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Abstract

In all areas of human knowledge, datasets are increasing in both size and complexity,
creating the need for richer statistical models. This trend is also true for economic data,
where high-dimensional and nonlinear/nonparametric inference is the norm in several fields
of applied econometric work. The purpose of this paper is to introduce the reader to
the world of Bayesian model determination, by surveying modern shrinkage and variable
selection algorithms and methodologies. Bayesian inference is a natural probabilistic
framework for quantifying uncertainty and learning about model parameters, and this
feature is particularly important for inference in modern models of high dimensions and
increased complexity.

We begin with a linear regression setting in order to introduce various classes of
priors that lead to shrinkage/sparse estimators of comparable value to popular penalized
likelihood estimators (e.g. ridge, lasso). We explore various methods of exact and
approximate inference, and discuss their pros and cons. Finally, we explore how priors
developed for the simple regression setting can be extended in a straightforward way to
various classes of interesting econometric models. In particular, the following case-studies
are considered, that demonstrate application of Bayesian shrinkage and variable selection
strategies to popular econometric contexts: i) vector autoregressive models; ii) factor
models; iii) time-varying parameter regressions; iv) confounder selection in treatment effects
models; and v) quantile regression models. A MATLAB package and an accompanying
technical manual allow the reader to replicate many of the algorithms described in this
review.
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1 Introduction

In all areas of human knowledge, datasets are increasing in both size and complexity, creating

the need for richer models. This trend is also true for economic data, where high-dimensional

and nonlinear/noparametric inference is the norm in several fields of applied econometric work.

The purpose of this survey is to introduce the reader to Bayesian inference using shrinkage

and variable selection priors. In particular we intend to demonstrate that the benefits of a

Bayesian approach to high-dimensional estimation are manifold. Bayesian inference allows for

a more accurate quantification of uncertainty. Parameters are treated as random variables

that have their own probability density (or mass) functions. The use of a prior distribution

provides a natural ground for enhancing possibly weak information in the likelihood.1 Our

first aim is to explore in this review classes of priors that can recover popular penalized

regression estimators, such as the lasso of Tibshirani (1996). Next, we want to demonstrate

how the Bayesian paradigm becomes a natural framework for combining prior forms in order

to capture more complicated patterns of shrinkage and/or sparsity in the data. For example,

Ročková and George (2018) extend the lasso with ideas from the Bayesian variable selection

literature in order to obtain a “spike and slab lasso” estimator that is empirically superior

to shrinkage or variable selection alone, and has desirable theoretical guarantees. Finally, we

aim to illustrate that the Bayesian framework is ideal for applied economists who want to

use shrinkage or sparsity in more complex or unconventional settings. Economists might be

interested in combining data-rigorous statistical variable selection with economic restrictions on

certain parameters2, or use a shrinkage estimator in a model with breaks, stochastic volatility,

missing data or other complexities. Penalized and constrained maximum likelihood frameworks

can deal with such cases, but computation is non-trivial because it relies on optimizing complex

functions. We demonstrate emphatically in this survey paper that Bayesian computation

provides numerous tools and algorithms for shrinkage and sparsity that can be incorporated in

very complex statistical models with the same ease they are used in univariate linear regression

settings.

Even though the notions of sparsity and shrinkage estimation are ubiquitous since the

explosion of Big Data in all fields of science (e.g. we doubt there are many economists these

days who haven’t heard about the lasso), we want to clarify these terms before proceeding with

our formal definitions. Sparsity refers to finding parameter estimates that have more zeros than

not (where zeros in estimation means absence of some effect or relationship). Shrinkage means

estimation where many parameter elements are suppressed towards zero, but they are not

1Note that our interest here is in “wide” data (e.g. a linear regression model with more predictors than
observations) where unrestricted estimation based only on the likelihood is either unreliable or impossible. In
cases with “tall” data (many observations) the Bayesian posterior will tend to concentrate towards a point mass,
i.e. uncertainty is small.

2For example, instead of the typical statistical shrinkage towards zero that indicates whether an effect is
important or not, economists might want to shrink a parameter towards a calibrated value or a sign restriction
provided by the solution of an economic model.
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necessarily zero. While many readers might be familiar with these concepts, interpretation

from a Bayesian point of view is slightly different from frequentist approaches. Sparsity is

not identical for the simple reason that parameters in the Bayesian paradigm are (continuous,

in many cases) random variables. Similarly, shrinkage estimation is embedded in Bayesian

inference since any non-diffusing (non-flat) prior will tend to bias the likelihood; the frequentist

statistician can only achieve shrinkage if they specify the estimation problem using an explicit

penalized likelihood approach.

We explain these differences, and many more concepts, in this detailed review. We build

our discussion gradually by introducing in this section basic components of Bayesian decision

theory and estimation, and the principles of Bayesian model determination using the marginal

likelihood. In Section 2 we introduce the concept of hierarchical priors and present the basic

properties of a large class of hierarchical representations of Bayesian sparsity and shrinkage

estimators. In Section 3 we focus on computation using hierarchical priors, and strategies for

making inference in high-dimension computationally feasible. Section 4 demonstrates how the

hierarchical priors and computational tools discussed in the previous sections, can be readily

applied to a wide class of models that are important in economics and finance, as well as other

fields of science. Section 5 concludes this review.

Throughout this review we make the assumption that the reader has a broad understanding

of the concept of a prior distribution. If this is not the case, novice readers are advised

to begin reading about the basics of Bayesian inference in subsection 1.2 and then move to

subsection 1.1. More experienced readers, can move directly to section 2, skipping the material

in this section.

1.1 Bayesian decision theory and estimation

In order to motivate shrinkage and sparsity, we first introduce the concept of loss-based

estimation using a Bayesian decision theoretic approach. Detailed introductions can be found

in Fourdrinier et al. (2018) and Robert (2007). Assume we have data X ∈ X where X (the

sample space) is a measurable set of IRn, and parameters θ ∈ Θ where Θ (the parameter

space) is a measurable set of IRp. We define two probability density functions (p.d.f.) that are

measurable on X and Θ: a the likelihood function p (X|θ), and a prior function π(θ). Denote

with θ̂(X) an estimator of θ, that is, a measurable function of data X that maps from IRn to

IRp.

Under these definitions we can now specify what is the loss and risk associated with the

estimator θ̂(X). First, we can define loss functions of the form L
(
θ̂(X), θ

)
= ρ

(
θ̂(X), θ

)

where ρ(•) can be a symmetric loss function (the quadratic being the most popular) or any

asymmetric loss function that measures how close θ̂(X) is to the true θ. The Bayes risk

associated with “decision” θ̂ is defined as (see also Fourdrinier et al., 2018)

r
(
π, θ̂
)
=

∫

Θ
Eθ

(
L
(
θ̂(X), θ

))
dπ(θ). (1)
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The quantity R(θ, θ̂) = Eθ

(
L
(
θ̂(X), θ

))
is the frequentist risk of θ̂, which is defined as

the expected value of the loss function over the data realization for a fixed θ. In contrast,

the Bayes risk in Equation 1 is the average of frequentist risk R with respect to the prior

distribution π(θ). Frequentist decision theory aims at making the expected loss R(θ, θ̂) small,

while Bayesian decision theory aims at finding the minimum of r
(
π, θ̂
)
. In particular, the

quantity

r(π) = inf
θ̂
r
(
π, θ̂
)
, (2)

is the Bayes risk of the prior distribution π. Given a prior π, an associated Bayes estimator θ̂π

is a minimizer in the sense that r(π, θ̂π) = r(π).

We can now define the concepts of minimaxity and admissibility. A decision rule (estimator)

is admissible with respect to the loss function L if and only if no other rule dominates it. That

is, iff r
(
π, θ̃
)
< r

(
π, θ̂
)
then θ̃ is admissible. An estimator is θ̂0 is minimax for a given loss

function L if

sup
θ

R(θ, θ̂0) = inf
θ̂
sup
θ

R(θ, θ̂); (3)

that is, it is the minimizer of the worst-case frequentist risk. For a given prior π, define

an associated Bayes estimator θ̂π. If supθ R(θ, θ̂π) = r(π, θ̂π), then θ̂π can be shown to be

minimax. In this case, the prior π is least favorable in the sense that r(π′, θ̂π) ≤ r(π, θ̂π) for

all other priors π′. That is, θ̂π is the best with respect to the least favorable prior distribution

π(θ). Minimaxity is a desirable feature for comparing estimators but, of course, it can still

become a misleading measure of comparison; see a counterexample and further discussion in

Robert (2007). Finally, note that if a minimax estimator is a unique (Bayes) estimator, then

this is also admissible.

Why is it important to think in terms of optimality of an estimator with respect to a loss

function? To answer this question, consider the expected value of the squared error loss of a

scalar, point estimator θ̂ = θ̂(X), which is also known as the mean squared error:

MSE(θ̂) = E
[
L
(
θ̂, θ
)]

= E

[(
θ̂ − θ

)2]
, (4)

= E

[(
θ̂ − E

{
θ̂
}
+ E

{
θ̂
}
− θ
)2]

, (5)

= E

[(
θ̂ − E

{
θ̂
})2]

+
(
E
{
θ̂
}
− θ
)2
. (6)

The first term in the last equation above is the variance of θ̂, and the second term is the square

of its bias. The least squares estimator, which in many simple linear settings coincides with the

maximum likelihood estimator, has zero bias (unbiased) and is the “best” meaning that it has

narrowest sampling distribution (minimum variance) among all unbiased estimators. Despite

these two desirable properties, it is not necessarily the case that OLS will always have the lowest

mean squared error. Indeed, in high-dimensional cases with fat data (p large relative to n) the
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sample variance of the OLS will tend to become very large. In cases with more parameters

than observations (p > n), the OLS estimator has infinite solutions and infinite variance. In

such cases, there exist biased estimators that achieve much lower variance compared to the

unbiased estimator, to the extend that this reduction in variance compensates for any increase

in the square of the bias (making the total MSE of the biased estimator lower). Specifically

in the case of out-of-sample prediction the MSE of our modeled variable will be larger if the

estimation MSE in Equation 6 is high, showing that evaluating estimation loss might be more

important than looking only at (minimum variance) unbiasedness.

A well-known illustration of this concept, that changed dramatically the way statisticians

think about estimators, is the example of the James-Stein estimator. Assume our likelihood

is X ∼ Np

(
θ, σ2Ip

)
where θ ∈ IRp is the unknown parameter and σ2 is assumed to be known.

Stein (1956) proved that the maximum likelihood estimator θ̂mle = X is the minimum risk

equivariant estimator under various loss functions, it is minimax, and it is admissible for

p = 1, 2. However, for p ≥ 3 the maximum likelihood estimator is inadmissible under a square

loss function, and the James-Stein estimator

θ̂JS =

(
1− (p− 2)σ2∑n

i=1Xi

)
X, (7)

has lower risk than the MLE, that is, R(θ̂JS) < R(θ̂mle). Efron and Morris (1973) showed

that the James-Stein estimator is a special case of an empirical Bayes estimator of θ, that

is, an estimator that places a Gaussian prior on θ and sets its prior variance to be a certain

function of the data X. Stein’s estimator minimizes the total quadratic risk of θ, but there

may be elements θ̂JSi , i ∈ [1, p], which have higher risk than the MLE. For that reason, Efron

and Morris (1973) also propose a limited translation empirical Bayes estimator, which offers a

compromise between Stein’s estimator and the MLE.

Bayesian estimators are by default biased towards the prior expectation, which is a result of

doing inference by using the information in both the likelihood and prior functions. Similarly,

penalized likelihood estimators, such as the popular lasso of Tibshirani (1996), constrain the

likelihood function with a penalty that intends to introduce a similar bias. The purpose of

this subsection is to introduce an alternative view to traditional econometric inference with

small parameter space, where unbiasedness is the holy grail. In high-dimensional settings

some estimation bias may be desirable, especially when the purpose is prediction in which

case richly parameterized specifications are not welcome. In many instances, in-sample

parameter estimation accuracy (instead of out-of-sample prediction) is of primary importance,

for example, when the quantity of interest is an elasticity or a causal effect that can inform

policy decisions. We show later in this survey that even in such cases Bayesian and frequentist

penalized regression estimators can be desirable.
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1.2 Principles of Bayesian Model Choice: A regression perspective

According to Gelman et al. (2013) the process of Bayesian data analysis involves three steps

1. Setting up a full probability model. This doesn’t only involve specifying a likelihood for

our data (observables), but we need to specify a joint distribution for both observables

and unobservables (parameters, or other unobserved data/variables)

2. Conditioning on the observed data in order to calculate posterior probabilities of all

unobservables

3. Assessing model fit, for example, understanding limitations of the chosen likelihood

and prior for recovering interpretable and useful parameters estimates, and addressing

sensitivity of the results to these choices

In the first part of this review, we use a simple linear regression setting as the basis for

developing shrinkage and sparsity priors (step 1), for discussing posterior computation (step

2) and assessing model fit (step 3). By doing so we aim to offer the same level playing field for

presenting various hierarchical prior formulations. The final section presents several extensions

of shrinkage and sparsity priors in more complex settings, such as factor models, time-varying

parameter regression, and cofounder selection in treatment effect estimation.

The regression model we build upon has the form

yi = Xiβ + εi, i = 1, ..., n, (8)

where n is the number of observations, yi is a scalar dependent variable, Xi is a 1× p vector

of covariates (or regressors or predictors) that can possibly include an intercept, dummies,

exogenous variables or other effects (e.g. trend in a time-series setting), β is a p× 1 vector of

regression coefficients, and εi ∼ N(0, σ2) is a Gaussian disturbance term with zero mean and

scalar variance parameter σ2. Within this setting our interest lies in obtaining “good” estimates

of β and σ2, specifically in settings with many covariates (“large p, small n” regression).

The linear regression formulation implies a certain Gaussian likelihood function

L(β, σ2|y,X) that is proportional to the sampling density p(y|β, σ2). These two quantities

are not identical because the likelihood is not a true density function.3 The Bayesian needs

to specify a joint prior distribution of the parameters, in the form p(β, σ2). Bayes Theorem

postulates that

p(β, σ2|y) = p(y|β, σ2)× p(β, σ2)

p(y)
, (9)

but for the purpose of parameter estimation, in particular, it is easier to ignore p(y) since it

is a normalizing constant (i.e. not a function of the parameters of interest β, σ2) and work

instead with the formula

p(β, σ2|y) ∝ p(y|β, σ2)× p(β, σ2). (10)

3The likelihood is a product of densities that lacks a normalizing constant.
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A default prior setting in Bayesian inference is the natural conjugate prior which is defined

as

p(β, σ2) = p(β|σ2)p(σ2) (11)

= N(0, σ2D)× Inv −Gamma

(
v0
2
,
s20
2

)
, (12)

∝
(
σ2
)− p

2 exp

{
− 1

2σ2
β′D−1β

}
(13)

×
(
σ2
)−v0/2−1

exp

{
−s

2
0/2

σ2

}
, (14)

where (D, v0, s0) are prior hyperparameters chosen by the researcher. Due to the fact that

the likelihood has a similar structure to this prior, it is trivial to prove (see the accompanying

Technical Document) that the posterior is of the form

p(β, σ2|y) = N
(
V
(
X ′y

)
, σ2V

)
× Inv −Gamma

(
v

2
,
s2

2

)
, (15)

where V =
(
X ′X +D−1

)−1
, v = v0 + n+ p, s2 = s20 + (y −Xβ)′(y −Xβ) + β′D−1β

X = [X ′
1, ...,X

′
n]

′
and y = (y1, ..., yn)

′.

1.2.1 Goodness of fit measures: Marginal likelihood and information criteria

While Equation 10 is required for the derivation of parameter posterior distributions, the

quantity p(y) in Equation 9 is of paramount importance for Bayesian model determination.

This is the prior predictive likelihood, more commonly known as the marginal likelihood, that is,

the evidence in data y after we integrate out the effect of all possible values that the “random

variables” β, σ2 can admit through their prior distribution. This can be proven via solving for

p(y) in Equation 9:

p(y)p(β, σ2|y) = p(y|β, σ2)p(β, σ2) (16)

⇒
∫

∞

−∞

∫
∞

0

p(y)p(β, σ2|y)dβdσ2 =

∫
∞

−∞

∫
∞

0

p(y|β, σ2)p(β, σ2)dβdσ2 (17)

⇒ p(y)

∫
∞

−∞

∫
∞

0

p(β, σ2|y)dβdσ2 =

∫
∞

−∞

∫
∞

0

p(y|β, σ2)p(β, σ2)dβdσ2 (18)

⇒ p(y) =

∫
∞

−∞

∫
∞

0

p(y|β, σ2)p(β, σ2)dβdσ2, (19)

where
∫∞
−∞

∫∞
0 p(β, σ2|y)dβdσ2 = 1 because this is a proper density. The marginal likelihood

is the expected value of the likelihood where the expectation is taken with respect to the prior.

Put differently, it is the prior mean of the likelihood function. An important characteristic

of the marginal likelihood is that the integral in Equation 19 can only be calculated when

the prior is a proper density, that is, if p(β, σ2) integrates to one. The benchmark Uniform

(Jeffrey’s) prior on β and log(σ2) is a key example where this condition fails and the marginal

likelihood does not exist.
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Assume we want to predict a new (future) observation yn+1 givenXn+1 using the prediction

(out-of-sample) model p(yn+1|β, σ2,y) which, in turn, is based on the in-sample estimated

model p(y|β, σ2). We can then define the posterior predictive likelihood

p(yn+1|y) =
∫ ∞

−∞

∫ ∞

0
p(yn+1|β, σ2,y)p(β, σ2|y)dβdσ2, (20)

which is the distribution of the out-of-sample data point marginalized over the posterior

distribution of the model parameters.

Both quantities – prior and posterior predictive distributions – are fundamental for model

assessment in Bayesian inference. In the benchmark case of the linear regression with the

natural conjugate prior, the marginal likelihood can be derived analytically and is of the form

p (y) =
p(y|β, σ2)× p(β, σ2)

p(β, σ2|y) (21)

=
Γ
(
v0
2

)−1
(s0/2)

v0
2

(2π)
n
2 Γ
(
v
2

)−1
(s/2)

v
2

|D|− 1
2

|V |− 1
2

(22)

×
[
1

2

(
s0 + y′y − µ∗V −1µ∗)

]
(23)

(24)

where v0, s0,D are parameters of the prior distribution (chosen by the researcher), and v, s,V

are parameters of the posterior distribution whose values are provided in Equation 15 and

µ∗ = V (X ′y).

