let �∗
c be defined as

x �∗
c y if and only if, for every λ ∈ [0,1],z ∈ ℓ∞,λx + (1 − λ)z �c λy + (1 − λ)z .

Using the same arguments as the ones developed for the proof of Lemma 2.1, the

following chara­erization of the robustness order �∗ becomes available: For every

x ,y ∈ ℓ∞, x �∗
c y if and only if, for every z ∈ ℓ∞, x + z �c y + z .

In Drugeon &Ha-Huy (2021a), for any sequences x and z , the value I
(

x [0,T] ,z [T+1,∞[

)

converges to I(x) when T tends to infinity. However, this convergence is not uni-

form: indeed, even-though the distant order of �c is trivial, the order �c does not

necessarily satisfy the usual tail-insensitivity condition of the literature. To ensure

this property, the article considers axiom A2. Axiom A2 is the close future version

of well-known axioms—the continuity at infinity axiom of Chambers & Echenique

(2018) or other axioms in the literature—ensuring a strong version of myopia and,

moreover, the compa­ness of the weights set Ωc when it belongs to ℓ1.

Axiom A 2. For every 0 < c < 1, T0 ≥ 1, there exists T̂(c ,T0) such that, for every

T ≥ T̂(c ),

(

0✶[0,T0−1] ,✶[T0,T0+T̂]
,0✶[T0+T̂+1,∞[

)

�∗
(

0✶[0,T0−1] ,c✶[T0,T] ,0✶[T+1,∞[

)

.
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Under axiom A2, the robust order �c satisfies a tail-insensitivy property and the

weights set Ωc is tight, or weakly compa­ in ℓ1.

Lemma 3.1. Assume that axioms F,G1, and A2 are satisfied. There exists a set Ωc ⊂ ℓ1

that is weakly compa­ and such that, for x ,y ∈ ℓ∞, x �∗
c y if and only if, for every ω ∈ Ωc ,

∞
∑︁

s=0

ωsxs ≥

∞
∑︁

s=0

ωs ys .

3.2.2 The Temporal Bias Representation of �∗
c

UnderA1, one can obtain the detailed chara­erization for the sets of probabilities

Ω. We can begin with the order close future order ≻c .

Axiom A1 provides a chara­erization of the exposed points of the set Ωc . From

Theorem 4 in Amir & Lindentrauss (1968), a weakly compa­ convex set is indeed

the convex hull of its exposed points.

For x ∈ ℓ∞, define C(x) as the supremum of value c ∈ ❘ such that x �∗
c c✶.

Axiom A3. Consider T∗ in Axiom A1 and x ∈ ℓ∞. Let c = C(x). There exists y ∈

ℓ∞ such that x �∗
c

(

c✶[0,T∗] ,y
)

�∗
c c✶ and for every ŷ satisfying C

( (

c✶[0,T∗] , ŷ
) )

= c ,

one has

C

(

1

2
x +

1

2

(

c✶[0,T∗] , ŷ
)

)

> c if and only if C

(

1

2

(

c✶[0,T∗] ,y
)

+
1

2

(

c✶[0,T∗] , ŷ
)

)

> c .

This axiom states the existence of a T∗−delay equivalence. For any sequence x , there

exists a delay sequence of y that is equivalent to x in hedging with another delay

sequence. The chance to improve robustly the situation by hedging with delayed ŷ

is the same for x and for delayed y .

Proposition 3.1. Assume axioms F, G1, and A1, A2.

(i) Stationarity If T∗ = 0, then there exists D ∈]0,1[ such that Ωc is the convex hull

of

{(

1 − δ, (1 − δ)δ, . . . , (1 − δ)δs , . . .
)}

δ∈D
.
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(ii) Quasi-hyperbolic discounting Consider the case T∗ = 1. By adding axiom A3,

then there exists D ∈]0,1[2 such that Ωc is the convex hull of

{

(

1 − δ0,δ0(1 − δ),δ0δ(1 − δ),δ0δ
2(1 − δ), . . . ,δ0(1 − δ)δs , . . .

)

}

(δ0,δ)∈D
.

(iii) T∗−steps quasi hyperbolic discounting Consider the general case forT∗. By adding

axiom A3, there exists D ∈]0,1[T
∗+1 such that Ωc is the convex hull of the proba-

bilities:

{

(

1 − δ0,δ0(1 − δ1),δ0δ1(1 − δ2), . . . ,δ0δ1 · · · δT∗−1(1 − δ), . . .

