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Abstract

This article studies an inter-temporal optimization problem by using a criterion
that is a combination of Ramsey’s and Rawls’s criteria. A detailed description of
the saving behavior through time is provided. The optimization problem under
α−maximin criterion is also considered, and the optimal solution is character-
ized.

Keywords : Rawls criterion, Ramsey criterion, ε−contamination, maximin princi-
ple, α−MaxMin.
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1 Introduction

1.1 Motivation and concerns

Consensus has been reached that the main source of today’s high living quality
compared with other centuries is from the non-stop world economic growth that
began 300 years ago. Nevertheless, the trade-off between efficiency and equality
always causes debates among economists, politicians, and even historians. An ex-
tremist privilege could cause massive complications for human welfare. Especially
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in the context of climate change today, inter-generational inequality becomes one
of the most important issues in economists’ attention. So, the question is: how to
justly reconcile these features?

This urges the need for ethnically accepted criteria evaluating inter-generational
utilities. Chichilnisky, in seminar articles [11, 12], proposes to study Social Welfare
Functions satisfying the no-dictatorship of the present and the no-dictatorship
of the future, balancing the welfare of the present and of the future.1 These
criteria, weakening the anonymity in keeping Paretian property, rapidly become
the inspiration source of a large range of contributions.

This article follows an alternative approche, considering a criterion balancing effi-
ciency and equality, with the axiomatic foundation can be established by adding
a time invariance property to the ε−contamination configuration in Kopylov [25].
Precisely, given a discount rate β and a instataneous utility function u, the eval-
uation of a consumption stream (c0, c1, c2 . . .) is:

U(c0, c1, c2, . . . ) =
∞∑
t=0

βtu(ct) + a inf
t≥0

u(ct),

where the parameter a ≥ 0 captures the importance of equity in the inter-temporal
generational evaluation in the choice of the economic agent. While the first term
is the usual discounted utilitarian criterion, the second one, well-known as Rawls’
one, measures the utility value of consumption streams in respect of equality.

We consider also the possibility balancing pessimism and optimism, taking into ac-
count the worst generation and the best generation.2 This a a convex combination
of the worst and the best:

U(c0, c1, . . . ) = α sup
t≥0

u(ct) + (1− α) inf
t≥0

u(ct), (1.1)

for some 0 ≤ α ≤ 1 that can be considered as the optimism degree of the economic
agent.

1.2 Approach and results

We begin the analysis by considering the following modified optimization problem:
if we lower the value of the Rawls part to ε, what is the best we can make for the
Ramsey part? By lowering the former, we have more room to improve the later.

1A generalization of these properties, with the convex parameter between the close future and
the distant future may change in function of their values, can be found in Drugeon and Ha-Huy
[13].

2For a general review of formulations in ambiguity, where α−MaxMin is a special case, see
Etner, Jeleva and Tallon [16].
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The optimal ε can be considered as the efficiency-equality trade-off cost. This
modification allows us to transform the initial problem into a classical optimization
one with an additional constraint.

Beginning from a low level of capital accumulation, the utility of the early dates
(or generations) has a tendency to be reduced as much as possible, for the sake of a
rapid accumulation of capital. Nevertheless, because of the constraints imposed by
the equality criteria of Rawls, the difference in utility between the early and later
dates is not too high. In long term, the economy behaves as under the Ramsey
criterion.

In the case of high capital accumulation, the economy converges to a higher steady-
state than that of the Ramsey problem. In the long term, the economy behaves
like a solution to the Ramsey problem with a higher discount factor, which is
increasing with respect to the importance of the equality parameter a.

The α−MaxMin problem is studied using a similar idea. By lowering the infimum
part, we describe the optimal path for the supremum part. We determine the
existence of an optimal value trade-off and a detailed properties of the economy.

Beginning from an initial value that is smaller than the golden rule, there exists a
threshold for the parameter α. If α is small, corresponding to the situation where
Rawls part dominates in the criterion, the solution coincides with Rawls part’s
one. Otherwise, with a sufficiently large value of α, the economy has an infinite
number of solutions. Every optimal path fluctuates between two different values
determined by the fundamental parameters of the problem.

A similar property is observed if the economy begins from an initial capital that
is higher than the golden rule but not too much. In the case the initial capital
level is sufficiently high, there is a unique solution and this path takes a constant
value (smaller than the golden rule) from the date t = 1.

1.3 Related literature

In recent decades, a vast literature has expanded the results in decision theory to
study inter-temporal axiomatization. The introduction of Gilboa and Schmeidler
[19] of the multiple priors approach gives the inception of numerous works not only
in ambiguity literature but also in multiple discount rates of inter-temporal anal-
ysis. To name some contributions, Wakai [33] provides an account of smoothing
behaviours where the optimal discount assumes an MaxMin recursive representa-
tion. Chambers and Echenique [10] set an axiomatic approach to multiple expo-
nential discount rates. Recently, in a similar axiomatic system as Chambers and
Echanique [10], Bich, Dong-Xuan and Wigniolle [7] establish a multiple disount
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rates configuration combining temporal bias phenomena.

This article follows an alternative line of thinking, the idea of ε−contamination,
presented in Kopylov [25]. This configuration can be obtained by adding an
ε−contamination structure to the set of priors in Gilboa and Schmeidler [19].
The evaluation of an act is measured by a convex combination between a mean
expected utility and a maximin expected utility with a given set of priors. The
case of complete ignorance, i.e. the set of priors is the whole set of probabilities,
is studied in Eichberger and Kelsey [15] and Nishimura and Ozaki [27]. Kopylov
[25] obtains the general case by substituting the certainty independence of Gilboa
and Schmeidler [19] by the ∆−independence, with ∆ is an information set of
probabilities, given as a fundamental of the model. In our article, we add a sup-
plementary condition, a weaker version of Koopmans’s time invariance to obtain
the Ramsey-Rawls presentation.

The contribution of Alvarez-Cuadrado and Van Long [1] studies a similar criterion
(called the mixed Bentham - Rawls criterion) under a continuous time configura-
tion. Their analysis is based on a maximization problem where the infimum of
utility streams is supposed to be greater than a certain value u, which is consid-
ered as a control parameter. The observation of the solution and the choice of the
optimal parameter u provide the properties of the optimal path.

Many attempts have been made to study the solution of Rawls maximin critetion
in [31]. The seminal contributions of Arrow [3], Calvo [8], Phelps and Riley [29],
have been made to study the evolution of the economy by using this criterion to
evaluate inter-temporal welfare. Arrow [3] assumes constant productivity. Calvo
[8] studies under uncertain technology. Phelps and Riley [29] study a dynamic
programming structure. The result is pessimistic: if the initial accumulation of
capital is low, the economy remains in this low capital accumulation situation
forever.

In a surprising and fascinating article, Zuber and Asheim [34] establish an ax-
iomatic foundation for what, in our opinion, could be called the "second Rawls
criterion". They assume the anonymity, a condition such that the value of a
utility stream does not change after any permutation of the generations’ utilities.
Following the line of Koopmans [22, 23], and restricting strong Pareto, separability
between the present and the future and stationarity on the set of streams which
are increasing or can be rearranged as increasing, the criterion becomes:

U(c0, c1, . . . ) = inf
p∈Π

[
(1− β)

∞∑
t=0

βtu
(
cp(t)

)]
,

where Π represents the set of every permutation possible of the set of natural num-
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bers {0, 1, 2, . . . }. Though the strong Pareto does not hold,3 Zuber and Asheim
[34] prove that this criterion satisfies Chichilnisky’s no-dictatorship properties.
They also apply it to a similar growth context as this article, with an additional
condition that there is no depreciation of capital, and prove that the solution
coincides with Ramsey’s one.

As Chichilnisky’s no-dictatorship criteria, the Ramsey-Rawls and α−MaxMin cri-
teria are time-inconsistent. However, an optimization problem under a time-
incoherent criterion may have a coherent markovian solution. Drugeon et al [14]
study the maximin criterion with multiple discount factors. The authors present
a dynamic programming structure that has the same value function as the problem
at stake and proves that the solutions in the two cases are coincide.

To overcome the difficulties caused by the generic non-existence, and the time
inconsistency in no-dictatorship criteria, following the idea of Phelps and Pollack
[28], Asheim and Ekeland [4] study the Markovian equilibrium of optimization
problem under the Chichilnisky criterion, and come to interesting results about the
influence of no-dictatorship of the future on long term behaviour of the economy.

1.4 Contents

This article is organized as follows. Section 2 analyses the Ramsey-Rawls prob-
lem. Section 3 solves the α−MaxMin problem. Section 4 discusses the axiomatic
foundation of Ramsey-Rawls and Chichilnisky’s no-dictatorship criteria. Section
5 concludes. As an example, Appendix 6.1 studies the Ramsey-Rawls problem
with linear production function and logarithmic utility function. The proofs and
some intermediary analysis are given in the Appendix.

