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Abstract – Financial economists usually assess market efficiency in absolute terms.  This is to be viewed 

as a shortcoming.  One way of dealing with the relative efficiency of markets is to resort to the efficiency 

interpretation provided by algorithmic complexity theory.  We employ such an approach in order to rank 

36 stock exchanges and 20 US dollar exchange rates in terms of their relative efficiency. 

 

Introduction – Informational efficiency of 

financial markets is a central, hot topic in 

finance.  It is meant that if price changes fully 

incorporate the information in possession of 

all market participants such changes are 

unpredictable; the market in question is then 

said to be information efficient.  Early 

empirical observations of the statistical 

properties of prices [1], [2] detected a 

Brownian motion.  In an efficient market 

populated by rational agents if the price is 

properly anticipated then it must fluctuate 

randomly [3].  Such a stochastic process 

resembles a probabilistic model of a fair 

game, one in which gains and losses cancel 

each other out.  When informed traders move 

to take advantage of their information, the 

price will move by an amount and in the 

direction that eliminates this advantage.  As a 

result, there is an association between the 

unanticipated information obtained by the 

informed traders and the consequent 

movement of market prices.  The uninformed 

traders can then infer from an observed price 

increase that some traders in the market have 

favorable information about the asset.  

Information is not wasted, and the price is a 

sufficient statistic for all relevant information 

in possession of all traders [4], [5], [6].  Thus 

the efficient market theory [7] is the notion 

that prices in financial markets promptly 

adjust to reflect information.  After presenting 

an overview of market efficiency in their 

classic financial econometrics textbook, 

Campbell and coauthors [8] observed that (p. 

24) the notion of relative efficiency, i.e. the 

efficiency of one market measured against 

another may be a more useful concept than 

the all-or-nothing (absolute) view taken by 

much of the traditional efficiency market 

literature.  They made an analogy with 

physical systems that are usually given an 

efficiency rating based on the relative 

proportion of energy converted to work. 

The efficient market is an idealized 

concept that is unattainable, but that serves as 

a fundamental benchmark for measuring 

relative efficiency.  Indeed, one must regard 

the efficient market hypothesis as a limiting 

case.  In practice, prices reflect only the 

information for which the acquisition costs 

cannot outweigh the benefits.  There are also 

transaction costs.  Moreover, information may 

not be widely disseminated and thus reflected 

in prices.  Following the arrival of new 

information, market participants may diverge 

from one another in how they think it will 

impact prices; in other words, expectations 

are heterogeneous.  Residual inefficiencies 

are always present in actual markets.  Such 

inefficiencies can introduce artificial patterns 

and then redundant information in real-world 

financial price series.  Thus it is inappropriate 

to assess whether a given actual market is 

efficient or not.  A proper definition of 

efficiency has to measure to what extent one 



market departs from the idealized efficient 

market. 

 Algorithmic complexity theory makes 

a connection between the efficient market 

hypothesis and the unpredictable character of 

asset returns because a time series that has a 

dense amount of non-redundant information 

(such as that of the idealized efficient market) 

exhibits statistical features that are almost 

indistinguishable from those observed in a 

time series that is random [9].  As a result, 

measurements of the deviation from 

randomness provide a tool to assess the 

relative efficiency of a given market.  

Because algorithmic complexity theory 

cannot discriminate between trading on noise 

and trading on information, it detects no 

difference between a time series conveying a 

large amount of non-redundant information 

and a pure random process.  We adopt such 

an approach.  Considering financial markets 

as complex systems is already common in 

econophysics [10], [11].  Sharing such a 

perspective, here we will present a method 

that allows us to rank stock exchanges and 

currencies in terms of their relative efficiency. 

The absolute efficiency of stock 

markets has been investigated in a huge 

number of papers [12], [7], but we could track 

only three previous attempts similar to ours to 

deal with their relative efficiency.  Shmilovici 

and colleagues [13] provide a test based on 

the insight that the compression of the 

efficient market time series is not possible 

since there are no patterns.  In that case, 

“stochastic complexity” is highest.  The 

stochastic complexity of a time series is a 

measure of the number of binary digits 

needed to represent and reproduce the 

information in the time series.  The authors 

use the Rissanen context tree algorithm to 

track patterns and then compress the series of 

13 stock exchange indices as well as the stock 

prices of the companies listed on the Tel-Aviv 

25.  Also, Chen and Tan [14] suggested an 

approach that was proved to be one particular 

case of that in Shmilovici et al.  And Oh and 

coauthors [15] explicitly addressed the 

relative efficiency of currency markets using 

a tool called the approximate entropy statistic 

[16].  The tool aimed at tracking similar 

subsets in a time series.  The approximate 

entropy statistic is strongly alignment-

dependent, however, in that two parameters 

(lag length and the similarity criterion) must 

be specified a priori [17] (see also [18]). 

