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Abstract

I develop the notion of evolutionary stability of behavioural rules in a game-theoretic

setting. Each individual chooses a strategy, possibly taking into account the game’s

history, and the manner in which he chooses his strategy is encapsulated by a behavioural

rule. The payoffs obtained by individuals following a particular behavioural rule determine

that rule’s fitness. A population is stable if whenever some individuals from an incumbent

behavioural rule mutate and follow another behavioural rule, the fitness of each incumbent

behavioural rule exceeds that of the mutant behavioural rule. I show that any population

comprised of more than one behavioural rule is not stable, and present necessary and

sufficient conditions for stability of a population comprised of a single behavioural rule.
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1 Introduction

A basic tenet of evolution is the selection of the fitter at the expense of the less fit. In the

context of decision-making in game-theoretic strategic situations, this principle has tradition-

ally been expressed in terms of evolutionary stable strategies (abbreviated as ESS). A game

is a representation of a strategic situation that is defined by three elements: (i) the set of

players, (ii) each player’s strategy set, which contains the feasible strategies that may chosen

by the player, and (iii) a payoff function that describes the payoff received by each player

corresponding to each combination of strategies chosen by the players. A particular strategy

(or a particular mix of strategies) is said to be evolutionarily stable if it is able to withstand

any mutant strategy in the sense of being fitter (i.e. obtaining a higher payoff) than the mu-

tant strategy. The interpretation is that if an ESS is adopted by a population of players, then

it is not possible for any other mutant strategy to invade the population.

In contrast to the ESS framework where each individual is associated with a particular

strategy, I forward a notion of evolutionary stability where each individual is associated with

a behavioural rule, and stability is based on the fitness of behavioural rules. An individual’s

behavioural rule determines his strategy choice, possibly taking into consideration the manner

in which the game has unfolded in the past. Examples of behavioural rules include playing a

best-response to some empirical distribution of strategies played in the past, imitation of most

successful/popular strategies, always playing a fixed strategy (as in the ESS framework), or

choosing strategies from the strategy set according to some probability distribution. I define

a particular behavioural rule/combination of behavioural rules to be evolutionarily stable if

the fitness exceeds that of any mutant behavioural rule – the interpretation is that a stable

population cannot be invaded by any other mutant behavioural rule.

I show that if there is more than one behavioural rule in the population, then the popu-

lation is unstable. Thus, a population may be stable only if all individuals choose according

to the same behavioural rule, and I show that in this event, the population is stable at a

particular strategy profile only if it leads to all individuals choosing an identical strategy.

Furthermore, the characteristic of this identical strategy is that it must be an pure evolu-

tionary stable strategy, i.e. it must be best-response to itself (or, alternatively stated, it must

support a symmetric pure strategy Nash equilibrium), and in case there are alternative best

responses to this strategy, then this strategy must be a better-response to the alternative best

response than the latter is to itself. I also present a sufficient condition for stability that is

‘reasonably’ close to the necessary condition described above.

Evidently, this paper generalises the ESS approach pioneered by Smith and Price (1973);

particularly useful expositions that expound on the properties and applicability of the ESS

framework include Samuelson (1997), Sandholm (2010), andWeibull (1995). While Khan (2021)

uses the evolutionary stability of behavioural rules approach in the specific context of bar-
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gaining game, in this paper, I develop this framework for general games, and present general

results about the evolutionary stability of behavioural rules. Existing papers that examine

the interaction between individuals who use different behavioural rules include Kaniovski,

Kryazhimskii and Young (2000), Juang (2002), Josephson (2009) and Khan (2021); however,

the aim of these papers is not to study the stability properties of the behavioural rules but

rather, to examine the long-run outcomes that obtain when individuals display heterogeneity

in their decision-making process.

2 The Framework

The strategic situation under consideration is a two player game G where both players have

the same finite strategy set of pure strategies S = {s1, . . . , sP }. The power set of S (i.e. the

set of all the non-empty subsets of S) is denoted by P(S). The payoff function π : S× S → R

maps from the set of pure strategy combinations that can be used by two players to the real

line. The payoff received by playing a pure strategy si ∈ S against a pure strategy sj ∈ S is

denoted by π(si, sj).

A strategy sj ∈ S is a best-response to si ∈ S if, for all sk ∈ S, the inequality π(sj , si) ≥

π(sk, si) holds. The set of best-responses to si is denoted by BR(si), i.e. BR(si) = {sj ∈ S :

for all sk ∈ S, π(sj , si) ≥ π(sk, si)}.