2 Dynamics under Ramsey-Rawls criterion

2.1 Fundamentals

Let β ∈ (0, 1) be the discount factor of the discounted utilities part, and parameter
a ≥ 0 representing the importance of equality in the criterion. Let f and u be
correspondingly the production and the utility functions. For a given capital stock

3See Basu and Mitra [6], for the impossibility theorem stating that there is no function that
holds simultaneously strong Pareto and anonymity properties.
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k0 ≥ 0, the economic agent solves the following optimisation problem (P ):

V (k0) = max

[
∞∑
t=0

βtu(ct) + a inf
t≥0

u(ct)

]
,

s.c ct + kt+1 ≤ f(kt),

kt, ct ≥ 0,∀ t.

Assumption A1. Utility function u is strictly concave, strictly increasing, satis-
fies Inada condition and bounded from below. The production function f is con-
cave, strictly increasing, satisfying f(0) = 0 and f ′(0) > 1.

Let Π(k0) be the set of feasible paths {kt}∞t=0: 0 ≤ kt+1 ≤ f(kt) for any t. Denote
by k the solution to f ′(k) = 1, which maximizes f(k) − k. In the case f ′(k) > 1

for any k ≥ 0, let k = ∞. The value k is usually called the golden rule, the
capital stock that maximizes the constant consumption.4 Let ks be the minimum
of value(s) k such that f ′(k) = 1

β
. If f ′(k) ≥ 1

β
for every k ≥ 0 then ks = ∞. If

f ′(k) < 1
β
for every k ≥ 0 then ks = 0.

It is well known in the literature that under suitable conditions, with respect to the
product topology, the Ramsey part and the Rawls part are upper semi-continuous
and the set of feasible paths Π(k0) is compact. To simplify the presentation, we
assume directly this upper continuity property. Curious readers can refer to the
classical book of Stokey, Lucas (with Prescott) [30], or the article by Le Van and
Morhaim [21] for the details of conditions that ensure this property.

Assumption A2. The following functions, being defined on the set of feasible
paths Π(k0),

∞∑
t=0

βtu (f(kt)− kt+1) and inf
t≥0

u (f(kt)− kt+1) ,

are well defined and upper semi-continuous with respect to the product topology.

Under this assumption, the problem (P ) has an optimal solution, which is unique,
due to the strict concavity of utility function u and the concavity of f . It is worth
recall that in the case a = 0, there exists a strict increasing optimal policy function
σ such that the optimal path {k∗t }∞t=0 satisfies k∗t+1 = σ(k∗t ) for every t and this
path converges to ks when t tends to infinity.

In another extreme, when the evaluation criterion contains merely the Rawls part:
U(c0, c1, . . .) = inft≥0 u(ct), the long term behavior of solution depends strongly on
the initial capital k0. Precisely, let ν be the value function of the problem under

4See Gale [18].
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Rawls criterion. If k0 ≤ k, then the unique optimal solution is (k0, k0, k0, . . .) and
ν(k0) = u (f(k0)− k0). Otherwise, if k0 > k, there exists an infinite number of
solution, all converge to k and ν(k0) = u

(
f(k)− k

)
. The details are presented in

Appendix 6.2.

2.2 The dynamics

The intuition for studying this problem runs as follows. The maximum value
possible for the Rawls part is ν(k0). Naturally, the following question arises: if we
accept a lower value of the Rawls part up to ε, what is the best improvement we can
obtain for the Ramsey part? And which is the optimal acceptable sacrifice level
ε? This optimal value may represent the cost of the trade-off between efficiency
and equality.

Consider the following intermediary problem (P ε), for a given k0:

W (ε) = max

[
∞∑
t=0

βtu(ct)

]
,

s.c ct + kt+1 ≤ f(kt),∀ t ≥ 0,

u(ct) ≥ ν(k0)− ε,∀ t ≥ 0.

The optimal trade off value ε∗ is defined as:

ε∗ = argmax
ε≥0

[W (ε) + a (ν(k0)− ε)] .

Let {k∗t }∞t=0 be the optimal path of problems (P ) and (P ε∗). A careful analysis
of the solution of P ε gives us the characterization of the economy under Ramsey-
Ralws criterion. The details are given in Appendix 6.3.

Let {k∗t }∞t=0 the optimal path and c∗t = f(k∗t )− k∗t+1.

Proposition 2.1. Consider the case 0 < k0 ≤ ks. For any a > 0, there exists T
such that

i) For 0 ≤ t ≤ T , u(c∗t ) = u
(
f(k0)− k0

)
− ε∗.

ii) For t ≥ T + 1, u(c∗t ) > u
(
f(k0)− k0

)
− ε∗.

iii) The sequence {k∗t }∞t=T+1 is the solution to the Ramsey problem with initial
state k∗T+1.

In the case where productivity is high,
(
f ′(k0) > 1

β

)
, the utility of the early dates

(or generations) are lowered as much as possible for the purpose of a rapid accu-
mulation of capital. Sacrificing even a little bit the value of the equality part is
worth it, to have a better accumulation level of capital.
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Once the capital accumulation level is sufficiently high, the economy follows a
Ramsey path that does not violate the equality constraints and converges to the
steady-state ks. Because of the constraints imposed by the equality criterion of
Rawls, the difference in utility between early dates and the later dates in the dis-
tant future is not too high. This difference depends negatively on the equality
parameter a, which imposes a trade-off between equality and the speed of conver-
gence to the steady-state.

The case of low productivity
(
f ′(k0) < 1

β

)
, requires some considerations about

threshold of parameter a. With a sufficiently high value of a, the equality part
(if sufficiently high) causes the economy to converge to a higher steady-state than
that of Ramsey problem. The difference between the lowest dates (in the distant
future) and the highest dates (in present) is diminished. The optimal choice in
long term behaves as if at a steady state of some Ramsey problem with a value
of discount rate β̃ higher than β, which is defined as follows. Let k̃0 ≤ k be
the capital accumulation that is solution to u

(
f(k) − k

)
= ν(k0) − ε∗. The new

discount factor β̃ satisfies:

f ′(k̃0) =
1

β
.

Moreover, there exists a threshold for equality parameter a. Beyond this threshold,
the optimal sequence remains the same and every date (or generation) has the
same utility level. If the equality parameter a is too low, there is no change in the
behavior of the economy, compared with the one under Ramsey criterion.

Let ε̃ = u
(
f(k) − k

)
− u

(
f(ks) − ks

)
. By the strict concavity of u, the function

W is strictly concave on [0, ε̃]. In the Appendix, section 6.3, we prove that W ′(0)

is finite. This value serves is an important threshold for parameter a.

Proposition 2.2. Consider the case k0 ≥ ks.

i) For W ′(ε̃) < a < W ′(0), the optimal ε∗ satisfies 0 < ε∗ < ε̃ and there exists T
such that:

a) For 0 ≤ t ≤ T , u(c∗t ) > ν(k0)− ε∗.

b) For t ≥ T + 1, u(c∗t ) = ν(k0)− ε∗.

ii) For a ≥ W ′(0), the optimal ε∗ = 0 and

a) If ks ≤ k0 ≤ k, for every t, k∗t = k0.

b) If k0 ≥ k, for every t sufficiently big, k∗t = k.

iii) For 0 ≤ a ≤ W ′(ε̃), ε∗ = ε̃ and the solution of (P ) coincides with the solution
of Ramsey problem.
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We conclude this section by Corollary 2.1, which establishes the dependence of
the new discount factor β̃ in function of a. Remark that, as W is strictly concave,
and ε∗ is the solution to W ′(ε) = a, the trade-off between efficiency and equality
depends negatively on the value of parameter a: dε∗

da
< 0. This implies that β̃ is

increasing in respect to a. With a slight abuse of notation, if kt = k for every t
big enough, we say that β̃ = 1.

Corollary 2.1. Assume that k0 ≥ ks. In long term, the optimal path behaves
as the solution of an economy under Ramsey criterion with a new discount factor
β̃ ≥ β, which is increasing in respect to a. Precisely,

i) If 0 ≤ a ≤ W ′(ε̃), β̃ = β.

ii) If a increases from W ′(ε̃) to W ′(0), β̃ increases from β to min {1/f ′(k0), 1}.

iii) If a ≥ W ′(0), β̃ = 1.

3 Dynamics under α−MaxMin criterion

Consider the following problem, balancing the worst and best generations: for a
given k0 ≥ 0,

V(k0) = sup

[
α sup

t≥0
u(ct) + (1− α) inf

t≥0
u(ct)

]
,

s.c. ct + kt+1 ≤ f(kt),

ct, kt ≥ 0 for all t ≥ 0.

The idea to resolve this is similar to the one in the previous section. To determine
the supremum value of the optimization problem, we consider the following sup-
modified problem. For ε > 0, define

W(ε) = max

[
sup
t≥0

u(ct)

]
,

s.c ct + kt+1 ≤ f(kt), for all t ≥ 0,

u(ct) ≥ ν(k0)− ε, for all t ≥ 0.

We have

V(k0) = max
ε≥0

[αW(ε) + (1− α) (ν(k0)− ε)] .

With a careful analysis of the modified problem, we can solve the α−maximin
one. Beginning from a low level of capital accumulation, for a small value of α,
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the infimum part dominates and the optimal solution coincides with the solution
of Ralws problem. For a big value of α, the supremum part has effects and the
solution depends strongly on the initial capital stock k0. If the initial capital is
high, the supremum part always influences the result with every value α > 0. We
assume that α > 0.