Next section will show our distinct 

perspective applied to a larger data base along 

with a simpler methodology that is based 

straightforwardly on the Lempel-Ziv 

(“deterministic”) complexity index. 

 

Lempel-Ziv algorithmic complexity – 

Shannon entropy of information theory 

implies that a genuinely random series is the 

limiting case where its expected information 

content is maximized, in which case there is 

maximum uncertainty and no redundancy in 

the series.  The algorithmic (Kolmogorov) 

complexity of a string is given by the length 

of the shortest computer program that can 

produce the string.  The shortest algorithm 

cannot be computable, however.  Yet there 

are several ways to circumvent this problem.  

Lempel and Ziv [19] suggest a useful measure 

that does not rely on the shortest algorithm.  

Kaspar and Schuster [20] provide an easily 

calculable measure of the Lempel-Ziv index 

which runs as follows. 

 A program first either inserts a new 

digit into the binary string 1, , nS s s= …  or 

copies the new digit to S .  The program then 

reconstructs the entire string up to the digit 

r ns s<  that has been newly inserted.  Digit rs  

does not come from the substring 1 1, , rs s −… ; 

otherwise, rs  could simply be copied from 

1 1, , rs s −… .  To learn whether the rest of S  can 

be reconstructed by either simply copying or 

inserting new digits we take 1rs + , and then 

check whether this digit belongs to one of the 

substrings of S , in which case it can be 

obtained by simply copying it from S .  If 1rs +  

can indeed be copied the routine goes on until 

a new digit (which once again needs to be 

inserted) appears.  The number of newly 

inserted digits plus one (if the last copy step is 

not followed by inserting a digit) gives the 

complexity measure c  of the string S . 

 As an illustration, consider the 

following three strings of 10 binary digits 

each. 

A 0000000000 



B 0101010101 

C 0110001001 

At first sight one might correctly guess that A 

is less random so that A is less complex than 

B, which in turn is less complex than C.  The 

complexity index c  agrees with such an 

intuition.  For the string A one has only to 

insert the first zero and then rebuild the entire 

string by copying this digit; thus 2c = , where 

c  is the number of steps necessary to create a 

string.  For the string B one has to 

additionally insert digit 1 and then copy the 

substring 01 to reconstruct the entire string; 

thus 3c = .  For the string C one has to further 

insert 10 and 001, and then copy 001; thus 

5c = . 

A genuinely random string 

asymptotically approaches its maximum 

complexity r  as its length n  grows following 

the rule 
2log

lim n
n

n
c r

→∞
= =  [20].  One may thus 

compute a positive finite normalized 

complexity index c
r

LZ =  to get the 

complexity of a string relative to that of a 

genuinely random one.  Under the Lempel 

and Ziv [19] broad definition of complexity 

almost all sequences of sufficiently large 

length are found to be complex.  To get a 

useful measure of complexity, they then take 

a De Bruijn sequence, which is commonly 

considered as a good finite approximation of a 

complex sequence [19].  After proving that 

the De Bruijn sequence is indeed complex 

according to their definition, and that its 

complexity index cannot be less than one, 

they decided to take it as a benchmark against 

which other sequences could be compared.  

Thus a finite sequence with a complexity 

index greater than one is guaranteed to be 

more complex than (or at least as complex as) 

a De Bruijn sequence of same size.  Note then 

that the LZ index is not an absolute measure 

of complexity (which is perhaps nonexistent); 

nor is the index ranged between zero and one. 

 Here we consider sliding time 

windows, calculate the LZ index for every 

window, and then get the average.  For 

instance, for a time series of 2,000 data points 

and a chosen time window of 1,000 

observations we first compute the LZ index of 

the window from 1 to 1,000, then the index of 

the window from 2 to 1,001, and so on, up to 

the index of the window from 1,001 to 2,000.  