A strategy combination (si, sj) is a pure strategy Nash equilibrium of the game G if si ∈

BR(sj) and sj ∈ BR(si). That is, in a Nash equilibrium, none of the two players experience

an improvement in the payoff from a unilateral deviation from the chosen strategy. The

strategy combination (si, si) is a symmetric pure strategy Nash equilibrium if si ∈ BR(si).

A strategy si ∈ S is a pure strategy evolutionary stable strategy in the game G if (i)

si ∈ BR(si) holds, and (ii) for any sj ∈ BR(si) \ {si}, the inequality π(si, sj) > π(sj , sj)

holds. Thus, a pure strategy evolutionary stable strategy is always a symmetric pure Nash

equilibrium.

The game is said to be a generic game if, for any pair of strategies si and sj that are

different from each other, at most one of the following two equalities hold: (i) π(si, si) =

π(sj , si) and (ii) π(si, sj) = π(sj , sj). The implication is that in generic games, if one considers

the set of mixed strategies such that pi + pj = 1, then either: (i) exactly one of si and sj is

always a best-response to each mixed strategy in this set, or (ii) there exists x ∈ (0, 1) such

that exactly one of si and sj is always a best-response to each strategy in the subset of mixed

strategies where pi ≤ x and pi + pj = 1, while the other strategy is always a best-response

to each strategy in this set of mixed strategies where pi ≥ x and pi + pj = 1. That is, if

the game is generic, either there exists x̂ ∈ [0, 1] such that xπ(si, si) + (1 − x)π(si, sj) >

xπ(sj , si) + (1 − x)π(sj , sj) holds for all x ∈ [x̂, 1), or there exists x̃ ∈ [0, 1] such that

xπ(si, si) + (1− x)π(si, sj) < xπ(sj , si) + (1− x)π(sj , sj) holds either for all x ∈ (0, x̃]. The

example below illustrates a game that is not generic.
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Example 1. The strategy set of the game below contains three strategies, i.e. S = {s1, s2, s3}.

s1 s2 s3

s1 2, 2 1, 2 0, 0
s2 2, 1 1, 1 0, 0
s3 0, 0 0, 0 3, 3

Figure 1

This game is not generic because π(s1, s1) = π(s2, s1) = 2, and π(s1, s2) = π(s2, s2) = 1. Let p

denote any mixed strategy such that p1+p2 = 1. Then, π(s1, p) = π(s2, p) = 2 p1+p2 = 1+p1;

so, both s1 and s2 are best-responses to any such mixed strategy. Hence, none of the two

conditions described above are met. �

The generic game G is played by individuals in a population of unit mass, and I suppose

that the individuals are uniformly distributed over the unit interval [0, 1]. Each individual is

identified by his respective location on the unit interval. Time is discrete, and in each time

period, each player plays the two-player game G in a pairwise manner with all other players.

Each individual chooses the same pure strategy from S for all his interactions in a particular

period. This strategic interaction occurs in every time period.

The relative frequency of the individuals in the population playing a pure strategy si ∈ S

in time period t is denoted by f i
t . The vector of relative frequencies with which each strategy is

played in the population, and in a set A of individuals in the population, in period t is denoted

by ft and fA,t, respectively. I refer to ft and fA,t as the period t population strategy profile

and the period t strategy profile in the set A, respectively. In order to simplify notation, I

will drop the time subscript in the notation whenever it is convenient to do, and no confusion

arises from doing so.

The pure strategy used by player i ∈ [0, 1] in time period t is represented by si,t. The

payoff received by player i from playing the game with another player j is π(si,t, sj,t). Since

each player plays the game with all other players in turn in a pairwise manner, the total

payoff of player i in time period t on choosing si,t when the strategy profile in the population

is ft is given by πi,t = ΣN
j=1f

j
t π(si,t, s

j). The period t payoff profile πt is the vector of relative

frequencies of payoffs received by the players in the population in time period t. The entire

history of strategy profiles and payoff profiles of each and every period till period t is denoted

by f1→t and π1→t.