The predictive likelihood is also available analytically and it is of the form

yn+1|y ∼ t1

(
yn+1;Xn+1V

(
X ′y

)
,
s

v

(
1 +Xn+1V X ′

n+1

)
, v
)

(25)

where we define the p-dimensional t-density with location µ, scale matrix Σ, and degrees

of freedom d as

tp (x;µ,Σ, d) =
Γ
(
d+p
2

)

Γ
(
d
2

)
dp/2πp/2|Σ|1/2

[
1 +

1

d
(x− µ)′Σ−1 (x− µ)

]
(26)

The marginal likelihood is rarely available analytically, and in most cases the integral in

Equation 19 has to be approximated using Monte Carlo or numerical methods.4 In cases of

either a complex model or a complex prior structure, or both, evaluating the marginal likelihood

can become challenging, if not impossible. In such cases it might be easier to calculate the

posterior predictive likelihood in Equation 20 using a procedure called leave one out cross-

validation (LOO-CV). This would involve fitting the model in training data and then using a

4Two early examples are Gelfand and Dey (1994) and Chib (1995); see also Chib and Jeliazkov (2001) for a
review.
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hold-out sample to evaluate the posterior predictive likelihood. Notice that if MCMC samples

from the parameter posterior are available, evaluation of Equation 20 is straightforward using

Monte Carlo integration.5

When marginal or posterior predictive likelihoods are difficult to obtain, a

(computationally) straightforward alternative strategy is to rely on information criteria. For

example, the Bayesian information criterion (BIC), is a first-order approximation to the

marginal likelihood. Performing a Taylor expansion around the posterior mode6 (β̃, σ̃2) for

the logarithm of the term p
(
y|β, σ2

)
p
(
β, σ2

)
in Equation 19, we can write the log-marginal

likelihood as
log p (y) = log p

(
y|β̃, σ̃2

)
+ log p

(
β̃, σ̃2

)
+ p

2 log(2π)

−p
2 log n− 1

2 log
∣∣∣Jn
(
β̃, σ̃2

)∣∣∣+O
(
n−1

)
,

(27)

where Jn

(
β̃, σ̃2

)
is the expected Fisher information matrix of p

(
y|β, σ2

)
p
(
β, σ2

)
evaluated

at the posterior mode (β̃, σ̃2). In large samples, the posterior mode coincides with the MLE

(β̂, σ̂2). Considering this approximation and removing from Equation 27 any terms of order

O (1) or less, we obtain

log p (y) = log p
(
y|β̂, σ̂2

)
− p

2
log n+O (1) . (28)

The approximation above provides the basis for defining the Bayesian information criterion

BIC = −2 logL
(
β̂, σ̂2|y,X

)
+ p log n, (29)

where L

(
β̂, σ̂2|y,X

)
is the likelihood function evaluated at the MLE.

The BIC is only a crude approximation to the marginal likelihood and it is based on a

point estimate. An alternative popular criterion is the deviance information criterion (DIC)

proposed by Spiegelhalter et al. (2002) which is of the form

DIC = −4Ep(β,σ2|y)
[
log p

(
y|β, σ2

)]
+ 2 log p

(
y|β̃, σ̃2

)
. (30)

The first term is the expectation of the data density with respect to the posterior7 which can

be evaluated numerically from the MCMC output by taking the mean of p(β, σ2|y) over all

MCMC samples of the parameters. The second term is the value of the data density evaluated

at the posterior mode (β̃, σ̃2). For more information on the DIC see also Chan and Grant

5Recognizing the numerical and computational shortcomings of model choice based on marginal likelihoods,
there are several early studies that propose model choice criteria that are based on variants of the posterior
predictive distribution, see Davison (1986), Gelfand and Ghosh (1998), Gelman et al. (1996), Laud and Ibrahim
(1995), Ibrahim and Laud (1994) and Martini and Spezzaferri (1984).

6The posterior mode is chosen such that the first derivative of the posterior is zero, which simplifies terms
when taking the Taylor expansion; see Raftery (1995) for a detailed proof.

7For that reason, the DIC is related to the posterior predictive likelihood, i.e. the integral in Equation 20,
rather than the marginal likelihood.
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(2016), Spiegelhalter et al. (2014) and van der Linde (2005).

Chen and Chen (2008) propose a modification to the Bayesian information criterion for

high-dimensional spaces, which they call the extended Bayesian information criterion (EBIC).

In the context of a proportional hazards model, Volinsky and Raftery (2000) propose a

modification of the BIC penalty term that is consistent with a conjugate unit-information

prior under this model. Foster and George (1994) propose the risk inflation criterion (RIC)

while George and Foster (2000) present empirical Bayes selection criteria. Watanabe (2010,

2013) derives the widely applicable information criterion (WAIC), also known as the Watanabe-

Akaike information criterion since this criterion can be considered to be a Bayesian variant

of the popular Akaike information criterion. Gelman et al. (2014) and Vehtari et al. (2017)

perform informative comparisons of the properties of BIC, DIC, WAIC and LOO-CV in a

Bayesian context.

1.2.2 Testing hypotheses: Bayes factors

Consider now the case of two competing models, model one (denoted as M1) and model two

(denoted asM2). For example, a key scenario that fits this setting, is that of testing hypotheses

of the form H0 : βj = 0 vs H1 : βj ̸= 0, for some j = 1, ..., p. Evidence in favor of either H0

or H1, corresponds to how good is the fit of two corresponding nested regression models (M1

is unrestricted, and M2 has the restriction βj = 0 imposed). In this setting it is convenient to

condition parameter posteriors and marginal likelihoods for each model on the random variable

Mi, i = 1, 2, that indexes each of the two models. For example, p(β, σ2|y,M1) and p(y|M1)

denote the parameter posterior and marginal likelihood, respectively, of regression model 1.

Consequently, the quantity

BF12 =
p(y|M1)

p(y|M2)
, (31)

is the Bayes Factor between models 1 and 2. The quantity

PO12 ≡
p (M1|y)
p (M2|y)

=
p(y|M1)

p(y|M2)
× p (M1)

p (M2)
(32)

is the posterior odds between models 1 and 2. It is defined as the product of the Bayes factor

and the prior odds. If we assign equal model probabilities a-priori, then p (M1) = p (M2) =
1
2

and the Bayes factor is identical to the posterior odds ratio. The Bayes factor above is a

primary tool for assessing evidence in favor of a statistical model versus a competing model.

Kass and Raftery (1995) provide a rule-of-thumb on how to interpret the statistical evidence

against model 2 based on ranges of values of BF12: for values higher than three the evidence is

substantial, for values higher than 10 it is strong, and for values higher than 100 it is decisive.

Given that marginal likelihoods are not available with improper priors (even if the posterior

is proper), there has been plenty of interest in calculating Bayes factors when such priors are

used. Aitkin (1991) proposes to calculate Bayes factors based on integrating the likelihood

12



with the posterior – this is equivalent to replacing p(β, σ2) with p(β, σ2|y) in Equation 19.

This formulation allows to calculate “posterior” Bayes factors regardless of the prior structure

of each model, and at the same time it avoids Lindley’s paradox (Aitkin, 1991). Berger and

Pericchi (1996, 1998) suggest the use of the intrinsic Bayes factor. Their suggestion involves

splitting the data into n subsets, such that one can obtain the marginal likelihood of the

ith subset conditional on all other subsets. Subsequently, either the arithmetic or geometric

average of the Bayes factors estimated in all n subsets of the data can be used as the final

estimate.

For nested model comparisons, Verdinelli and Wasserman (1995) show that Bayes factors

can be calculated using the Savage-Dickey density ratio (SDDR) approach. Consider two

regression models as in Equation 8 but for notational simplicity set p = 1, that is, only a single

covariate is available. The first model, M1, is an unrestricted model while model M2 imposes

the restriction β = β⋆ for some scalar value β⋆ (the previous example of testing of H0 : β = 0

vs H1 : β ̸= 0 fits this setting). In this case the Bayes factor can be written as

BF12 =
p(y|M1)

p(y|M2)
(33)

=

∫∞
−∞

∫∞
0 p(y|β, σ2,M1)p(β, σ

2|M1)dβdσ
2

∫∞
0 p(y|β⋆, σ2,M2)p(β⋆, σ2|M2)dσ2

(34)

=

∫∞
0 p

(
β⋆, σ2|y,M2

)
dσ2∫∞

0 p (β⋆, σ2|M2) dσ2
, (35)

that is, SSDR is the ratio of the marginal posterior and prior of β under model M2, evaluated

at the point β = β⋆. In general it will be easy to evaluate these two distributions, especially

when the Gibbs sampler is used for approximating the posterior distribution. This is because

evaluation of the numerator using Monte Carlo integration would be fairly straightforward.

Additionally, in the case of an independent prior of the form p(β, σ2) = p(β)p(σ2) the

denominator above becomes
∫∞
0 p

(
β⋆, σ2|M2

)
dσ2 = p (β⋆|M2)

∫∞
0 p

(
σ2|M2

)
dσ2 = p (β⋆|M2),

i.e. we only need to evaluate the (Gaussian) prior of β at the point β⋆.

There are of course numerous other ways of obtaining approximations to the Bayes factors

that do not explicitly involve calculating ratios of marginal likelihoods. Goutis and Robert

(1998) propose an alternative procedure for testing nested models based on the Kullback-

Leibler divergence. The idea is to compute the projection of the unrestricted model to the

restricted parameter space, and use the corresponding minimum distance to judge whether or

not the restricted model is appropriate. The same way we used the BIC to obtain a first-order

approximation to the marginal likelihood, we can also use the BIC to obtain approximations

to Bayes factors – this approach is illustrated in Raftery (1995). Notable early studies on

the topic of Bayes factors include Kass and Wasserman (1995), De Santis and Spezzaferri

(1997), O’Hagan (1995), Berger and Pericchi (2001), Berger and Mortera (1999), Lewis and

Raftery (1997), Raftery (1996) and DiCiccio et al. (1997). A systematic review of methods for
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calculating Bayes factors can be found in Kadane and Lazar (2004).

Finally, it is worth noting that in the case of nested hypothesis testing we can derive an

optimal Bayesian point estimate by minimizing expected loss averaged over the two hypotheses,

using posterior model probabilities as weights. That is, considering again the simple case with

p = 1 and ignoring the variance parameter σ2 for simplicity, we aim to find point estimate β̂

such that the joint expected loss under the two models/hypotheses

E
(
L
(
β, β̂

))
=

[
p(M1|y)E

(
L
(
β, β̂

)
|M1

)
+ (36)

p(M2|y)E
(
L
(
β, β̂

)
|M2

)]
, (37)

achieves a minimum. Under a quadratic loss function L
(
β, β̂

)
, the posterior means are optimal

meaning that the optimal estimator is

β̂BPE = p(M1|y)E (p (β|y,M1)) + p(M2|y)E (p (β|y,M1)) . (38)

This estimator can be considered a Bayesian pre-test estimator, hence the acronym BPE in

the equation above; see Judge et al. (1985) for a detailed discussion. In the next section we

will generalize this result to the case of K models, in order to motivate model choice in the

presence of many models.

1.2.3 Model choice with many models: Bayesian model averaging

Model choice can have many forms, but the benchmark scenario that will motivate later in

this paper to focus on shrinkage and sparse estimation, is that of model determination among

many nested models. In particular, consider the problem of deciding which of p variables in the

covariate matrix X should be in the “optimal” regression model. Each covariate can have two

outcomes, either it is included in a model or it is excluded, meaning that the model space in

the presence of p covariates is 2p. We denote the model set as M= {Mr : r = 1, . . . , 2p}. The
covariates that pertain to model Mr are denoted in this subsection as Xr and their associated

coefficients as βr. That is, Xr is a matrix that is constructed using only a subset of the

columns in X. Therefore, we denote regression model Mr as
8

Mr : y = Xrβr + ε. (39)

where Xr is n× pr and βr is pr× 1 with pr ∈ {1, ..., p}. Now with 2p models, even for small p,

pairwise model comparison based on Bayes factors is impractical and alternative computational

methods are needed. Most importantly, in the presence of many models the researcher might

8For simplicity we do not explicitly allow for an intercept. If an intercept is present in all competing models,
then it is important to remove the sample mean from all covariates X (and, as a result, in all subsets Xr) in
order to ensure that the estimated intercept has exactly the same interpretation in all models. With demeaned
covariates and the use of a flat prior, the intercept term becomes identical to the sample mean of y in all 2p

competing models.
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not want to give the same weight to each and every model. For example, she might want to give

more weight on parsimonious models or models that include a certain predictor suggested by

some theory or common sense. For that reason we define prior model probabilities p(Mr) with∑2p

r=1 p(Mr) = 1. Based on Bayes theorem, prior model probabilities combined with marginal

likelihoods p(y|Mr) give posterior model probabilities

p(Mr|y) ∝ p(y|Mr)p(Mr). (40)

Bayesian model selection (BMS) corresponds to selecting the best model, that is, the model

Mr with the highest p(Mr|y). Bayesian model averaging (BMA) involves averaging over many

models using p(Mr|y) as weights. That is, for a quantity of interest ∆ (e.g. an out-of-sample

observation yn+1 of y) BMA is constructed as the following weighted average

p(∆|y) =
2p∑

r=1

p(∆|y,Mr)p(Mr|y). (41)

For small model spaces, typically when p < 30 posterior model probabilities can be calculated

analytically such that we can enumerate and estimate all 2p available models. For p > 30 it

is impossible to enumerate and estimate all models in a deterministic way. In such cases, one

can rely on Markov chain Monte Carlo algorithms which are able to “visit” in each iteration,

in a stochastic way, the most probable models. Hoeting et al. (1999) and Fragoso et al. (2018)

provide two systematic reviews on the topic.

While model selection and model averaging with an arbitrary number of models are

straightforward extensions of the case with only two models, prior elicitation in multi-parameter

and multi-model settings is anything but straightforward. In order to explain the intuition

behind why this is the case, consider the natural conjugate prior defined previously, which in

the case of model Mr can be written as

p(βr, σ
2|Mr) = Npr(0pr , σ

2Dr)× Inv −Gamma

(
v0
2
,
s20
2

)
. (42)

Prior elicitation involves choice of Dr, v0, s0. The hyperparameters v0, s0 are scalar in all

regression models can be simply set to a small value close to zero, implying a Jeffrey’s (diffuse)

prior on σ2. However, Dr is a matrix that changes size based on the number of predictors

in model Mr. Assume for simplicity we define Dr = τIpr , with Ipr the pr × pr identity

matrix. In this case, prior elicitation breaks down to choosing a single hyperparameter τ .

We can’t use the diffuse choice τ → ∞ because the marginal likelihood in Equation 24 will

become infinite, hence, τ should be finite in the multi-model case. However, using the same

finite value of τ in all models, doesn’t mean that the effect of this prior is identical (that

is, “objective”) for each model. Consider for instance two models, one with two predictors

X2 = (x1,x2) and a restricted model with only the first predictor X1 = x1. The posterior
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variance is V r = σ2
(
X ′

rXr + (τIpr)
−1
)−1

for each model r = 1, 2, so that the impact of τ on

the common predictor in the two models will be identical only if x1 is not correlated with x2

and X ′
2X2 becomes diagonal. If this is not the case, the correlation between the two predictors

will imply that the effect of τ on the regression coefficient of x1 will not be the same in the

two models. This issue complicates prior elicitation further when considering p≫ 2 correlated

covariates, that also potentially have different units of measurement.9.

For that reason, many researchers have proposed empirical Bayes priors, in the spirit of the

empirical Bayes formulation of Stein’s estimation rule; see equation Equation 7 and discussion

of Efron and Morris (1973). Empirical Bayes procedures allow to choose prior hyperparameters

as a function of the data observations, sometimes also chosen to optimize some criterion (e.g.

maximum marginal likelihood). A default prior for multi-model settings is the g-prior due to

Zellner (1986). The g-prior for model Mr takes the form

βr|σ2,Mr ∼ Npr

(
0pr ,

1

g
σ2
(
X ′

rXr

)−1
)
, (43)

where σ2 (X ′
rXr)

−1
is essentially the covariance matrix associated with the OLS estimator β̂r

and g a scalar tuning parameter. Under this prior, the posterior variance of β conditional on

σ2 becomes V r =
1

1+g × σ2 (X ′
rXr)

−1
, such that the posterior variance is uniformly affected

by selection of g. Consequently, the posterior mean/mode is

β⋆r =
1

1 + g
β̂r. (44)

When g → 0 the posterior mean tends to the OLS estimate of model Mr (β̂r) while when

g → ∞ the posterior contracts towards zero. While the effect of the prior now depends in a

straightforward, transparent way10 on a single hyperparameter, choice of this hypeparameter

is very important for determining marginal likelihoods and model probabilities.

Fernández et al. (2001a,b) propose default values of g in the context of Bayesian model

averaging and Eicher et al. (2011) expand this discussion by considering further values of g.

A benchmark suggestion of Fernández et al. (2001b) is to set g ≡ gr = pr/n, that is, a value

of g that is the ratio of the number of coefficients in each model r over the total number of

observations. Wide models with many covariates models will have larger g, thus, tending to

shrink their posterior towards zero more aggressively. Put differently, the prior variance is

getting smaller meaning that the information in the prior increases relative to the information

9The scaling issue in X can be dealt with by standardizing the data, that is, dividing each column with
its sample standard deviation. High correlation in columns of X can also be dealt with by orthogonalizing
this matrix. While standardization is easy to apply and is recommended in all model averaging and variable
selection algorithms, orthogonalization of the columns of X is only feasible when n > p. Therefore this latter
procedure is not available in the high-dimensional case (p > n), which is exactly where there is higher chance
of encountering many correlated predictors!

10We avoid using the term “objective”, first, because as Gelman and Hennig (2017) argue it is
counterproductive to do so and, second, because the g-prior is not in any way an objective prior.
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in the likelihood. This is a basic principle of shrinkage and variable selection estimators:

when p is large and especially when p > n, the information in the likelihood is not sufficient

to estimate all p coefficients and the prior becomes increasingly important for determining

posterior outcomes. That is, for both Bayesian and non-Bayesian approaches, the concepts of

shrinkage and sparsity amount to the prior expectation that increasingly many coefficients a

priori will be zero or close to zero.

Of course, there are more rigorous ways of selecting g. A key contribution is that of Liang

et al. (2008) who put hyper-priors on g, treating it as a random variable. Such hierarchical

approaches are the topic of close examination of the next section, so we won’t expand on it

here. Krishna et al. (2009) extend the g-prior into an adaptive powered correlation prior of the

form

βr|σ2,Mr ∼ Npr

(
0pr ,

1

g
σ2
(
X ′

rXr

)λ
)
, (45)

where λ ∈ R controls the prior’s response to collinearity in predictors. λ = −1 gives the

original prior proposed by Arnold Zellner, while λ = 0 gives the ridge regression prior.