Proposition 3.1. i) Consider the case k0 < k. There exists α∗ ∈ (0, 1) such
that

a) If α > α∗, then there exist an infinite number of solution and two values
x < k0 < x such that every optimal path satisfies

lim inf
t→∞

k∗t = x,

lim sup
t→∞

k∗t = x.

b) If α < α∗, then the unique optimal path is the solution to Rawls’ problem,
k∗t = k0,∀ t.

ii) Consider the case k0 ≥ k. There exist two values x < k < x such that

a) If if k0 ≤ x, every optimal path satisfies

lim inf
t→∞

k∗t = x,

lim sup
t→∞

k∗t = x.

b) If k0 > x, then the optimal path is unique and satisfies k∗t = x for every
t ≥ 1. This is also a solution to Rawls’ problem.

It is worth noting that when α tends to zero, the two values x and x converge to
k0 if k0 ≤ k and to k otherwise. Every optimal path becomes a solution to Rawls
problem, which can be considered as a special case of α−MaxMin.

4 Axiomatic foundation and no-dictatorship cri-
teria

4.1 ε−contamination criteria

In this article, we follow the ider of ε−contamination. The agent has an "opinion"
that the good discount system should be a σ−additive probability in π.5 The

5We have πt ≥ 0 for every t and
∑∞

t=0 πt = 1.
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use of the word "opinion" is similar to that of Kopylov [24], to define a state of
mind that is less rigid than a "belief". The economic agent thinks that π is a
good choice, but there are reasons that suggest to her or him that this conclusion
could be hasty. She or he should also consider all other time discounting systems.
Precisely, the evaluation can be presented as

U(c0, c1, . . .) = (1− ε)
∞∑
t=0

πtu(ct) + ε inf
t≥0

u(ct).

The parameter ε ∈ [0, 1] represents the lack of confidence in the choice π∗ of the
agent. If ε = 1, the ignorance is complete. We obtain Rawls’ criterion inft≥0 u(ct).
By contrast, if ε = 0, she or he believes without doubt that π is the good one,
and we find the usual discounted utilitarian configuration. The general case for
ε ∈ [0, 1] and a more general set of probabilities is provided by Kopylov [25].6

We assume that the preference order being represented by function U satisfies the
four axioms A1 to A4 in Kopylov [25],7 with the fundamental set ∆ constitutes
of all countably additive probabilities defining on the set {0, 1, 2, . . .}. We add a
time invariance condition to establish the exponential discount rate form for the
probability π. This property states that the comparison of two sequences with
the same infimum does not depend on the period of departure. It is a weaker
version of Koopman’s standard condition in the time discounting literature. This
guarantees that marginal rates between any two consecutive time periods are the
same, a characterization of the exponential discounting.

Remark that in the general case of Kopylov [25] with π and ∆ belong to the set of
probabilities (which contains also the non-countably additive ones) on the set of
natural numbers N, we can also obtain an exponential representation for π with
our version of time invariance and a property of Monotone Continuity, initiated
by Villegas [32] and proven by Arrow [2]. This later one has the purpose to ensure
the countable additivity of the subjective probability π.

Proposition 4.1. Assume that the evaluation has an ε−contamination represen-
tation with ∆ constitues of every countably additive probabilities. Assume also
that for every consumption sequences (c0, c1, c2, . . .) and (c′0, c

′
1, c
′
2, . . .) such that

inft≥0 ct = inft≥0 c
′
t, every consumption level c, we have

U(c0, c1, c2, . . .) ≥ U(c′0, c
′
1, c
′
2, . . .) if and only if U(c, c0, c1, c2, . . .) ≥ U(c, c′0, c

′
1, c
′
2, . . .).

Then there exists β ∈ (0, 1) such that πt = (1− β)βt for every t ≥ 0.
6The result of Kopylov, in the context of this article, can be presented as follow:

U(c0, c1, . . .) = (1 − ε)
∑∞

t=0 πtu(ct) + ε infp∈∆

∑∞
t=0 ptu(ct), where ∆ is a set of probabilities

being given as a fundamental of the model.
7The most two important axioms are ∆−monotonicity and ∆−independence.
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The inter-temporal evaluation then becomes

U(c0, c1, c2, . . . ) = (1− ε)
∞∑
t=0

(1− β)βtu(ct) + ε inf
t≥0

u(ct).

If 0 < ε < 1, this is equivalent to a Ramsey-Rawls criterion with a = ε
(1−ε)(1−β)

.
The cases ε = 0 and ε = 1 correspond to the well-known Ramsey and Rawls
criteria.

4.2 No-dictatorship criteria

4.2.1 The criteria and the non-existence of solution

To capture the idea of sustainable growth, and to maintain the equality between
generations of the present and close future and generations of the distant fu-
ture, Chichilnisky in [11, 12] considers criteria that are combinations of a sum
of discounted utilities, exhibiting dictatorship of the present and a criteria that,
disregarding the utilities of close future generations, exhibits dictatorship of the
future.

The no dictatorship of the present requires the existence of two utility streams that
the comparison can be reversed by careful changes in the distant future of these
streams. By contrast, the no dictatorship of the future requires a similar one, with
changes in the close future. As an example, the following mixed criterion precisely
satisfies no-dictatorship of the present and no-dictatorship of the future:

∞∑
t=0

βtu(ct) + a lim inf
t→∞

u(ct),

with some parameter a > 0 that represents the importance of the distant future
compared with the present and close future.

This approach is very appealing, and rapidly becomes an inspiration source for
a large range of researches. However, under no-dictatorial criteria, an optimal
solution may not exist, as proven in Heal [20], in an economy with renewable
resources, or Ayong le Kama et al [5] in a growth context. The reason for this non-
existence is that the optimal paths of the Ramsey part and the lim inf part converge
to different values. While the former’s converges to a steady-state depending on
the value of the discount factor, the latter converges to the golden rule.

4.2.2 Towards a satisfying solution

Neither the no-dictatorship criteria nor the Ramsey-Rawls one is time-consistent.
To overcome the difficulties caused by the generic non-existence, and the time in-
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consistency, following the idea of Phelps and Pollack [28], Asheim and Ekeland [4]
study the Markovian equilibrium of optimization problem under the Chichilnisky
criterion, and come to interesting results. If the economy begins from sufficiently
high productivity of the initial stock, the lim inf part does not influence the deter-
mination of the solution. By contrast, from low productivity of stock, the distant
future part leads the economy to larger stock conservation than the one which
would have been under a standard discounted utilitarian configuration.

Our Propositions 2.1 and 2.2 go in line with the results of Asheim and Ekeland
[4], especially in the long term behaviour of the economies. In Proposition 2.1,
beginning from a high productivity capital stock, the equality has an effect on the
first periods, avoiding a too low level of consumption. After that, the economy
behaves as in the case there is no equality part. In Proposition 2.2, beginning from
a high level of stock accumulation, in comparison with the Ramsey configuration,
the economy converges to a higher accumulation for generations in the distant
future, and even avoiding a possible collapse, as will be proven in Section 6.1.

In another contribution, Figuières and Tidball [17], in an economy where the
economic agent enjoys consumption and natural resources, restrict themselves on
the set of convex combinations between solutions of the Ramsey problem and the
lim inf one. They prove the existence of an optimal combination and consider it
as a "satisfying" response to the problem under Chichilnisky’s criteria.

5 Conclusion

In this article, we establish the solution to the saving problems under Ramsey-
Rawls and maximin criteria. The optimization of the inf part leads to a status-quo
situation. It is important to note that the Ramsey-Rawls and α−MaxMin criteria
are time-inconsistent. Without commitment, future agents may want to revise
past decisions.

A possibility to overcome this time incoherency is the approach that considers
the Markovian rules, as presented in the seminal contribution of Phelps and Pol-
lack [28], considering the Markovian rules. Phelps and Pollack [28] consider the
existence and properties of linear stationary Markov equilibria in the context of
quasi-hyperbolic discounting. In general, however, this question is difficult and
complicated, even in the case of constant productivity, as pointed out in Krusell
and Smith [26].8

According to our intuition, the Ramsey-Rawls criterion challenges us with similar
8For a review of this literature, and an excellent analysis of saving and dissaving under quasi-

hyperbolic discounting criterion, see Cao and Werning [9].
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difficulties. To address them, we can begin by following the ideas of Phelps and
Pollack [28] and Cao and Werning [9] to study the linear Markovian rules and
saving behavior.9 Following this, we may come to similar results as Asheim and
Ekeland [4], especially in the case where the initial level of resource is high. But
this should be the subject of another study.

6 appendix

6.1 Constant productivity function and logarithmic util-
ity function

In this section, we provide computations for the case where productivity is constant
(f(k) = Ak) and the utility function is logarithmic u(c) = ln c. The optimal policy
function is10

σ(k) = βAk.

Assume that A > 1. Hence k =∞. By induction, we have

k∗t = (βA)t k0,

c∗t = A(1− β) (βA)t k0.