The strategy chosen by the individuals in the very first period is specified exogenously,

and I describe the manner in which players choose their respective strategies in period t+ 1

for any integer valued t > 1. Player i is associated with a behavioural rule that maps from the

history of strategy profiles and payoff profiles into a subset of the identical finite set of pure

strategies S. This latter set is called the period t+ 1 response set of player i and denoted by

Ri(f1→t, π1→t). The strategy chosen by player i in period t+1 belongs to Ri(f1→t, π1→t), and
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each strategy in this set has positive probability of being chosen, and hence, is called a feasible

period t + 1 strategy for player i. A strategy profile (i.e. the vector of relative frequency of

strategies in S) f ′ that can be generated by taking one feasible period t+1 strategy for each

individual in [0, 1] is termed as a feasible period t+ 1 strategy profile. The set of all feasible

period t+ 1 strategy profiles is denoted by ∆t+1.

The collection of behavioural rules in use by the players in the population in the game G is

denoted by R = {R1, . . . , RN}. I clarify that I use lower case subscripts (such as Ri) to refer

to the behavioural rule of the player located at point i in the interval [0, 1], and upper case

superscripts (such as RI) to denote a particular incumbent behavioural rule in the population

without any reference to the players using that rule. A population is said to be uniform at

time period t if the set of feasible period t + 1 strategies is the same for all individuals, and

it is diverse at time period t otherwise. So, a population is uniform at time period t as long

as the response sets of all individuals are identical even though all of them may not follow

the same behavioural rule. Thus, a sufficient (necessary) condition for a uniform (diverse)

population at is that all individuals (not all individuals) in the population follow the same

rule. Some examples of behavioural rules are as follows:

(i) Best-response: In period t+1, an individual plays a best response to some strategy profile

– this may be the strategy profile till date (i.e. f1→t), or the strategy profile of the previous

period (i.e. ft), or the strategy profile of some selected time periods.

(ii) Imitation: An individual plays the strategy of the individual who received the highest

payoff in some past period, or the highest average payoff in some selected time periods.

(iii) Stochastic play: An individual chooses a strategy from the strategy set according to

some probability distribution.

(iv) Fixed strategy choice: An individual always plays the same strategy in all time periods.

For each behavioural rule RI ∈ R, SoRI
t and | SoRI

t | are the set of players and the

relative frequency of the players in the population who play as per the behavioural rule RI

in time period t, respectively. The period t strategy profile of the individuals in the set

SoRI
t , and their payoff profile, is given by f I

t , and πI
t , respectively. A strategy profile, i.e.

the vector of relative frequency of strategies in S, f ′ that can be generated by taking one

feasible period t+1 strategy for each individual in SoRI
t is referred to as a feasible period t+1

strategy profile for RI , and ∆I
t+1 denotes the set of all feasible period t+ 1 strategy profiles

for RI . The example below illustrates the notion of feasible period t+ 1 strategy profiles.

Example 2. Consider the game below. The strategy set comprises of three strategies s1, s2,

and s3, and the payoff function is depicted via the payoff matrix below.
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s1 s2 s3

s1 1, 1 5, 0 4, 0
s2 0, 5 2, 2 4, 0
s3 0, 4 0, 4 3, 3

Figure 2

Suppose that all individuals play strategy s3 in the very first time period so that the pop-

ulation level strategy profile is (0, 0, 1). Also suppose that the population has the following

composition in terms of the behavioural rule: each individual in the interval [0, 0.5) plays a

best-response to the population level strategy profile in the previous period, while each indi-

vidual in the interval [0.5, 1] imitates the strategy that has yielded the highest payoff in the

previous time period. Then, in time period 2, the response set of each individual in the inter-

val [0, 0.5) is {s1, s2}, and the response set of each individual in the interval [0.5, 1] is {s3}. As

a result, the feasible period 2 strategy profiles for the sub-population of best-responders and

imitators are (x, 1− x, 0) where x takes any value in [0, 1], and [0, 0, 1], respectively. Finally,

the feasible period 2 strategy profile for the population is [y, 0.5 − y, 0.5] where y takes any

value between [0, 0.5]. �

The fitness of each behavioural rule RI ∈ R in time period t is determined by a fitness

function F I
t that maps from the period t payoff profile πt to the set of real numbers. Thus,

F I
t (πt) is the fitness of the behavioural rule RI in time period t, and this function may differ

both across time periods and across behavioural rules. The only restriction I impose is that if,

in time period t, the payoff distribution of one particular behavioural rule (strictly) first order

stochastically dominates the payoff distribution of another behavioural rule, then the former

rule is (fitter) at least as fit as the latter in time period t. Formally, let πI
t (x) and πJ

t (x)

denote the cumulative distribution function of the period t payoffs received by the individuals

following the behavioural rules RI and RJ , respectively; if πI
t (x) ≤ πJ

t (x) holds for each real

number x, then F I
t (πt) ≥ F J

t (πt); further, if π
I
t (x) < πJ

t (x) holds for some real number x,

then F I
t (πt) > F J

t (πt)

The criterion for evolutionary stability of behavioural rules that I define next is based on

the fitness of behavioural rules.