While the g-prior addresses the issue of setting a prior on different regression models that

might be nested and have correlated covariates, another important issue is how to define

a prior on model space. For both conceptual and computational reasons Bayesians prefer to

index all possible 2p models using dummy variables γ = (γ1, ..., γp)
′. When γj = 0 a covariate is

excluded from a model and when γj = 1 it is included. Therefore, the model with no predictors

is indexed as γ = (0, ..., 0)′ and the model with all predictors is indexed as γ = (1, ..., 1)′. All

intermediate models are indexed by vectors γ that are sequences of zeros and ones. Instead of

placing priors on the model space, we can now explicitly consider priors on γ, and the binomial

distribution is a good candidate for a parameter that takes 0/1 values. The binomial prior can

become both uniform but also more informative when this is desirable (e.g. in high-dimensional

spaces, where our prior is that only a small number of predictors will be important).

This setting that combines the g-prior on regression coefficients with a binomial prior

on model space, is the major workhorse model for implementing Bayesian variable selection.

While its theoretical underpinnings are well-understood (see Hoeting et al., 1999 for a thorough

description), it provides the ground for some of the most interesting Bayesian work on

computation in high-dimensional settings.11 At the same time this setting possesses implicitly

the benefits of a hierarchical prior approach. Therefore, we use this brief discussion of BMA

as a stepping stone for introducing in the next the concept of full-Bayes/hierarchical Bayes

priors that result in shrinkage and sparse estimators.

11See for example, Bottolo and Richardson (2010), Clyde et al. (2011), Dellaportas et al. (2002), Hans et al.
(2007), Ji and Schmidler (2013), Madigan et al. (1995), Nott and Kohn (2005) and Peltola et al. (2012).
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2 Hierarchical (full Bayes) priors

When interest lies in models with many parameters, simple priors such as the benchmark

natural conjugate prior presented in the previous section, are inadequate for learning interesting

features about our parameters and for quantifying uncertainty. In statistics, the concept of

hierarchical or multi-level modeling refers to the process of enhancing a simpler model with

a richer specification that allows for learning interesting features of a multi-parameter vector,

such as groupings or sparsity and shrinkage towards zero, where the latter being the main

focus of this review. The Bayesian interpretation of hierarchical modeling involves specifying

prior distributions for the prior hyperparameters of regression coefficients, especially when p

is large. A simple hierarchical specification for the regression coefficients β,12 takes the form

p
(
yi|β, σ2

)
∼ N

(
xiβ, σ

2
)
, i = 1, ..., n, (46)

p
(
βj |µ, τ2

)
∼ N

(
0, τ2

)
, j = 1, ..., p, (47)

p
(
τ2
)

∼ F (a, b), (48)

where F (a, b) denotes some distribution function with hyperparameters (a, b). Due to the

fact that choice of τ2 is so crucial for the posterior outcome of βj , the idea behind this

hierarchical specification is to treat the hyperparameter τ2 as a random variable and learn

about it from the data, via Bayes Theorem. For that reason, a prior such as the one in

equations (47) - (48) is many times referred to as a full-Bayes prior, as it allows for full

quantification of uncertainty around parameters of interest. While the example above pertains

to linear regressions with Gaussian likelihood and prior distributions, Section 4 demonstrates

that the concept of hierarchical priors is much more powerful and can be applied to numerous

multivariate, non-Gaussian, nonlinear or other settings. Additionally, adaptive hierarchies can

be defined in which βj depends on hyperparameters specific to this j-th element (τ2j ) that have

their individual hyperprior distributions. Finally, if needed, further layers of the hierarchy

can be defined: for instance, if choice of the hyperperameter a of τ2 is not straightforward,

we can define another level for the prior distribution of a, or we could introduce two variance

parameters for βj in Equation 47.13

An important feature of the hierarchical prior in equations (47) - (48) is that, while the

12Ignore estimation uncertainty of σ2 for the moment, e.g. assume it is known and fixed.
13For example, a powerful class of hierarchical priors called global-local shrinkage priors (Polson and Scott,

2010) provides an excellent benchmark for specifying appropriate hierarchical priors. Such priors are of the form

p
(

βj |τ
2
, λ

2
j

)

∼ N
(

0, τ2
λ
2
j

)

, j = 1, ..., p, (49)

p
(

τ
2) ∼ Fτ (a, b), (50)

p
(

λ
2
j

)

∼ Fλ(c, d), (51)

where τ2 is a global shrinkage parameter (applying the same shrinkage to the whole parameter vector β) and
λj is a local shrinkage parameter (applying shrinkage only to βj). As we see next, such priors will typically
have at least three hierarchical layers, but in practical situations they tend to have many more (e.g. by putting
priors on some or all of the hyperparameters a, b, c, d).
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conditional prior p
(
βj |τ2

)
is Gaussian, unconditionally the prior for βj is non-Gaussian. Indeed

the marginal prior for βj becomes

p (βj) =

∫
N
(
βj ; 0, τ

2
)
p(τ2)dτ2, (52)

that is, a scale mixture of normals representation that allows to approximate very complex

prior shapes for βj .
14 Mixtures have the benefit of allowing for classification and grouping of

parameters. In the case of identifying sparsity and shrinkage, we can think of the mixture prior

as grouping parameters into “important” and “non-important”. Therefore, it is this implied

mixture representation of hierarchical modeling with prior distributions that allows to extract

interesting features in a multi-parameter setting. Finally, the posterior mode of β under a

hierarchical prior has a penalized likelihood representation. For the linear regression model,

penalized likelihood problems admit the following regularized least squares form

min
β∈Rp

1

n
||y −Xβ||2 + g (β, λ) , (53)

where the first term gives the solution to the usual least squares problem and the term g (β, λ)

defines the penalty as a function of the regression parameters β and a scalar (or possibly vector)

tuning parameter λ. Numerous penalized estimators, such as ridge (Tikhonov regularization),

lasso, and elastic net fall under the general form in Equation 53, and Bayesian modal estimators

under suitable hierarchical priors can fully recover all of them.

In order to understand the ability of hierarchical priors to classify parameters as important

and non-important (or non-penalized and penalized), we plot in Figure 1 a normal prior with

fixed variance vs three cases of a normal prior with variance parameter distributed as χ2 with

one degree of freedom, exponential with rate parameter λ = 0.5, and binomial with one trial

and probability π = 0.9 (that is, a Bernoulli distribution). The simple normal prior provides

more probability at the origin (zero) relative to its tails, however, it is fairly flat (diffuse) in a

small area around zero. What the three mixture priors are introducing, is a more pronounced

peak at zero such that when a parameter is in the region of zero it can be shrunk at a faster rate.

At the same time, all three mixture distributions have fat tails, providing positive probability

to parameter values that are far from zero. That is, these shapes allow for a clearer separation

and classification of a parameter as being zero or non-zero. The extreme case of the Bernoulli

prior on τ2 (bottom right panel of Figure 1) creates a distribution that looks normal but also

has a point mass at zero with high probability. Therefore, all three examples of hierarchical

priors provide sharper inference in favor or against the groups of interest (important and

non-important parameters).

14It is trivial to show that if τ2 is not a fixed parameter, then unconditionally the prior for βj always has excess
kurtosis higher than zero, thus, being a leptokurtic distribution with tails thicker than the normal distribution.
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Figure 1: Hierarchical priors for a scalar parameter. In all four panels the base distribution
is β ∼ N(0, 100 × τ2). In the top left panel τ2 = 1 is a fixed hyperparameter, while in the
remaining panels it follows a χ2

(1), Exp(0.5) and Bernoulli(0.9) priors.

Computation with hierarchical priors is reviewed in detail in the next section. For now

it suffices to note that because of the conditional structure of hierarchical priors, conditional

posteriors are typically easy to derive even if the joint parameter posterior is intractable.

Sampling from these conditional posteriors using Markov chain Monte Carlo (the Gibbs

sampler, in particular) is equivalent to taking samples from the intractable joint posterior.

Additionally, several approximate methodologies such as variational Bayes and maximum

a-posterior (MAP) estimation rely on similar conditional distributions. Therefore, in our

discussion in this section we present various hierarchical priors, explain their properties and

focus on deriving conditional posteriors. In the next section we discuss in more detail how to

use these conditional posteriors to estimate the desired parameters.15

2.1 Diffusing hierarchical prior

A natural choice for the variance parameter τ2 in the hierarchical model of equations (46) - (48)

is a prior distribution that is diffuse. Similar to Jeffrey’s prior for the regression variance σ2,

the choice τ2 ∼ U(0,∞) equivalently p(τ2) ∝ τ−2 can be thought as a default prior choice that

reflects our lack of information about sparsity patterns in the data. We might want to also allow

for each βj to be determined adaptively, in which case a Jeffrey’s prior on hyperparameters τ2j ,

j = 1, ..., p can be defined. Therefore, the full hierarchical prior specification for the regression

15Additional derivations and computational details can be found in the accompanying Technical Document.
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model is of the form

β|{τ2j }pj=1 ∼ Np(0,Dτ ), (54)

τ2j ∼ 1

τ2j
, for j = 1, ..., p, (55)

σ2 ∼ 1

σ2
, (56)

where Dτ = diag(τ21 , ..., τ
2
p ). While a Jeffrey’s prior on τ2j is a first natural attempt towards

hierarchical prior modeling, as Lindley (1983) notes, “a prior for τ2 that behaves like τ−2

will cause trouble” meaning it will lead to an improper posterior. Gelman (2006) examines

this issue in more detail and explains why a Uniform(−∞,∞) prior on log
(
τ2
)
would also

not work. However, as Kahn and Raftery (1992) and Gelman (2006) note, under certain

conditions, Jeffrey’s prior on τ2 yields a limiting proper posterior density. Note that the same

improper density can be obtained from the prior τ2 ∼ Inv −Gamma(ϵ, ϵ) for ϵ → 0 (see also

subsection 2.2 below). Gelman (2006) argues that the Inv−Gamma(ϵ, ϵ) prior does not have

any proper limiting posterior distribution, such that inference becomes sensitive to the choice

of ϵ – simply setting ϵ to any “small” value is not a reliable solution.

Figueiredo (2003) and Bae and Mallick (2004) are examples of empirical studies that rely

on shrinkage using a uniform hyperprior distribution. Tipping (2001) specifies an inverse

gamma prior on τ2 (and calls the resulting hierarchical structure a sparse Bayesian learning

prior) and adopts the limiting case ϵ = 10−4 as the default hyperparmeter choice. Diffusing

priors should not be the first choice in empirical settings especially in high-dimensional and

ultra-high-dimensional settings. There are numerous other hyperprior distributions that are

interpretable and have better theoretical guarantees (Gelman, 2006).

2.2 Student-t shrinkage

While we just argued that it is not desirable to use the inverse gamma distribution as a way of

imposing a diffusing prior on τ2, informative inverse gamma priors provide flexible parametric

shrinkage. Following the specification of the normal-inverse gamma prior in Armagan and

Zaretzki (2010), we write this prior using the following form

β|{τ2j }pj=1 ∼ Np(0,Dτ ), (57)

1

τ2j
∼ Gamma (ρ, ξ) , for j = 1, ..., p, (58)

σ2 ∼ 1

σ2
, (59)

where Dτ = diag(τ21 , ..., τ
2
p ). This is a scale mixture of normals representation of the fat-

tailed and leptokurtic Student-t distribution. Similar to our arguments in Figure 1 the excess

kurtosis of the Student-t results in shrinkage towards zero at a faster rate than the simple
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normal distribution. At the same time the fatter tails accommodate values of τ2 that can be

far from zero. In Figure 2 we illustrate the shape of the marginal distribution of βj for various

values of the parameters ρ, ξ.
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Figure 2: Marginal distribution of βj for the Student-t prior.

Similar to an inverse gamma prior for the variance parameter σ2, the conjugacy of this

distribution allows for numerous methods of inference using this prior. For example, Tipping

(2001) uses type-II maximum likelihood methods (Berger, 1985), but (as we discuss in the

following section) variational Bayes and other approximate algorithms are also trivial to derive.

Armagan and Zaretzki (2010) show that conditional posteriors are of the form

β|{τ2j }pj=1, σ
2,y ∼ Np

(
V ×

(
X ′y

)
,V
)
, (60)

1

τ2j

∣∣∣∣βj ,y ∼ Gamma

(
ρ+

1

2
, ξ +

β2j
2

)
, j = 1, ..., p, (61)

1

σ2

∣∣∣∣β,y ∼ Gamma

(
n

2
,
Ψ

2

)
(62)

where V =
(
σ−2X ′X +D−1

τ

)−1
and Ψ = (y − Xβ)′(y − Xβ). The Gibbs sampler can be

used to sample sequentially from these conditional posteriors, as these samples are guaranteed

to be samples from the desired joint parameter posterior.

22



For the conditional posterior (B.13) of the prior precisions, 1
τ2j
, we have

p

(
1

τ21
, . . . ,

1

τ2p

∣∣∣∣β,y
)

∝
p∏

j=1

(2πτ2j )
−1/2 exp

[
− 1

2τ2j
β2j

](
1

τ2j

)ρ−1

exp

[
− ξ

τ2j

]

∝
p∏

j=1

(
1

τ2j

)(ρ+ 1
2)−1

exp

[
− 1

τ2j

(
ξ +

β2j
2

)]

where the proportional sign is with respect to 1
τ2j
’s. It can be seen that the conditional posterior

of 1
τ2j
’s is independent across j and that it has the form in Equation B.13.

2.3 Normal-gamma priors

Caron and Doucet (2008) proposed the normal-gamma family of hierarchical priors, and Griffin

and Brown (2010, 2017) established further results and their excellent properties. This prior

takes the following hierarchical form

β ∼ Np(0,Dτ ), (63)

τ2j ∼ Gamma(λ, γ2/2), (64)

σ2 ∼ 1

σ2
, (65)

where again Dτ = diag(τ21 , ..., τ
2
p ). The pdf of τj is

p
(
τ2
)
=

(
γ2

2

)λ

Γ (λ)

(
τ2j
)λ−1

exp

(
−γ

2

2
τ2j

)
, (66)

such that the marginal pdf of βj is

p(βj) =
γ(λ+1/2)

2(λ−1/2)
√
πΓ (λ)

|βj |(λ−1/2)
K(λ−1/2) (γ|βj |) (67)

where Kv is the modified Bessel function of the second kind, and the tails of this distribution

decrease in |βj |(λ−1) exp (γ|βj |).
Due to the connection of the gamma distribution with a wide array of other distributions

(e.g. inverse gamma, inverse Gaussian, χ2, etc) choice of the hyperparameters λ and γ2 can

result in various shapes for the unconditional distribution of β that have different shrinkage

properties. This prior becomes diffusing when λ, γ2 → 0, however, this choice falls under the

same critique of Gelman (2006) for the diffusing inverse gamma prior. This is due to the fact

that when λ < 1/2 the normal-gamma prior places infinite mass in the vicinity of zero, that

is, limβj→0 p(βj) = ∞.
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2.4 LASSO prior and extensions

The least absolute shrinkage and selection operator (lasso) of Tibshirani (1996) has been

established as a key workhorse of scientists in all fields working with high-dimensional settings.

The estimator takes the form

argmin
β

n∑

i=1

(yi −Xiβ)
2 subject to

p∑

j=1

|βj | < t, (68)

where t is a prespecified free parameter that determines the degree of regularization. The

Lagrangian form of this program is

arg min
β∈Rp

||y −Xβ||2 + λ||β||1, (69)

where ||x||1 =
∑

|xi| is the l1 norm and ||x||2 =
√∑

x2i is the l2 norm. λ is a tuning

parameter related to t, controlling for how strongly shrinkage is exercised. As λ → 0 the

penalty term vanishes and the lasso becomes indistinguishable from the least squares problem.

This optimization formula is related to basis pursuit denoising, which is the preferred term for

the lasso among researchers in computer science and signal processing.

Tibshirani (1996, Section 5) first noted that the lasso estimate can be derived as a Bayes

posterior mode under the following Laplace prior distribution

p(β) =

p∏

j=1

λ

2
exp (−λ|βj |) =

(
λ

2

)p
exp (−λ||β||1) . (70)

However, as Castillo et al. (2015) note the full posterior distribution under a Laplace prior does

not contract at the same rate as its mode, making uncertainty quantification using the Bayesian

lasso unreliable. The intuition behind this is that the λ coefficient above needs to be large

enough to penalize coefficients βj to zero, but not too large such that nonzero coefficients can

be modeled. This issue is addressed by modifications such as the adaptive lasso (Alhamzawi

and Ali (2018); see end of this section) and the spike and slab lasso (Ročková and George

(2018); see section on spike and slab priors) and is related to the motivating arguments of

Johnson and Rossell (2010) for proposing the non-local priors (see relevant section below).

The first application of the lasso prior stems from computing science and is due to Girolami

(2001). While the joint parameter posterior under a Laplace prior is not of standard form,

Girolami (2001) used variational Bayes inference (which at the time was not popular in

mainstream statistics) to approximate the posterior mean and variance. Figueiredo (2003)

used the fact that the Laplace prior admits a hierarchical representation in the form of a

normal-exponential (double exponential) mixture. The hierarchical representation of this prior
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is of the form

βj |τj ∼ N(0, τ2j ), (71)

τ2j |λ2 ∼ Exponential

(
λ2

2

)
, (72)

where the exponential distribution has the functional form p(τ2|λ2) =
(
λ2

2

)
exp

(
λ2

2 τ
2
j

)
. The

marginal distribution for β conditional on λ2 is of the form

p
(
βj |λ2

)
=

√
λ2

2
exp

(√
λ2|βj |

)
≡ λ

2
exp (λ|βj |) , (73)

which is the desired Laplace distribution for βj . Figueiredo (2003) derived an EM algorithm

for obtaining the posterior mode (MAP estimator).

A formal Bayesian treatment of the Bayesian lasso using MCMC can be found in Park and

Casella (2008). These authors choose to specify the Bayesian lasso as a normal-exponential

mixture but conditional on the regression variance σ2. This is because a hierarchical prior on

βj that is independent of σ2 results in a multimodal posterior for βj . The Park and Casella

(2008) Laplace prior takes the form

β|{τ2j }pj=1, σ
2 ∼ Np(0, σ

2Dτ ), (74)

τ2j |λ2 ∼ Exponential

(
λ2

2

)
, for j = 1, ..., p, (75)

λ2 ∼ Gamma(r, δ) (76)

σ2 ∼ 1

σ2
, (77)

where Dτ = diag(τ21 , ..., τ
2
p ). Conditional posteriors under this hierarchical representation are

trivial to derive and more details can be found in the accompanying Technical Document.

The approach in Park and Casella (2008) is probably the most widely used but it is not the

only one available. Hans (2009) specified the lasso in terms of the normal orthant distribution.