. . . ,δ0δ1 . . . δT∗−1δ
s (1 − δ), . . .

)

}

(δ0,δ1,...δT∗−1,δ)∈D
.

Chambers & Echenique (2018) instead impose an indifference stationarity axiom,

which supposes that any x which is equivalent to a constant sequence c✶, x is

equivalent to any convex combination between x and
(

c✶[0,T] ,x
)

, for any T. In a

recent work, dealing with multiple temporal biased discount rates, Bich, Dong &

Wigniolle (2021), dealing with the axiomatic system configuration as Chambers

& Echenique (2018), generalise the Invariance to stationary relabelling to a one

period delay ISTAT condition, and obtain a multiple quasi-hyperbolic discounting

representation.

This article supposes another property, namely the axiom A1. The difference be-

tween the two mentioned articles and this one essentially springs from the fa­

that, while Chambers & Echenique (2018) and Bich, Dong & Wigniolle (2021)

work on a complete order � and complete a Min representation of the index func-

tion, this article works on a partial order �∗, corresponding to a larger family of

possible orders and index fun­ions, for example the α−MaxMin representation.

Unsurprisingly, the two different approaches involve two rather different systems

of axioms.
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3.3 Banach Limits and the Representation of the Distant

Future Pre-Order �∗
d

Following the same idea about the robustness order, one can define the robustness

order �∗
d
for the order �d . Since the order �d does not take into account the present

and the close future, the pre-order �∗
d
satisfies the same property.

De�nition 3.2. Let �∗
d
be defined as

x �∗
d y if and only if ∀ λ ∈ [0,1],z ∈ ℓ∞,λx + (1 − λ)z �d λy + (1 − λ)z .

Lemma 3.2. Assume axioms F, G1. There exists a weights set Ωd ⊂ ℓ 1
d
such that x �∗

d
y

if and only if ϕ · x ≥ ϕ · y for every ϕ ∈ Ωd .

Under G1, one can also obtain important properties of the set of charges charac-

terizing the pre-orders �∗
d
. It states that the set Ωd builds from Banach limits. This

recalls a similar property of geometrical discounting that, the comparison between

two sequences does not depend on the chosen date.

Proposition 3.2. Assume axioms F, G1 and A1. Then any charge ϕ ∈ Ωd is Banach

limit: for every x ∈ ℓ∞,

ϕ · x = ϕ · (0,x).

3.4 α−MaxMin Representation and the Robust Sub-Preorders

It is natural to assume that axiom G2 applies separately on the sub orders and the

optimism parameter may differ in the case of close future and distant future ones.

Axiom A4. Prudence in the distant future For any x ∈ ℓ∞ and d ∈ ❘,

(i) If there exist an infinite periods s such that d > xs , then x �
∗
d
d✶.

(ii) If there exist an infinite periods s such that xs > d , then d✶ �
∗
d
x .

Axiom A4 establishes a prudence property for the distant future order �d . The
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utilites stream dominates (or is dominated) by a constant one if and only if its

utility values are all greater (or worse) in a sufficiently long future.

Proposition 3.3 summerizes the main results of this article. While axiom G2 leads

to an α−MaxMin representation, axioms A1 to A4 complete the description of

close and distant future orders.

Proposition 3.3. Assume that axioms F,G1 are satisfied. Assume also that the property

about optimism degree in axiom G2 is satisfied for the close and future orders �c and �d .

(i) There exist the constants a∗c ,a
∗
d
∈ [0,1] such that

Ic (x) = a
∗
c sup
ω∈Ωc

∞
∑︁

s=0

ωsxs + (1 − a∗c ) inf
ω∈Ωc

∞
∑︁

s=0

ωsxs ,

Id (x) = a
∗
d sup
ϕ∈Ωd

ϕ · x + (1 − a∗d ) inf
ϕ∈Ωd

ϕ · x .