3 Evolutionary Stability of Behavioural Rules

The stability criterion compares the fitness of each incumbent behavioural rule in the pop-

ulation to the fitness of a mutant behavioural rule. In this context, suppose that at the

very beginning of time period t + 1, a strict subset of individuals who follow one particular

behavioural rule (say RI) mutate, and these players adopt a mutant behavioural rule (say

RI′ , with RI′ 6= RI). The mutating behavioural rule is called the source behavioural rule,
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the mass of mutating individuals is denoted by ε where ε <| SoRI
t |, and the set of mutating

individuals is denoted by Mε.

I will now define the concepts of an effective mutation and a feasible ε effectively mutated

strategy profile. Take the set of individuals Mε ⊂ SoRI
t who mutate at the beginning of

time period t + 1. Now, for each period t + 1 feasible strategy profile of RI , consider the

corresponding feasible strategy profile of the individuals in this subset Mε. That is, for

each g ∈ ∆I
t+1, consider the strategy profile gMε

. This strategy profile gMε
represents the

counterfactual strategy profile that would be chosen by the individuals in the set Mε at the

feasible period t + 1 strategy profile g of the rule RI in the absence of the mutation. The

mutation in the behavioural rule RI is effective at the strategy profile g ∈ ∆I
t+1 if the actual

strategy profile fM,t+1 played by the mutants is different from gMε
.

A strategy profile f is a feasible ε effectively mutated period t+ 1 strategy profile if there

exists g ∈ ∆I
t+1 for some incumbent behavioural rule RI ∈ R and there exists some strict

subset Mε ⊂ SoRI
t with mass ε ∈ (0, | SoRI

t |) such that (i) gMε
6= fMε

, (ii) gSoRI
t
\Mε

=

fSoRI
t
\Mε

, and (iii) fJ ∈ ∆J
t+1 for all other incumbent behavioural rules RJ ∈ R \ {RI}.

Condition (i) in the definition above states that the mutation is effective, i.e. the strategy

profile played by the mutating individuals is not the same as the counterfactual strategy profile

that these individuals would play if they did not mutate. Condition (ii) and condition (iii)

state that all other individuals in the population play a feasible period t + 1 strategy as

per their behavioural rule. This definition captures the feature that the mutation must be

meaningful in the sense of causing a difference in the strategy profile of the set of mutating

individuals, and so the strategy profile post-mutation is not an exact copy of the strategy

profile had the mutation not taken place. The notion of stability of behavioural rules that I

present next is based on a comparison of fitness of behavioural rules in feasible ε effectively

mutated strategy profiles.

A population of individuals with behavioural rules in a set R is stable at period t if, for

each behavioural rule RI ∈ R, there exists ε̄I ∈ (0, | SoRI
t |) such that whenever any subset

set of mass ε ∈ (0, ε̄I ] of individuals in SoRI
t mutate to adopt another mutant behavioural

rule RI′ , then the inequality F I′

t+1(πt+1) < F J
t+1(πt+1) holds for all incumbent behavioural

rules RJ ∈ R in each feasible ε effectively mutated period t+ 1 strategy profile.

Thus, stability requires that in each feasible ε effectively mutated period t + 1 strategy

profile that may be realised in period t+ 1, each incumbent behavioural rule should be fitter

than any mutant behavioural rule. The notion of external stability is permissive in the sense

that even though the framework of behavioural rules is dynamic, and involves the profile of

strategies potentially changing over time, I only require each behavioural rule to be fitter

than any mutant behavioural rule in the first time period in which the mutant behavioural

rule appears in the population.

7



4 Results

I will first show that a stable diverse population does not exist by proving that in any such

population, there exists a mutant behavioural rule that is at least as fit as an incumbent

behavioural rule.

Proposition 1. A stable diverse population of behavioural rules does not exist.

