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Abstract

This paper provides methods for flexibly capturing unobservable heterogeneity from

longitudinal data in the context of an exponential family of distributions. The group mem-

berships of individual units are left unspecified, and their heterogeneity is influenced by

group-specific unobservable structures, as well as heterogeneous regression coefficients.

We discuss a computationally efficient estimation method and derive the corresponding

asymptotic theory. The established asymptotic theory includes verifying the uniform con-

sistency of the estimated group membership. To test the heterogeneous regression coeffi-

cients within groups, we propose the Swamy-type test, which considers unobserved hetero-

geneity. We apply the proposed method to study the market structure of the taxi industry

in New York City. Our method reveals interesting important insights from large-scale lon-

gitudinal data that consist of over 450 million data points.
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1 Introduction

“Clustering” is one of the most popular methods for grouping data; in a wide range of disci-

plines, various clustering approaches are employed. Examples include the work of Park and

Park (2016), who used clustering for understanding and predicting online customers’ store vis-

its and purchase behaviors, a study by Kong et al. (2010) to improve the efficiency of a liver

allocation system, and research by France and Ghose (2016) to identify market structures, and

capture “varieties of capitalism“ (Ahlquist and Breunig (2012)) and for the analysis of microar-

ray gene expression data (Qin (2006), Heard et al. (2006), Chiou and Li (2007), Cai et al.

(2019)). James and Suger (2003) developed a flexible model-based procedure for clustering

functional data. Peng and Muller (2008) applied distance-based clustering to analyze online

auction data. Hancock et al. (2007) analyzed social networks based on model-based clustering.

Delaigle et al. (2012) developed approaches for clustering functional data. We refer to Hennig

et al. (2015) for an effective overview of the growing number of interdisciplinary applications

of cluster analysis.

This paper attempts to identify the latent group structure within longitudinal data in the

context of an exponential family of distributions. There is a vast volume of literature on cluster-

ing individual units of “linear” longitudinal data (Lin and Ng (2012), Bonhomme and Manresa

(2015), Su et al. (2016), Ando and Bai (2016, 2017), Vogt and Linton (2017), Wang et al.

(2018), Lumsdaine et al. (2020) among others). Zhang (2019) proposed a quantile regression-

based method for panel data to identify subgroups and estimate group-specific parameters,

which does not always allow us to analyze data from an exponential family of distributions,

for example, binary response.

In contrast to these previous studies, this paper employs generalized linear models for cap-

turing grouped patterns of unobserved heterogeneity in longitudinal data. Studies on cluster-

ing longitudinal data with unobserved heterogeneity in the context of an exponential family of

distributions are scant. Many previous studies on binary response longitudinal data with unob-
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served effects (for, e.g., Fernández-Val and Weidner (2016), Charbonneau (2017), Moon et al.

(2018), Boneva and Linton (2017), Ando et al. (2021), Chen et al. (2021)) did not accommo-

date the unobserved group membership structure. Additionally, many studies have considered

group-specific regression coefficients, and they all assumed that the regression coefficients are

homogeneous across units within groups but can differ across groups. Wang and Su (2021) con-

sidered a procedure for identifying latent group structures in nonlinear longitudinal data models

when some regression coefficients are heterogeneous across groups but homogeneous within a

group. Although such setups often simplify the estimation and inference procedures, the resul-

tant conclusions can be misleading when the group-specific homogeneity assumption does not

hold. Our empirical analysis indicates that the group-specific homogeneous assumption is not

supported by data. We, therefore, allow for heterogeneous regression coefficients even within

groups.

We emphasize that the extension from a linear model to the generalized linear model is

not a straightforward task. In terms of estimation, we need to develop an iterative algorithm

that changes depending on whether it is used for group membership estimation, regression

coefficient estimation or unobservable structure estimation. This extension also involves several

theoretical challenges that must be overcome.

First, the group membership structure is assumed to be unknown and estimated from the

data. A natural question is whether we can correctly identify the group membership structure.

To address this important concern, we establish a “uniform“ consistency for the estimated group

membership. It should be noted that the number of individuals goes to infinity in our theoreti-

cal setting, and thus, the proof of “uniform“ consistency is not straightforward. By addressing

this challenge, we show that the proposed method can identify true latent group structures with

probability approaching one. Second, our asymptotic theory also addresses the consistency of

the estimated regression coefficients, as well as that of the estimated unobserved heterogene-

ity. We note that the regression coefficients vary across individual units, and the number of
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individual units is allowed to go to infinity. Thus, the study of asymptotic theory for regression

coefficients is a difficult task. Third, with regard to checking whether the regression coefficients

are heterogeneous within a group, no approach has been proposed for large-scale generalized

linear longitudinal models with grouped patterns of unobserved heterogeneity. There are many

studies that have tested for the homogeneity of regression coefficients in linear longitudinal data

models, including those of Pesaran et al. (1996), Phillips and Sul (2003), Pesaran and Yamagata

(2008), Blomquist and Westerlund (2013) and Ando and Bai (2015). However, studies testing

for the homogeneity of regression coefficients in longitudinal data models under an exponen-

tial family of distributions are very limited. We propose the Swamy-type test and investigate

the asymptotic distribution of our test statistic. This is the first result obtained by testing for

the homogeneity of the regression coefficients in nonlinear longitudinal data models under an

exponential family of distributions.