The value function is defined as

v(k0) =
∞∑
t=0

βt ln c∗t

=
lnA+ ln(1− β) + ln k0

1− β
+ (ln β + lnA)

∞∑
t=0

tβt.

1. Consider the case A > 1
β
. As k0 < ks for every k0, by Lemma 6.3,W ′(0) =∞

and W ′(ε̃) = 0. The optimal sacrifice level ε∗ satisfies W ′(ε∗) = a. There is
T such that for 0 ≤ t ≤ T ,

u
(
f(k∗t )− k∗t+1

)
= u (f(k0)− k0)− ε∗,

which is equivalent to

ln
(
Ak∗t − k∗t+1

)
= ln(A− 1) + ln k0 − ε∗.

9For another work following the same spirit, see Asheim and Ekeland [4].
10See Stokey and Lucas, with Prescott [30].

14



For 0 ≤ t ≤ T ,

k∗t+1 = Ak∗t −
(A− 1)k0

eε∗
.

The value T is the smallest such that

u
(
f(k∗T+1)− σ(k∗T+1)

)
≥ u (f(k0)− k0)− ε∗,

which is equivalent to

ln
(
Ak∗T+1 − βAk∗T+1

)
≥ ln (Ak0 − k0)− ε∗.

This is equivalent to

lnA+ ln(1− β) + ln k∗T+1 ≥ ln(A− 1) + ln k0 − ε∗.

The value T is the first integer number satisfying

k∗T+1 ≥
A− 1

A(1− β)
× k0

eε∗
.

The sequence {k∗T+t}∞t=0 is the solution to the Ramsey problem with initial
state k∗T+1.

2. Consider the case A < 1
β
. In this case, ks = 0, every solution of the Ramsey

problem converges to zero. The critical value ε̃ is then

ε̃ = u (f(k0)− k0)− u(0)

=∞.

Next, we determineW ′(0). For ε close to zero, the critical time T from which
u(cεt) = u (f(k0)− k0)− ε is T = 1.

Capital level kε1 is solution to

u (f(k1)− k1) = u (f(k0)− k0)− ε.

This implies

ln (Akε1 − kε1) = ln(A− 1) + ln k0 − ε.

Hence

kε1 =
k0

eε
.
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We have

W (ε) = u (f(k0)− kε1) +
β

1− β
(u (f(k0)− k0)− ε)

= ln

(
Ak0 −

k0

eε

)
+

β

1− β
(ln (Ak0 − k0)− ε)

= ln

(
A− 1

eε

)
+

β

1− β
(ln(A− 1) + ln k0 − ε) .

Hence for ε close to zero,

W ′(ε) =
e−ε

A− e−ε
− β

1− β
.

Let ε converge to zero, we obtain

W ′(0) =
1− βA

(A− 1)(1− β)
.

Then, we have Proposition 6.1. The equality parameter has a strong effect if it is
sufficiently high. Otherwise, there is no difference between the behavior following
Ramsey-Rawls criterion and the behavior following Rawls criterion.

Proposition 6.1. i) For a ≤ 1−βA
(A−1)(1−β)

, we have ε∗ ≥ 0, and there exists T
such that:

a) For 0 ≤ t ≤ T , u(c∗t ) > ln(A− 1) + ln k0 − ε∗.

b) For t ≥ T + 1, u(c∗t ) = ln(A− 1) + ln k0 − ε∗.

ii) For a ≥ 1−βA
(A−1)(1−β)

, ε∗ = 0. The optimal path is constant: k∗t = k0 for any
t ≥ 0.

Thanks to the Rawls’ part, even if the productivity is low, the economy does not
collapse.

6.2 Optimal solution under Rawlsian criterion

We consider the problem under the Rawls criterion:

max

[
inf
t≥0

u(ct)

]
,

under the constraint ct + kt+1 ≤ f(kt) for all t, with k0 > 0 given.

Proposition 6.2. i) Consider the case 0 ≤ k0 ≤ k. The problem has a unique
solution k∗ = (k0, k0, . . .) and

max
k∈Π(k0)

[
inf
t≥0

u(ct)

]
= u (f(k0)− k0) .
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ii) Consider the case k is finite and k0 ≥ k. The problem has an infinite number
of solutions and

max
k∈Π(k0)

[
inf
t≥0

u(ct)

]
= u

(
f(k)− k

)
.

Proof. Let k∗ be a solution to the problem.

(i) Suppose that k∗t ≤ k0 for some t. Observe that

k0 − k∗t+1 ≥ f(k0)− f(k∗t )

≥ f ′(k0)(k0 − k∗t )
≥ k0 − k∗t ,

which implies k∗t+1 ≤ k∗t . By induction, we obtain k0 ≥ k∗t for all t. Furthermore,
the sequence (k∗t ) is decreasing and then converges to k̂ ≤ k0. From the continuity
of f , we have f(k̂)− k̂ ≥ f(k0)− k0. However, the function f(x)− x is increasing
in [0, k], thus, f(k̂)− k̂ ≤ f(k0)− k0. Then k̂ = k0, then k∗t = k0 for all t.

(ii) Let k∗ be an optimal path. Since the sequence k = (k0, k, k, . . .) is feasible,
for every t, we have f(k∗t )− k∗t+1 ≥ f(k)− k. Hence,

k − k∗t+1 ≥ f(k)− f(k∗t )

≥ f ′(k)(k − k∗t )
= k − k∗t .

This implies k∗t+1 ≤ k∗t for any t. The sequence k∗ is decreasing and converges to
some k̂. By the continuity of f , f(k̂)− k̂ ≥ f(k)− k. Since k maximizes f(x)−x,
this implies k̂ = k. By induction, we can construct an infinite number of sequence
k that satisfy: for all t, k < kt+1 < f(kt) − f(k) + k. It is easy to verify that
this sequence is decreasing and converges to k, satisfying inft≥0 (f(kt)− kt+1) =

f(k)− k. QED

6.3 The Ramsey-modified problem

Let ν be the value function of the problem under Ralws criterion:

ν(k0) = max
k∈Π(k0)

[
inf
t≥0

u (f(kt)− kt+1)

]
.

Given k0 ≥ 0, for each ε ≥ 0, we first consider the following intermediary problem
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(P ε) with a given k0:

W (ε) = max

[
∞∑
t=0

βtu(ct)

]
,

s.c ct + kt+1 ≤ f(kt),∀ t ≥ 0,

u(ct) ≥ ν(k0)− ε,∀ t ≥ 0.

Proposition 6.1 states that the optimal solution of (P ) is also the optimal solution
of (P ε), for some optimal value ε.

Lemma 6.1. For any k0 ≥ 0,

V (k0) = max
ε≥0

[
W (ε) + a (ν(k0)− ε)

]
.

Using Lemma 6.1, to understand the behavior of the optimal solution of initial
problem (P ), we study the solution of problems (P ε), with ε ≥ 0. For simplicity,
henceforth, we use the term "equality constraint" to denote u(ct) ≥ ν(k0)− ε. Let
{cεt, kεt+1}∞t=0 be the optimal solution of (P ε). By the strict concavity of u, this
sequence is unique.

Obviously, if ε is sufficiently large, the solution of the Ramsey problem also satis-
fies the equality constraint, and solving the problem (P ε) becomes a trivial task.
Let ε̃ be the critical value for this property: if we lower the Rawls part to ε̃, the so-
lution of the Ramsey problem also satisfies the constraint of the Ramsey-modified
problem and becomes the solution of the latter one.

Define

ε̃ =


u
(
f(k0)− k0

)
− u
(
f(k0)− σ(k0)

)
if 0 ≤ k0 ≤ ks,

u
(
f(k0)− k0

)
− u
(
f(ks)− ks

)
if ks ≤ k0 ≤ k

u
(
f(k)− k

)
− u
(
f(ks)− ks

)
if k0 ≥ k.

As the equality constraint is satisfied, it is a trivial task to prove Lemma 6.2.

Lemma 6.2. Assume that ε ≥ ε̃.

i) The optimal solution of the problem (P ε) coincides with the solution of the
Ramsey problem.

ii) W (ε) = W (ε̃) = v(k0).

If ε = 0, the optimal solution is (k0, k0, . . . ). We now consider the interesting case,
where 0 < ε ≤ ε̃.
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Proposition 6.3 states as follows. If 0 ≤ k0 ≤ ks, the equality constraints are
binding in the early dates, the optimal solution behaves like a solution of the
Ramsey problem when the accumulation of capital reaches a sufficiently high level.
If k0 ≥ ks, the equality constraints are binding from some date T that is sufficiently
large, and in the long term, every date (or generation) has the same utility level,
which is equal to exactly the lowest level acceptable.

Proposition 6.3. i) Consider the case 0 < k0 < ks. If 0 < ε ≤ ε̃, there exists
T such that:

a) For 0 ≤ t ≤ T , u(cεt) = ν(k0)− ε.
b) For t ≥ T + 1, u(cεt) > ν(k0)− ε.
c) The sequence {kεt}∞t=T+1 is the solution of the Ramsey problem with initial

state kεT+1.

ii) Consider the case k0 > ks. If 0 < ε ≤ ε̃, there exists T such that

a) For 0 ≤ t ≤ T , u(cεt) > ν(k0)− ε.
b) For t ≥ T + 1, u(cεt) = ν(k0)− ε.