(ii) Adding axioms A1, A2 and A3, the close future index fun­ion can be represented

as follows, with D ⊂]0,1[T
∗+1:

Ic (x) = a
∗
c max
(δ0,δ1,··· ,δT∗−1,δ)∈D

[

(1 − δ0)x0 + δ0(1 − δ1)x1 + · · · +

T∗−2
∏

i=0

δi (1 − δT∗−1)xT∗−1

+

T∗−1
∏

i=0

δi (1 − δ)xT∗ +

T∗−1
∏

i=0

δiδ(1 − δ)

∞
∑︁

s=0

δsxT∗+s

]

+ (1 − a∗c ) min
(δ0,δ1,··· ,δT∗−1,δ)∈D

[

(1 − δ0)x0 + δ0(1 − δ1)x1 + · · · +

T∗−2
∏

i=0

δi (1 − δT∗−1)xT∗−1

+

T∗−1
∏

i=0

δi (1 − δ)xT∗ +

T∗−1
∏

i=0

δiδ(1 − δ)

∞
∑︁

s=0

δsxT∗+s

]

.

(iii) Adding axiom A4, the distant future index fun­ion can be represented as:

Id (x) = a
∗
d lim sup

s→∞

xs + (1 − a∗d ) lim inf
s→∞

xs .
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A. Proof of Lemma 2.1

Suppose that x �∗ y , then and for every z , (1/2)x + (1/2)z � (1/2)y + (1/2)z . Recall

that this is equivalent to x + z � y + z . Suppose that for every z , x + z � y + z . Fix

any 0 ≤ λ < 1. Fix any z ∈ ℓ∞. One has

x +
λ

1 − λ
z � y +

λ

1 − λ
z ,

which implies the holding of (1 − λ)x + λz � (1 − λy) + λz , whence the one of

x �∗ y . QED

B. Proof of Proposition 2.1

Define P
∗ as the positive polar cone of P =

{

x ∈ ℓ∞ such that x �∗ 0✶
}

in the dual

space
(

ℓ∞
)∗
:

P
∗ =

{

P ∈ (ℓ∞)
∗ such that P · x ≥ 0 for every x �∗ 0

}

.

Observe that by the very definition of the order �∗, P is convex and separable by

the ve­or −✶, the cone P
∗ does not degenerate to {0}.

For each P ∈ P
∗, define

π(P) =
1

P · ✶
P.

Since x �∗ 0✶ for every x ∈ ℓ∞ satisfying xs ≥ 0 for all s , it follows that P · x ≥ 0 for

every x such that xs ≥ 0 for every s . Let then Ω = π(P). As P · x ≥ 0 if and only

if π(P) · x ≥ 0, x �∗ 0✶ is equivalent to π(P) · x ≥ 0 for every P ∈ P. For every P,

π(P) can be decomposed as π(P) = λcω + λdϕ, where ω = (ω0,ω1, · · · ,ωs , · · · ) ∈ ℓ1

and ϕ ∈ ℓ d
1
is a finite additive measure: considering ϕ as a measure on ℕ, ϕ(A) = 0

for every finite subset of ℕ. From the definition of Ω, for every
(

λcω,λdϕ
)

∈ Ω,

λc
∑∞
s=0 ωs + λdϕ · ✶ = 1. The set Ω can be considered as a set of finite additive

probabilities on ℕ. QED
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C. Proof of Proposition 2.2

Consider x ,y ∈ ℓ∞ satisfying b∗x < b∗x , b∗y < b∗y : it is then to proved that ax = ay .

Take a constant b sufficiently big such that x + b✶ �∗ y . One gets b∗,x+b✶ = b∗x+,

b∗
x+b✶

= b∗x +b and I(x +b✶) = I(x) +b . This implies ax+b✶ = ax , whence ax = ax+b✶ ≤

ay . Take then a constant b′ such that y + b′✶ �∗ x . Relying to the same arguments,

ay = ay+b ′✶ ≤ ax , whence for every x ,y ∈ ℓ∞ such that b∗x < b∗x and b∗y < b∗y , the

satisfa­ion of ax = ay . QED

D. Proof of Lemma 3.1

Relying upon the same arguments as in the proof of Proposition 2.1, there exists a

probability set Ωc ⊂ ℓ1 ⊕ℓ
1
d
such that

x �∗
c y ⇔ (1 − λ)

∞
∑︁

s=0

ωsxs + λϕ · x ≥ (1 − λ)

∞
∑︁

s=0

ωsxs + λϕ · x ,

for every ((1 − λ)ω,λϕ) ∈ Ωc . Suppose that there exists ((1 − λ)ω,λϕ) ∈ Ωc satisfy-

ing λϕ ≠ 0, or equivalently λϕ · ✶ > 0. Fix c such that 1 − λ < c < 1.