This paper applies the proposed method to large-scale longitudinal data from the taxi indus-

try in New York City (NYC). In NYC, the taxi industry is highly regulated by the NYC Taxi

& Limousine Commission (TLC). Some of the restrictions on the industry include the use of

common pricing schemes and limits to the total number of taxis. Additionally, profitability may

vary across firms, and this is mainly due to the efficiency with which taxi firms utilize their re-

sources. For example, one of the ways in which firms can improve their financial performance

is through the improvement of their capacity utilization rate. This rate, for example, can be

measured by the fraction of time that a driver has a fare-paying passenger. From a managerial

perspective, the performance evaluation of each individual taxi can prominently benefit a firm.

It will allow the firm to compare its performance with that of its competitors, and it will yield

information for making managerial decisions to improve performance. We empirically exam-

ine the efficiency of yellow cab medallion taxis in NYC by applying the proposed clustering

approach.

In summary, our paper makes the following contributions. First, we introduce new non-
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linear longitudinal data models with grouped patterns of unobserved heterogeneity. Second, a

new model estimation and selection procedure is developed for the introduced model. Third,

our established theory shows that the true group membership and the proposed estimator are

asymptotically equivalent. This result considers the uniform consistency of the estimated group

membership and thus identifies an attractive property of the proposed estimator. Fourth, we

derive an asymptotic theory for the estimated model parameters. It is shown that the asymp-

totic distribution of the estimated regression coefficients is the multivariate normal distribution.

Additionally, the asymptotic distribution of the estimated common factor is shown to be mul-

tivariate normal. Fifth, we propose the Swamy-type test to investigate whether the regression

coefficients are heterogeneous within a group. Finally, we apply our methods to estimate the

capacity utilization rates based on NYC yellow taxi data. Our method reveals interesting and

important insights from a large-scale longitudinal dataset that consists of over 450 million data

points.

The remainder of this paper is organized as follows. Section 2 introduces the nonlinear lon-

gitudinal data model with a factor structure, and Section 3 describes the modeling, estimation,

and model selection procedures. Section 4 investigates the consistency of the proposed estima-

tor. Its asymptotic behaviors are also investigated, and further theoretical studies are conducted.

To save space, all technical proofs are provided in the online supplementary document, which

also contains Monte Carlo simulation results. Section 5 applies the procedure to the analysis of

the TLC dataset. Concluding remarks are provided in Section 6.

2 Model

In this section, we introduce a new model: a generalized linear longitudinal data model with

grouped patterns of unobserved heterogeneity. Suppose that the response of an individual unit

is measured over T time periods together with some observable explanatory variables. For the

i-th individual unit (i = 1, ..., N), at time t, its response yit is observed together with a (p+ 1)-
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dimensional vector of explanatory variables xit = (1, xit,1, ..., xit,p)
′. We let S be the number

of groups (which is unknown) and let G = {g1, ..., gN} denote the group membership such that

gi ∈ {1, ..., S}. Additionally, we denote Nj as the number of individual units within group j

(j = 1, ..., S) such that N =
∑S

j=1 Nj .

To capture grouped patterns of unobserved heterogeneity in nonlinear longitudinal data, we

consider an exponential family of distributions:

f(yit|θit,gi) = exp {yitθit,gi − b(θit,gi) + c(yit)} (1)

with the natural parameter θit,gi being expressed as

θit,gi ≡ x′
itbi + ηit,gi , i = 1, . . . , N, t = 1, . . . , T, (2)

where bi = (bi,0, bi,1, ..., bi,p)
′ is a (p + 1)-dimensional vector of regression coefficients and

ηit,gi denotes the unobservable effects that also explain the characteristics of the variability in

yit. In this paper, we assume that the unobserved structure ηit,gi , which depends on the group

membership gi, is modeled with a factor structure:

ηit,gi =
r
∑

ℓ=1

fℓt,giλiℓ,gi = f ′
t,gi

λi,gi , (3)

where f t,gi
is an rgi × 1 vector of group-specific unobservable factors and λi,gi represents

the factor loadings. We note that the explanatory variables may be correlated with the group-

specific factors, factor loadings, or both. In such cases, ignoring the factor structure leads to

inconsistent estimates of the regression coefficients (see, e.g., Bai (2009), Pesaran (2006)).

Combining (1), (2) and (3), our nonlinear longitudinal model is formulated as

f(yit|xit, bi,f t,gi
,λi,gi) = exp

{

yit(x
′
itbi + f ′

t,gi
λi,gi)− b(x′

itbi + f ′
t,gi

λi,gi) + c(yit)
}

. (4)

Below are some specific examples of our model (4).

Example 1 Consider the standard linear model yit = x′
itbi + ηit,gi + εit, i = 1, . . . , N , t =

1, . . . , T . Assuming that εit follows a normal distribution with mean 0 and variance σ2, the
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model (4) is given as

f(yit|xit, bi,f t,gi
,λi,gi) =

1√
2πσ2

exp

{

−1

2

(yit − x′
itbi − f ′

t,gi
λi,gi)

2

σ2

}

.

Example 2 Let yij be a binary outcome such that yit takes the value 0 or 1 and let Φ be a

cumulative distribution function for a standard normal or logistic distribution. The model (4) is

given as

f(yit|xit, bi,f t,gi
,λi,gi) = Φ(xit, bi,f t,gi

,λi,gi)
yit(1− Φ(xit, bi,f t,gi

,λi,gi))
1−yit .