Then we take the average of the indices. 

Efficiency can also be thought of as 

lack of autocorrelation.  The LZ complexity 

can also capture that, and is general enough to 

encompass Markov processes.  In a sense, the 

LZ index provides a statistic that is more basic 

than those produced by autoregressive 

processes of any order.  If a time series is 

autocorrelated we expect it to present more 

patterns and accordingly to have lower 

complexity than an independent one.  That the 

LZ complexity measure can also capture this 

feature can be seen in the example of an 

unfair coin, whose probability distribution of 

the current value is dependent on the previous 

one with probability p.  If p = ½ the process 

collapses to that of the fair coin with no 

memory (i.e. an independent process); if 

either 0p =  or 1p =  the current value is 

perfectly predictable from past observation, 

i.e. the process is totally dependent.  We 

reckoned the LZ index of the sequences 

generated by the unfair coin for different 

probabilities only to find a parabola-shaped 

curve (not shown).  This means that 

maximum complexity is reached if p = ½, and 

lack of complexity obtains as the probability 

is either 0 or 1. 

 Some applications of the LZ index in 

literature include the following.  Use for DNA 

sequencing in order to reconstruct the 

phylogenetic tree of several species of 

placental mammals [21].  Analysis of the 

complexity of the heart rate variability signals 

to identify intrauterine growth-restricted 

fetuses [18], and even identification of 

temporal complexity in short sequences of 

musical rhythms [22]. 

 

Data and analysis – We collected seven 

years of daily data from July 2000 to July 

2007 (2,000 observations) from 36 stock 

exchange indices (Table 1), and 20 US dollar 

exchange rates (Table 2).  The source was 

Yahoo Finance and EconStats. 

Analysis was performed with the 

returns of the raw series.  The return series 

were coded as ternary strings as follows [13].  

Assuming a stability basin b  for a return 

observation tρ , a data point td  of the ternary 



string was coded as 0 if t td bρ= ≤ − , 

1 if t td bρ= ≥ + , and 2 if t td b bρ= − < < + .  

The series would have become binary if we 

had shrunk the stability basin to the attractor 

zero, i.e. 0b = ; yet we assumed 0.0025b =  

following Shmilovici et al..  We checked for 

the effects of changing b  only to realize that 

the rankings did not alter too much; yet more 

research is needed to consider a more 

sophisticated analysis in the choice of b .  As 

an illustration, we take five daily percentage 

returns of the S&P 500 and compare them 

with b = 0.25%.  From 18 to 22 June 2007 the 

percentage returns were, respectively, 0.652, 

–0.1226, 0.1737, –1.381, and 0.6407.  Thus 

the trading week was coded as 12201. 

Figure 1 shows the evolution of the 

index using 1,000 sliding windows for (a) a 

computer-generated pseudo-random series 

(average LZ from all the 1,000 windows = 

1.0180), (b) returns of the Dow Jones 

(average LZ = 1.0201), (c) returns of the 

Shanghai Composite (average LZ index = 

1.0032), and (d) returns of the Karachi 100 

(average LZ index = 0.9918).  Table 1 shows 

the average LZ indices and variances for all 

the stock exchanges.  As can be seen, all the 

series seem to be very complex.  They look 

more like the genuinely random series than 

the totally redundant, perfectly predictable 

series.  Based on the discussion presented 

above we considered 1LZ =  as a threshold, 

counted the number of occurrences where the 

LZ index was caught above one, and then 

considered that as a measure of relative 

efficiency.  For the pseudo-random series the 

1LZ =  threshold was surpassed 98.8% of the 

times; thus we say that it is 98.8% efficient.  

(Of course, the efficiency measure of a 

pseudo-random series will vary depending on 

how such a series is generated.) 

The Dow Jones, Shanghai Composite, 

and Karachi 100 were found to be, 

respectively, 95.4%, 49.5%, and 23.7% 

efficient.  Note that the Dow Jones series 

looks like the pseudo-random series of our 

example.  Table 1 shows the measures for all 

the stock exchanges.  As can be seen, the S&P 

500 even beats our pseudo-random series.  By 

contrast, the Colombo Stock Exchange was 

found to be only 10.5% efficient, which 

means that stock prices in that market convey 

some redundant information.  As expected 

[23], we have found the less developed 

markets less efficient. 