For the case k0 ≥ ks, define k̃ as the solution to

u
(
f(k̃)− k̃

)
= ν(k0)− ε.

We easily verify that kεt = k̃ for a T that is sufficiently high. Let β̃ be the discount
rate that satisfies

f ′(k̃) =
1

β̃
.

By the choice of ε̃, we have ks < k̃ < k. Hence, β̃ > β. In the long term, the
optimal solution for the case k0 ≥ ks behaves as a solution of the Ramsey problem
with a discount rate β̃, that is greater than β.

Lemma 6.3 is a direct consequence of Proposition 6.3. The function W is strictly
concave with respect to ε belonging to [0, ε̃]. This concavity implies the existence
of the right derivative of W at 0 and the left derivative of W at ε̃. In Section 2.2,
these two values play the role of critical thresholds for equality parameter a. The
behavior of the optimal solution depends strongly on the comparison between a

and W ′(0), W ′
−(ε̃). Details are given in Section 2.2.

For instance, we provide some preparation results for W ′
+(0) and W ′

−(ε̃).

Lemma 6.3. i) For any k0, the function W is strictly concave on [0, ε̃].

ii) If 0 ≤ k0 < ks, then W ′(0) = +∞ and W ′(ε̃) = 0.

iii) If k0 > ks, then W ′(0) < +∞.
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6.3.1 Proof of Lemma 6.1

By the very definition of ν, for every feasible sequence {kt}∞t=0,

inf
t≥0

u
(
f(kt)− kt+1

)
≤ ν(k0).

Let {k∗t }∞t=0 be the optimal solution of problem (P ). Define

ε∗ = ν(k0)− inf
t≥0

u(c∗t ).

We have

V (k0) =
∞∑
t=0

βtu(c∗t ) + a inf
t≥0

u(c∗t )

=
∞∑
t=0

βtu(c∗t ) + a (ν(k0)− ε∗)

≤ W (ε∗) + a (ν(k0)− ε∗) .

Conversely, consider ε ≥ 0. Let {cεt}∞t=0 be the consumption set corresponding to
the solution of the modified problem:

W (ε) + a (ν(k0)− ε) =
∞∑
t=0

βtu (cεt) + a (ν(k0)− ε)

≤
∞∑
t=0

βtu (cεt) + a inf
t≥0

u (cεt)

≤ V (k0).

The proof is completed.

6.3.2 Proof of Proposition 6.3

Obviously, W is increasing. Moreover, the concavity ofW is from the concavity of
utility function u and production function f . Let σ be the optimal policy function
of the economy under Ramsey criterion.

First, we consider the case that 0 ≤ k0 ≤ k. For each ε > 0, let x∗(ε) such that
x ≥ k0 and

u
(
f(x)− σ(x)

)
= u

(
f(k0)− k0

)
− ε.

(i) We consider the case k0 < ks. Observe that k0 < x∗(ε) < ks. Indeed, by the
definition of ε̃ and the choice of ε, u (f(k0)− σ(k0)) < u (f(k0)− k0) − ε. Since
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σ(ks) = ks, and u (f(ks)− ks) > u (f(k0)− k0), the existence of x∗(ε) ∈ (k0, k
s)

is ensured.

We prove the following claim: kεt < ks for every t. First, observe that: if kt < x∗(ε),
then kt+1 < ks. Indeed,

u
(
f(kεt)− kεt+1

)
≥ u

(
f(k0)− k0

)
− ε

= u
(
x∗(ε)− σ(x∗(ε))

)
.

Since kt < x∗(ε), this implies kt+1 < σ(x∗(ε)) < ks. Now, assume that for some
T , x∗(ε) < kεT+1 < ks. Let {ǩt}∞t=T+1 be the solution of the Ramsey problem with
initial state kεt+1. Since kεT+1 < ks, ǩt < ks for any t ≥ T + 1 and

inf
t≥T+1

u(čt) = u
(
f(kεt+1)− σ(kεt+1)

)
≥ u

(
f(x∗(ε))− σ(x∗(ε))

)
= u

(
f(k0)− k0

)
− ε.

Hence the sequence {k0, k
ε
1, . . . , k

ε
T , k

ε
T+1, ǩT+2, ǩT+2, . . . } is the optimal solution

for the problem (P ε), or ǩt = kεt for any t ≥ T + 1. The proof that kεt < ks for any
t is completed.

It is impossible that u (cεT ) = u
(
f(k0) − k0

)
− ε for every T . Indeed, assume the

contrary. This implies kεt < x∗(ε) for every t and kε1 > k0. By induction, we
have kεt+1 > kεt for every t and then the sequence {kεt}∞t=0 converges to some k∗

such that k0 < k∗ ≤ x∗(ε). Taking the limit when T tends to infinity, we have
u (f(k∗)− k∗) < u (f(k0)− k0), a contradiction.

Consider the Lagrangian:

L =
∞∑
t=0

βtu(ct)−
∞∑
t=0

βtλt
[
ct + kt+1 − f(kt)

]
−
∞∑
t=0

βtµt
[
u
(
f(k0)− k0

)
− ε− u(ct)

]
.

By the Inada condition of u, at optimal the consumption and capital level are
strictly positive. Hence, the Lagrangian parameters for these constraints are zero.

For any t,

(1 + µt)u
′(cεt) = λt,

λt = βλt+1f
′(kεt+1).

This implies that for any t,

(1 + µt)u
′(cεt) = β(1 + µt+1)u′(cεt+1)f ′(kεt+1)

≥ βf ′(kεt+1)u′(cεt+1).
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Let T = T (ε) be the smallest time such that u (cεT ) > u
(
f(k0) − k0

)
− ε. The

constraint does not bind, hence, µT = 0. Since f ′(kεT+1) ≥ 1
β
, then u′(cεT ) ≥

u′(cεT+1), hence, cεt+1 ≥ cεT . The (T+1)th constraint also does not bind: u
(
cεT+1

)
>

u
(
f(k0)− k0

)
− ε. By induction, for any t ≥ T + 1, u (cεt) > u

(
f(k0)− k0

)
− ε and

µt = 0. The sequence {(cεt, kεt+1)}∞t=T is increasing and satisfies Euler equations.
Hence {kεt}∞t=T is the solution for Ramsey problem with initial state kεT .

(ii) Consider the case ks < k0 < k. In this case, ks is finite. We will prove that
kεt > ks for any t ≥ 0. Assume that there exists T such that kεT ≤ ks. We have

u
(
f(kεT )− kεT+1

)
≥ ν(k0)− ε
= u

(
f(k0)− k0

)
− ε

> u
(
f(k0)− k0

)
− ε̃

= u
(
f(ks)− ks

)
,

which implies kεT+1 < kεT < ks, since f(x) − x is strictly increasing in (0, ks). By
induction, the sequence {kεT+t}∞t=0 is decreasing and converges to k < ks. Taking
the limit, we obtain

u
(
f(ks)− ks

)
> u

(
f(k)− σ(k)

)
≥ ν(k0)− ε
≥ u

(
f(k0)− k0

)
− ε

> u
(
f(ks)− ks

)
,

a contradiction. The property that kεt > ks for any t ≥ 0 is established, we
re-consider the Lagrangian:

L =
∞∑
t=0

βtu(ct)−
∞∑
t=0

βtλt
[
ct + kt+1 − f(kt)

]
−
∞∑
t=0

βtµt
[
u
(
f(k0)− k0

)
− ε− u(ct)

]
.

For any t,

(1 + µt)u
′(cεt) = λt,

λt = βλt+1f
′(kεt+1).

This implies for any t:

u′(cεt) ≤ (1 + µt)u
′(cεt)

= β(1 + µt+1)u′(cεt+1)f ′(kεt+1).
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If u (cεT ) > u
(
f(k0) − k0

)
− ε, the constraint does not bind, and µT = 0. Since

f(kεT ) < 1
β
, we obtain u′(cεT−1) < u′(cεT ), which implies cεT−1 > cεT , with the direct

consequence

u
(
cεT−1

)
> u

(
f(k0)− k0

)
− ε.

By induction, we obtain for any 0 ≤ t ≤ T ,

u (cεt) > u
(
f(k0)− k0

)
− ε.

If this property is ensured for any t ≥ 0, the the sequence {kεt}∞t=0 satisfies Euler
equations and the transversality condition, hence it is the optimal solution of the
Ramsey problem and converges to ks: a contradiction, since

u
(
f(ks)− ks

)
< u

(
f(k0)− k0

)
− ε.

Hence there exists T such that for any t ≥ T ,

u (cεT ) = u
(
f(k0)− k0

)
− ε.

Obviously, for any t ≥ T , we have

u (cεt) = u
(
f(k0)− k0

)
− ε,

otherwise using the same arguments in the induction, we obtain u (cεT ) > u
(
f(k0)−

k0

)
− ε, a contradiction.