From Lemma A2, applying with T0 = 0, there exists a large enough T̂ such that

for T ≥ T̂,

(

✶[0,T̂] ,0✶[T̂+1,∞[

)

�∗
(

c✶[0,T] ,0✶[T+1,∞[

)

.

Whence, for every z ∈ ℓ∞ and from the definition of the pre-order �∗,

(

✶[0,T̂] ,0✶[T̂+1,∞[

)

+
(

z [0,T] ,0✶[T+1,∞[

)

�
(

c✶[0,T] ,0✶[T+1,∞[

)

+
(

z [0,T] ,0✶[T+1,∞[

)

.

This is true for every T ≥ T̂, so that, for every z ,

(

✶[0,T̂] ,0✶[T̂+1,∞[

)

+ z �c c✶ + z .
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This implies that:

(

✶[0,T̂] ,0✶[T̂+1,∞[

)

�∗
c c✶.

Hence,

(

(1 − λ)ω,λϕ
)

·
(

✶[0,T̂] ,0✶[T̂+1,∞[

)

≥ c ,

with a dire­ consequence that 1 − λ ≥ c , a contradi­ion.

To sum up and for every
(

(1−λ),λϕ
)

∈ Ωc , λϕ = 0. Since Ωc is a set of probabilities,

this implies that λ = 0, and Ωc can be considered as a subset of probabilites that

is included in ℓ1. With axiom A2, the set Ωc can be considered as a set of tight

measures, it is therefore compa­ in the weak topology. Otherwise stated, Ωc is

weakly compa­ in ℓ1. QED

E. Proof of Proposition 3.1

The proof of this Proposition begins by a preparation Lemma. In Lemma E.1,

under axiom G1, for each sequence x ∈ ℓ∞, the value of the worst scenario corre-

sponding to (c ∗✶[0,T∗] ,x), evaluated under the order �c , does neither change with

the shift of the sequence to the future nor with a convex combination with this

shift. In another words, beginning from T∗, the robust order satisfies a version of

stability property.

For any x ∈ ℓ∞, recall that C(x) is the supremum value c such that x �∗
c c✶.

Lemma E.1. Assume that axioms F, G1, and A1, A2 are satisfied.

(i) for any constant c , (c✶[0,T∗] ,x) �
∗
c c✶ implies:

(c✶[0,T∗] ,x) �
∗
c (c✶[0,T∗+1] ,x) �

∗
c (c✶[0,T∗+2] ,x) �

∗
c . . . �

∗
c c✶;

(ii) let c ∗ = C((c ∗✶[0,T∗] ,x)), for any T ≥ T∗, C
(

c ∗✶[0,T] ,x
)

= c ∗;

(iii) for any T ≥ T∗, C
(

1
2 (c

∗
✶[0,T∗] ,x) +

1
2

(

c ∗✶[0,T] ,x
)

)

= c ∗.
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Proof. (i) Consider x ∈ ℓ∞, a constant c such that (c✶[0,T∗] ,x) �
∗
c c✶. First, observe

that for c ′ ≤ c , one has (c ′✶[0,T∗] ,x) �
∗
c c

′
✶.

Indeed, for any ω ∈ Ωc , we have c
∑

T∗

s=0 ωs +
∑∞
s=T∗+1 ωsxs−T∗−1 ≥ c . This implies

∞
∑︁

s=T∗+1

ωsxs−T∗−1 ≥ c

∞
∑︁

s=T∗+1

ωs

≥ c ′
∞
∑︁

s=T∗+1

ωs ,

which is equivalent to

c ′
T∗
∑︁

s=0

ωs +

∞
∑︁

s=T∗+1

ωsxs−T∗−1 ≥ c ′.

Since this inequality is verified for any ω ∈ Ωc , the claim is proven.

Fix any c ′ < c and ϵ > 0 such that c ′ + ϵ < c . Hence, ((c ′ + ϵ)✶[0,T∗] ,x) �
∗
c (c ′ + ϵ)✶.