Table 2 shows the relative efficiency 

of selected US dollar exchange rates, whereas 

Fig. 2 displays the LZ index evolution over 

the same sliding windows (i.e. 1,000) for the 

dollar price in terms of (a) pound sterling 

(average LZ index = 1.0223; 99.81% 

efficient), (b) euro (average LZ index = 

1.0254; 99.45% efficient), (c) Brazilian real 

(average LZ index = 1.0156; 92.60% 

efficient), (d) Indian rupee (average LZ index 

= 0.9958; 43.54% efficient), and (e) Chinese 

yuan (average LZ index = 0.9266; 17.94% 

efficient).  As for the latter, the initial low 

complexity of the dollar price in yuan terms 

in Fig. 2 can be explained by the fact that 

China’s currency remained pegged to the US 

dollar from 16 June 1994 to 21 July 2005 

[24]. 

It can be said that generally we have 

presented a method that deals with the 

hierarchy of related complex systems.  Yet 

there are other alternative ways of doing such 

rankings (see [25], [26], [27], and references 

therein).  As a control experiment we 

considered one such method, namely 

detrended fluctuation analysis (DFA).  Our 

estimate procedure followed Ref. [25].  

(Further details are provided elsewhere [28]).  

The DFA outperforms the traditional Hurst 

exponents and other methods designed to 

track long range memory [25], [29], [30].  

The last two columns in Tables 1 and 2 show 

the average DFA exponents of the 1,000 

sliding windows using 5-day sliding steps and 

a scale range of 100 days.  Because our aim 

was to make a comparison with the LZ index, 

we considered returns (rather than log returns) 

and sliding windows of same size (i.e. 1,000) 

when estimating the DFA exponents.  One 

limitation of such an estimation procedure is 

that there is a bias introduced into the 

estimates within each window because returns 

are sensitive to scale changes.  Tables 1 and 2 

also show the percentage of the times that the 

DFA exponent values were caught inside the 

interval 0.5 ± 0.06.  Fig. 3 takes four series to 

illustrate it.  Interval 0.5 ± 0.06 was arbitrarily 

chosen.  We could observe that the ranking 

varied depending on the interval length (not 



shown).  This means that such an interval 

length choice becomes a serious issue in here 

(see [31]).  Overall the stock market indices 

and exchange rates presented weak long range 

memory.  This finding is consistent with that 

of high complexity of the series.  Also, the 

indices and exchange rates of developed 

markets were top ranked.  But the matching 

between the LZ indices and the DFA 

exponents were not that perfect.  This is not 

so surprising since we have employed an 

arbitrary stability basin b  for the LZ as well 

as an ad hoc interval length for the DFA. 

 

Conclusion – By considering data from 36 

stock market indices and 20 US dollar 

exchange rates, this paper puts forward a 

method to assess the relative efficiency of 

financial markets.  This is made possible 

thanks to the efficiency interpretation 

provided by algorithmic complexity theory.  

The latter makes a connection between the 

efficient market hypothesis and the 

unpredictable character of asset returns.  The 

idealized efficient market generates a time 

series that has a dense amount of non-

redundant information, and thus presents 

statistical features similar to a genuinely 

random time series. 

Physical systems are usually given an 

efficiency rating based on the relative 

proportion of energy converted to work.  We 

suggest an analogous efficiency rating based 

on the relative amount of non-redundant 

information conveyed by financial prices.  

The price of the idealized efficient market 

conveys information that is fully non-

redundant; this market is then said to be 100% 

efficient. 

Since residual inefficiencies are 

always present in actual markets one should 

not expect some of them to be efficient in 

absolute terms.  Yet by considering the 

random efficient market as a benchmark one 

can, for instance, say that the S&P 500 is 

99.1% efficient whereas the Colombo Stock 

Exchange is only 10.5% efficient. 
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Fig. 1: LZ index evolution over 1,000 sliding windows for (a) 

a computer-generated pseudo-random series (average LZ = 

1.0180), (b) returns of the Dow Jones (average LZ = 1.0201), 

(c) returns of the Shanghai Composite (average LZ index = 

1.0032), and (d) returns of the Karachi 100 (average LZ index 

= 0.9918). 