Let Z = {−1, 1}p represent the set of all 2p possible vectors of length p whose elements are

±1. For any realization z ∈ Z define the orthant Oz ⊂ IRp. If β ∈ Oz, then βj ≥ 0 if z = 1 and

βj < 0 if z = −1. Then β follows the normal-orthant distribution with mean m and covariance

S, which is of the form

β ∼ N [z] (m,S) ≡ Φ (m,S)Np (m,S) I (∈ Oz) . (78)
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The Hans (2009) prior takes the form

β|λ, σ ∼
(

λ

2
√
σ2

)p
exp


−λ

p∑

j=1

|βj |/
√
σ2


 , (79)

λ ∼ Gamma(r, δ), (80)

σ2 ∼ 1

σ2
, (81)

and, using the definition of the normal orthant distribution, conditional posteriors are of the

form

βj |β−j , λ, σ2,y ∼ ϕjN
[+]
(
µ+j , ω

−1
jj

)
+ (1− ϕj)N

[−]
(
µ−j , ω

−1
jj

)
, (82)

λ|y ∼ Gamma

(
p+ r,

∑p
j=1 |β|√
σ2

+ δ

)
, (83)

σ|β,y ∝ (σ2)−(n+p
2

+1) exp

(
Ψ

2σ2
−
λ
∑p

j=1 |β|√
σ2

)
, (84)

where:

❼ N [−] and N [+] correspond to the N [z] distribution for z = −1 and z = 1, respectively;

❼ µ+j = β̂OLSj +
{∑p

i=1,i ̸=j

(
β̂OLSi − βi

)
(ωij/ωjj)

}
+
(
− λ√

σ2ωjj

)
;

❼ ωij is the ij element of the matrix Ω = Σ−1 =
(
σ2(X ′X)−1

)−1
;

❼ ϕj =
Φ

(
µ+
j√
ωjj

)

/N(0|µ+j ,ω
−1
jj )

Φ

(
µ+
j√
ωjj

)

/N(0|µ+j ,ω
−1
jj )+Φ

(

−
µ−
j√
ωjj

)

/N(0|µ−j ,ω
−1
jj )

;

❼ Ψ = (y −Xβ)′(y −Xβ).

The conditional posterior of σ2 is not of a standard form and, therefore, cannot be sampled

directly. Hans (2009) suggests a simple accept/reject step within the Gibbs sampler that

allows to obtain approximate samples from the posterior of σ2. Finally, Mallick and Yi (2014)

propose a third hierarchical representation of the Laplace prior, this time as a mixture of

Uniform distributions (see our Technical Document for details of this algorithm).

There are numerous extensions to the basic lasso that come in various forms. For example,

the elastic net combines the benefits of ridge regression (l2 penalization) and the lasso (l1

penalization) by solving the problem

arg min
β∈Rp

||y −Xβ||2 + λ1||β||1 + λ2||β||2, (85)

where now λ1 and λ2 are tuning parameters. The Bayesian prior that provides the solution to
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the elastic net estimation problem is of the form

β|σ2 ∼ exp



− 1

2σ2


λ1

p∑

j=1

|βj |+ λ2

p∑

j=1

β2j





 . (86)

Li and Lin (2010) start from this prior and derive a mixture approximation and a Gibbs

sampler that has the minor disadvantage that requires an accept-reject step for obtaining

samples from the conditional posterior of σ2 (similar to the sampler of Hans (2009) for the

lasso). The formulation of the elastic net prior in Kyung et al. (2010) is slightly different to the

one above, but they manage to derive a slightly different mixture representation and a slightly

more straightforward Gibbs sampler.

Other popular extensions to the lasso include the group lasso that allows for group

shrinkage; the fused lasso that allows for spatial or temporal relationships between neighbouring

parameters; and the adaptive lasso that fixes some variable selection consistency issues with

the regular lasso. All these extensions have straightforward hierarchical forms, and we refer

the reader to discussions in Kyung et al. (2010), Griffin and Brown (2011), Leng et al. (2014)

and Alhamzawi and Ali (2018), among several other studies. Our Technical document provides

details of posterior inference using the elastic net, group lasso, fused lasso and adaptive lasso.

2.5 Generalized double Pareto shrinkage

Armagan et al. (2013) propose the following generalized double Pareto (GDP) prior on β

β|σ ∼
p∏

j=1

1

2σδ/r

(
1 +

1

r

|βj |
σδ/r

)−(r+1)

. (87)

This distribution can be represented using the familiar, from the Bayesian lasso, normal-

exponential-gamma mixture. The only difference is that, while the Exponential component

has the same rate parameter for all j = 1, ..., p, in the representation of the GDP mixture this

parameter is adaptive. The generalized double Pareto distribution has a spike at zero with

Student’s t-like heavy tails.

The generalized double Pareto prior takes the form

β|{τj}pj=1, σ
2 ∼ Np

(
0, σ2Dτ

)
, (88)

τ2j |λj ∼ Exponential

(
λ2j
2

)
, for j = 1, ..., p, (89)

λj ∼ Gamma(r, δ), for j = 1, ..., p, (90)

σ2 ∼ 1

σ2
, (91)

where Dτ = diag(τ21 , ..., τ
2
p ).
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The conditional posteriors are of the form

β|{τ2j }pj=1, σ
2,y ∼ Np

(
V ×

(
X ′y

)
, σ2V

)
, (92)

1

τ2j
|βj , λ2j ,y ∼ IG

(√
λ2jσ

2

β2j
, λ2

)
, for j = 1, ..., p, (93)

λ2j |y ∼ Gamma


r + 1,

√
β2j
σ2

+ δ


 , (94)

1

σ2
|β,y ∼ Gamma

(
n− 1 + p

2
,
Ψ

2
+

β′D−1
τ β

2

)
, (95)

where V =
(
X ′X +D−1

τ

)−1
, D−1

τ = diag(τ−2
1 , ..., τ−2

p ) and Ψ = (y − Xβ)′(y − Xβ). Pal

et al. (2017) show, both theoretically and numerically, that the above “three-block” Gibbs

sampler is less efficient than a modified two-block Gibbs sampler they propose.

2.6 Dirichlet-Laplace

The Dirichlet-Laplace prior was introduced in Bhattacharya et al. (2015), and Zhang and

Bondell (2018) studied its posterior consistency as well as consistency in variable selection in

the context of a linear regression model. The Dirichlet-Laplace hierarchical prior, which is a

generalization of the Laplace prior, takes the form

β|{τj}pj=1, {ψj}
p
j=1, λ, σ

2 ∼ Np

(
0, σ2Dλ,τ,ψ

)
, (96)

τ2j ∼ Exponential(1/2), j = 1, ..., p, (97)

ψj ∼ Dirichlet(α), j = 1, ..., p, (98)

λ ∼ Gamma(nα, 1/2), (99)

σ2 ∼ 1

σ2
, (100)

where Dλ,τ,ψ = diag(λ2τ21ψ
2
1, ..., λ

2τ2pψ
2
p).
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The conditional posteriors are of the form

β|{τ2j }pj=1, {ψj}
p
j=1, λ, σ

2,y ∼ Np

(
V ×

(
X ′y

)
, σ2V

)
, (101)

1

τ2j
|λ2, σ2,y ∼ IG (c∗, 1) , j = 1, ..., p, (102)

λ|β,y ∼ GIG

(
2

∑p
j=1 |βj |
ψjσ

, 1, p(α− 1)

)
, (103)

ψj |β,y =
Tj∑p
j=1 Tj

, j = 1, ..., p, (104)

where Tj ∼ GIG


2

√
β2j
σ2
, 1, α− 1


 (105)

1

σ2
|β,y ∼ Gamma (a∗, b∗) , (106)

where a∗ = (n+ p)/2, b∗ = (Ψ + β′D−1
τ,λ,ψβ)/2, c

∗ =
√
λ2ψ2

jσ
2/β2j , V =

(
X ′X +D−1

τ,λ,ψ

)−1
,

and Ψ = (y − Xβ)′(y − Xβ). IG is the two-parameter inverse Gaussian distribution, and

GIG is the three-parameter generalized inverse Gaussian.

2.7 Horseshoe prior

The horseshoe prior was first introduced by Carvalho et al. (2010) and it since its inception

has been the most popular and influential hierarchical prior in Bayesian inference. The survey

paper by Bhadra et al. (2020) provides a thorough review of the applications of this prior in

numerous inference problems in statistics and machine learning, including nonlinear models

and neural networks. The Horseshoe is a prime representative of the class of global-local

shrinkage priors (see Footnote 13) and it can be represented as a scale mixture of normals with

half-Cauchy mixing distributions. That is, the prior has the following formulation

β|{λj}pj=1, τ ∼ Np

(
0, σ2τ2Λ

)
, (107)

λj |τ ∼ C+(0, 1), for j = 1, ..., p, (108)

τ ∼ C+(0, 1), (109)

where Λ = diag(λ21, ..., λ
2
p), and C

+(0, α) is the half-Cauchy distribution on the positive reals

with scale parameter α. That is, λj has conditional prior density

λj |τ =
2

πτ (1 + (λj/τ)2)
. (110)

Under this hierarchical specification, the marginal prior for each βj is unbounded at the origin

and has tails that decay polynomially.

There are numerous theoretical results established for this prior, most notably Datta and

29



Ghosh (2013) and van der Pas et al. (2014), and the reader is referred to Bhadra et al. (2020) for

a more detailed discussion. There are also various computational approaches to the Horseshoe

(see the accompanying Technical Document for details), but the most straightforward is the one

proposed by Makalic and Schmidt (2016). These authors note that the half-Cauchy distribution

can be written as a mixture of inverse-gamma distributions. In particular, if

x2|z ∼ Inv −Gamma(1/2, 1/z), z ∼ Inv −Gamma(1/2, 1/α2), (111)

then x ∼ C+(0, α). Therefore, the Makalic and Schmidt (2016) prior takes the form

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2Λ

)
, (112)

λ2j |vj ∼ Inv −Gamma(1/2, 1/vj), j = 1, ..., p, (113)

vj ∼ Inv −Gamma(1/2, 1), j = 1, ..., p, (114)

τ2|ξ ∼ Inv −Gamma(1/2, 1/ξ), (115)

ξ ∼ Inv −Gamma(1/2, 1), (116)

σ2 ∼ 1

σ2
, (117)

where Λ = diag(λ21, ..., λ
2
p).

The conditional posteriors are of the form

β|{{λj}pj=1, τ
2, σ2,y ∼ Np

(
V ×

(
X ′y

)
, σ2V

)
, (118)

λ2j |β, vj , τ2, σ2y ∼ Inv −Gamma

(
1,

1

vj
+

β2j
2τ2σ2

)
, j = 1, ..., p, (119)

vj |λj ,y ∼ Inv −Gamma

(
1, 1 +

1

λ2j

)
, j = 1, ..., p, (120)

τ2|β, ξ, {λj}pj=1, σ
2,y ∼ Inv −Gamma


p+ 1

2
,
1

ξ
+

1

2σ2

p∑

j=1

β2j
λ2j


 (121)

ξ|τ2,y ∼ Inv −Gamma

(
1, 1 +

1

τ2

)
, (122)

σ2|β,y ∼ Inv −Gamma

(
n+ p

2
,
Ψ

2
+

β′D−1
τ,λβ

2

)
, (123)

where V =
(
X ′X +D−1

τ,λ

)−1
, Dτ,λ = diag(τ2λ21, ..., τ

2λ2p) = τ2Λ and Ψ = (y−Xβ)′(y−Xβ).

2.8 Generalized Beta mixtures of Gaussians

Armagan et al. (2011) motivate the use of a three-parameter beta (TPB) distribution for the

prior variance parameter, as a flexible class of shrinkage priors. The TPB distribution takes
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the form

p(x|a, b, φ) = Γ (a+ b)

Γ (a) Γ (b)
φbxb−1(1− x)a−1 [1 + (φ− 1)x]−(a+b) , (124)

for 0 < x < 1, a, b, φ > 0. The TPB normal scale mixture representation for the distribution

of random variable βj is given by

βj ∼ N (0, 1/ρj − 1) , ρj ∼ TBP (a, b, φ). (125)

Proposition 1 in Armagan et al. (2011) shows that this distribution can either be written as

normal-inverted beta mixture, or a normal-gamma-gamma mixture. The second choice gives

a very straightforward Gibbs sampler scheme, and it can be seen as a special case of the

normal-gamma class of priors (Griffin and Brown, 2017).

The Generalized Beta mixtures of Gaussians prior takes the form

β|{τ2j }pj=1 ∼ Np (0,Dτ ) , (126)

τ2j |λj ∼ Gamma (a, λj) , for j = 1, ..., p, (127)

λj |φ ∼ Gamma(b, φ), for j = 1, ..., p, (128)

φ ∼ Gamma

(
1

2
, ω

)
, (129)

ω ∼ Gamma

(
1

2
, 1

)
, (130)

σ2 ∼ 1

σ2
, (131)

where Dτ = diag(τ21 , ..., τ
2
p ). Note that setting a = b = 1/2 we can obtain the horseshoe prior

of Carvalho et al. (2010). For other choices we can recover popular cases of shrinkage priors.

The conditional posteriors are of the form

β|{τ2j }pj=1, σ
2,y ∼ Np

(
V ×

(
X ′y

)
,V
)
, (132)

τ2j |βj , λ2j ,y ∼ GIG

(
a− 1

2
, 2λj , β

2
j

)
, for j = 1, ..., p, (133)

λj |y ∼ Gamma(a+ b, τ2j + φ), for j = 1, ..., p, (134)

φ|{λj}pj=1, ω,y ∼ Gamma


pb+ 1

2
,

p∑

j=1

λj + ω


 , (135)

ω|φ,y ∼ Gamma(1, φ+ 1), (136)

1

σ2
|β,y ∼ Gamma

(
n+ p

2
,
Ψ

2

)
, (137)

where V =
(
σ−2X ′X +D−1

τ

)−1
, Dτ = diag(τ21 , ..., τ

2
p ) and Ψ = (y −Xβ)′(y −Xβ).

The TPB normal mixture includes as special cases Strawderman-Berger and horseshoe

priors.
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2.9 Non-local priors

Non-local priors have been proposed by Johnson and Rossell (2010) in the context of hypothesis

testing of the form H0 : βj = 0 vs H1 : βj ̸= 0. From a frequentist perspective, such testing

procedures are used in order to find out how likely it would be for a set of observations to

occur under the null hypothesis. However, in a Bayesian setting the data are assumed to be

observed once, and parameters are continuous random variables. Traditional (local) priors

put significant probability in both the null and alternative hypotheses, thus, making it harder

for the (continuous) posterior distribution to detect-non zero coefficients asymptotically. Non-

local densities place zero probability at zero, and this feature allows such priors to separate

more clearly between the null and alternative hypotheses. That is, such priors do not place

any prior probability under the null.16

Any distribution that “decreases to 0 near the boundaries between disjoint null and

alternative parameter spaces might be considered” (Johnson and Rossell, 2010) to be a non-

local prior density. Within the context of a linear regression setting similar to the one defined

in Equation 8, Johnson and Rossell (2012) propose two specific classes of priors. The first class

of prior densities for β consists of product moment (pMOM) densities, which are defined as

p
(
β|τ2, σ2, r

)
∝ (2π)−p/2

(
τ2σ2

)−p(r+1/2)
exp

{
− 1

2τ2σ2
β′β

} p∏

j=1

β2rj . (138)

Figure 3 plots the pMOM density for τ2 = σ2 = 1 and for three values of r (r = 1, 2, 3). This

graph clearly shows the shapes that this prior can achieve, especially with regards to the rate

at which this prior decreases in the region of zero. The second class of prior densities consists

of the product inverse moment (piMOM) densities, which are defined as

p
(
β|τ2, σ2, r

)
=

(
τ2σ2

)rp/2

Γ (r/2)p
exp

{
−τ2σ2

(
β′β

)−1
} p∏

j=1

|βj |−(r+1). (139)

In both of these two priors, τ2 is a scale parameter that determines dispersion of the prior

around zero. Therefore, this parameter determines the size of the regression coefficients that

will be shrunk to zero, and it is of prime importance. Johnson and Rossell (2012) and Shin

et al. (2018) treat τ2 to be fixed and show that high-dimensional model selection consistency

is achieved under the pMOM prior, as long as τ2 is of a larger order than log p and it increases

subexponentially in n. However, fixing this parameter might not be desirable in most applied

16As Johnson and Rossell (2010) note:

[...] to a large extent, we have ignored philosophical issues regarding the logical necessity to specify
an alternative hypothesis that is distinct from the null hypothesis. In general, it is our view that
one hypothesis (and a test statistic) is enough to obtain a p-value, but that two hypotheses are
required to obtain a Bayes factor.
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high-dimensional problems17, and a hierarchical approach might be desirable. Cao et al. (2020)

propose a hyperprior density for τ2 of the form

p(τ2) =

(
n
2

)1/2

Γ
(
1
2

) τ−3 exp
(
− n

2τ2

)
. (140)

The hierarchical pMOM (or “hyper-pMOM”) prior they propose achieves strong model

selection consistency when p increases at a polynomial rate with n. Unfortunately, neither the

pMOM, hyper-pMOM or piMOM priors allows for a closed-form computation of joint, marginal

or conditional posteriors. Therefore, Cao et al. (2020) rely on Laplace approximations.
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Figure 3: Plot of pMOM density for r = 1, 2, 3.

2.10 Spike and slab priors

Similar to non-local priors, spike and slab priors allow for variable selection and testing of the

hypotheses H0 : βj = 0 vs H1 : βj ̸= 0. Unlike non-local priors, spike and slab prior densities

place significant probability into both hypotheses. In a regression context, the spike and slab

prior (Mitchell and Beauchamp, 1988) takes the form

βj |γj ∼ (1− γj)δ0(βj) + γjN(0, τ2), (141)

γj ∼ Bernoulli(π0), (142)

17For example, Johnson and Rossell (2012) note that if the covariate matrix X is not standardized, then it
would be important to define an adaptive shrinkage parameter τ2

j for each j = 1, ..., p. In such a case, choice of
each individual τ2

j for large p becomes inconvenient, if not infeasible.
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for each j = 1, ..., p, where δ0(βj) is the Dirac delta function placing point mass at zero and

γj are 0/1 (dummy) variables indicating whether column j of X is included in the regression

or not. The mechanism with which this prior classifies predictors as important or not, is

simple: when γj = 1 the prior for βj is N(0, τ2), that is, estimation is not restricted by the

prior for reasonably large values of τ2; when γj = 0 the prior becomes a point mass function

concentrated at zero and it dominates the likelihood such that the posterior is also concentrates

its mass at zero. The concept of variable selection is fully determined by the indicator random

variables γj ’s. Samples from the posterior of each γj will be sequences of zeros and ones, and

the posterior mean denotes the posterior inclusion probability of each predictor in the best

model. For example, if we sample MCMC 10,000 draws and find that 2,000 times γj = 1, then

the posterior mean is simply 2000/10000 = 0.2 which translates into 20% posterior inclusion

probability of predictor j. Barbieri and Berger (2004) show that the median probability model,

that is, the model where only variables with probabilities larger than 0.5 are selected/retained,

is optimal for prediction. O’Hara and Sillanpää (2009) suggest that as a variable selection

mechanism such variable selection priors should work well up to cases where p is 10-15 times

larger than n, but of course this proportion is only a rule of thumb that is heavily determined

by the informativeness of the data and modeling choices.