For any ω ∈ Ωc , any T ≥ T∗, one has

c ′
T∗
∑︁

s=0

ωs + ϵ

T∗
∑︁

s=0

ωs +

T
∑︁

s=T∗+1

ωsxs−T∗−1 +

∞
∑︁

s=T+1

ωsxs−T∗−1 ≥ c ′ + ϵ.

This is equivalent to

c ′
T∗
∑︁

s=0

ωs +

T
∑︁

s=T∗+1

ωsxs−T∗−1 +

∞
∑︁

s=T+1

ωsxs−T∗−1 ≥ c ′ + ϵ

∞
∑︁

s=T∗+1

ωs .

From the compa­ness of Ωc in Lemma 3.1, there exists T̂ sufficiently large enough,

such that for every T ≥ T̂, for every ω ∈ Ωc ,

∞
∑︁

s=T+1

ωsxs−T∗−1 − c
′

∞
∑︁

T+1

ωs < ϵ

∞
∑︁

s=T∗+1

ωs .

Hence, for every ω ∈ Ωc :

c ′
T∗
∑︁

s=0

ωs +

T
∑︁

s=T∗+1

ωsxs−T∗−1 +

∞
∑︁

s=T+1

ωsxs−T∗−1 ≥ c ′ +

∞
∑︁

s=T+1

ωsxs−T∗−1 − c
′

∞
∑︁

T+1

ωs ,
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which is equivalent to

c ′
T∗
∑︁

s=0

ωs +

T
∑︁

s=T∗+1

ωsxs−T∗−1 + c
′

∞
∑︁

T+1

ωs ≥ c
′

We have, for T ≥ T̂, with the observation that these two sequences have the same

tail,

(c ′✶[0,T∗] ,x [0,T] ,c
′
✶) �∗ c ′✶.

By axiom A1,

(c ′✶[0,T∗] ,x [0,T] ,c
′
✶) �∗ (c ′✶[0,T∗+1] ,x [0,T] ,c

′
✶) �∗ c ′✶.

Once again, being based on the fa­ that the two sequences have the same tail, it

derives that:

(c ′✶[0,T∗] ,x [0,T] ,c
′
✶) �∗

c (c ′✶[0,T∗+1] ,x [0,T] ,c
′
✶) �∗

c c
′
✶.

Let T converges to infinity:

(c ′✶[0,T∗] ,x) �
∗
c (c ′✶[0,T∗+1] ,x) �

∗
c c

′
✶.

Finally, and as c ′ was arbitrarily sele­ed to be stri­ly smaller than c , by continuity,

it derives that:

(c✶[0,T∗] ,x) �
∗
c (c✶[0,T∗+1] ,x) �

∗
c c✶.

(ii) Let c ∗ = C((c ∗✶[0,T∗] ,x)). From part (i), for T ≥ T∗,

(c ∗✶[0,T∗] ,x) �
∗
c (c ∗✶[0,T] ,x) �

∗
c c

∗
✶.

This implies c ∗ = C
(

c ∗✶[0,T∗] ,x
)

≥ C
(

c ∗✶[0,T] ,x
)

≥ c ∗.
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(iii) Consider the sequences (c ∗✶[0,T∗] ,x) and
(

c ∗✶[0,T] ,x
)

. From (i), it follows that:

(c ∗✶[0,T∗] ,x) +
(

c ∗✶[0,T] ,x
)

�∗
c c

∗
✶ +

(

c ∗✶[0,T] ,x
)

�∗
c 2c

∗
✶,

whence

C

(

1

2
(c ∗✶[0,T∗] ,x) +

1

2
(c ∗✶[0,T] ,x)

)

≥ c ∗.

Fix c > c ∗. From the definition of c ∗, there exists z ∈ ℓ∞ such that c✶ + z ≻c

(c ∗✶[0,T∗] ,x) + z . This in its turn implies that 2c✶ + 2z ≻c 2(c
∗
✶[0,T∗] ,x) + 2z . Hence,

2c✶ + 2z ≻c 2(c
∗
✶[0,T∗] ,x) + 2z

= (c ∗✶[0,T∗] ,x) + (c ∗✶[0,T∗] ,x) + 2z

�c
(

c ∗✶[0,T] ,x
)

+ (c ∗✶[0,T∗] ,x) + 2z .