 

Fig. 2: LZ index evolution over 1,000 sliding windows for the 

dollar price in terms of (a) pound sterling (average LZ index 

= 1.0223; 99.81% efficient), (b) euro (average LZ index = 

1.0254; 99.45% efficient), (c) Brazilian real (average LZ 

index = 1.0156; 92.60% efficient), (d) Indian rupee (average 

LZ index = 0.9958; 43.54% efficient), and (e) Chinese yuan 

(average LZ index = 0.9266; 17.94% efficient). 

 

 

 
Fig. 3: DFA exponent evolution over 1,000 sliding windows 

for (a) returns of the S&P 500 index (average DFA = 0.4759; 

98.3% of the occurrences inside the interval 0.5 ± 0.06), (b) 

returns of the Karachi 100 (average DFA = 0.5881; 23.3% of 

the occurrences inside the interval 0.5 ± 0.06), (c) dollar price 

in pounds (average DFA = 0.5272; 98.6% of the occurrences 

inside the interval 0.5 ± 0.06), and (d)  dollar price in yuans 

(average DFA = 0.3655; 39.6% of the occurrences inside the 

interval 0.5 ± 0.06). 

 



Table 1.  The relative efficiency of selected stock market 

indices 
 

Stock Exchange Country 

Average and 

Variance 

of the 

LZ Index 

Relative 

Efficiency*, % 

Average and 

Variance of 

the DFA 

Exponent 

Occurrences 

Inside 

the Interval 

0.5 ± 0.06, % 

S&P 500 USA 
1.0232 

(0.0001) 
99.1 

0.4759 

(0.0004) 
98 

DAX 30 GER 
1.0257 

(0.0002) 
98.4 

0.4794 

(0.0006) 
96 

Nikkei 225 JPN 
1.0432 

(0.0002) 
98.2 

0.4626 

(0.0007) 
82 

All Ordinaries AUS 
1.0246 

(0.0002) 
97.8 

0.5420 

(0.0004) 
82 

ATX AUT 
1.0173 

(0.0001) 
97.4 

0.5556 

(0.0006) 
62 

Dow Jones USA 
1.0201 

(0.0001) 
95.4 

0.4990 

(0.0004) 
100 

Korea Composite KOR 
1.0163 

(0.0001) 
94.9 

0.4663 

(0.0003) 
93 

Tel-Aviv 100 ISR 
1.0187 

(0.0001) 
92.9 

0.5395 

(0.0010) 
66 

Hang Seng HKG 
1.0151 

(0.0001) 
91.5 

0.5225 

(0.0007) 
91 

Straits Times SIN 
1.0153 

(0.0001) 
90.3 

0.4894 

(0.0009) 
93 

CAC 40 FRA 
1.0138 

(0.0002) 
88.4 

0.4402 

(0.0007) 
45 

Helsinki General FIN 
1.0149 

(0.0048) 
88.4 

0.5181 

(0.0004) 
99 

Kuala Lumpur SE MAS 
1.0158 

(0.0003) 
88 

0.5862 

(0.0003) 
10 

FTSE 100 UK 
1.0106 

(0.0005) 
86.6 

0.4643 

(0.0004) 
92 

Prague X CZE 
1.0139 

(0.0002) 
81 

0.5521 

(0.0005) 
63 

Bel 20 BEL 
1.0118 

(0.0000) 
80.4 

0.4828 

(0.0002) 
100 

IBC VEN 
1.0110 

(0.0003) 
79.9 

0.6068 

(0.0018) 
12 

Madrid General ESP 
1.0201 

(0.0001) 
79.3 

0.5002 

(0.0002) 
99 

Swiss Market SUI 
1.0101 

(0.0003) 
78.4 

0.4719 

(0.0004) 
92 

Nasdaq Composite USA 
1.0080 

(0.0001) 
75.4 

0.4584 

(0.0011) 
71 

Amsterdam EX NED 
1.0100 

(0.0003) 
74.4 

0.4811 

(0.0003) 
99 

Bovespa BRA 
1.0127 

(0.0002) 
67.8 

0.5005 

(0.0006) 
99 

IPC MEX 
1.0060 

(0.0001) 
64 

0.5206 

(0.0005) 
96 

Merval ARG 
1.0050 

(0.0003) 
62.9 

0.5570 

(0.0003) 
59 

Jakarta Composite IDN 