If the logistic distribution is used, then Φ is Φ(yit = 1|xit, bi,f t,gi
,λi,gi) = exp(x′

itbi +

f ′
t,gi

λi,gi)/{1 + exp(x′
itbi + f ′

t,gi
λi,gi)}.

Example 3 Let yij be a count outcome. A Poisson model can be considered with the conditional

expectation of yit written as exp(yit(x
′
itbi + f ′

t,gi
λi,gi)).

f(yit|xit, bi,f t,gi
,λi,gi) = Ψ(yit, exp(yit(x

′
itbi + f ′

t,gi
λi,gi)),

where Ψ(y, α) is the probability mass function of a Poisson random variable with parameter α.

In addition to Example 1 – Example 3, other examples, such as the binomial model, inverse

Gaussian model, and gamma model, can be considered. When yit is a selection out of multiple

possible choices, a multinomial choice model can be considered.

The unknown parameters are the regression coefficients B = {b1, ..., bN}, the group mem-

bership G, the group-specific factors Fj = (f 1,j, ...,fT,j)
′ and the corresponding factor load-

ings Λj = (λ1,j, ...,λNj ,j)
′ for j = 1, ..., S. The number of groups S and the dimensions of

the group-specific factors are unspecified, and thus, we need to determine these values. These

estimation and model selection problems are investigated in Section 3.
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3 Estimation

3.1 Model building

In this section, we describe our model-building framework. This involves estimating model pa-

rameters as well as identifying the number of groups and the numbers of group-specific factors.

Given the number of groups S and the number of factors in group rj (j = 1, 2, ..., S),

the estimator {B̂, Ĝ, F̂1, ..., F̂S, Λ̂1, ..., Λ̂S} is defined as the maximizer of the following log-

likelihood function:

L(B,G, F1, ..., FS,Λ1, ...,ΛS) =
1

NT

N
∑

i=1

T
∑

t=1

log f(yit|xit, bi,f t,gi
,λi,gi), (5)

subject to normalization restrictions on Fj and Λj . Following Bai and Ng (2013), we impose the

following restriction: F ′
jFj/T = Irj , and Λ′

jΛj is the diagonal. Bai and Ng (2013) demonstrated

that this restriction leads to the identification of Fj and Λj .

We first note that finding the exact maximizer of the likelihood function (5) subject to nor-

malization restrictions is not an easy task. This is largely because the number of possible com-

binations of the group membership G can be enormous when the number of individuals N is

large. In that case, it is computationally infeasible to explore all possible combinations of group

membership. Because the parameters depend on one another, we need to update the set of

parameters sequentially.

Given the group-specific factors F̄j (j = 1, 2, ..., S), we can easily update the group mem-

bership gi, the regression coefficients bi and the factor loadings λi,gi as

{gi, bi,λi,gi} = argmax
1

T

T
∑

t=1

log f(yit|xit, bi, f̄ t,gi
,λi,gi), (6)

for i = 1, ..., N .

Given B̄, Λ̄1, ..., Λ̄S and Ḡ, we update the group-specific factors f t,j as

f t,j = argmax
1

Nj

∑

i; ḡi=j

log f(yit|xit, b̄i,f t,j, λ̄i,j), (7)
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for j = 1, ..., S. Then, we calculate the matrix Aj = ( 1
T
F ′
jFj)

1/2( 1
N j

Λ′
jΛj)(

1
T
F ′
jFj)

1/2 and its

associated diagonalization Aj = UjVjU
′
j , where Uj is an orthogonal matrix and Vj is a diagonal

matrix. The group-specific common factors and the factor-loading matrices satisfying the nor-

malization restriction are given as follows: Λ†
j = Λj(

1
T
F ′
jFj)

1/2Uj and F †
j = Fj(

1
T
F ′
jFj)

−1/2Uj .

To capture the dependencies between the regressors and unobservable structures simultane-

ously due to the endogeneity problem, we use the following algorithm. Although our computa-

tion is approximate, as is mostly done in practice for clustering analyses, it allows us to obtain

approximate solutions quickly.

Estimation algorithm

Step 1. Fix S and {r1, ..., rS}. Initialize the unknown parameters B(0) = {b(0)1 , ..., b
(0)
N },

{F (0)
j ,Λ

(0)
j ; j = 1, ..., S} and G(0) = {g(0)1 , ..., g

(0)
N }.

Step 2. Given the values of {Fj, j = 1, ..., S}, update {gi, bi,λi,gi} for i = 1, ..., N .

Step 3. Given the values of B, {Λj, j = 1, ..., S} and G, update f t,j for t = 1, ..., T , j =

1, ..., S.

Step 4. Repeat Steps 2 ∼ 3 until convergence is achieved.

In Step 1, starting values are needed. To obtain the initial group membership G(0), we

simply apply the well-known K-means algorithm to the longitudinal data of yit. This algorithm

divides the individual units into S groups. An initial estimate of b
(0)
i (i = 1, ..., N ) is obtained

via the standard maximum likelihood approach by ignoring the factor structures. Given G(0)

and b
(0)
i (i = 1, ..., N ), we obtain the starting values {F (0)

j ,Λ
(0)
j } for group j by applying the

standard principal component approach to yit, which belongs to group j.

While the convergence of the algorithm to a local maximum is guaranteed, the proposed

algorithm cannot guarantee convergence to a global optimum (see, e.g., Bai (2009)). To mini-

mize the chance of a local minimum, multiple starting values from the K-means algorithm can

be used for Step 1 in our estimation algorithm. Following Bai (2009), upon convergence, we
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choose the estimator that gives the largest likelihood function value.