For the last case k0 ≥ k, we use the same arguments as those for the case 1 ≤
f ′(k0) ≤ 1

β
, with the observation that the value of ν(k0) is u

(
f(k)− k

)
and

f(k)− k ≥ f(ks)− ks.

6.3.3 Proof of Lemma 6.3

From the concavity of the functions u and f , the function W (ε) is strictly concave
in respect to ε on [0, ε̃].

(i) We prove that W ′(0) = +∞. Consider T (ε) in the proof of Proposition 6.3.

For any 0 ≤ t ≤ T (ε):

ε = u
(
f(k0)− k0

)
− u
(
f(kεt)− kεt+1

)
≥ u′

(
f(k0)− k0

) (
f(k0)− k0 − f(kεt) + kεt+1

)
≥ u′

(
f(k0)− σ(k0)

) (
f ′(k0)(k0 − kεt) + kεt+1 − k0

)
.

This implies

kεt+1 − k0 ≤
ε

u′
(
f(k0)− k0

) + f ′(k0)(kεt − k0).

23



By induction, we obtain for any t ≥ 0,

kεt+1 − k0 ≤
[
f ′(k0)

]t+1 − 1

f ′(k0)− 1
× ε

u′
(
f(x∗)− x∗

) .
Hence

x∗(ε)− k0 ≤ kT (ε)+1 − k0

≤
[
f ′(k0)

]T (ε)+1 − 1

f ′(k0)− 1
× ε

u′
(
f(k0)− k0

) .

W (ε) =

T (ε)∑
t=0

βtu (cεt) +
∞∑

t=T (ε)+1

βtu (cεt)

=
(
u
(
f(k0 − k0

)
− ε
) T (ε)∑
t=0

βt + βT (ε)+1v(kεT (ε)).

Hence

W (ε)−W (0) = −ε
T (ε)∑
t=0

βt + βT (ε)+1

(
v
(
kεT (ε)

)
−
u
(
f(k0)− k0

)
1− β

)

= −ε1− β
T (ε)+1

1− β
+ βT (ε)+1

(
v
(
kεT (ε)

)
−
u
(
f(k0)− k0

)
1− β

)
.

Now, we prove that

lim
ε→0

βT (ε)

ε
= +∞.

Indeed, recall that[
f ′(k0)

]T (ε)+1 − 1

f ′(k0)− 1
× ε

u′
(
f(k0)− k0

) ∼ x∗(ε)− k0.

This implies(
f ′(k0)

)T (ε)
ε ∼ O(1).

Hence

T (ε) ln
(
f ′(k0)

)
∼ − ln(ε),

which is equivalent to

T (ε) ∼ − ln(ε)

ln
(
f ′(k0)

) .
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We have

βT (ε) ∼
(
elnβ

)− ln(ε)

ln

(
f ′(k0)

)
∼ ε

− ln β

ln

(
f ′(k0)

)
∼ ε

ln( 1
β )

ln

(
f ′(k0)

)
.

Since f ′(k0) > 1
β
, we have

lim
ε→0

βT (ε)

ε
= lim

ε→0
ε

ln( 1
β )

ln

(
f ′(k0)

)−1

=∞,

which implies W ′(0) = +∞.

(ii) First assume that ks < k0 ≤ k. Now we prove that W ′(0) < +∞. For ε small:

W (ε)−W (0) =
∞∑
t=0

βt
[
u
(
f(kεt)− kεt+1

)
− u
(
f(k0)− k0

)]
≤ u′

(
f(k0)− k0

) ∞∑
t=0

βt
[
f(kεt)− f(k0)− kεt+1 + k0

]
≤ u′

(
f(k0)− k0

) ∞∑
t=0

βt
[
f ′(k0)(kεt − k0)− kεt+1 + k0

]
≤ u′

(
f(k0)− k0

) ∞∑
t=0

βt [f ′(k0)(kεt − k0)]

≤ u′
(
f(k0)− k0

)
f ′(k0)

∞∑
t=0

βt [kεt − k0]

≤ u′
(
f(k0)− k0

)
f ′(k0)

∞∑
t=0

βt
[
f ′(k0)

]t+1 − 1

f ′(k0)− 1
× ε

u′
(
f(k0)− k0

)
= f ′(k0)

∞∑
t=0

βt
[
f ′(k0)

]t+1 − 1

f ′(k0)− 1
× ε

= O(ε),

since βf ′(k0) < 1.

This implies W (ε)−W (0) = O(ε), or W ′(0) < +∞.

Now assume that k is finite and k0 ≥ k. We use exactly the same arguments in
the proof of part (ii), by changing the constrains u(ct) ≥ u (f(k0)− k0) − ε by
u(ct) ≥ u

(
f(k)− k

)
.

Now we prove that W ′(ε̃) = 0. For ε close enough to ε̃, the critical time T (ε) from
which the optimal path behaves as a solution of Ramsey problem with initial state
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kεT (ε) is T (ε) = 1. We then have

u (f(k0)− kε1) = u (f(k0)− k0)− ε,

and the sequence {kε1+t}∞t=0 is the solution of the Ramsey problem with initial state
kε1. Denote by v the value function of the Ramsey problem. Then

W (ε) = u (f(k0)− k0)− ε+ βv(kε1),

and

W ′(ε) = −1 + βv′(kε1)× dk′1
dε
.

By the implicit function theorem, we have

dkε1
dε

=
1

u′ (f(k0)− kε1)
.

We observe that by letting ε converge to ε̃, we have

lim
ε→ε̃

kε1 = σ(k0).

This implies

W ′
−(ε̃) = −1 + βv′ (σ(k0))× 1

u′ (f(k0)− σ(k0))
.

Recall that it is well-known in dynamic programming literature that

v(k0) = max
0≤k1≤f(k0)

[u (f(k0)− k1) + βv(k1)]

= u (f(k0 − σ(k0)) + βv (σ(k0)) .

Combined with the Inada condition, this implies

−u′ (f(k0)− σ(k0)) + βv′ (σ(k0)) = 0,

which is equivalent to

W ′(ε̃) = 0.

(iii) For any 0 ≤ ε ≤ ε̃, there exists T such that the equality constraint cor-
responding to T bind. Hence, the solutions corresponding to different values of
ε differ. We combine this with the strict concavity of u, and obtain that W is
strictly concave in [0, ε̃].
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6.4 Proof of Proposition 2.1

For any 0 ≤ ε ≤ ε̃, the optimal solution satisfies the following property: there
exists t such that u (cεt) = u

(
f(k0) − k0

)
. Hence, the solutions corresponding to

difference values of ε also differ. Combined with the strict concavity of u, the
function W is strictly concave in [0, ε̃]. This implies the existence of an unique left
derivative of W .

Since for any a > 0, we have W ′
−(ε̃) = 0 < a < W ′(0) = ∞, there exists a

unique 0 < ε < ε̃ such that W ′(ε∗) = a. The statement of this Proposition is a
consequence of Propositions 6.1 and 6.3.

6.5 Proof of Proposition 2.2

We use exactly the results in Proposition 6.3 and the same arguments as in the
proof of Proposition 2.1 and Proposition 2.2.

6.6 Proof of Corollary 2.1

The result is a direct consequence of the definition of k̃0 and β̃ × f ′(k̃0) = 1.

6.7 The α−MaxMin criterion

6.7.1 The sup-modified problem

Consider the following problem: for a given k0 ≥ 0,

V(k0) = sup

[
α sup

t≥0
u(ct) + (1− α) inf

t≥0
u(ct)

]
,

s.c. ct + kt+1 ≤ f(kt) for all t ≥ 0.

The idea to resolve this is similar to the one in the previous section. To determine
the supremum value of the optimization problem, we consider the following sup-
modified problem: For ε > 0, define

W(ε) = max

[
sup
t≥0

u(ct)

]
,

s.c ct + kt+1 ≤ f(kt), for all t ≥ 0,

u(ct) ≥ ν(k0)− ε, for all t ≥ 0.

Let Πε(k0) be the set of feasible paths of this problem.

Lemma 6.4 states the existence of an optimal level of trade-off.
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Lemma 6.4. We have

V(k0) = max
ε≥0

[αW(ε) + (1− α) (ν(k0)− ε)] .

6.7.2 Solution of the sup-modified problem

With Lemma 6.4, we solve the modified problem, with some ε > 0. Let xε and xε

be correspondingly the solution in [0, k0] and (k0,∞) to the equation

u (f(x)− x) = u (f(k0)− k0)− ε.

In the case u (f(x)− x) ≥ u (f(k0)− k0)−ε for any x ≥ k0, let xε =∞. Obviously,
if limx→∞ f

′(x) < 1, the value xε is finite.

Proposition 6.4. Consider the case 0 ≤ k0 ≤ k.

i) For any ε ≥ 0,

W(ε) = u (f(xε)− xε) .

ii) For any optimal path {kt}∞t=0, we have xε ≤ kt ≤ xε, and

lim inf
t→∞

kt = xε,

lim sup
t→∞

kt = xε.

The case k is finite and k0 ≥ k deserves a slight change in the treatment. The
optimal value ε∗does not depend on k0. Let x˜ε be the unique solution in [0, k] to
the equation:

u (f(x)− x) = u
(
f(k)− k

)
− ε.