1.0054 

(0.0002) 
62.1 

0.5614 

(0.0005) 
48 

Istanbul 100 TUR 
1.0085 

(0.0004) 
61.3 

0.5228 

(0.0007) 
91 

Moscow Times RUS 
1.0050 

(0.0001) 
59.2 

0.5471 

(0.0006) 
76 

Copenhagen DEN 
1.0025 

(0.0002) 
58.7 

0.5243 

(0.0005) 
93 

Athex Composite GRE 
1.0048 

(0.0001) 
56.9 

0.4799 

(0.0012) 
87 

Bombay SE IND 
1.0010 

(0.0002) 
53.3 

0.5113 

(0.0014) 
91 

Taiwan Weighted TPE 
1.0006 

(0.0004) 
50.3 

0.4893 

(0.0005) 
100 

Shanghai Composite CHN 
1.0032 

(0.0014) 
49.5 

0.4980 

(0.0003) 
100 

Philippines PHI 
0.9987 

(0.0002) 
43.1 

0.5599 

(0.0003) 
50 

Lima General PER 
0.9903 

(0.0001) 
37.9 

0.6271 

(0.0027) 
13 

Karachi 100 PAK 
0.9918 

(0.0001) 
23.7 

0.5881 

(0.0014) 
23 

Colombo SE SRI 
0.9795 

(0.0004) 
10.5 

0.5522 

(0.0013) 
66 

*Occurrences above the threshold 1LZ =  

Daily data from July 2000 to July 2007 (2,000 observations) 

Variances in brackets 
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Table 2.  The relative efficiency of selected US dollar 

exchange rates 
 

Currency Country 

Average and 

Variance 

of the 

LZ Index 

Relative 

Efficiency*, % 

Average and 

Variance of 

the DFA 

Exponent 

Occurrences 

Inside 

the Interval 

0.5 ± 0.06, % 

Pound Sterling UK 
1.0223 

(0.0001) 
99.81 

0.5272 

(0.0003) 
99 

Swedish Krona SWE 
1.0236 

(0.0002) 
99.71 

0.5247 

(0.0004) 
97 

Norwegian Krone NOR 
1.0314 

(0.0002) 
99.60 

0.5187 

(0.0003) 
100 

Euro Eurozone 
1.0253 

(0.0001) 
99.45 

0.5126 

(0.0002) 
100 

New Zealand Dollar NZL 
1.0248 

(0.0001) 
99.20 

0.4958 

(0.0004) 
99 

Swiss Franc SUI 
1.0169 

(0.0001) 
99.12 

0.5061 

(0.0004) 
100 

Icelandic Krona ISL 
1.0184 

(0.0001) 
97.48 

0.5463 

(0.0004) 
77 

Mexican Peso MEX 
1.0254 

(0.0001) 
96.58 

0.4875 

(0.0003) 
100 

Danish Krone DEN 
1.0223 

(0.0002) 
94.10 

0.5120 

(0.0004) 
99 

Brazilian Real BRA 
1.0156 

(0.0001) 
92.60 

0.5179 

(0.0005) 
95 

Canadian Dollar CAN 
1.0219 

(0.0002) 
90.07 

0.4837 

(0.0001) 
100 

South African Rand RSA 
1.0177 

(0.0002) 
86.41 

0.5115 

(0.0005) 
98 

Japanese Yen JPN 
1.0153 

(0.0002) 
85.51 

0.5157 

(0.0001) 
100 

Singapore Dollar SIN 
1.0074 

(0.0002) 
66.48 

0.5167 

(0.0016) 
77 

Australian Dollar AUS 
1.004 

(0.0001) 
63.41 

0.5074 

(0.0005) 
100 

Indian Rupee IND 
0.9957 

(0.0003) 
43.54 

0.5138 

(0.0021) 
81 

Colombian Peso COL 
0.9913 

(0.0002) 
21.98 

0.5580 

(0.0004) 
51 

Taiwan New Dollar TPE 
0.9794 

(0.0004) 
21.17 

0.5638 

(0.0007) 
57 

Chinese Yuan CHN 
0.9265 

(0.0039) 
17.94 

0.3655 

(0.0505) 
40 

Sri Lanka Rupee SRI 
0.9687 

(0.0006) 
11.84 

0.5449 

(0.0025) 
48 

* Occurrences above the threshold 1LZ =  

Daily data from July 2000 to July 2007 (2,000 observations) 

Variances in brackets 