In practice, the number of groups S and the number of group-specific factors {r1, ..., rS}

are unknown. We use an information criterion (IC) to select these quantities.

IC(S, k1, ..., kS)

= − 2

NT

S
∑

j=1

∑

i;ĝi=j

log f(yit|xit, b̂i, f̂ ĝi,t
, λ̂ĝi,i) +

S
∑

j=1

kj
Nj

N

(

T +Nj

TNj

)

log

(

TNj

T +Nj

)

.(8)

By minimizing the IC, we can choose the number of groups S and the number of group-specific

factors kj (j = 1, ..., S).

Remark 1 While this paper focuses on (4), a researcher may be interested in estimating a

model having both global common factors across all groups and group-specific factors:

f(yit|xit, bi,f t,c,f t,gi
,λi,c,λi,gi)

= exp
{

yit(x
′
itbi + f ′

t,cλi,c + f ′
t,gi

λi,gi)− b(x′
itbi + f ′

t,cλi,c + f ′
t,gi

λi,gi) + c(yit)
}

, (9)

where f t,c is an rc-dimensional vector of global common factors across all groups and λi,c is the

corresponding rc-dimensional factor-loading vector. For the linear case, Ando and Bai (2017)

studied its estimation procedure. By extending their estimation procedure to the exponential

family of distributions, one can estimate the parameters in the model (9). To avoid repeating

the similar argument provided in this section, an estimation procedure for (9) is delegated to

Appendix A in the supplementary document.

3.2 Convergence to a local maximum

Given B, Λ1, ...,ΛS and G, the log-likelihood function in (5) is concave in F1, ..., FS . Therefore,

we have

L(B,G, F old
1 , ..., F old

S ,Λ1, ...,ΛS) ≤ L(B,G, F new
1 , ..., F new

S ,Λ1, ...,ΛS), (10)

where F new
1 , ..., F new

S can be obtained from (7). Under the fixed {F1, ..., FS} and G, the log-

likelihood function in (5) is concave in B(G) and Λ1(G), ...,ΛS(G), where we emphsize the
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dependency of B and Λ1, ...,ΛS on G. This implies that, for any G, the following inequality

holds:

L(Bold(G), G, F1, ..., FS,Λ
old
1 (G), ...,Λold

S (G)) ≤ L(Bnew(G), G, F1, ..., FS,Λ
new
1 (G), ...,Λnew

S (G)),

where Bnew(G),Λnew
1 (G), ...,Λnew

S (G) can be obtained from

{bgi ,λgi} = argmax
1

T

T
∑

t=1

log f(yit|xit, bi,f t,gi
,λi,gi)

with {F1, ..., FS} and G being fixed. Thus, under the fixed value of the group-specific factors

{F1, ..., FS}, (6) leads

L(Bold(Gold), Gold, F1, ..., FS,Λ
old
1 (Gold), ...,Λold

S (Gold))

≤ L(Bnew(Gold), Gold, F1, ..., FS,Λ
new
1 (Gold), ...,Λnew

S (Gold))

≤ L(Bnew(Gnew), Gnew, F1, ..., FS,Λ
new
1 (Gnew), ...,Λnew

S (Gnew)). (11)

We therefore have

L(Bold, Gold, F old
1 , ..., F old

S ,Λold
1 , ...,Λold

S )

≤ L(Bold, Gold, F new
1 , ..., F new

S ,Λold
1 , ...,Λold

S )

≤ L(Bnew, Gnew, F new
1 , ..., F new

S ,Λnew
1 , ...,Λnew

S ),

where we used (10) for the first inequality and (11) for the last inequality. This implies that the

convergence of the algorithm to a local maximum is guaranteed at least. However, it is known

that convergence to a global optimum is not guaranteed for interactive effects panel data models

(see, e.g., Bai (2009)).

4 Asymptotic properties

4.1 Assumptions

We first state the assumptions needed for the asymptotic analysis. We then define some nota-

tions. Let ∥A∥ = [tr(A′A)]1/2 be the usual norm of the matrix A, where “tr” denotes the trace
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of a square matrix. Equation an = O(bn) states that the deterministic sequence an is, at most,

of order bn; cn = Op(dn) states that the random variable cn is, at most, of order dn in terms of

probability, and cn = op(dn) is of a smaller order in terms of probability.

The true regression coefficient is denoted by B0 = {b1,0, .., bN,0}. The true group-specific

factor and the factor loading of individual i with true group membership g0i = j are denoted

as Fj,0 = (f 1,j,0, ...,fT,j,0)
′ and λi,j,0, respectively. We denote the true factor-loading matrix

for the j-th group as Λj,0 = [λ1,j,0, . . . ,λNj ,j,0]
′. Because the dimensions of Λj and Fj are

divergent, we cannot assume that the standard regularity conditions for likelihood functions

hold. The set of regularity conditions is as follows:

Assumption A: Common factors

Let Fj be a compact subset of Rrj . For each group j = 1, .., S, the group-specific factors

f t,j,0 ∈ Fj satisfy T−1
∑T

t=1 f t,j,0f t,j,0
′ = Irj . Although correlations between f t,j,0 and f t,k,0

(j ̸= k) are allowed, they are not perfectly correlated.