The spike and slab prior belongs to the general class of hierarchical full-Bayes priors

introduced earlier in this section, since it can be written in the form

βj |γj ∼ N
(
0, τ2γj

)
. (143)

If, in addition, we introduce a hyperprior distribution on τ2 (e.g. inverse-gamma, see Ishwaran

and Rao 2003), then the spike and slab prior is not only a hierarchical prior, but also belongs to

the class of local-global shrinkage priors with global shrinkage parameter τ2 and local shrinkage

parameters γj . In signal processing and similar fields, the spike and slab is known as a “normal-

Bernoulli” or “Gaussian-Bernoulli” prior.

A third parametric formulation of this particular spike and slab prior is due to Kuo and

Mallick (1998). In their formulation the regression model with variable selection prior is written

as

y =

p∑

j=1

Xjγjβj + ε, (144)

where βj is the coefficient on predictor j and γj is a 0/1 variable indicating whether predictor j

is included in the model. This formulation is equivalent to the previous two, but it implies that

the vector of indicators γ enters only via the likelihood and not through the (hierarchical) prior

for β. In the Kuo and Mallick (1998) formulation each βj will simply have a typical Gaussian

prior with variance τ2. Notice that when γj = 1, βj will be sampled from its posterior, but

when γj = 0, βj is not identified. In this case what happens is – as is the case with any

unidentified parameter in a Bayesian setting (e.g. mutlicollinearity) – that βj is sampled from
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its prior. This lack of identification of βj is not a problem, as what we care about is the joint

effect γj × βj and the fact that predictor j simply has to be removed whenever γj = 0. This

detail means that in variable selection a-la Kuo and Mallick (1998) the posterior of βj with

γj = 0 will be equal to its normal prior, while the posterior of the same parameter under the

spike and slab prior of equation (141) is a point mass at zero. Other than this (possibly minor)

difference, Bayesian variable selection using all three forms presented above is conceptually

and empirically comparable.

The class of spike and slab priors and its theoretical properties have been studied extensively

in the literature; see Johnstone and Silverman (2004), Ishwaran and Rao (2005), Jiang (2006),

Bogdan et al. (2011) and Castillo and van der Vaart (2012). From an applied scientist’s point

of view, the spike and slab prior is very versatile and can take numerous useful forms.18 We

next briefly review possible formulations of the spike and slab prior, and their implications for

modeling coefficients and selecting variables in a linear regression. We finish this section with

a discussion of some key computational aspects of this class of priors.

Tuning of parameters in the spike and slab prior

In the formulation in Equation 141 one only has to choose the variance parameter τ2. This

cannot be zero because the slab will become identical to the spike component, and it cannot

become infinity because it would also be impossible to separate the spike from the slab

component (remember from the previous section that Bayes factors with diffuse priors do

not exist). Therefore, τ2 has to be quite different from zero and not too large (e.g. τ2 = 4 is a

reasonable choice). Of course one can use any of the hyperprior distributions already explored

in the previous sections, e.g. the choice τ2 ∼ exponential(λ2/2) will convert the slab into a

Laplace prior. However, one should be careful not to overshrink the slab (e.g. by setting λ

too large in the Laplace prior) because then the spike and slab will be indistinguishable and

posterior inclusion probabilities will be meaningless.

A computationally more efficient formulation of the spike and slab prior (at least within

an MCMC setting) is the one proposed by George and McCulloch (1993, 1997), where both

the spike and slab distributions are continuous

βj |γj ∼ (1− γj)N(0, τ20 ) + γjN(0, τ21 ), (145)

where τ20 is a “small” variance parameter (corresponding to the spike) and τ21 is a “large”

variance parameter (corresponding to the slab). In the limit, when τ20 = 0, the spike becomes

the Dirac delta at zero, but for any other values of τ20 close but different from zero the spike

distribution is unable to shrink βj exactly to zero. That is, this version of the spike and slab is

appropriate for testing H0 : βj ≈ 0 vs H1 : βj ̸= 0, that is, it provides a soft thresholding rule.

18For example, Koop and Korobilis (2016) specify a spike and slab prior that is able to search for homogeneities
in panel data. That is, the spike and slab prior is modified in order to test the hypothesis of the form H0 : βi = βj

vs H1 : βi ̸= βj .
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Chipman et al. (2001) provide the threshold value above (below) which a regression coefficient

is classified as belonging to the slab (spike) component and is not shrunk (shrunk) to zero:

∆ =

√√√√√
log
(
τ21
τ20

)

1
τ21

− 1
τ20

. (146)

Therefore, elicitation of τ20 , τ
2
1 becomes very important for variable selection in the George

and McCulloch (1993) prior. Narisetty and He (2014) show that fixing these two variance

hyperparameters may result in variable selection inconsistency, and propose values that are

functions of n and p that ensure good performance of the prior when the data dimensions

increase. Ishwaran and Rao (2005) set τ20 = τ2 and τ21 = cτ2 where c >> 1 and τ2 ∼ Inv −
Gamma, although τ2 could also follow any of the hierarchical distributions defined previously,

e.g. Horseshoe or Laplace. Früwirth-Schnatter and Wagner (2010) go one step further by

motivating a mix-and-match strategy where τ20 has a Laplace prior, while τ21 has an inverse-

gamma prior. More recently, Ročková and George (2018) showed that, under mild conditions,

a spike and slab lasso prior produces posterior distributions that concentrate asymptotically

around the true regression coefficients at nearly the minimax rate. In their formulation both

the spike and the slab are based on Laplace distributions (represented as normal-exponential

mixtures), with the spike distribution shrunk more aggressively than the slab distribution.

An important feature of variable selection priors is the prior on γj . As in Equation 142

this is typically Bernoulli with prior probability π0, or equivalently a binomial prior for the full

vector γ = (γ1, ..., γp)
′. Unfortunately, the choice π0 = 0.5 in a binomial prior is not uniform as

it implies a prior expectation that half of the p predictors will be included in the final model.

Therefore, in high-dimensional settings it is customary to set this parameter to a value closer

to zero, e.g. π0 = 0.1. If desired, a prior can be placed on this parameter and a conjugate

choice is the beta distribution, that is, π0 ∼ Beta(1, α0). The choice α0 = 1 makes this prior

uniform, but in high-dimensional cases it will be preferable to set α0 to become proportional

to the number of predictors p. Note that in the presence of a beta hyperprior on π0, it is not

necessary to use indicator variables γj . For example, following Dunson et al. (2008) we can

specify a spike and slab of the form19

βj |π0 ∼ (1− π0)δ0(βj) + π0N(0, τ2), (147)

π0 ∼ Beta(1, α0), (148)

that provides a smoother mixture of the two components. (We can, of course, specify

an equivalent formulation for the George and McCulloch (1993) continuous spike and slab

formulation.) Finally, Carvalho et al. (2008) turn this latter formulation into a sparsity

19See also Korobilis (2013a,b, 2016) for related priors applied to econometric contexts such as dynamic
regressions and vector autoregresions.
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inducing variable selection prior by replacing Equation 148 with

π0|ρ ∼ (1− ρ)δ0(π0) + ρBeta(1, α0), (149)

that is, a spike and slab prior for π0. Finally, Yuan and Lin (2005) propose a prior for γ

that accounts for correlation in predictors, such that if two predictors are highly correlated

only one is included in the selected model. In their formulation they multiply the standard

binomial prior for γ with the determinant of the Gram matrix of predictors, that is, |X ′X|.
High-correlated predictors have small |X ′X| and are discouraged from being selected. Such

enhancements of the base spike and slab prior are important for variable selection, because

marginal inclusion probabilities may be poor under high correlation. In particular, highly

correlated predictors may be jointly selected often but each predictor only a small number of

times.

Computation with spike and slab priors

Computation with spike and slab priors is as straightforward as is the case with most other

hierarchical priors. Conditional on γj being either zero or one, the prior for βj is either a point

mass at zero or normal (in the representation of Mitchell and Beauchamp, 1988) or it is one

of two normal components (in the representation of George and McCulloch, 1993). Therefore,

conditional on γj , results for the normal linear model can be used. The same holds in the case

where the components of the spike and slab are non-normal, rather they are Student-t, Laplace

etc: as long a hierarchical prior structure is used and the prior can be written in conditionally

normal form, derivation of conditional posteriors is straightforward.

Regarding posterior computation of γj ’s this usually has to be done element-by-element,

that is, we need to derive γj conditional on γ−j (the set γ with the j-th element removed).20

However, in the case of the Mitchell and Beauchamp (1988) prior of Equation 141, the

conditional posterior p(γj |γ−j ,β, σ
2,y) cannot be used to obtain samples from the posterior

of γj . Intuitively, this is because when we sample γj = 0 then the prior for βj is the Dirac delta

function that puts infinite mass at zero. Therefore, in the next iteration p(γj |γ−j ,β, σ
2, data)

will give γj = 0 with probability one, meaning that the sampler will get stuck in a loop where

the only possible outcome is βj = γj = 0. This is not an issue in the continuous spike and slab

prior of George and McCulloch (1993), since the spike is a continuous normal distribution and

allows samples of βj to be slightly different from zero.

To see this, let’s derive p(γj |γ−j ,β, σ
2,y) in the case of the spike and slab prior of equations

(141) - (143), which we rewrite for convenience

βj |γj ∼ (1− γj)δ0(βj) + γjN(0, τ2), (150)

γj ∼ Bernoulli(π0). (151)

20For that reason, when the Gibbs sampler is used to sample from the conditional posterior of γj given γ−j ,
it is advisable in each Gibbs iteration to sample in random order j to avoid high autocorrelation of samples.
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For simplicity, we do not introduce prior distributions on τ2 and π0, so we assume these are

fixed and chosen by the researcher. Using Bayes theorem, the posterior of γj = 0 is

p(γj = 0|γ−j ,β, σ
2,y) ∝ p(y|γj = 0,γ−j ,β, σ

2)p(βj |γj = 0)p(γj = 0). (152)

In this decomposition, the first term is provided by the likelihood where we set the j-th element

of β equal to zero (since γj = 0), regardless of what the sampled value βj is in the previous

iteration of the Gibbs sampler. This is a normal distribution with mean Xβ⋆, where β⋆ is

equal to β with the j-th element equal to zero, and variance σ2. The second term is the prior

for βj under the restriction γj = 0, that is, the Dirac delta density δ0(βj). The last term is

given simply by the Bernoulli prior for γj and it is equal to (1− π0). Therefore, this posterior

is:

p(γj = 0|γ−j ,β, σ
2,y) ∝ Nn(Xβ⋆, σ2In)δ0(βj)(1− π0). (153)

Using similar arguments, we have that

p(γj = 1|γ−j ,β, σ
2,y) ∝ Nn(Xβ, σ2In)N(0, τ2)π0. (154)

Therefore, the conditional posterior of γj is

p(γj |γ−j ,β, σ
2
,y) ∼ Bernoulli

(

Nn(Xβ, σ2In)N(0, τ2)π0

Nn(Xβ, σ2In)N(0, τ2)π0 + Nn(Xβ⋆, σ2In)δ0(βj)(1 − π0)

)

. (155)

Notice how the Dirac delta δ0(βj) enters the denominator term. If in the sampling process it

happens to sample γj = 0, then βj = 0 and any subsequent γj ’s will also be zero for ever. This

is because once a βj = 0 is observed, δ0(βj) becomes infinite and the ratio in the Bernoulli

posterior is zero.

The solution to this problem is integration. That is, we need to remove dependence to βj ,

and instead of the posterior p(γj |γ−j ,β, σ
2,y) we compute p(γj |γ−j ,β−j , σ

2,y), that is, we

integrate out βj and condition only on β−j . Intuitively, because γj depends only to βj through

the spike and slab prior (i.e. it is independent to β−j), the ratio in the Bernoulli posterior of

Equation 155 will only involve the densities p(y|γj = 0,γ−j ,β, σ
2), p(y|γj = 1,γ−j ,β, σ

2) and

p(γj = 0), p(γj = 1). The accompanying Technical document provides details of conditional

posteriors under various forms of spike and slab prior distributions, including cases with more

complex hiearchical layers such as the spike and slab lasso of Ročková and George (2018).
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2.11 Monte Carlo study: Specification of spike and slab priors for variable

selection

Consider a George and McCulloch (1993, 1997) type spike and slab prior

y|σ2,β ∼ Nn

(
Xβ, σ2In

)
,

βj |τ20j , σ2, γj = 0 ∼ N
(
0, σ2τ20j

)
, for j = 1, . . . , p,

βj |τ21j , σ2, γj = 1 ∼ N
(
0, σ2τ21j

)
, for j = 1, . . . , p,

σ2 ∼ Inv −Gamma(a, b),

P (γj = 1) = π0, for j = 1, . . . , p,

π0 ∼ Beta(c, d)

The conditional posteriors of β, σ2,γ, and π0 are

β|• ∼ Np

(
V X

′
y, σ2V

)
, where V = (D−1 +X

′
X)−1,

σ2|• ∼ Inv −Gamma

(
a+

n

2
+
p

2
, b+

1

2

[
(y −Xβ)′ (y −Xβ) + β′Q−1β

])
,

γj |• ∼ Bern




ϕ
(
βj |0, σ2τ21j

)
π0

ϕ
(
βj |0, σ2τ21j

)
π0 + ϕ

(
βj |0, σ2τ20j

)
(1− π0)


 , for j = 1, . . . , p,

π0|• ∼ Beta


c+

p∑

j=1

γj , d+

p∑

j=1

(1− γj)




where ϕ(·|m, v) is the normal density with mean m and variance v and D is a diagonal matrix

with diagonal elements {(1− γj)τ
2
0j + γjτ

2
1j}

p
j=1.

2.11.1 SSVS-Lasso

Suppose we employ a Laplace density for the slab component

τ21j |λ21 ∼ Exponential

(
λ21
2

)
, for j = 1, ..., p

and consider three different ways of defining priors for the spike component that are commonly

used in practice, which we define as SSVS-Lasso 1-3.

In SSVS-Lasso-1, τ20j is fixed i.e. τ20j = c1 for some small c1 > 0 and in SSVS-Lasso-2, it is

proportional to the prior variance for the slab component i.e. τ20j = c2τ
2
1j for some small c2 > 0.

In both SSVS-Lasso-1 and 2, with the prior λ21 ∼ Gamma(r1, δ1), the prior variance for the
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slab is updated according to

λ21|• ∼ Gamma




p∑

j=1

γj + r1,

p∑

j=1

τ21jγj/2 + δ1




1/τ21j |• ∼ IG
(√

λ21σ
2/β2j , λ

2
1

)
, for j = 1, ..., p

In SSVS-Lasso-3, we place two separate Laplace densities on the components i.e.

τ20j |λ20 ∼ Exponential

(
λ20
2

)
, for j = 1, ..., p,

τ21j |λ21 ∼ Exponential

(
λ21
2

)
, for j = 1, ..., p

with λ0 ≫ λ1 so that the density for N(0, σ2τ20j) is the “spike” and N(0, σ2τ21j) is the “slab”.

This is similar to the spike-and-slab Lasso in Ročková and George (2014) and Bai et al. (2021)
21. The prior variances are updated according to

1/τ20j |• ∼ IG
(√

λ20σ
2/β2j , λ

2
0

)
, for j = 1, ..., p,

1/τ21j |• ∼ IG
(√

λ21σ
2/β2j , λ

2
1

)
, for j = 1, ..., p

Which specifications are appropriate in applications? In order to investigate this question,

we consider simulation by generating data from the regression model y = Xβ + ϵ with ϵ ∼
Nn(0, σ

2In). We let n = 100 and σ2 = 3. We construct the true vector of slope parameters

β = cβ̃ by assigning values {1.5,−1.5, 2,−2, 2.5,−2.5} to the first 6 elements of β̃ and setting

others to zero. We choose a constant c > 0 to achieve a desired level of signal-to-noise ratio
22. The data matrix X is generated from the multivariate normal distribution with mean

zero and covariance matrix being an identity matrix. The covariates are standardized for

estimation. We examine different values of the number of covariates p ∈ {50, 100, 300} and the

signal-to-noise ratio R2
pop ∈ {0.4, 0.8}.

The analysis was repeated 100 times with new covariates and responses generated each

time. For each, the metrics recorded were: the bias and MSE of the first 6 elements of the

coefficients vectors, the number of false negatives (FN), the number of false positives (FP),

and the number of true positives (TP). Posterior means were used as point estimates of the

slope coefficients and the error variance. We utilize the post-processing approach of Li and

Pati (2017) in order to categorize the covariates into signals and noises.

We compare performance of SSVS-Lasso 1-3 under different data generating processes.

21They propose an EM algorithm for estimation.

22In a general linear regression y = Xβ + ϵ, the signal-to-noise ratio (SNR) is defined as SNR =
||Σ

1/2
X

β||2

σ2

where σ2 is the error variance and ΣX is a p × p covariance matrix of X. ||Σ
1/2
X β||2 = β′

ΣXβ measures the
overall signal strength. A related quantity is R2

pop, the population value of R2, defined as SNR
1+SNR

.
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We fix c = d = 1 so that the prior on the inclusion probability θ is uniform. We also let

a = b = 0.1. For SSVS-Lasso 1 and 2, the hyperparameters for the prior on λ21 are fixed as

r1 = 1 and δ1 = 1. We let c1 = 10−4 for SSVS-Lasso-1, c2 = 10−4 for SSVS-Lasso-2, and

λ0 = 20, λ1 = 1 for SSVS-Lasso-3. We also show results of Narisetty and He (2014) which

is a two component mixture of normals prior with fixed prior variances and Kuo and Mallick

(1998) which can be seen as a spike-and-slab prior with the spike component being a point

mass at zero. Table 1 summarizes results.

Under a relatively strong signal i.e. R2
pop = 0.8, generally speaking, SSVS-Lasso-3 and

Narisetty-He outperform others in all measures, and this tendency becomes more apparent

in high-dimensional case i.e. p = 300. Kuo-Mallick tends to have larger FPs than others.