Since f(x) − x is decreasing on [k,∞), there is a unique x̃ε in [k,+∞), that is
solution to

u (f(x)− x) = u
(
f(k)− k

)
− ε.

Notably, contrary to the case k0 ≤ k, in this case the values x˜ε and x̃ε are inde-
pendent from k0. If k0 ≤ x̃ε, thus there exists an infinite number of solutions, and
every optimal path fluctuates between x˜ε and x̃ε. Only for k0 sufficiently large,
there exists a unique solution, and it is constant from date t = 1.

Proposition 6.5. Consider the case k0 ≥ k.
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i) If k ≤ k0 ≤ x̃ε, then

W(ε) = u
(
f(x̃ε)− x˜ε) .

Moreover, there is an infinite number of solutions. Every optimal paths
{kt}∞t=0 satisfies x˜ε ≤ kt ≤ x̃ε, and

lim inf
t→∞

kt = x˜ε,
lim sup
t→∞

kt = x̃ε.

ii) If k0 ≥ x̃ε, then kt = x˜ε for any t ≥ 1 and

W(ε) = u
(
f(k0)− x˜ε) .

6.7.3 Proof of Lemma 6.4

Consider any feasible sequence {kt}∞0 ∈ Π(k0), with ct = f(kt)− kt+1, and define

ε̂ = ν(k0)− inf
t≥0

u (ct) .

Obviously,

(1− α) sup
t≥0

u(ct) + α inf
t≥0

u(ct) = α sup
t≥0

u(ct) + (1− α) (ν(k0)− ε̂)

≤ αW(ε̂) + (1− α) (ν(k0)− ε̂)
≤ sup

ε≥0
[(1− α)W(ε) + α (ν(k0)− ε)] .

Now, consider any feasible sequence {kt}∞0 ∈ Π(k0) that satisfies the constraints
of the modified problem.

α sup
t≥0

u(ct) + (1− α) (ν(k0)− ε) ≤ α sup
t≥0

u(ct) + (1− α) inf
t≥0

u(ct)

≤ V(k0).

Taking the supremum on the left side, the proof of the Lemma is completed.

6.7.4 Proof of Proposition 6.4

i) We prove that for any feasible sequence {kt}∞t=0 of the modified problem, we
have for any t ≥ 0,

xε ≤ kt < xε.
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Assume the contrary of the first inequality, that is for some T , kT < xε. Since
the function f(x)− x is strictly increasing in [0, k0], we have

u (f(kT )− kT ) < u (f(xε)− xε)
= u (f(k0)− k0)− ε
≤ u (f(kT )− kT+1) .

This implies that kT+1 ≤ kT < xε. By induction, the sequence {kT+t}∞t=0 is
decreasing and converges to some 0 ≤ k∗ < xε. Hence,

u (f(k∗)− k∗)) < u (f(xε)− xε)
= u (f(k0)− k0)− ε
≤ u (f(k∗)− k∗) ,

a contradiction.

Consider the sequence {kt}∞t=0 determined as

k0 = k0,

u
(
f(kt)− kt+1

)
= u (f(k0)− k0)− ε.

We easily verify that the sequence {kt}∞t=0 is increasing and converges to xε,
whether this value is finite or infinite.

Fix any feasible sequence {kt}∞t=0 of the modified problem. Assume that for
some T , kT ≤ kT . As a consequence,

u
(
f(kt)− kt+1

)
= u (f(k0)− k0)− ε
≤ u (f(kT )− kT+1)

≤ u
(
f(kT )− kT+1

)
,

which implies kT+1 ≤ kT . By induction, for any t ≥ 0,

kT+t ≤ kT+t < xε.

As for every t, xε < kt < xε, the following inequality holds:

sup
t≥0

u (f(kt)− kt+1) ≤ u (f(xε)− xε) .

Now, we prove that the existence of feasible paths {kt}∞t=0 such that

sup
t≥0

u (f(kt)− kt+1) = u (f(xε)− xε) .
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Fix any two sequences {xn}∞n=0 and {xn}∞n=0 such that the former is strictly
decreasing and converges to xε and the later is strictly increasing and con-
verges to xε:

x0 > x1 > . . . > xn > . . .→ xε,

x0 < x1 < . . . < xn < . . .→ xε.

We construct the sequence T0 < T1 < . . . < Tn and the sequence {kt}∞t=0 as
follows. For 0 ≤ t ≤ T0,

u (f(kt)− kt+1) = u (f(k0)− k0)− ε.

If we continue to use this equation to define kt+1 from kt to infinity, the
sequence converges to xε. Hence, there exists a T0 that is the smallest one t
satisfying kT0 ≥ x0. Let kT0+1 = x0. We have

u (f(kT0)− kT0+1) ≥ u (f(x0)− x0) .

For t ≥ T0 + 1, define the sequence as

u (f(kt)− kt+1) = u (f(k0)− k0)− ε.

Using the same argument for the definition of T0, there exists a T1 that is the
smallest satisfying kt ≥ x1. Let kT1+1 = x1. We have

u (f(kT1)− kT1+1) ≥ u (f(x1)− x1) .

Additionally, we define in the same manner, by induction Tn+1 in function of
Tn. For any n ≥ 0 we have kTn ≥ xn, kTn+1 = xn and:

u (f(kTn)− kTn+1) ≥ u (f(xn)− xn) .

Let n converge to infinity,

lim
n→∞

u (f(kTn)− kTn+1) ≥ u (f(xε)− xε) .

Hence,

sup
t≥0

u (f(kt)− kt+1) = u (f(xε)− xε) .

Since the two sequences {xn}∞n=0 and {xn}∞n=0 can be chosen arbitrarily, there
exist an infinite number of optimal solution.

Consider a optimal path {kt}∞t=0. It is an easy task to verify that if kT = xε,
by induction, we obtain that kT+t = xε for any t ≥ 0. As for 0 ≤ t ≤ T ,
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kt < xε, the strict inequality supt≥0 u (f(kt)− kt+1) < u (f(xε)− xε) holds,
implying that this sequence is not optimal. Hence, for every optimal path,
the inequality xε < kt < xε is satisfied for every t. Moreover, as there exits
an infinite number T0 < T1 < . . . < Tn < . . . such that

lim
n→∞

u (f(kTn)− kTn+1) = u (f(xε)− xε) ,

the following limits are verified:

lim
n→∞

kTn = xε,

lim
n→∞

kTn+1 = xε.

ii) This part is a direct consequence of the proof of the first part.

6.7.5 Proof of Proposition 6.5

i) First, we prove that for any k ≤ k0 ≤ x̃ε, and for every feasible path {kt}∞t=0 ∈
Πε(k0), we have

x˜ε ≤ kt ≤ x̃ε.

Assume that there is some T such that kT < x˜ε. Then
u (f(kT )− kT ) < u

(
f(x˜)− x˜)

= u
(
f(k)− k

)
− ε

≤ u (f(kT )− kT+1) ,

which implies kT+1 ≤ kT < x̃ε. By induction, the sequence {kT+t}∞t=0 is
decreasing and converges to some k∗ < x̃ε, and

u (f(k∗)− k∗) < u (f(x̃)− x̃)

= u
(
f(k)− k

)
− ε,

a contradiction.

By induction, assume that for some T , we have x˜ε ≤ kT ≤ x̃ε. Since

u
(
f(x̃ε)− x˜ε) ≤ u (f(kT )− kT+1)

≤ u (f(x̃ε)− kT+1) ,

we have kT+1 ≤ x̃ε. As this property is satisfied by k0, by induction, we obtain
kt ≤ x̃ε for all t ≥ 0.
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Since for any t, x˜ε ≤ kt ≤ x̃ε,

sup
t≥0

u (f(kt)− kt+1) ≤ u
(
f(x̃ε)− x˜ε) . (6.1)

To prove that the left side is equal to the right side in the aforementioned
inequality (6.1), and that there exists an infinite number of solutions for the
modified problem, we prove that for any x˜ε ≤ k0 ≤ x̃ε, the sequence {k̃t}∞t=0

defined as follows is increasing and converges to x̃ε:

k̃0 = k0,

u
(
f(k̃t)− k̃t+1

)
= u

(
f(k)− k

)
− ε, for all t ≥ 0.

Indeed, using the same aforementioned arguments, we have for any t, x˜ε ≤
k̃t ≤ x̃ε. Then

u
(
f(k̃t)− k̃t+1

)
= u (f(x̃ε)− x̃ε)

= u
(
f(k)− k

)
− ε

≤ u
(
f(k̃t)− k̃t

)
.

This implies k̃t ≤ k̃t+1, and the sequence {k̃t}∞t=0 is increasing and converges
to the solution of u (f(x)− x) = u

(
f(k)− k

)
− ε, or

lim
t→∞

k̃t = x̃ε.

Now, we fix two sequences {x˜n}∞n=0 which is strictly decreasing and converges
to x˜ε, and {x̃n}∞n=0, which is strictly increasing and converges to x̃ε.