Assumption B: Factor loadings and regression coefficients

(B1): Let B and Lj be compact subsets of Rp and Rrj , respectively. The regression coefficient

bi and the factor-loading satisfy bi ∈ B and λi,gi ∈ Lj . Additionally, the factor-loading

matrix Λj,0 satisfies N−1
j Λ′

j,0Λj,0 → ΣΛj
as Nj → ∞, where ΣΛj

is an rj × rj diagonal

matrix with distinct diagonal elements and the smallest diagonal element bounded away

from zero.

(B2): For each i, the factor-loading satisfies ∥λi,g0
i
∥ > 0.

(B3): For each i and j, f ′
t,j,0λi,j,0 are strongly mixing processes with mixing coefficients

that satisfy r(t) ≤ exp(−a1t
b1) with tail probability P (|f ′

t,j,0λi,j,0| > z) ≤ exp{1 −

(z/b2)
a2}, where a1, a2, b1 and b2 are positive constants.
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Assumption C: Idiosyncratic error terms

(C1): Conditional on xit, bi,0, f t,gi,0
and λi,gi,0, yit is independently generated. Additionally,

εit = yit − b′(x′
itbi,0 + f ′

t,gi,0
λi,gi,0) has zero mean E[εit] = 0 for all i and t.

(C2): For all i and t, εit are strongly mixing processes with mixing coefficients that satisfy

s(t) ≤ exp(−c1t
d1) with tail probability P (|εit| > z) ≤ exp{1− (z/d2)

c2}, where c1, c2,

d1 and d2 are positive constants.

Assumption D: Predictors and design matrix

(D1): For a positive constant, C, the predictors satisfy supit ∥xit∥ < C < ∞.

(D2): For each i and all T , there exist positive constants C1 and C2 such that

0 < C1 < lim inf
T→∞

λmin(T
−1(Xi, Fg0

i
,0)

′(Xi, Fg0
i
,0)),

where λmin(A) is the smallest eigenvalue of a matrix A.

(D3): Define Ai =
1
T
X ′

iMFgi
Xi, Bi = (λi,g0

i
,0λ

′
i,g0

i
,0) ⊗ IT , Ci =

1√
T

[

λi,g0
i
,0 ⊗ (MF,g0

i
Xi)
]′

,

and MFj
= I − Fj(F

′
jFj)

−1F ′
j . Let A be the collection of Fj such that A = {Fj :

F ′
jFj/T = I}. We assume

infFj∈Aλmin





1

N j

∑

i;g0
i
=j

Ei(Fj)



 > 0, (12)

where Ei(Fj) = Bi − C ′
iA

−1
i Ci.

(D.4): For Nj individuals belonging to the j-th group, let Υ(Bj) be an Nj × T matrix with

its (i, t)th entry equal to x′
itbi(j), where Bj = (b1(j), b2(j), . . . , bNj(j))

′ are the regression

coefficients corresponding to individuals belonging to the j-th group. For any nonzero

Bj , there exists a positive constant c > 0 such that, with probability approaching one,

1

NjT
∥MΛj,0

Υ(B)MFj,0
∥2 ≥ c

1

Nj

∑

i∈gi=j

∥bi∥2.
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Assumption E: Number of units in each group

(E1): The true number of groups, S, is finite and independent of N and T .

(E2): All units are divided into a finite number of groups S, with each containing Nj units such

that 0 < a < Nj/N < ā < 1; this implies that the number of units in the j-th group

increases as the total number of units N grows.

Remark 2 Some comments regarding the assumptions are in order. Assumptions A and B1 im-

ply the existence of rj group-specific factors, j = 1, ..., S. To identify the true group member-

ship, Assumption B2 is needed. Assumption B3 assumes that the unobservable factor structure

is strongly mixing with a faster than polynomial decay rate and a restricted tail property. This

condition is used to bound the misclassification probabilities. Assumption C1 assumes that the

independence property of yit is conditional on the factor structure. Assumption C2 restricts the

tail property of the error. Assumption D1 requires some moment conditions for the explanatory

variables. The explanatory variables can be correlated with the group-specific factors, factor

loadings or both. Assumption D2 is necessary for the consistent estimation of regression co-

efficients even if the group-specific factors are known. Assumption D3 is used for proof of

consistency when the factors and factor loadings are also estimated. D4 is used to ensure the

consistency of bi. A similar condition was also used by Ando et al. (2021). Assumption E1 can

be relaxed so that S also increases as N, T → ∞. However, this is outside of the scope of this

paper. Assumption E2 was also used by Ando and Bai (2017).

4.2 Asymptotic results

This section investigates some asymptotic properties of the proposed estimators. All proofs of

the theorems described below are provided in the online supplementary document. The true

parameter values {B0, G0, F1,0, ..., FS,0,Λ1,0, ...,ΛS,0} are defined as the maximizer of the ex-

pected likelihood function E[L(B,G, F1, ..., FS,Λ1, ...,ΛS)] subject to the identification restric-
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tion on Fj and Λj . Here, the expectation is taken with respect to the true conditional distribution

of {yit : i = 1, ..., N, t = 1, ..., T}, which is conditional on X , G0, Fj,0 and Λj,0.

We note that all asymptotic results are obtained with N, T → ∞. Our theoretical results are

obtained by allowing the number of regression coefficient vectors N to diverge to infinity. The

restrictions on the relative rates of convergence of N and T are specified below. We first claim

that the estimated factors are consistent in the sense of an averaged norm.