Proof. If the population in period t is diverse, then there exist two different behavioural

rules RI and RJ in the population such that the period t + 1 response set of these two

behavioural rules is not identical. So, there exists a feasible period t + 1 strategy profile

where individuals who follow the behavioural rule RI and RJ choose two different strategies,

say si and sj , respectively. I do not specify the period t + 1 strategy choice of individuals

who follow the other behavioural rules (if any). Now, let ε̄ be any number in the interval

(0, | SoRI
t |), and suppose that in period t+ 1, any measure ε ∈ (0, ε̄] of the individuals who

follow the behavioural rule RI mutate. Also suppose sj is in the period t+1 response set of the

mutant behavioural rule and each mutant individual chooses sj . It follows that the resultant

period t + 1 is a feasible ε effectively mutated strategy profile. In this time period, each

mutant individual obtains a payoff that is identical to the payoff obtained by each individual

who follows the rule RJ . As a result, the cumulative distribution of the payoffs of the mutant

behavioural rule is identical to that of RJ . Hence, the fitness of the mutant behavioural rule

equals the fitness of RJ , and so, the population is not stable at time period t. This implies

that there does not exist any stable diverse population. �

The instability of diverse populations leads me to now analyse the stability of a uniform

population. Proposition 3, and Proposition 4, below present a necessary condition, and a

sufficient condition, respectively, for stability of the uniform population at time period t. I

show that a necessary condition for stability in time period t is that there must be a unique

feasible period t+ 1 strategy profile, and that the strategy played by each individual in this

strategy profile is an ESS of G. A strengthening of this condition is also sufficient for stability

of the population at time period t. After presenting the formal proposition and its proof, I

discuss that the reason for the gap between the necessary and sufficient condition is due to

the possibility of the response set of the mutant behavioural rule being non-singleton, which

implies that the mutated strategy profile may involve multiple mutant strategies rather than

just one mutant strategy.

Proposition 2. Suppose that a uniform population is stable at time period t. Then, there

exists only one feasible period t+ 1 strategy profile, and this strategy profile must represent a

pure strategy ESS. That is, in period t+ 1, all individuals in the population play an identical

strategy si such that: (i) si ∈ BR(si), and (ii) for each sj ∈ BR(si) \ {si}, the inequality

π(si, sj) > π(sj , sj) holds.
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Proof. In Step 1, I will show that if the population is stable at time period t, then there

must be only one feasible period t+1 strategy profile. In Step 2 and Step 3, I will demonstrate

that in this strategy profile, the conditions (i) and (ii) in the above proposition must hold.

Step 1. Suppose that there exists more than one feasible period t + 1 strategy profile. This

can occur if and only if there exists an incumbent individual who has at least two period t+1

feasible strategies; since all incumbent individuals are identical, all individuals have the same

non-singleton period t+1 response set containing two different strategies, say si and sj . Then,

there is a feasible period t+ 1 strategy profile given by f i = x and f j = 1− x, where x takes

any value in the interval [0, 1]. In this strategy profile, the payoff obtained by individuals

playing si and sj is xπ(si, si) + (1− x)π(si, sj) and xπ(sj , si) + (1− x)π(sj , sj).

Since the game is generic, there exists x̂ ∈ [0, 1] such that xπ(si, si) + (1 − x)π(si, sj) >

xπ(sj , si) + (1− x)π(sj , sj) holds either for all x ∈ [x̂, 1), or there exists x̃ ∈ [0, 1] such that

xπ(si, si) + (1− x)π(si, sj) < xπ(sj , si) + (1− x)π(sj , sj) holds either for all x ∈ (0, x̃].

First, suppose that such a x̂ exists, and that in time period t + 1, measure f i ∈ (x̂, 1)

of the population choose si while the complementary 1 − f i mass of individuals would have

chosen sj but for the event that some measure (0, f i− x̂) of these individuals mutate and play

si. That is, in period t+ 1, I set ε̄ = x̂− f i, and a measure ǫ ∈ (0, ε̄] of the individuals who

would have chosen sj mutate and choose si; a mass f i of the incumbent individuals choose

si and the remaining 1 − f i − ε incumbent individuals choose sj . Hence, this represents a

feasible ε effectively mutated strategy profile. In this strategy profile, the measure of the

individuals playing si exceeds x̂. So, the payoff obtained from playing si is greater than that

of playing sj . Since each mutant individual plays si but some of the incumbent individuals

play sj , the cumulative distribution of payoffs of the mutant behavioural rule strictly first

order stochastically dominates that of the incumbent behavioural rule. Consequently, the

mutant behavioural rule is fitter than the incumbent behavioural rule, and the population is

not stable at time period t.