When the signal-to-ratio is lower, i.e. R2
pop = 0.4, SSVS-Lasso-3 outperforms others in terms

of bias/MSE of the signals and shows reasonable performance in other metrics.
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Bias MSE FN FP TP

R2
pop = 0.8, p = 50

SSVS-Lasso-1 0.14 0.02 0.63 0 5.4
SSVS-Lasso-2 0.16 0.03 0.70 0 5.3
SSVS-Lasso-3 0.11 0.01 0.53 0 5.4
Narisetty-He 0.09 0.01 0.31 0 5.6
Kuo-Mallick 0.11 0.02 0.49 0.04 5.5

R2
pop = 0.8, p = 100

SSVS-Lasso-1 0.23 0.06 0.96 0 5.1
SSVS-Lasso-2 0.28 0.09 1.15 0 4.8
SSVS-Lasso-3 0.13 0.02 0.53 0.05 5.4
Narisetty-He 0.10 0.01 0.39 0 5.6
Kuo-Mallick 0.29 0.13 1.07 20.8 4.9

R2
pop = 0.8, p = 300

SSVS-Lasso-1 0.52 0.29 1.91 21.0 4.0
SSVS-Lasso-2 0.56 0.33 0.98 39.6 5.0
SSVS-Lasso-3 0.32 0.12 1.44 9.1 4.5
Narisetty-He 0.22 0.08 1.95 0 4.0
Kuo-Mallick 0.53 0.30 0.09 91.1 5.9

(a) R2
pop = 0.8.

Bias MSE FN FP TP

R2
pop = 0.4, p = 50

SSVS-Lasso-1 0.12 0.02 1.1 3.4 4.8
SSVS-Lasso-2 0.12 0.02 1.1 4.9 4.8
SSVS-Lasso-3 0.10 0.01 1.1 5.4 4.8
Narisetty-He 0.16 0.03 3.4 2.6 2.6
Kuo-Mallick 0.11 0.02 1.2 8.8 4.8

R2
pop = 0.4, p = 100

SSVS-Lasso-1 0.15 0.03 0.8 11.5 5.1
SSVS-Lasso-2 0.17 0.03 0.7 15.9 5.2
SSVS-Lasso-3 0.12 0.02 1.1 17.6 4.8
Narisetty-He 0.18 0.04 2.2 14.9 3.7
Kuo-Mallick 0.28 0.13 2.9 29.4 3.0

R2
pop = 0.4, p = 300

SSVS-Lasso-1 0.24 0.06 0.78 50.3 5.22
SSVS-Lasso-2 0.26 0.07 0.71 60.4 5.29
SSVS-Lasso-3 0.19 0.04 0.88 56.9 5.12
Narisetty-He 0.24 0.06 0.91 82.6 5.09
Kuo-Mallick 0.21 0.05 0.76 93.1 5.24

(b) R2
pop = 0.4.

Table 1: Average metrics over 100 repetitions for each of the approaches. Estimated error
variance, and bias and MSE of the first 6 elements of the slope vector, and the numbers of
False Negatives (FN), False Positives (FP), and True Positives (TP). The posterior means
were used as point estimates. The post-processing method of Li and Pati (2017) was used to
distinguish signals from noises. n = 100.
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3 Bayesian Computation with hierarchical priors

We have established that hierarchical priors obey conditional structures that make derivation

of conditional posteriors a straightforward business. As a consequence, the Gibbs sampler is

the primary computational tool for variable selection and shrinkage problems using hierarchical

priors. However, exactly because such full Bayes shrinkage estimators are mostly needed in high

and ultra-high dimensions, the Gibbs sampler and related Monte Carlo-based methods become

computational costly. In such cases there are numerous other strategies that allow for faster

computation. These strategies include approximate methods for computing marginal posterior

distributions, or iterative, non-sampling methods that approximate the posterior mode or

mean. Many of these algorithms originate in computing science, where data dimensions have

always been larger than traditional economic data sets. Currently, Bayesian computation

in high-dimensional spaces – especially in the presence of hierarchical priors – is the topic

of an expanding research agenda in mainstream statistics as well as in the field of machine

learning. In this section, we summarize this vibrant research, focusing on both MCMC and

fast approximate algorithms.

3.1 Brute-force/analytical algorithms

Analytical algorithms for hierarchical priors, in general, do not exist apart from a few special

cases that can be fairly restrictive. In the context of estimating a normal mean θ (see our

discussion of Efron and Morris, 1973 in subsection 1.1), Kahn and Raftery (1992) put uniform

hyperpriors on the mean and variance hyperparameters of a normal prior distribution of θ. In

order to obtain the posteriors of these hyperparameters they need to integrate θ, something

they are able to do numerically since in their case only univariate integrals are involved on

the support [0, 1]. In the context of a regression with spike and slab prior, Clyde (1999) shows

that if the design is orthogonal (that is if the Gram matrix X ′X ∝ I) and the regression

variance σ2 is known, variable selection indicators γ can be obtained without resorting to Monte

Carlo methods (either Gibbs sampler or Monte Carlo). Papaspiliopoulos and Rossell (2017)

also derive an efficient non-sampling algorithm for Bayesian model averaging in regressions

with a block diagonal design.23 Their methods involve calculation of model probabilities and

parameter estimates using one-dimensional numerical integration.

An interesting case that allows for approximately analytical posterior inference using

hierarchical priors is provided in van den Boom et al. (2015a) and van den Boom et al. (2015b).

These authors use rotation matrices to partition the regression model into a component

explained by predictor Xj and all remaining predictors X(−j). In particular, they split the

regression into two components

23Examples of modeling scenarios with block-diagonal matrix X ′X include time-series regressions with
time-varying parameters, and vector autoregressions written in “seemingly unrelated regressions” form; see
subsection 4.1 for more details.
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❼ one partition that is a regression of n − 1 observations of a rotation of y on X(−j) (i.e.

dependence on Xj is removed), and

❼ one partition that is a regression of the remaining one observation of a separate rotation

of y on Xj , conditional on X(−j).

These authors use a non-shrinking natural conjugate prior in the first part of the rotated

regression in order to obtain analytically an estimate of β(−j) and σ2. Then conditional

on these estimates, they introduce in the second part a hierarchical shrinkage prior on βj

and derive analytically its posterior, since the regression variance is known using its estimate

from the first partition. This procedure requires to repeat the rotation and partition of the

regression model for each predictor j, j = 1, ..., p. The outcome is an analytical derivation of

the posterior of each element βj of β under a hierarchical prior that would otherwise require

posterior simulation. This algorithm is of course approximate because it requires to obtain the

posterior of βj by integrating out the influence of each β(−j) using a natural conjugate prior,

rather than the same hierarchical prior used on βj . Korobilis and Pettenuzzo (2019) extend

this idea to various several hierarchical priors, including normal-Jeffrey’s, spike and slab, and

normal-gamma.

3.2 Gibbs sampler

We have already established that complex distributions (e.g. Student-t, Laplace, normal-half

Cauchy) can be written in a conditionally conjugate form by using hierarchical representations.

Depending on whether we also condition on the regression variance parameter, or not, we obtain

the following two hierarchical prior formulations

Natural conjugate prior Independent prior

β|σ2, τ 2 ∼ Np

(
0, σ2Dτ

)
, β|τ 2 ∼ Np (0,Dτ ) ,

τ 2 ∼ p(τ 2), τ 2 ∼ p(τ 2),

σ2 ∼ 1
σ2 , σ2 ∼ 1

σ2 ,

(156)

where Dτ = diag(τ21 , ..., τ
2
p ) and depending on the structure of the distribution p(τ 2) (which

itself can be a hierarchical mixture of several distributions) we obtained the various interesting

cases we explored so far.

Because of the conditional structure of the prior, posterior conditionals are easy to derive.

For example, consider the case of the independent prior, then the joint posterior is of the form

p
(
β, τ 2, σ2|y

)
∝ p

(
y|β, σ2

)
p(β|τ 2)p(τ 2)p(σ2). (157)

We can derive the conditional posterior of β as

p
(
β|τ 2, σ2,y

)
∝ p

(
y|β, σ2

)
p(β|τ 2), (158)
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because p(τ 2) and p(σ2) are constants when conditioning on τ 2, σ2 (because they do not involve

the random variable β). The prior distribution p(β|τ2) is normal and, due to the modeling

assumptions, p
(
y|β, σ2

)
is also normal. As a result, the conditional posterior for p

(
β|τ 2, σ2,y

)

is identical to the conditional posterior under the non-hierarchical version of the same prior

(see for example Gelman et al., 2013). Similarly, the conditional posterior for σ2 becomes

p
(
σ2|β, τ 2,y

)
∝ p

(
y|β, σ2

)
p(σ2), (159)

which is also identical to the case of the non-hierarchical independent normal-inverse gamma

prior. Finally, the conditional posterior for τ becomes

p
(
τ 2|β, σ2,y

)
∝ p(β|τ 2)p(τ 2). (160)

The data density p
(
y|β, σ2

)
does not contain information about τ so it becomes a constant.

Instead the “model” for τ 2 is provided by the density p(β|τ 2) where β are observed “data”

(fixed to their sampled values), since in this conditional posterior the only random variable is

τ 2.

It becomes apparent that because of the conditional structure of hierarchical priors, for the

vast majority of hierarchical priors we have common formulas for the conditional posteriors

of β and σ2, while the formulation of the conditional posterior of τ 2 will depend on how

complicate its prior is. Under the natural conjugate prior the conditional posteriors are of the

form
Conditional Posteriors (Natural conjugate prior)

β|σ2, τ 2, σ2,y ∼ Np

(
V X ′y, σ2V

)
,

τ 2|β, σ2,y ∼ p(τ 2|β, σ2,y),
σ2|β,y ∼ Inv −Gamma

(n+p
2 , 12(Ψ+ β′D−1

τ β)
)
,

(161)

where V =
(
X ′X +D−1

τ

)−1
and Ψ = (y −Xβ)′ (y −Xβ). Under the independent prior the

posteriors are of the form

Conditional Posteriors (Independent prior)

β|σ2, τ 2, σ2,y ∼ Np

(
V X ′y/σ2,V

)
,

τ 2|β, σ2,y ∼ p(τ 2|β,y),
σ2|β,y ∼ Inv −Gamma

(
n
2 ,

1
2Ψ
)
,

(162)

where V =
(
X ′X/σ2 +D−1

τ

)−1
and Ψ = (y −Xβ)′ (y −Xβ). Notice how σ2 affects the

posterior of τ 2 in the conjugate prior case, while σ2 doesn’t show up in the posterior of τ 2.

See the Technical Document for derivations.

A Gibbs sampler will cycle through equations (161) or equations (162), obtaining a sample

of parameters conditional on all others, until a large enough sample from the posterior of each

parameter is available. Results in Pal and Khare (2014) and Khare and Hobert (2013) establish,
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for a large class of hyper-prior distributions p(τ 2), that the above Gibbs sampler is ergodic

and has the joint posterior p
(
β, τ 2, σ2|y

)
as its stationary density. Despite its ergodicity,

the basic Gibbs sampler for models with hierarchical priors may suffer from slow mixing and

convergence to the desired posterior. The conditional structure of a hierarchical prior implies

a long chain of dependence of β on τ 2 and its hyper-priors. For example, the representation

of the Horseshoe prior suggested by Makalic and Schmidt (2016) as a hierarchical mixture of

a normal distribution and four inverse gamma hyper-prior distributions (see subsection 2.7)

is one example where slow mixing might become a serious issue. For that reason, in the

case of the Horseshoe in particular, several authors propose to use more efficient slice sampling

schemes, some of which we explore in detail in the accompanying Technical Document. Another

disadvantage of the Gibbs sampler is the fact that sampling becomes cumbersome as the

dimension p of covariates increases. In the next we explore various approaches for speeding

up MCMC and for dealing with convergence issues, particularly in the case where p is large or

even p >> n.24

Fast sampling from Normal posteriors

In high-dimensional settings with p large, the most cumbersome step in a Gibbs sampler for

the linear regression model with hierarchical priors is sampling from the p-variate normal

conditional posterior distribution of β. This step involves an inversion of precision matrix

Q = V −1 =
(
X ′X +D−1

τ

)
(in the case of the natural conjugate prior) or Q = V −1 =(

X ′X/σ2 +D−1
τ

)
(in the case of the independent prior) in order to obtain the posterior

covariance matrix V .25 Next, the Cholesky decomposition of V is needed in order to sample

from the desired normal distribution. While the inversion step can be sped up (e.g. by using

Woodbury’s identity), standard built-in algorithms (in various programming languages) for

obtaining the Cholesky decomposition of a p × p matrix have a worst asymptotic complexity

(measured in flops) of O(p3). Therefore, simple sampling from a normal posterior is deemed

to become computationally cumbersome, if not infeasible, as p increases.

Rue (2001) provides a precision-based sampler in order to obtain samples from a normal

distribution efficiently when the precision matrix Q =
(
X ′X +D−1

τ

)
is known. Due to the

fact that the Bayesian conditional posterior of β (ignoring σ2, e.g. assume it is fixed to value 1)

is of the form β|• ∼ N(V X ′y,V ), the procedure proposed by Rue (2001) takes the following

form

24All the approaches we explore propose novel ways of sampling from the parameter posterior under the Gibbs
sampling scheme. However, given a specific algorithm, the ability of the programming language to handle large
matrices is also important. This is illustrated, for example, in Matusevich et al. (2016), where in the context
of Bayesian variable selection they combine array database management systems (DBMS) and R processing
capabilities, allowing R to handle large matrices without running out of RAM.

25Note that in the case of the natural conjugate prior without hierarchical structure, the matrix Dτ is known
(calibrated by the researcher), as is the data information X ′X. In this case, one could calculate and invert Q

once, outside the loop of the Gibbs sampler. However, the presence of a hierarchical prior for τ 2 means that the
matrix Dτ changes values in each Gibbs iteration. Therefore, V −1 should be computed and inverted in each
iteration (regardless of whether we used the independent prior on β or not).
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❼ Compute the lower Cholesky factorization Q = LL′

❼ Generate Z ∼ Np(0, Ip)

❼ Set v = L−1(X ′y)

❼ Set µ = L′−1v

❼ Set u = L′−1Z

❼ Set β = µ+ u

It is trivial to show that E(β) = µ = (L′−1L−1)X ′y = (LL′)−1X ′y = V X ′y and cov(β) =

cov(µ+u) = L′−1cov(Z)L−1 = L′−1L−1 = V , which means that the above procedure provides

valid samples from the desired normal distribution. The main feature of this algorithm is that

it requires to invert the Cholesky factor of Q, instead of inverting Q itself to obtain V . While

the worst case complexity of this algorithm is also O(p3), it provides high efficiency gains in

certain classes of models, e.g. when the Gram matrix X ′X is block-diagonal (assuming the

prior variance Dτ is diagonal or at most block-diagonal of similar structure).

More recently, Bhattacharya et al. (2016) proposed an efficient algorithm that makes full

use of Woodbury matrix inversion lemma in the context of generating normal variates from a

distribution of the form β|• ∼ N(V X ′y,V ) (again for simplicity, ignore σ2). Their algorithm

takes the following form

1. Sample η ∼ Np(0,Dτ ) and δ ∼ Nn(0, In)

2. Set v = Xη + δ

3. Set w = (XDτX
′ + In)

−1[y − v]

4. Set β = η +DX ′w

It is also easy to show that the sample of β comes from the desired normal distribution with

mean V X ′y and variance V . Note that this algorithm requires inversion of the n× n matrix

(XDτX
′ + In)

−1, while sampling directly from the normal posterior requires inversion of the

p×pmatrixQ. Therefore, step 3 in this algorithm only becomes efficient for p >> n. The main

efficiency gains in this algorithm stem from the fact that it requires to sample from two normal

distributions with diagonal covariance matrices (a p-variate distribution with covariance Dτ

and an n-variate distribution with identity covariance). Generating uncorrelated normal draws

is much more efficient than sampling directly from the p-variate normal posterior of β using the

full covariance matrix V . In particular, the worst-case complexity (asymptotic upper bound)

of this algorithm is O(n2p), that is, it is only linear in p. Therefore, for n > p this algorithm

will perform worse than the algorithm of Rue (2001) since the term n2 will dominate, but

this algorithm shines in the p > n case where it can offer some dramatic improvements in

computation times.
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Note that for very large p, computation of XDτX
′ in step 3. above will become

cumbersome. In such ultra high-dimensional cases, Johndrow et al. (2020) provide an

approximate version of Bhattacharya et al. (2016). This involves removing “irrelevant” columns

of X such that the above product can be computed using a significantly smaller number of

algorithmic operations.

Scalable Gibbs

The standard form of the Gibbs sampler for the linear regression model with hierarchical

prior contains three blocks as in Equation 161. There is one block for each set of parameters,

namely β, τ 2 and σ2. In the context of hierarchical priors, Rajaratnam et al. (2019) propose

to sample (β, σ2) in one block. Their proposed Gibbs sampler is more efficient, as reducing

the number of blocks to sample from, also reduces correlation among draws from parameter

posteriors. When working with the natural conjugate form of a hierarchical prior, the scalable

Gibbs algorithm requires only to sample from p((β, σ2)|τ 2,y) and p(τ 2|(β, σ2),y). The first

joint distribution for (β, σ2) can be approximated by first sampling from p(σ2|τ 2,y) (notice the

lack of dependence on β) and subsequently from p(β|σ2, τ 2,y). The scalable Gibbs algorithm

has the following form

{
σ−2|τ 2,y

β|σ2, τ 2,y

∼
∼

Gamma
(
n−1
2 ,y′(In −XV X ′)y/2

)

Np (V X ′y,V )
,

τ 2|β, σ2,y ∼ p(τ 2|β, σ2,y),
(163)

where V has the same definition as in Equation 161. The proof why the posterior for σ2, after

integrating out β, has the form shown above, can be found in the Appendix of Rajaratnam

et al. (2019); see also Pal et al. (2017).

Skinny Gibbs

In the context of the spike and slab prior with continuous spike and slab distributions, Narisetty

et al. (2018) propose an efficient sampling scheme that also separates the posterior into a

mixture distribution with independent components. We remind that the continuous spike and

slab prior (George and McCulloch, 1993; Narisetty and He, 2014) can be written in matrix

form as

β|γ ∼ (I − Γ)Np(0, τ
2
0 I) + ΓNp(0, τ

2
1 I), (164)

where Γ = diag(γ), or more compactly

β|γ ∼ Np(0,Dγ), (165)
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where Dγ = diag
(
(1− γ1)

2τ20 + γ21τ
2
1 , ..., (1− γp)

2τ20 + γ2pτ
2
1

)
. The conditional posterior under

this prior is of the form

β|• ∼ Np(V X ′y/σ2,V ), (166)

where V =
(
X ′X/σ2 +D−1

γ

)−1
and |• denotes conditioning on other parameters in the model

as well as the data. Computing V requires an inversion as well as obtaining the Cholesky

decomposition in order to sample from the p-dimensional normal posterior. As we already

saw, when p is large these operations can be extremely cumbersome.