Theorem 1 : Consistency. Under Assumptions A–E, the estimator {F̂j, j = 1, ..., S} is con-

sistent in the sense of the following norm:

T−1∥F̂j − Fj,0∥2 = op(1), j = 1, ..., S, (13)

This indicates that the space spanned by the common factor is estimated consistently. With

this result, we argue that the estimated group membership is a consistent estimator of the true

membership. The estimates of B, {Fj,Λj; j = 1, ..., S}, and G depend on each other. Fol-

lowing Ando and Bai (2016), we denote the estimator of group membership ĝi as ĝi(B̂, F̂ , Λ̂),

with F̂ = {F̂1, ..., F̂S} and Λ̂ = {Λ̂1, ..., Λ̂S}. The next theorem claims that the estimated group

memberships are consistent in the sense of an averaged norm.

Theorem 2 : Average consistency of the group membership estimator. Suppose that the

assumptions in Theorem 1 hold. Then,

1

N

N
∑

i=1

P
(

ĝi(B̂, F̂ , Λ̂) ̸= g0i

)

= o(1).

Although Theorem 2 ensures that the group membership estimator is accurate in the aver-

age sense, it is ideal to show that the group membership estimator can accurately estimate the

true membership across all individuals i = 1, ..., N . For all individuals i = 1, ..., N , due to

endogeneity issues, it is also important to note that the regression coefficients can be estimated

consistently under true group membership. The next theorem shows that the estimated group

membership converges to the true group membership as T and N go to infinity.
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Theorem 3 : Consistency of the estimator for group membership. Suppose that the as-

sumptions in Theorem 1 hold. Then, for all τ > 0 and T,N → ∞, we have

P

(

sup
i∈{1,...,N}

∣

∣

∣
ĝi(B̂, F̂ , Λ̂)− g0i

∣

∣

∣
> 0

)

= o(1) + o(N/T τ ).

We note that this uniform result holds across all individuals whose factor loadings are

bounded away from zero. This is true from Assumption B. When N/T a → 0 for some a > 0,

the true group membership g0i and the estimator ĝi(B̂, F̂ , Λ̂) are asymptotically equivalent. The-

orem 3 is similar to results obtained by Bonhomme and Manresa (2012) and Ando and Bai

(2017) for ‘linear” longitudinal models with unknown group memberships. The claim of our

theorem 3 indicates that group membership consistency can be obtained even when the data are

generated by an exponential family of distributions.

Next, we show that the asymptotic distribution of the estimated regression coefficients is

a multivariate normal distribution. This finding is also true for the estimated factor loadings.

We introduce γi = (b′i,λ
′
i,gi,0

)′ and denote γi,0 = (b′i,0,λ
′
i,g0

i
,0)

′ as its true value. The next

theorem also states that the asymptotic distribution of the estimated common factors f̂ t,τ is a

multivariate normal distribution.

Theorem 4 : Asymptotic distribution of γi. Under Assumptions A–E,
√
T/N → 0 and

√
N/T → 0, the asymptotic distribution of T 1/2(γ̂i − γi,0) is a multivariate normal with mean

0 and a covariance matrix of

Σi = lim
T→∞

1

T

T
∑

t=1

b′′(x′
itbi,0 + f ′

t,g0
i
λi,g0

i
,0)zit,0z

′
it,0,

with zit,0 = (x′
it,f

′
t,g0

i
)′. Here b′′(·) is the second derivate of the known function b(·) in (1).

Additionally, the asymptotic distribution of N1/2(f̂ t,j − f t,j,0) is normal with mean zero and a

variance-covariance matrix of

Ψt,j = lim
Nj→∞

1

Nj

Nj
∑

g0
i
=j

b′′(x′
itbi,0 + f ′

t,g0
i
,0λi,g0

i
,0)λi,g0

i
,0λ

′
i,g0

i
,0.
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4.3 Testing the homogeneity of the slope

To test whether the regression coefficients within groups are homogeneous over individual units,

we can consider a Swamy-type test. Let {b1, ..., bNj
} be the regression coefficients of Nj indi-

vidual units that belong to the j-th group. The null hypothesis of interest is

H0 : b1,0 = b2,0 = · · · = bNj ,0 = b
j
0 for some bj0.

The alternative hypothesis is

H1 : bi,0 ̸= b0,k for a nonzero fraction of pairwise slopes for i ̸= k.

Our Swamy’s test statistic for the homogeneity of the regression coefficients within groups takes

the form

Ξ̂j =
T (ŝj − s̄j)

′
(

Γ̂j − 1
N
L̂′
j

)

Ω̂−1
j

(

Γ̂j − 1
N
L̂j

)

(ŝj − s̄j)−Njp
√

2Njp
, (14)

where ŝ′ = (b̂
′
1, ..., b̂

′
Nj
), s̄′ = (b̄

′
j, ..., b̄

′
j), b̄j =

∑Nj

i=1 b̂i/Nj , Γ̂j is an Njp×Njp block diagonal

matrix with the (i, i)th block being T−1
∑T

t=1 b
′′(x′

itb̂i,0 + f̂
′
t,jλ̂i,j)ẑitẑ

′
it and ẑit = (x′

it, f̂
′
t,j)

′,

L̂j is an Njp × Njp block diagonal matrix with the (i, i)-th block being T−1
∑T

t=1 JitΨ
−1
t J ′

it

and Ψt = N−1
j

∑Nj

i b′′(x′
itb̂i,0 + f̂

′
t,jλ̂i,j)λ̂i,jλ̂

′
i,j , Jit = b′′(x′

itb̂i,0 + f̂
′
t,jλ̂i,j)xitλ̂

′
i,j , and Ω̂j is

the variance–covariance estimator of Ωj ≡ E[diag{ε′1, ..., ε′Nj
}], εi = (εi1, ..., εiT ).