This implies that 1
2 (c

∗
✶[0,T∗] ,x)+

1
2 (c

∗
✶[0,T] ,x) �

∗
c c✶. Precisely, c > C

(

1
2 (c

∗
✶[0,T∗] ,x) +

1
2 (c

∗
✶[0,T] ,x)

)

.

Since c was chosen arbitrarily bigger than c ∗, it finally holds that

c ∗ ≥ C

(

1

2
(c ∗✶[0,T∗] ,x) +

1

2
(c ∗✶[0,T] ,x)

)

≥ c ∗.

QED

Now, return to the main part of the proof. For each probability ω = (ω0,ω1, · · · ) ∈ ℓ1

and T ≥ 0, let ωT be the probability defined as

ωT
s =

ωT+s
∑∞
s ′=0 ωT+s ′

.

Let ΩT∗
=

{

ωT∗
such that ω ∈ Ωc

}

. Take ω ∈ Ωc such that ωT∗
is an exposed point

of ΩT∗

c . We will establish that ωT∗
= (ωT∗

)T for all T ≥ 0.

By the definition of ω, there exists x ∈ ℓ∞ such that ωT∗
· x < ω̃T∗

· x for every
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ω̃ ∈ Ωc \ {ω}. Let c
∗ = ωT∗

· x . It is obvious that the following inequality is verified:

c ∗ = ω ·
(

c ∗✶[0,T∗] ,x
)

< ω̃ ·
(

c ∗✶[0,T∗] ,x
)

.

This implies that C
( (

c ∗✶[0,T∗] ,x
) )

= c ∗ and
(

c ∗✶[0,T∗] ,x) �
∗
c c

∗
✶. Fix T ≥ 0 and from

Lemma E.1,

C

(

1

2

(

c ∗✶[0,T∗] ,x
)

+
1

2

(

c ∗✶[0,T∗+T] ,x
)

)

= c ∗.

This implies that there exists ω′ such that

c ∗ = ω′·

(

1

2

(

c ∗✶[0,T∗] ,x
)

+
1

2

(

c ∗✶[0,T∗+T] ,x
)

)

= min
ω∈Ωc

ω·

(

1

2

(

c ∗✶[0,T∗] ,x
)

+
1

2

(

c ∗✶[0,T∗+T] ,x
)

)

.

By (i), ω′ ·
(

c ∗✶[0,T∗] ,x
)

≥ c ∗ and ω′ ·
(

c ∗✶[0,T∗+T] ,x
∗)

)

≥ c ∗. It follows that

ω′ ·
(

c ∗✶[0,T∗] ,x
)

= ω′ ·
(

c ∗✶[0,T∗+T] ,x
∗
)

= c ∗.

Hence:

(ω′)T
∗

· x = c ∗,

(ω′)T
∗

·
(

c ∗✶[0,T∗+T] ,x
)

= c ∗.

Since ωT∗
is an exposed point of ΩT∗

c , the first equality implies that (ω′)T
∗
= ωT∗

.

Oserve that ω ·
(

c ∗✶[0,T∗+T] ,x
)

= c ∗ is equivalent to (ωT∗)T ·x = c ∗. Moreover, (ωT∗)T

belongs to ΩT∗

c . Indeed, suppose the contrary: from the weakly compa­ness of

ΩT∗

c , there exists ϵ > 0 such that the interse­ion between ΩT∗

c and the open set
{

ω̃ such that




ω̃ − (ωT∗)T






ℓ1
< ϵ

}

is empty. By the Hahn-Banach theorem, there

exists x′ and a constant c such that ω̃T∗
·x′ > c > ωT ·x′ for every ω ∈ Ωc . This implies

that
(

c✶[0,T∗] ,x
′
)

�∗
c c✶ and therefore that

(

c✶[0,T∗] ,x
′
)

�∗
c

(

c✶[0,T∗+T] ,x
′
)

�∗
c c✶,

whence ω ·
(

c✶[0,T∗+T] ,x
′
)

≥ c , which is equivalent to (ωT∗)T ·x′ ≥ c , a contradi­ion.

The probability (ωT∗)T belongs to ΩT∗

c , and satisfies (ωT∗)T · x = c ∗. From the
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definition of ωT∗
and x , ωT∗

= (ωT∗)T, for every T ≥ 0. It follows that

ωT∗

s =
ωT∗+T+s

∑∞
s ′=0 ωT∗+T+s ′

and ωT∗

s+1 =
ωT∗+T+s+1

∑∞
s ′=0 ωT∗+T+s ′

.