The skinny Gibbs algorithm of Narisetty et al. (2018) solves this issue by splitting the

conditional posterior into two independent components, an active (A) and an inactive (I) and

sample β as the union of the following conditionals

βA|• ∼ NpA(V AX
′
Ay/σ

2,V A), (167)

βI |• ∼ NpI (0,V I), (168)

where βA is the pA-dimensional vector of elements of β corresponding to γj = 1, and βI are the

remaining pI = p−pA elements that correspond to γj = 0. In the first posterior the covariance

matrix is V A =
(
X ′X/σ2 + 1

τ21
I
)−1

, while in the second posterior V I =
(
n+ 1

τ20

)−1
IpI .

In sparse settings we would expect to find that pI >> pA, meaning that the bulk of the

elements of β would be sampled as restricted elements βI . This means that we can sample

very efficiently pI coefficients from a normal posterior with diagonal convariance matrix, and

sample the remaining pA elements from a normal posterior with a full covariance matrix.

Of course, in practical situations it is expected that the two sets of coefficients, βA and

βI , will be correlated with each other. As a result, sampling the full vector β from two

independent conditional posteriors could leave us with a significant approximation error. For

that reason, Narisetty et al. (2018) add a “compensation term” in the conditional posterior of γ

that accounts for the approximation involved in sampling the coefficients β. This term ensures

that the skinny Gibbs converges to a stationary distribution, while keeping computational

complexity minimal. Narisetty et al. (2018) show that the skinny Gibbs posterior possesses

strong selection consistency property.

Orthogonal Data Augmentation

In the conext of variable selection using spike and slab priors, Ghosh and Clyde (2011) note that

when the design matrix X is orthogonal, a stochastic search using MCMC can become very

efficient when p is large. Similarly for penalized likelihood problems (whether Bayesian or not),

orthogonal designs can be very efficient and result in consistent variable selection regardless of

how large p is relative to n. The proposal of Ghosh and Clyde (2011) is to augment the n× p

correlated design matrix X with an na × p matrix Xa, such that the (n+ na)× p “complete”
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design matrix

Xc =

[
X

Xa

]
, (169)

has orthogonal columns, that is, X ′
cXc = X ′X+X ′

aXa = W , where W = diag(w1, ..., wp) is

a diagonal matrix with wj > 0. Furthermore, we have the restriction that the augmented data

matrix Xa has real entries, and X ′
aXa must be a positive semidefinite symmetric matrix.

Ghosh and Clyde (2011) select a diagonal matrix W which then implies the value of Xa

from the orthogonality condition A ≡ X ′
aXa = W − X ′X. Xa can be obtained as the

symmetric matrix square root of A, thus, ensuring that its entries are real. Ghosh and Clyde

(2011) discuss in detail ways of choosing W ; for example, since in most variable selection

settings the columns of X are typically standardized to have unit norm or variance, one can

set w1 = ... = wp = w, such that choice of W collapses into a choice of a scalar w.

Once Xa has been specified, we can estimate the augmented orthogonal regression model

yc = Xcβ + εc, (170)

where yc = [y′,y′
a]

′ with ya latent data which we need to sample and εc ∼ N(n+na)(0, σ
2I).

In the most general case, Ghosh and Clyde (2011) consider a hierarchical variable selection

prior, which combines a spike at zero with a component that is Student-t, obtained via normal-

inverse-gamma mixture (see subsection 2.2)

βj |σ2, γj , τ2j ∼ N(0, σ2γjτ
2
j ), (171)

τ2j ∼ Gamma(α/2, α/2), (172)

γj ∼ Bernoulli(π0), (173)

σ2 ∼ 1

σ2
, (174)

for all j = 1, ..., p. For α = 1 this prior becomes a heavy-tailed Cauchy distribution of the form

βj ∼ C(0, σ2γj). Ghosh and Clyde (2011) propose a Gibbs sampling scheme the iterates over

the following conditional distributions

1. p
((
σ2,ya

)
|γ,y

)

2. p(γj |σ2, τ 2,yc) for j = 1, ..., p

3. p(β|σ2, τ 2,γyc)

4. p(τ 2|σ2,β,γ,yc)

All the conditional distributions have standard forms, and details can be found in Ghosh and

Clyde (2011).
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3.3 Approximate computation with hierarchical priors

Approximate inference methods typically involve optimization algorithms for approximating

posterior moments (typically the mean or the mode, and the variance) instead of sampling

from the full posterior distribution. Then one can proceed their analysis using only these

moments, treating the Bayesian estimator similar to a frequentist point estimator. This

approach to Bayesian inference has been popularized in computing science, e.g. in estimation

of high-dimensional Bayes networks, where large datasets is the norm and MCMC inference is

extremely costly. An obvious critique of approximate Bayesian inference of this sort, is that

we can’t fully take into account parameter uncertainty by characterizing the full parameter

posterior distribution. However, it is in high-dimensional and the so-called ultra high-

dimensional models (see Shin et al., 2018), that shrinkage and sparsity via a hierarchical prior

is necessary. Since analytical results for most classes of hierarhical priors are not available, and

Monte Carlo sampling is costly in very high dimensions, it is not surprising that approximate

methods have become very popular. Additionally, at the conceptual level, we saw that only

Bayesian posterior medians/modes correspond to penalized likelihood estimators, but there

are not always good theoretical guarantees for the tails of the posterior.26 Finally, the concept

of sparsity is indeed more interpretable in a setting with point estimates of coefficients, that

is, it is more straightforward to test and interpret H0 : βj = 0 when βj is approximated with

a point estimate rather than when we have thousands of samples from the full posterior of βj .

All these reasons lead us to review some of the most popular approximate methods

for posterior inference. While many of these methods have been popularized and used

extensively in computing science often without theoretical justifications, investigation of their

theoretical/asymptotic properties is currently a topic of vivid research in mainstream statistics.

3.3.1 Variational Bayes

Variational Bayes is probably the most prominent of algorithms, at least when it comes to

high-dimensional inference using hierarchical priors. The idea behind this class of algorithms

is rather simple, and under certain assumptions (what we will call mean-field approximation

later) variational Bayes algorithms can be fairly simple to implement by practitioners who

are familiar with the Gibbs sampler. For notational simplicity, assume we have a vector of

parameters θ with support Θ and data D, resulting to the posterior distribution

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (175)

Assume that this posterior is intractable because the data density p(D|θ) is complex (e.g. it

is a highly nonlinear function, or it has unidentified parameters), or because the prior p(θ) is

complex (non-conjugate), or because θ is high-dimensional (in which case the posterior is a

26See for example our discussion of the results of Castillo et al. (2015) in the Bayesian lasso prior.
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high-dimensional function), or due to combinations of the above cases. In such settings, MCMC

is not only computationally costly, but it can also become numerically unstable/unreliable.27

The idea behind variational Bayes is to introduce a family of simpler, approximate densities

over the parameters θ which is denoted by the set Q. The objective is to find a member of

the family q(θ) ∈ Q that is as close as possible to the true posterior. “Closeness” is measured

by the Kullback-Leibler (KL) divergence, and the optimal density q⋆(θ), among all densities

q(θ), is the one that minimizes this criterion:

q⋆(θ) = argmin
q(θ)∈Q

KL (q (θ) ||p (θ|D)) . (176)

In the above formula the KL measure on the RHS is defined as

KL = Eq(θ) (log(q(θ)))− Eq(θ) (log(p(θ|D))) (177)

= Eq(θ) (log(q(θ)))− Eq(θ)

(
log

(
p(D|θ)p(θ)

p(D)

))
(178)

= Eq(θ) (log(q(θ))) + log(p(D))− Eq(θ) (log (p(D|θ)p(θ))) , (179)

where

all expectations are w.r.t q(θ), for example, Eq(θ) (log(p(θ|D))) =
∫
θ∈Θ q(θ) log(p(θ|D))dθ.

In the last equation we have used the fact that Eq(θ) (log(p(D))) = log(p(D)) since p(D) does

not involve θ. For the same reason the variational Bayes minimization problem is equal to

minimizing the difference between the first and the third terms in equation (179). We can also

solve this equation for the log marginal likelihood log(p(D)) to show that

log(p(D)) = KL (q (θ) ||p (θ|D)) + ELBO, (180)

where we define evidence lower bound (ELBO) to be the quantity ELBO =

+Eq(θ) (log (p(D|θ)p(θ))) − Eq(θ) (log(q(θ))). The ELBO has this name exactly because it

is a lower bound for the log evidence (marginal data density). This is because in the equation

above the KL divergence term is non-negative, such that log(p(D)) ≥ ELBO. Therefore, the

optimal q⋆(θ) can be found by equivalently maximizing the ELBO criterion function.

The CAVI algorithm

When latent variables are present, optimizations such as maximizing the ELBO criterion

can be implemented using the popular expectation-maximization (EM) algorithm, where the

complete log likelihood is computed (E-step) and then it is maximized (M-step). However,

in Bayesian inference all parameters are latent (random) variables and as the optimization

problem above involves optimizing over the functional q(θ) and not θ itself, the EM algorithm

is not appropriate. Variational inference instead requires to choose the variational family of

27For example, consider the case of a high-dimensional nonlinear regression with highly correlated predictors.
In this example, unless modifications are introduced such as adaptive tuning, mixing and convergence of standard
Gibbs sampler algorithms with hierarchical priors will tend to be slow.
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distributions Q and then maximize the ELBO. In most cases this can be done iteratively, with

certain schemes that resemble the EM algorithm (but are not identical to EM), and convergence

is guaranteed to a local maximum and if the likelihood is log-concave then to a global maximum.

The simplest algorithm for maximizing the ELBO is called Coordinate Ascent Variational

Inference (CAVI). Its simplicity comes at the cost of certain simplifying assumptions. The first

one is that Q must strictly belong to the exponential family of distributions (e.g. the normal

satisfies this condition, but the Student’s t does not). The second restriction is the use of the

mean-field approximation that postulates that the proposed posterior distribution q(θ) can be

decomposed into M independent groups of the form

q(θ) =
M∏

m=1

qm(θm), (181)

where the groups could either have θm being a scalar or a vector. The estimated variational

posteriors will be independent, meaning that the mean-field approximation/factorization

implies that θm will be a-posteriori uncorrelated with θk, for k ̸= m and k,m = 1, ...,M .

This assumption in several modeling settings can be harmless, but in several others it can

become harmful – we discuss this issue in detail later when we examine variational Bayes

inference in a linear regression with variable selection prior.

Under the assumption of the mean field approximation it can be shown (Blei et al., 2017)

that the optimal densities qm(θm) satisfy

log (qm(θm)) ∝ Eq(−m)(θ(−m)) (log (p(D|θ)p(θ))) , (182)

where Eq(−m)(θ(−m))() means that the expectation is w.r.t all variational densities except

qm(θm). Broadly speaking this formula says that in order to optimize w.r.t. qm(θm) we

need to evaluate the posterior under the assumption that all other parameters θ(−m) are fixed

to their posterior expectation (posterior mean). We would obviously need to iterate through

Equation 182 for each m = 1, ...,M keeping all other parameters fixed to their posterior means,

but it can be shown that such iteration results in increasing the ELBO criterion. If the ELBO

hasn’t changed from one iteration to the next, the algorithm has converged. This criterion

resembles the EM algorithm that converges when the value of the likelihood in subsequent

iterations is approximately similar. The fact that θm is updated conditional on fixing all

other parameters θ(−m) makes variational Bayes resemble Gibbs sampling inference – despite

the fact that there is no sampling involved. We next derive a CAVI algorithm for a linear

regression model with variable selection prior, in order to clearly demonstrate how the mean-

field approximation is applied and how the functions in Equation 182 look like.

A variational Bayes approach to variable selection

This subsection follows closely the analysis of Ormerod et al. (2017), and the reader should

consult this paper for extensive discussion and proofs. Consider the Kuo and Mallick (1998)
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regression we explored in subsection 2.10 and is of the form

y = XΓβ + ε, (183)

ε ∼ N(0n×1, σ
2In), (184)

β ∼ Np(0p×1,D), (185)

σ2 ∼ Inv −Gamma(a0, b0), (186)

γj ∼ Bernoulli(π0), j = 1, ..., p, (187)

where Γ = diag(γ1, ..., γp) and D is a diagonal prior covariance matrix, e.g. D = c × Ip for

some constant c. Therefore, according to the information above the joint prior is decomposed

into p
(
β, {γj}pj=1 , σ

2
)

= p(σ2)
∏p
j=1 p(βj) × p(γj) meaning that all parameters are a-priori

uncorrelated. Such choices are both conceptually and practically fine, first because we don’t

have prior information on how parameters are correlated, and second because we can construct

very powerful shrinkage and variable selection algorithms based on these forms. It is important

for the posterior to allow the parameters to be correlated, as this posterior correlation will

come from information in the data likelihood. We discussed previously that the mean-

field factorization implies that some groups of parameters will be uncorrelated a-posteriori.

Ormerod et al. (2017) look into three different ways of applying the mean field factorization,

based on how we want to define the groups m = 1, ...,M , and their implications for posterior

inference. These factorizations are the following

(A): q(β, σ2,γ) = q(β,γ)q(σ2), (188)

(B): q(β, σ2,γ) = q(σ2)

p∏

j=1

q(βj , γj), (189)

(C): q(β, σ2,γ) = q(β)q(σ2)

p∏

j=1

q(γj). (190)

The factorization (A) means that application of formula Equation 182 to the set of

parameters (β,γ) given σ2 gives

log(q(β,γ)) ∝ λγ − 1

2
β′ (κΓX ′XΓβ +D−1

)
β + κβ′ΓX ′y, (191)

or, similarly, that

q(β,γ) ∝ exp

{
λγ − 1

2
β′ (κΓX ′XΓβ +D−1

)
β + κβ′ΓX ′y

}
, (192)

where λ = log
(

π0
1−π0

)
and κ = Eq

(
1/σ2

)
. Therefore, we can easily obtain the conditional
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variational density of β and the (marginal) variational density of γ as

q (β|γ) ∼ N
(
µγ ,V γ

)
, (193)

q (γ) ∝
∫
q(β,γ)dβ = |V γ |1/2 exp

[
λγ +

1

2
µ′
γV

−1
γ µγ

]
(194)

where V γ =
(
κΓX ′XΓβ +D−1

)−1
and µγ = V γΓX

′y. In the second equation we only

have the kernel of q (γ), but we can easily normalize this to integrate to one by dividing with

the sum of the density of all possible combinations of γ (which is 2p in the regression with

p covariates). In order to derive the marginal variational posterior density of β we need to

integrate out the γ, which is easily done as these are binary indicators. This marginal density

is of the form

q(β) =
∑

γ∈0,1p
q(γ)N

(
µγ ,V γ

)
, (195)

which is a combinatorial sum over all 2p outcomes for the vector γ. This sum can be evaluated

in finite time only for small p. However, for small p there are other numerous analytical

algorithms that can be used, for example, we can use a g-prior and obtain marginal likelihoods

analytically for all 2p models, in which case there is no point in using variational Bayes.

Therefore, this mean-field factorization is not useful.

The mean-field factorization/approximation (B), which was used in Carbonetto and

Stephens (2012), provides a scalable variational Bayes algorithm where the q(βj) can be

estimated independently and efficiently (by means of parallelization) for each j = 1, ..., p.

However, posterior variances of these regression coefficients will tend to be underestimated

exactly because of this assumption of posterior independence. Unless the predictors in X are

uncorrelated (which is not realistic for economic data, and for large-p settings), the bias in

posterior variances can be substantial.

The most reasonable case, which is the choice of Ormerod et al. (2017), is case (C). Under

this factorization, one full implementation of the iterations in Equation 182 looks like this:

1. q(β) = N (µ,V )

where V =
(
κ(X ′X)⊙Ω+D−1

)−1
and µ = κV (ΠX ′y).

2. q(σ2) = Inv −Gamma (a, b)

where b = b0 + 1
2

[
||y||2 − 2y′XΠµ+ tr {(X ′X ⊙Ω) (µµ′ + V )}

]
and a = a0 + n/2.

The posterior mean of σ−2 is, thus, κ = a
b .

3. q(γj) = Bernoulli(πj),

where πj =
exp(ηj)

1+exp(ηj)
with ηj =

log
(

π0
1−π0

)
− κ

2

(
µ2j + Vj,j

)
||Xj ||2 + κ

[
µjX

′
jy −X ′

jX(−j)Π(−j)
(
µ(−j)µj + V (−j),j

)]
.

In the equations above we have used some matrices vectors/matrices that are based on πj ,

namely π = (π1, ...., πp)
′, Π = diag(π) and Ω = ππ′ +Π(I −Π). The symbol ⊙ denotes the
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Hadamard product. We used the notations that for a general matrix A, Aj is the jth column

of A, A(−j) is A with the jth column removed, Ai,j is the (i, j)th entry of A, A(−i),j is the

vector corresponding to the jth column of A with the ith component removed.

The formulas look quite similar to the conditional posteriors in the Kuo and Mallick (1998)

Gibbs samplers, but there is no sampling involved. Instead, when the variational posterior

mean and variance of β are calculated, σ−2 is fixed to its posterior mean κ and the same for

γ (the vector π and its variants, i.e. Π and Ω). Given that in the very first iteration κ and

π will be initialized to some random values, a convergence period is required until we end up

with final estimates of the posterior moments of all parameters.

Further readings

There are numerous papers on variational Bayes inference in computing science problems, for

example, natural language processing (text analytics) and Bayesian networks. In statistics

and machine learning there has been a consistent effort to establish consistency and other

properties of variational Bayes estimates; see for example Giordano et al. (2018) andWang

and Blei (2019). With regards to high-dimensional regression and hierarchical priors, the

contributions of Carbonetto and Stephens (2012), Ormerod et al. (2017) and Neville et al.

(2014) are an excellent starting point. Koop and Korobilis (2018) provide a variational Bayes

algorithm for a dynamic spike and slab prior for models featuring time-varying parameters and

stochastic volatility (see also next section).

3.3.2 EM algorithm

We discussed previously how the expectation-maximization (EM) algorithm is not appropriate

for variational Bayes inference, since there we are looking to find the “best” density function of

θ, rather than a point estimate of our parameters β. However, the EM algorithm can be used

to find the posterior mode of p(θ|D), an inference method known as maximum a-posteriori

(MAP) inference. The mode of the posterior under a diffusing (flat) prior distribution is

identical to the maximum likelihood estimate, while the MAP estimate under a hierarchical

prior corresponds to a penalized likelihood estimator. Therefore, MAP inference – which was

also popularized in computing science – can be thought of as a bridge between Bayesian and

maximum/penalized likelihood inferences where it combines the strengths of both approaches.

There are numerous implementations of MAP inference using the EM algorithm but, unlike

the Gibbs sampler, in many cases algorithms are model-specific and cannot generalize easily.