Using the same arguments as in the Proof of Proposition 6.4, we can construct
a feasible sequence {kt}∞t=0 ∈ Πε(k0) and a sequence of index T0 < T1 < . . . <

Tn < . . . such that for any n,

u (f(kTn)− kTn+1) ≥ u
(
f(x̃n)− x˜n) .

Additionally, we have

sup
t≥0

u (f(kt)− kt+1) ≥ lim
n→∞

u
(
f(x̃n)− x˜n)

= u
(
f(x̃ε)− x˜ε) .

Since the two sequences {x̃n}∞n=0 and {x̃n}∞n=0 are chosen arbitrarily, there
exists an infinite number of optimal paths.

Consider an optimal path {kt}∞t=0. We verify easily that if kT = x˜ε, by the
constraint, kT+t = x˜ε for any t ≥ 0, which implies supt≥0 u (f(kt)− kt+1) <
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u (f(x̃ε)− x̃ε), a contradiction. Hence, for any t, x˜ε < kt < x̃ε. Moreover,
there exists an infinite number T0 < T1 < . . . < Tn < . . . such that

lim
n→∞

u (f(kTn)− kTn+1) = u
(
f(x̃ε)− x˜ε) .

Hence, we have

lim
n→∞

kTn = x̃ε,

lim
n→∞

kTn+1 = x˜ε.
ii) Now, we consider the case k0 ≥ x̃ε. Take any feasible sequence {kt}∞t=0 ∈

Πε(k0). We claim that for any t ≥ 0,

x˜ε ≤ kt ≤ k0.

Using the same arguments as in the proof of the part (i), we have kt ≥ x˜ε forany t ≥ 0. We prove by induction that kt ≤ k0 for any t. Indeed, this is true
for t = 0. Assume that kt ≤ k0 for any 0 ≤ t ≤ T − 1. If kT > k0, which is
bigger thant x̃ε, then

u (f(kT )− kT ) ≤ u (f(x̃ε)− x̃ε)
= u

(
f(k)− k

)
− ε

≤ u (f(kT )− kT+1) ,

which implies kT+1 ≤ kT ≤ k0, a contradiction. The claim is proved. Thus,
for any t,

sup
t≥0

u (f(kt)− kt+1) ≤ u
(
f(k0)− x˜ε) .

We verify easily that the sequence {k∗t }∞t=0 = (k0, x˜ε, x˜ε, x˜ε, . . . ) is feasible and
sup
t≥0

u
(
f(k∗t )− k∗t+1

)
= u

(
f(k0)− x˜ε) .

To prove that this sequence is unique solution, take any feasible sequence
{kt}∞t=0. Assume that k1 > x˜ε. Hence,

u (f(k0)− k1) < u
(
f(k0)− x˜ε) .

If k1 ≥ x̃ε, then

sup
t≥1

u (f(kt)− kt+1) ≤ u
(
f(k1)− x˜ε)

< u
(
f(k0)− x˜ε) .

34



If k1 ≤ x̃ε, then

sup
t≥1

u (f(kt)− kt+1) ≤ u
(
f(x̃ε)− x˜ε)

< u
(
f(k0)− x˜ε) .

Combining these inequalities, we obtain

sup
t≥0

u (f(kt)− kt+1) = max

{
u (f(k0)− k1) , sup

t≥1
u (f(kt)− kt+1)

}
< u

(
f(k0)− x˜ε) .

For the case k1 = x˜ε, to maintain the path being feasible, we must have
kt = x˜ε for any t ≥ 1. The uniqueness of the optimal solution is proven.

6.8 Proof of Proposition 3.1

The optimal trade-off value ε∗ is defined as

ε∗ = argmax
ε≥0

[
αW(ε) + (1− α)(ν(k0)− ε)

]
.

We will prove that if k0 < k, W ′(0) < ∞. The value xε is defined as solution to
u (f(x)− x) = u (f(k0)− k0). Hence,

ε = u (f(k0)− k0)− u (f(xε)− xε)
≥ u′ (f(k0)− k0) (f(k0)− k0 − f(xε) + xε)

≥ u′ (f(k0)− k0) (f ′(k0)− 1) (xε − k0).

Hence, xε − k0 = O(ε). Using the same arguments, we have k0 − xε = O(ε). We
have

W(ε)−W(0) = u (f(xε)− xε)− u (f(k0)− k0)

≤ u′ (f(k0)− k0) (f ′(k0)(xε − k0)− (xε − k0))

= O(ε).

Hence, W ′(0) <∞. Let α∗ ∈ (0, 1) such that

W ′(0) =
1− α∗

α∗
.

If α ≤ α∗, the Rawls’ part dominates, and ε∗ = 0. The optimal path is solu-
tion to Rawls’ problem. Otherwise, ε∗ > 0. In two cases, the results are direct
consequences of Proposition 6.4.
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Consider the case k0 > k. If ε∗ is big enough such that k0 < x̃ε
∗ , apply part (i)

of Proposition 6.5. Otherwise, ε∗ is close to 0 and k0 > x̃ε
∗ , apply part (ii) of

Proposition 6.5.

Consider the remaining case, k0 = k. We prove that W ′(0) = +∞. Indeed, from
u (f(x̃ε)− x̃ε) = u

(
f(k)− k

)
− ε and the Mean Value Theorem, we have

ε = u
(
f(k)− k

)
− u (f(x̃ε)− x̃ε)

= u′(ζ)
(
f(k)− k − f(x̃ε) + x̃ε

)
= u′(ζ) (f ′(ξ)− 1) (x̃ε − k),

with some f(x̃ε) − x̃ε ≤ ζ ≤ f(k) − k and k ≤ ξ ≤ x̃ε. Since ζ is bounded from
below and above,

f(k)− k − f(x̃ε) + x̃ε = O(ε).

Moreover, remark that when ε converges to 0, f ′(ξ) converges to 1. This implies

lim
ε→0

x̃ε − k
ε

= +∞.

We have

W(ε)−W(0) = u
(
f(x̃ε)− x˜ε)− u (f(k)− k

)
≥ u′

(
f(x̃ε)− x˜ε) (f(x̃ε)− x˜ε − f(k) + k

)
= u′

(
f(x̃ε)− x˜ε) (f(x̃ε)− x̃ε − f(k) + k + x̃ε − x˜ε)

≥ u′
(
f(x̃ε)− x˜ε) (f(x̃ε)− x̃ε − f(k) + k + x̃ε − k

)
.

Hence,

lim
ε→0

W(ε)−W(0)

ε
= +∞.

This implies that ε∗ > 0 for every α > 0. We then apply Proposition 6.5.

6.9 Proof of Proposition 4.1

For each T ≥ 0, let πT the probability being defined as

πTs =
πT+s∑∞
s′=0 πT+s′

.

We will prove that π = πT for every T ≥ 0. First, we prove the following Claim:
for every consumption sequences (c0, c1, . . .), (c′0, c

′
1, . . .),

∞∑
t=0

πtu(ct) ≥
∞∑
t=0

πtu(c′t) if and only if
∞∑
t=0

π1
t u(ct) ≥

∞∑
t=0

π1
t u(c′t).
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Consider the "only if " case. Fix any constant b > 0, a constant c ≥ 0 such that
c ≤ min {inft≥0 ct, inft≥0 c

′
t}. Fix T0 ≥ 0 big enough such that for every T ≥ T0,

T∑
t=0

πtu(ct + b) + πT+1u(c) +
∞∑

t=T+2

πtu(ct + b) ≥
T∑
t=0

πtu(c′t) + πT+1u(c) +
∞∑

t=T+2

πtu(c′t).

Since the infimum of the consumption sequence on the left-hand side is equal to
the infimum of the one on the right-hand side, we have

U(c0 + b, c1 + b, . . . , cT + b, c, cT+2 + b, . . .) ≥ U(c′0, c
′
1, . . . , c

′
T , c, c

′
T+2, . . .).

This implies

U(c, c0 + b, c1 + b, . . . , cT + b, c, cT+2 + b, . . .) ≥ U(c, c′0, c
′
1, . . . , c

′
T , c, c

′
T+2, . . .).

Hence,

T+1∑
t=1

πtu(ct−1+b)+πT+2u(c)+
∞∑

t=T+3

πtu(ct−1+b) ≥
T+1∑
t=1

πtu(c′t−1)+πT+2u(c)+
∞∑

t=T+3

πtu(c′t−1).

Let T converges to infinity, we get

∞∑
t=1

πtu(ct−1 + b) ≥
∞∑
t=1

πtu(c′t−1).

Since b > 0 is chosen arbitrarily, we obtain

∞∑
t=1

πtu(ct−1) ≥
∞∑
t=1

πtu(c′t−1),

which is obviously equivalent to

∞∑
t=0

π1
t u(ct) ≥

∞∑
t=0

π1
t u(c′t).

In the "if " case, we apply the same argument, and the Claim is proven. The
satisfaction of the Claim proves that π = π1. By induction, we have π = πT for
every T ≥ 0. Hence,

πT+t+1

πT+t

=
πt+1

πt
, ∀ T, s ≥ 0.

Let β = π1
π0
, we have πt+1 = βπt, for every t. Since

∑∞
t=0 πt = 1, it is easy to verify

that πt = (1− β)βt, for t ≥ 0.
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