Before we investigate a new hypothesis testing procedure, we state the assumptions needed

for the asymptotic analysis.

Assumption F: Central limit theorem

As T goes to infinity,

Ω
−1/2
i

1√
T
X ′

iεi →d N(0, Ip),

where Ωi = E[X ′
iεiε

′
iXi]/T .
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Assumption G: Joint limit

Let ζi = − 1√
T
X ′

iεi, ζ = (ζ ′
1, ζ

′
2, ..., ζ

′
Nj
)′, and Ω = block- diag(Ω1,Ω2, ...,ΩNj

), where Ωi is

defined in Assumption F. We assume, as N, T → ∞,

ζ ′Ω−1ζ −Njp
√

2Njp
→ N(0, 1).

Remark 3 The variables in Assumption F do not involve any estimated quantities; they are ran-

dom variables from the true model. It follows that the conditional mean of 1√
T
X ′

iMF 0εi, condi-

tional on (Xi, F
0), is equal to 0, and the conditional and unconditional variance of Ω

−1/2
i

1√
T
X ′

iMF 0εi

is an identity matrix. Assumption G imposes the central limit theorem for ζi. Moreover, the

expected value of ζ ′
iΩ

−1
i ζi is equal to p.

The following theorem provides the asymptotic distribution of Ξ̂j under the null hypothesis.

Theorem 5 : Swamy-type test Suppose that assumptions in Theorem 4, Assumption F and

Assumption G hold. Then, under the null hypothesis H0,

Ξ̂j → N(0, 1) in distribution

as T,N → ∞.

Theorem 5 suggests that our proposed test statistic Ξ̂ is asymptotically normal with mean 0

and standard deviation 1 when the null hypothesis of slope homogeneity is satisfied. Therefore,

our proposed test is simple to implement because it has a limiting N(0, 1) distribution.

5 Application

5.1 NYC taxi data and an empirical model

The trip record data for yellow cab taxis are made publicly available by the NYC Taxi & Limou-

sine Commission. We use a dataset made available by Brian and Dan (2016), spanning from

1st January 2010 through 31st December 2013. This dataset allows us to analyze individual
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taxi’s trip records. For each trip, this dataset includes the yellow cab identifier medallion, pre-

cise location coordinates for where the trip started and ended and timestamps for when the trip

started and ended. Figure 1 and Figure 2 provide a map of the Manhattan area in New York City

and an intensity of taxi pick-up and drop-off locations in January 2010. Similar patterns were

observed for the other months and years (See Appendix H in the online supplement document.

It contains monthly plots for other months in 2010).

Because the pricing structure is strictly regulated by authorities, it is important for individual

taxis to utilize their vehicles efficiently. To understand the efficiency, one of the measurements

is the capacity utilization rate, which is measured by the fraction of time that a driver has a

fare-paying passenger. For the i-th taxi, we let yit be the capacity utilization rate at time t.

More specifically, the capacity utilization rate is defined as the fraction of time that a driver has

a fare-paying passenger every hour, i.e., yit/60, where yit is the total number of minutes per

hour during which a cab drives a fare-paying passenger. Figure 3 shows the average capacity

utilization rate at the time for a particular day of the week and time frame in 2010. Similar

patterns were observed for the other years (See Appendix H in the online supplement document.

It contains similar plots for 2011, 2012 and 2013). We can see that the capacity utilization rate

varies over the time frame. On average, the capacity utilization rate at midnight is lower than

that during the daytime on weekdays. In contrast, the capacity utilization rate at midnight during

the weekend is relatively high.

To analyze the capacity utilization rate, we fit the following model:

f(yit|xit, bi,f t,gi
,λi,gi)

=

(

60
yit

)

π(xit, bi,f t,gi
,λi,gi)

yit{1− π(xit, bi,f t,gi
,λi,gi)}60−yit , (15)

where yit is the fraction of the total number of minutes per hour during which a taxi is driving

a fare-paying passenger for the time period t, and

(

60
yit

)

is the binomial coefficient. In our

analysis, we employ the following information for xit: Time frame (every hour: MIDNIGHT–

1 AM, 1 AM–2 AM, ..., 10 PM–11 PM, 11 PM–MIDNIGHT), Day of the week (Monday,
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Tuesday, ..., Friday, Saturday, Sunday). By combining “time frame” and “day of the week”,

we create a set of 168(= 24 × 7) indicator variables. Because the regressors are common over

individuals, π(xit, bi,f t,gi
,λi,gi) in (15) becomes

π(xit, bi,f t,gi
,λi,gi) ≡ π(xt, bi,f t,gi

,λi,gi) =
exp{x′

tbi + f ′
t,gi

λi,gi}
1 + exp{x′

tbi + f ′
t,gi

λi,gi}
,

where xt is the vector of indicator variables. To avoid multicollinearity, the intercept term is

not included in xt.