This implies, for every T,s , that:

ωT∗

s+1

ωT∗

s

=
ωT∗+T+s+1

ωT∗+T+s
.

This is equivalent, for some δ > 0 and for every s ≥ 0, to

ωT∗

s+1

ωT∗

s

= δ,

or to ωT∗

s = δsωT∗

0
for every s ≥ 0. Since

∑∞
s=0 ω

T∗

s = 1, it eventually follows that

0 < δ < 1 and ωs =
(

1 − δ
)

δs for s ≥ 0.

To sum up, every exposed point of ΩT∗

c has a geometrical representation. The

set ΩT∗

c being weakly compa­, by Theorem 4 in Amis & Lindenstrauss Amir &

Lindentrauss (1968), ΩT∗

c is the convex hull of its exposed points. This implies the

existence of a subset D∗ ∈]0,1[ such that

ΩT∗

c = convex
{

(1 − δ, (1 − δ)δ, . . . , (1 − δ)δs , . . .)
}

δ∈D∗ .

The part (i), where T∗ = 0 is proven.

Consider the case T∗ ≥ 1. Observe that if ωT∗
is an exposed point of ΩT∗

c , then

ω is an exposed point of Ωc . Indeed, in that case, there exists x ∈ ℓ∞ such that

ωT∗
· x < ω̃T∗

· x for every ω̃ ∈ Ωc \ {ω}. Let c = ωT∗
· x . It is easy to verify that

c = ω ·
(

c✶[0,T∗] ,x)
)

and c < ω̃ ·
(

c✶[0,T∗] ,x). Hence, ω is an exposed point of Ωc .

Consider an exposed point ω of Ωc . We will prove that ωT∗
is an exposed point of

ΩT∗

c .

By the choice of ω, there exists x ∈ ℓ∞ such that ω · x < ω̃ · x , for every ω̃ ∈ Ωc \ {ω}.

Let c = C(x) = ω ·x . Consider the utilities stream y , which is a T−delay equivalence

of x , being defined in the statement of axiom A3. Using the same arguments as in
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the proof of Lemma E.1, we obtain

C

(

1

2
x +

1

2

(

c✶[0,T∗] ,y
)

)

= c , and ω · x = ω ·
(

c✶[0,T∗] ,y
)

= c .

Since C
( (

c✶[0,T∗] ,y
) )

= c , for every ω̃ ∈ Ωc , ω̃ ·
(

c✶[0,T∗] ,y
)

≥ c , which is equivalent

to ω̃T∗
· y ≥ c . We prove that for every exposed point ω̂T∗

of ΩT∗

c that is not ωT∗
,

ω̂T∗
· y > c .

Assume the contrary, and consider such a point ω̂T∗
, which is an exposed point and

ω̂T∗
· y = c . There exists y ′ such that ω̂T∗

· y ′ < ω̃T∗
· y ′, for every ω̃T∗

∈ ΩT∗
\ {ω̂T∗

},

including ωT∗. Let ŷ = y ′ +
(

c − ω̂T∗
· y ′

)

✶. The sequence ŷ satisfies

c = ω̂T∗

· ŷ < ω̃T∗

· ŷ ,

for every ω̃T∗
∈ ΩT∗

\ {ω̂T∗
}, including ω̂T∗

. Moreover, for every ω̃T∗
∈ ΩT∗

c ,

ω̃T∗ ·

(

1

2
y ′ +

1

2
ŷ

)

≥ c ,

with the equality being obtained at ω̃T∗
= ω̂T∗

. One has

C

(

1

2

(

c✶[0,T∗] ,y
)

+
1

2

(

c✶[0,T∗] , ŷ
)

)

= c .

As an opposition to this, the inequality ωT∗
· y ′ > c implies ω ·

(

c✶[0,T∗] ,y
′
)

> c , and

ω ·

(

1

2
x +

1

2

(

c✶[0,T∗] , ŷ
)

)

> c .

For any ω̃ ∈ Ωc \ {ω}, ω̃ · x > c . Hence, the satisfa­ion of the same stri­ inequality

ω̃

(

1

2
x +

1

2

(

c✶[0,T∗] , ŷ
)

)

=
1

2
ω̃ · x +

1

2
ω̃ ·

(

c✶[0,T∗] , ŷ
)

> c .