An analogous reasoning establishes that the population is also not stable if x̃ exists but

x̂ does not exist. This establishes that there can only feasible period t + 1 strategy profile.

Let si be the strategy chosen by each individual in this time period. In Step 2 and Step 3, I

argue for condition (i) and condition (ii) in the proposition, respectively.

Step 2. Suppose that si 6∈ BR(si). Then, there exists sj ∈ S, with sj 6= si, such that

π(sj , si) > π(si, si). As a result, there exists ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄], the inequal-

ity (1− ε)π(sj , si) + επ(sj , sj) > (1− ε)π(si, si) + επ(si, sj) holds. Therefore, if any measure

ε ∈ [0, ε̄) of the incumbent individuals mutate in period t + 1, and the mutant behavioural

rule leads them to play sj , then each mutant receives a payoff of (1− ε)π(sj , si) + επ(sj , sj)

while each incumbent receives a payoff of (1− ε)π(si, si) + επ(si, sj). So, the cumulative dis-

tribution of payoffs of the mutant behavioural rule strictly first order stochastically dominates
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that of the incumbent behavioural rule. Hence, the mutant behavioural rule is fitter than the

incumbent behavioural rule, and the population is not stable at time period t. Thus, if the

population is stable at time period t, then it must be that si ∈ BR(si).

Step 3. In order to establish condition (ii) of the proposition, suppose that a measure ε of

the population mutate, and each mutant plays sj , where sj 6= si. Let the resulting strategy

profile be denoted by f . The payoff obtained by each incumbent individual and each mutant

individual is (1−ε)π(si, si)+επ(si, sj) and (1−ε)π(sj , si)+επ(sj , sj), respectively. Since the

population is stable at time period t, the fitness of incumbent behavioural rule exceeds that of

the mutant behavioural rule. Hence, if sj ∈ BR(si), then it must be that π(si, sj) > π(sj , sj)

holds. This proves the statement of the proposition. �

Proposition 3. A uniform population is stable at time period t if there is only one feasible

period t + 1 strategy profile where all individuals in the population play an identical strategy

si such that: (i) si ∈ BR(si), and (ii) for all sj , sk ∈ BR(si) \ {si}, the inequality π(si, sk) >

π(sj , sk) holds.

Proof. Consider a time period t where the conditions of the propositions hold. In time

period t+ 1, suppose that a measure ε > 0 of the individuals mutate to another behavioural

rule. Each incumbent individual chooses si in period t+1. Hence, in any ε effectively mutated

strategy profile, a positive measure of the mutant individuals choose a strategy other than si.

So, let ν ∈ [0, ε) denote the measure of the mutant sub-population who choose si, and let f

denote any ε effectively mutated period t+ 1 strategy profile.

The payoff received by each incumbent individual, and a mutant individual choosing sj

(where sj 6= si), in the strategy profile f equals (1 − ε + ν)π(si, si) + Σk 6=if
kπ(si, sk) and

(1− ε+ ν)π(sj , si) + Σk 6=if
kπ(sj , sk), where Σk 6=if

k = ε− ν. Whenever ε small enough, the

inequality (1− ε+ ν)(π(si, si)− π(sj , si)) +Σk 6=if
k(π(si, sk)− π(sj , sk)) > 0 holds under the

conditions of the proposition for all strategy profiles f with f i = 1−ε+ν and Σk 6=if
k = ε−ν.

That is, in the strategy profile f , the payoff received by playing each strategy sj that is

different from si is lower than the payoff received by playing the strategy si. So, the cumulative

distribution of payoffs of the incumbent behavioural rule strictly first order dominates that of

the mutant behavioural rule. Hence, the incumbent behavioural rule is fitter than the mutant

behavioural rule, and the population is stable at time period t. �

A comparison of the two propositions above shows that condition (ii) is stronger in case of

sufficiency than in case of necessity in a very revealing manner. To convey the intuition behind

this difference succinctly, consider the specific case where there exist two different strategies

sj , sk ∈ BR(si) \ {si}. Necessity requires π(si, sj) > π(sj , sj) and π(si, sk) > π(sk, sk) while