5.2 Estimation results

To understand how the market structure evolved over time, we analyze the set of 48 longitudinal

data. Here, 48 denotes 12 months × 4 years (2010, 2011, 2012 and 2013). For example, we

analyze the longitudinal data with size (T,N) = (744, 13341) for January 1st through January

31st in 2010. Here, T = 744 implies that the data period spans 31 days (24 hours/per day × 31

days), and there are N = 13341 individual medallion taxis. A similar operation is performed

for each month in 2011, 2012 and 2013.

The formulated model (15) is estimated by maximizing the objective function (5). To de-

termine the number of groups S and the number of group-specific common factors, we apply

the information criterion in (8). The maximum number of groups is set to Smax = 5 when we

search for the best value based on the information criterion in (8).

Table 1 summarizes the estimated number of groups Ŝ for the set of 48 longitudinal data.

Here, r̂j is the selected number of common factors for the j-th group. We can see that the

estimated number of groups Ŝ is two in almost all months, while there are some variations.

Figure 4 shows the Sankey diagram, which represents how the set of individual taxis form

groups from one month to the next in 2010 and 2013. If the market structure is stable, group

membership should be stable over a 12-month period. However, the Sankey diagram indicates

that the membership has been shuffled every month. Similar observations are obtained for 2011

and 2012. (See Appendix H in the online supplement document, which contains monthly plots

20



for 2011 and 2012).

Table 2 summarizes the total sum of the number of common factors
∑Ŝ

j=1 r̂j for the set

of 48 longitudinal data. From Table 2, we see that there are some unobservable variables that

explain the performance. The model structure implies that such unobservable structures are a

source of variation in group membership changes. The collection of all possible explanatory

variables that may influence the response variables is sometimes costly due to restrictions on

time, budget and so on. Our method, which automatically captures unobserved heterogeneity

through the factor structure, is very useful because it can save costs for such practical issues.

Finally, we implement the proposed homogeneity test for the regression coefficients. Ac-

cording to our proposed test, for each group and each month from 2010 to 2013, the null hy-

pothesis (the regression coefficients within groups are homogeneous across individual taxis) is

rejected at the 5% level. This indicates that a model with some regression coefficients that are

heterogeneous across groups but homogeneous within a group is not sufficient to capture the

heterogeneity in the data. Thus, our proposed model and methods are very important because

the group-specific homogeneous regression coefficients will lead to biased results.

6 Concluding remarks

The proposed method is a flexible approach for capturing grouped patterns of unobserved het-

erogeneity in nonlinear longitudinal data models. To handle the endogeneity issue, we devel-

oped a new estimation procedure with which the regression parameters, unobservable factor

structure, and group membership were all estimated jointly. The consistency and asymptotic

normality of the estimated regression coefficients were established even in the presence of

unknown group memberships. We also examined the problem of testing the homogeneity of

regression coefficients and developed a new testing procedure based on Swamy’s (1970) test

principle. If the test implies that the regression coefficients are homogenous within a group, the

proposed model (4) with group-specific regression coefficients can be applied. Nevertheless,
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we showed that group membership can be estimated consistently.

The proposed procedure was applied to the NYC taxi dataset and revealed useful informa-

tion for taxi firm management. Although we analyzed the NYC taxi dataset, our method can be

applied to various datasets, including those in economics, finance, marketing, political science,

medicine, the natural sciences and other areas.

Finally, advancements in information technology may create a situation where the number

of explanatory variables is large. To accommodate this situation, our proposed method can

be extended to address cases with large numbers of explanatory variables. One of the most

commonly used ideas is to use shrinkage methods that simply add the regularization term into

the log-likelihood function (5). For the penalty function, one can consider the lasso penalty

(Tibshirani, 1996) and its variants (Zou, 2006; Yuan and Lin, 2006), the elastic net penalty (Zou

and Hastie, 2005), the minimax concave penalty (Zhang 2010), the SCAD penalty of Fan and

Li (2001) and Fan and Peng (2004), and so on. We would like to investigate this topic in a future

study.

SUPPLEMENTARY MATERIAL

To save space, all technical proofs are provided in the online supplementary document,

which also contains Monte Carlo simulation results. It also contains additional figures in the

empirical analysis.
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Table 1: The estimated number of groups Ŝ for the set of 48 longitudinal data.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

2010 2 2 2 2 4 3 2 2 2 2 2 2

2011 2 4 2 3 2 4 2 2 2 2 2 2

2012 2 2 4 2 2 2 2 4 2 2 2 3

2013 2 2 2 3 3 3 2 2 2 3 2 4

Table 2: The estimated number of common factors
∑Ŝ

j=1 r̂j for the set of 48 longitudinal data.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

2010 6 10 10 8 20 14 8 9 6 7 8 6

2011 9 20 9 15 10 20 8 6 9 6 9 7

2012 9 9 20 9 6 9 6 20 8 9 9 15

2013 10 9 7 15 15 15 10 9 8 14 9 20
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Figure 1: Map of the Manhattan area in New York City. This map was created by using the R

package leaflet.
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(a) Pick-ups

(b) Drop-offs

Figure 2: Every (a) pick-up and (b) drop-off location by a taxi in New York City from January

1 2010 to January 31 2010. Brighter regions (i.e., closer to yellow) indicate more taxi activity.
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Figure 3: Heatmap of the average capacity utilization rates in 2010.

30



2010

2013

Figure 4: A Sankey diagram of the grouping results during 2010 and 2013. The most left and

most right groups in the figures are formed groups in January and December, respectively.
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