The compa­ness of Ωc implies that C

(

1
2x +

1
2

(

c✶[0,T∗] , ŷ
)

)

> c , a contradi­ion.

This contradi­ion ensures that for every ω̂T∗
∈ ΩT∗

c \{ωT∗
}, one has ω̂T∗

·y > c . This

implies ωT∗
is an exposed point of ΩT∗

c , and has a geometrical representation with
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some discount rate δ. It is easy to find δ0,δ1, . . . ,δT∗−1 such that ω0 = 1 − δ0,ω1 =

δ0(1− δ1), . . . ,ωT∗−1 = δ0δ1 . . . δ
T∗−1(1− δ) and ωT+s = δ0δ1 . . . δT∗−1δ× δs (1− δ), for

s ≥ 0.

The set Ωc being the convex hull of its exposed points, the proof is completed.

QED

F. Proof of Lemma 3.2

Define P
d the set of x ∈ ℓ∞ such that x �∗

d
0✶, denote by P

d∗ its positive polar

cone and let

Ωd =

{

1

P · ✶
P with P ∈ P

d∗

}

.

It is first claimed that, for all
(

(1−λ)ω,λϕ
)

∈ Ωd , (1−λ)ω = 0. Suppose the opposite.

Then there exists T such that ωT > 0. Take a constant c > 0 such that (1−λ)ωTc > λ

and let x =
(

−c✶[0,T] ,✶
)

. For every z ∈ ℓ∞ one has

Id (x + z ) = Id (✶ + z )

= 1 + Id (z )

> Id (z ),

whence x �∗
d
0✶. Then

(1 − λ)ω · x + λϕ · x ≥ 0,

which implies −(1 − λ)ωTc + λ ≥ 0, a contradi­ion. Whence the satisfa­ion of

(1 − λ)ω = 0, which also implies the holding of λ = 1. To sum up, the weights set

Ωd can therefore be considered as a subset of charges belonging to ℓ 1
d
. QED

G. Proof of Proposition 3.2

Fix d ≤ infs≥0 xs . Obviously, for every T ≥ 0, (d✶[0,T] ,x [T+1,∞)) �∗ d✶. It follows
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that

(

d✶[0,T] ,x [T+1,∞)

)

�∗
(

d✶[0,T+1] ,x [T+1,∞)

)

�∗ d✶.

As a consequence of this, for every z ∈ ℓ∞,

(

d✶[0,T] ,x [T+1,∞)

)

+ z �
(

d✶[0,T+1] ,x [T+1,∞)

)

+ z .

Rewritting this inequality, for every T ≥ 0,

(

(d + z )✶[0,T] ,xT+1 + zT+1,xT+2 + zT+2, . . .
)

�
(

(d + z )✶[0,T] ,d + zT+1,xT+1 + zT+2,xT+2 + zT+3, . . .
)

.

From the very definition of the distant future order �d , this implies

x + z �d
(

d ,x
)

+ z .

The inequality being verified for every z ∈ ℓ∞, it follows that

x �∗
d

(

d ,x
)

.

Recall that for every charge ϕ belonging to Ωd , ϕ ·
(

d ,x
)

= ϕ ·
(

0,x
)

, one gets

ϕ · x ≥ ϕ ·
(

0,x
)

.

By applying the same arguments with −x in the place of x , and d < − sups≥0 xs , it

follows that ϕ · (−x) ≥ ϕ ·
(

0,−x
)

. Hence,

ϕ · x = ϕ ·
(

0,x
)

.

H. Proof of Proposition 3.3

To prove part (i), one can use the same arguments as in the proof of Proposition

2.2. Part (ii) is a dire­ consequence of Propositions 2.2, 3.1 and 3.2.
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Consider part (iii). First, observe that for every charge ϕ ∈ Ωd , x ∈ ℓ∞, one has

lim inf
s→∞

xs ≤ ϕ · x ≤ lim sup
s→∞

xs .

AxiomA4 implies that infϕ∈Ωd ϕ·x = lim infs→∞ xs and supϕ∈Ωd ϕ·x = lim sups→∞ xs .

Part (iii) is then a dire­ consequence of (i).
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