sufficiency requires π(si, sj) > π(sk, sj) and π(si, sk) > π(sj , sk) in addition. The reason is

that both sj and sk may be feasible period t+1 strategies for the mutant behavioural rule. So,
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if a measure ε of the incumbent individuals mutate, and a measure ν and ε− ν of the mutant

individuals choose sj and sk respectively, then the payoff received from playing si, sj , and sk

equals (1−ε)π(si, si)+νπ(si, sj)+(ε−ν)π(si, sk), (1−ε)π(sj , si)+νπ(sj , sj)+(ε−ν)π(sj , sk),

and (1− ε)π(sk, si) + νπ(sk, sj) + (ε− ν)π(sk, sk), respectively. Since sj , sk ∈ BR(si) \ {si},

one obtains (1 − ε)π(si, si) = (1 − ε)π(sj , si) = (1 − ε)π(sj , si). So, if π(si, sj) > π(sk, sj)

and π(si, sk) > π(sj , sk) do not hold, and in particular, if π(si, sj) < π(sk, sj) and π(si, sk) <

π(sj , sk) hold, then it might be possible that the payoff obtained from playing si is lower

than the payoff obtained from playing sj or sk. Then, depending on the fitness function –

which has considerable flexibility – the mutant behavioural rule may be at least as fit as the

incumbent behavioural rule thereby resulting in instability of the population.

The corollary below, which states the relationship between evolutionary stability of be-

havioural rules, ESS, population level Nash equilibrium, and symmetric Nash equilibrium,

follows directly from the earlier propositions.

Corollary 1. Suppose that a population is stable in terms of the behavioural rules in time

period t. Then, the strategy profile in time period t + 1 must be a symmetric pure strategy

population level Nash equilibrium as well.

The converse of Proposition 3, and the corollary above, is not true in general, and this is

illustrated by the example below – this example presents a game where an ESS in pure

strategies exists but there does not exists any population that is evolutionary stable in terms

of behavioural rules.

Example 3. Consider the game below. The only pure strategy symmetric Nash equilibrium

of this game is (s1, s1), and it is easily verified that this is also a pure strategy ESS.

s1 s2 s3

s1 3, 3 2, 3 3, 3
s2 3, 2 1, 1 5, 5
s3 3, 3 5, 5 1, 1

Figure 3

However, I will argue that there does not exist any behavioural rule that is stable at any time

period t. By Proposition 3, a population is stable at time period t only if the population is

uniform and the only feasible period t+1 strategy profile is (p1, p2, p3) = (1, 0, 0). So, suppose

that a measure ε of the individuals mutate to another behavioural rule, and measure ε
2
of the

mutant individuals choose s2 while the remaining measure ε
2
of the mutant individuals choose

s3. Then, in period t + 1, the payoff obtained by each incumbent individual, each mutant

individual who chooses s2, and each mutant individual who plays s3 is 3(1−ε)+2 ε
2
+3 ε

2
= 3− ε

2
,

3(1− ε) + ε
2
+ 5 ε

2
= 3, and 3(1− ε) + 5 ε

2
+ ε

2
= 3. Hence, for any positive ε, no matter how

small, the payoff received by each mutant individual exceeds the payoff received by each
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incumbent individual. As a result, the cumulative distribution of period t+ 1 payoffs of the

mutant behavioural rule strictly first order stochastically dominates that of the incumbent

behavioural rule. Consequently, the mutant behavioural rule is fitter than the incumbent

behavioural rule in period t+ 1, and so, the population is not stable in period t. �

5 Conclusion

In this paper, I forward and develop a framework for evolutionary stability of a population,

where the stability is conceptualised in terms of a behavioural rule. An individual’s action

in a strategic situation is a response to the manner in which the game has evolved in the

past, and the manner in which an individual responds is captured by a behavioural rule.

Therefore, the population can be thought of as being comprised of a set of behavioural

rules, and this set of behavioural rules is stable if it is able to withstand the invasion by

any other mutant behavioural rule in the sense of being fitter than the mutant rule. This

represents a substantial generalisation over the traditional concept of evolutionary stability

of strategies. I show that any population which comprises of more than one incumbent

behavioural rule is unstable. Next, I present fairly close necessary and sufficient conditions

for stability of a population comprising of a single behaviorial rule, and show the relationship

between evolutionary stability of the behavioural rule on the one hand and evolutionary

stability of strategies on the other hand.
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