With regards to variable selection and shrinkage we indicatively mention the key contributions

of Caron and Doucet (2008), Figueiredo (2003) and Griffin and Brown (2011). A notable

recent contribution is the EM variable selection (EMVS) of Ročková and George (2014). These

authors adopt a setting (likelihood and prior) that is identical to George and McCulloch (1993)

but they use the EM algorithm as a means of lowering the computational burden of Markov-

Chain Monte Carlo methods when estimating posterior distributions over subsets of potential

predictors.
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3.3.3 Other approximate algorithms

There are several other algorithms for approximate high-dimensional inference. These include

parallel MCMC, Hamiltonian Monte Carlo, Approximate Bayesian Computation (ABC),

Expectation propagation, and Message Passing. A review of all these classes of algorithms

can be found in Korobilis and Pettenuzzo (2020). A few representative works relying on such

algorithms are Dehaene and Barthelmé (2018), Kim and Wand (2016), Korobilis (2021), Liu

et al. (2019), Wainwright and Jordan (2008) and Zou et al. (2016).

3.4 Monte Carlo exercise: Conjugate vs independent hierarchical priors

Should we be using a conditional or unconditional hierarchical prior (see Equation 156)? In

order to investigate this question, we consider simulation by generating data from the regression

model y = Xβ + ϵ with ϵ ∼ Nn(0, σ
2In). We let n = 100 and σ2 = 3. We construct the true

vector of slope parameters β = cβ̃ by assigning values {1.5,−1.5, 2,−2, 2.5,−2.5} to the first

6 elements of β̃ and setting others to zero. We choose a constant c > 0 to achieve a desired

level of signal-to-noise ratio 28. The data matrix X is generated from the multivariate normal

distribution with mean zero and covariance matrix being an identity matrix. The covariates

are standardized for estimation. We examine different values of the number of covariates

p ∈ {50, 100, 300} and the signal-to-noise ratio R2
pop ∈ {0.4, 0.8}.

We consider three shrinkage priors (1) student-t, (2) lasso, and (3) horseshoe and compare

performance under the conditional and independent priors. The analysis was repeated 100

times with new covariates and responses generated each time. For each, the metrics recorded

were: the estimated value of σ2, the bias and MSE of the first 6 elements of the coefficients

vectors, the number of false negatives (FN), the number of false positives (FP), and the number

of true positives (TP). Posterior means were used as point estimates of the slope coefficients

and the error variance. We utilize the post-processing approach of Li and Pati (2017) in order

to categorize the covariates into signals and noises.

Table 2 summarizes the results. Panel (a) shows results when the signal is relatively

strong i.e. R2
pop = 0.8. Both conjugate and independent priors do well in terms of TPs and

FNs. However, there are some notable differences. First, the error variance tends to be

underestimated when conjugate priors are used. This was in fact pointed out by Moran et al.

(2019). Intuitively, conjugate priors implicitly add p “pseudo-observations” to the posterior

(compare Equation 161 with Equation 162) which can result in underestimations of σ2 when β

is sparse. Second, the independent priors tend to have larger bias and MSE of the signals

under the high-dimensional case (i.e. p = 300). Park and Casella (2008) point out that

independent priors can induce bi-modality of the posterior on the slope coefficients. This

can make the posterior distributions for β more spread than in the conjugate case. We also

28In a general linear regression y = Xβ + ϵ, the signal-to-noise ratio (SNR) is defined as SNR =
||Σ

1/2
X

β||2

σ2

where σ2 is the error variance and ΣX is a p × p covariance matrix of X. ||Σ
1/2
X β||2 = β′

ΣXβ measures the
overall signal strength. A related quantity is R2

pop, the population value of R2, defined as SNR
1+SNR

.
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see that independent priors have larger FPs when p = 300, which could be a result of this.

Panel (b) shows results under relatively weak signal i.e. R2
pop = 0.4. We see that all methods

face difficulty with distinguishing signals with noise (see FNs, FPs, and TPs) and have large

bias and MSEs, compared to the case with R2
pop = 0.8. However, the general findings on the

difference between conjugate and independent priors are the same: conjugate priors tend to

underestimate σ2 while independent priors tend to have higher bias and MSE of the signals

when p is large compared to n. We encourage researchers to be aware of these issues when

choosing priors and to conduct sensitivity checks.
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σ̂2 Bias MSE FN FP TP

R2
pop = 0.8, p = 50

Student-t (conjugate) 1.77 0.19 0.05 0.10 0 5.9
Bayesian Lasso (conjugate) 1.96 0.18 0.05 0.06 0 5.9

Horseshoe (conjugate) 2.35 0.19 0.05 0.07 0 5.9
Student-t (independent) 2.99 0.19 0.05 0.09 0 5.9

Bayesian Lasso (independent) 2.86 0.18 0.05 0.05 0 6.0
Horseshoe (independent) 2.93 0.19 0.05 0.08 0 5.9

R2
pop = 0.8, p = 100

Student-t (conjugate) 0.42 0.34 0.18 0.43 0.01 5.5
Bayesian Lasso (conjugate) 0.69 0.28 0.12 0.18 0 5.8

Horseshoe (conjugate) 1.05 0.26 0.11 0.19 0 5.8
Student-t (independent) 2.01 0.30 0.15 0.35 0.01 5.6

Bayesian Lasso (independent) 2.02 0.25 0.10 0.15 0 5.8
Horseshoe (independent) 2.28 0.26 0.11 0.19 0 5.8

R2
pop = 0.8, p = 300

Student-t (conjugate) 0.35 0.35 0.24 0.41 2.79 5.6
Bayesian Lasso (conjugate) 0.66 0.78 0.71 0.74 2.86 5.2

Horseshoe (conjugate) 0.92 0.66 0.63 0.46 12.0 5.5
Student-t (independent) 3.88 1.52 2.43 0.03 68.6 5.9

Bayesian Lasso (independent) 2.59 1.42 2.12 0.01 68.9 5.9
Horseshoe (independent) 3.27 1.43 2.17 0.01 61.1 5.9

(a) R2
pop = 0.8.

σ̂2 Bias MSE FN FP TP

R2
pop = 0.4, p = 50

Student-t (conjugate) 1.65 0.19 0.06 0.77 0.82 5.2
Bayesian Lasso (conjugate) 1.78 0.19 0.06 0.72 0.54 5.3

Horseshoe (conjugate) 2.16 0.19 0.06 0.72 0.62 5.3
Student-t (independent) 2.99 0.19 0.06 0.61 1.22 5.4

Bayesian Lasso (independent) 2.86 0.19 0.06 0.67 0.59 5.4
Horseshoe (independent) 2.96 0.20 0.06 0.76 0.49 5.2

R2
pop = 0.4, p = 100

Student-t (conjugate) 0.35 0.35 0.20 1.41 18.7 4.6
Bayesian Lasso (conjugate) 0.52 0.29 0.14 1.11 15.5 4.7

Horseshoe (conjugate) 0.90 0.27 0.12 0.92 14.5 5.1
Student-t (independent) 1.85 0.30 0.14 0.81 22.8 5.2

Bayesian Lasso (independent) 1.89 0.26 0.11 0.56 17.1 5.4
Horseshoe (independent) 2.20 0.27 0.11 0.42 17.0 5.6

R2
pop = 0.4, p = 300

Student-t (conjugate) 0.28 0.46 0.26 0.99 35.6 5.0
Bayesian Lasso (conjugate) 0.47 0.50 0.29 0.53 49.6 5.4

Horseshoe (conjugate) 0.75 0.55 0.34 0.33 53.6 5.6
Student-t (independent) 3.50 0.65 0.46 0.34 70.6 5.6

Bayesian Lasso (independent) 2.28 0.65 0.45 0.21 71.1 5.7
Horseshoe (independent) 2.79 0.65 0.45 0.23 66.1 5.7

(b) R2
pop = 0.4.

Table 2: Average metrics over 100 repetitions for each of the approaches. Estimated error
variance, and bias and MSE of the first 6 elements of the slope vector, and the numbers of
False Negatives (FN), False Positives (FP), and True Positives (TP). The posterior means
were used as point estimates. The post-processing method of Li and Pati (2017) was used to
distinguish signals from noises. n = 100.
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4 Bayesian shrinkage and variable selection beyond linear

regression

So far we explored variable selection in the high-dimensional linear regression, also known as

“large p, small n” regression. This setting is already flexible enough, as there are various

cases of generalized linear models (GLMs) that have conditionally linear forms. The purpose

of this section is to demonstrate that there is an even larger list of models where hierarchical

priors have immediate applicability. In particular, we explore key applications of hierarchical

shrinkage and variable selection priors in vector autoregressions, factor models, time-varying

parameter models, high-dimensional confounder selection in models for treatment effects, and

Bayesian quantile regression. This list is far from exhaustive29 and its only purpose is to

illustrate how Bayesian computation simplifies high-dimensional inference in unconventional

settings.

4.1 Vector autoregressions

The most popular working model for economists using time series variables is the vector

autoregression (VAR). VARs are used for the joint modeling of the dynamics of many

macroeconomic and financial time series, Y , allowing analysts and policy-makers to answer

questions regarding dynamic responses of variable Y i to a shock in some other variable Y j ,

i ̸= j. This is a very important tool especially when variable Y j is controlled by the policy-

maker. For example, the central bank controls the short-term interest rate as well as other

quantities related to monetary policy, while government controls taxes and fiscal policy in

general. Due to the fact that availability of time series observations for macroeconomic and

(low-frequency) financial data is limited30, estimation of macroeconomic VARs by and large

relies on Bayesian shrinkage priors. Additionally, parameters in VAR models proliferate at

a polynomial rate as the dimensions of the model increases. In univariate linear regression

settings, a model with twice as many exogenous predictors has twice as many parameters to

estimate. There is not such an analogy in VARs where all variables are endogenous and each

variable (and its lagged terms) affects all other variables in the system.

Unlike our previous notation, consider time series observations t = 1, ..., T and an n-

dimensional vector of variables Y t, that is, n denotes the number of variables of interest (and

not the number of observations anymore) with Y = [Y ′
1, ...,Y

′
T ]

′
is a T × n data matrix. The

29For example, one application of Bayesian shrinkage and selection that we do not cover in this section, but
is of importance in statistics and in finance, is high-dimensional covariance matrix estimation and selection,
see Wang and Pillai (2013) as an indicative example. Another topic we won’t cover here, but is becoming
increasingly very important in statistics and econometrics, is Bayesian additive regression trees (BART). For
an up-to-date review of the topic see Hill et al. (2020).

30Especially in countries other than the US, where statistical agencies might have available only a handful of
decades of data; e.g. euro area time series typically begin in 1995 or 1999.
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VAR model for Y t with p lags, also denoted as VAR(p), is of the form

Y t = c+A1Y t−1 +A2Y t−2 + ...+ApY t−p +Et, (196)

where c is an n×1 vector of intercepts, Ai are n×nmatrices of lagged terms for each i = 1, ..., p,

and Et ∼ N(0,Σ) with Σ an n× n symmetric, semi-positive definite covariance matrix. The

VAR is a heavily parametrized model: it has (1 + np)n coefficients B = [c,A1, ...,Ap], plus

another n(n+1)/2 unique elements in the covariance matrix Σ. For example, the largest VAR

model specified in Koop et al. (2019) has n = 129 and p = 13 which implies that the total

number of parameters is in excess of 200, 000.

Vector autoregressions are effectively linear regression models with parameter matrix B =

[c,A1, ...,Ap] and data matrix Xt = [1,Y t−1, ...,Y t−p], such that application of hierarchical

priors for shrinkage and variable selection is fairly straightforward. The task of sampling from

the conditional posterior of the regression coefficients B can be further simplified if the VAR

is written in seemingly unrelated regressions (SUR)31 form

vec (Y ) = (I ⊗X) vec (B) + vec (ε) , (197)

y = Zb+ ε, (198)

where vec(•) is the operator that stacks the columns of a matrix into a single column vector.

That way, y = vec (Y ) is a Tn × 1 vector where the first T elements are the observations

of the first variable, the next T rows correspond to observations of the second variable, and

so on up to variable n. The measurement matrix Z = (I ⊗X) is a block-diagonal matrix

with the T × (1 + np) matrix X repeating on its diagonal n times. The formulation above

is observationally identical to the one in Equation 196, since there are no new parameters or

data introduced, but it has the benefit that VAR parameters show up as the (1 + np)n × 1

vector b = vec (B). Therefore, the SUR form in Equation 198 is identical to a univariate

regression model, even though this model has both many covariates but also many observations

(y and Z both have Tn rows, instead of T rows in a univariate regression). Therefore, it is

straightforward to define any hierarchical prior we desire for the vector of VAR parameters

b = vec (B) and derive conditional posteriors, despite the fact that Gibbs sampling might

become quite cumbersome as the dimension n of the VAR increases.32

In large n cases and when shrinkage on the covariance matrix Σ is needed, Carriero et al.

(2019) and Koop et al. (2019) propose to estimate the VAR equation-by-equation. For example,

in the formulation of Koop et al. (2019) one can write Equation 196 as

Y t = BXt + PV t, (199)

31For a thorough and accessible introduction to Bayesian inference in VARs see Koop and Korobilis (2010).
32See for example, Korobilis (2013b, 2016) and Koop and Korobilis (2016).
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where P is a lower triangular matrix with ones on its main diagonal (unitriangular) that

satisfies the LDL-decomposition Σ = PDP ′. In this case Vt ∼ N(0,D) where D is a

diagonal matrix with variance elements d2ii on its main diagonal, i = 1, ..., n. This formulation

is equivalent to Equation 196 because PV t ∼ N(0,PDP ′) = N(0,Σ)
d
= Et. Since by

construction P is invertible, with P−1 also a unitriangular matrix, we can write

P−1Y t = P−1BXt + V t ⇒ (200)

(I + P̃
−1

)Y t = ΓXt + V t ⇒ (201)

Y t = ΓXt − P̃
−1

Y t + V t, (202)

where Γ = P−1B, and we have split P−1 into an identity matrix and a lower triangular

matrix P̃
−1

by means of the equation P−1 = I + P̃
−1

. In Equation 202 we have a VAR

on Y t where the covariance matrix elements in the original covariance matrix show up as

contemporaneous elements of Y t itself on the right-hand side in the term −P̃
−1

Y t. Notice

that in matrix form this is a nonlinear system as Y t shows up both on the left hand side

and the right hand side of Equation 202. However, exactly because P̃
−1

is lower triangular

and V t has a diagonal covariance matrix D, equation-by-equation estimation is feasible. In

particular, each VAR equation i depends on lags of all other equations and contemporaneous

terms in the previous i − 1 equations. This means that estimation of the VAR collapses to

estimation of n independent univariate models, such that specification of hierarchical priors

and MCMC estimation are also straightforward. The additional benefit from this approach

is that hierarchical priors can be specified to the elements of P̃
−1

, thus leading to shrinkage

or sparse estimation of the original VAR covariance matrix Σ, similar to the methodology of

Smith and Kohn (2002). More details of this approach can be found in Koop et al. (2019),

while variants of this approach have been proposed in Baumeister et al. (2020), Carriero et al.

(2019), and Korobilis and Pettenuzzo (2019).

4.2 Factor model shrinkage and selection

Factor models have a long history in econometrics, and an even longer history in statistics and

psychology/psychometrics. For that reason, while there are some popular formulations across

different literatures, there are also different variations based on the data and applications. We

first establish some key results for the specific case of the so-called static factor model, and

subsequently we review some of the most popular factor models used in economics and finance.

We end our discussion with strategies for Bayesian shrinkage and variable selection in this class

of models.

Consider an n× 1 vector of economic variables Xt observed over t = 1, ..., T (without loss

of generality t can measure time series, but it can also be observations on individuals or other

cross-sectional units). The dimension n can be inconveniently high33, such that unrestricted

33This description includes both the ultra high-dimensional case where n can be in the order of thousands, or
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estimation of models (e.g. linear regressions) using the data Xt is infeasible. Our target is

to estimate a lower-dimensional k × 1 vector (k << n) of latent variables (factors), that

summarizes as much as possible the information contained in Xt. For that reason we define

the following multivariate model

Xt = ΛF t + εt, (203)

where Λ is an n × k matrix of parameters, F t are the latent variables and ε is a disturbance

term. This is not a regression model, as both Λ and F t are latent. For simplicity, we follow

Lopes and West (2004) and make the assumption that F t ∼ Nk(0, I), although we can allow

the factors to have a more general covariance matrix such that they are correlated with each

other. For the disturbance term we assume εt ∼ Nn(0,Σ).

While the model in Equation 203 looks like a linear regression – in which case application

of hierarchical priors would be straightforward – this is not the case due to the fact that

all terms on the right-hand side of the equation are latent. In many instances, researchers

in economics, finance and other disciplines replace F with the first k principal components

(PCs). PCs are nonparametric estimates of the factors, that is, they are only approximate

estimators of the true factors implied by the likelihood of the model in Equation 203. Plugging

in the place of the latent factors (parameters) F the PC estimates turns the factor model into a

regression model and inference is simplified. Conditional on the principal component estimates,

Λ and Σ can be estimated simply via least squares, but also standard Bayesian methods for

multivariate regression can be used. The benefit of this two-step approach is that it is simple,

both conceptually and computationally, and that principal component estimates always provide

a sensible fit. However, in many more complex settings (e.g. macroeconomic dynamic factor

models or financial factor models with stochastic volatility), the PC only provide a rough

approximation, and it might be preferable to use the likelihood function to estimate F . In

such cases, it is imperative to make sure the factor estimates are unique. Therefore, we discuss

first how to uniquely identify the factors, loadings and other parameters, before discussing

Bayesian inference using hierarchical priors.

Identification of the factor model

The factor model implies that the conditional covariance matrix of X can be decomposed as

cov (X|Λ,F ,Σ) ≡ Ω = ΛΛ′ +Σ. (204)

This decomposition illustrates the fact that likelihood-based (maximum likelihood or Bayesian)

estimation of the factor model suffers from lack of identification of a unique set of parameter

estimates. For example, consider the case where Σ is a full matrix, then there are infinite ways

to construct the decomposition in Equation 204. In order to deal with this issue, it is common

larger, but also the case where n is small but much larger than the number of available observations T .
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in factor analysis to set Σ to be a diagonal matrix.34 A consequence of this assumption is

that the disturbances εj become idiosyncratic to each variable Xj , j = 1, ..., n, that is, they

capture measurement errors and other idiosyncrasies of each variable that are not attributed

to its covariation with the remaining n−1 variables. Instead, any comovements/commonalities

in the n variables X are solely captured by the common component ΛF .

Having Σ diagonal is a big step towards identification in the factor model. As Lopes and

West (2004) mention, Ω has n(n+1)/2 unique elements, therefore, the number of elements in

the decomposition of Equation 204 should not exceed that threshold. The matrix Λ has nk

elements, and Σ being diagonal has n elements, therefore we obtain the inequality n(n+1)/2 ≥
nk + n, which provides an upper bound on the number of factors one can extract: with n = 5

variables we can extract k = 2 factors, and when n = 20 the maximum number of factors that

can be extracted is k = 9. However, there is a further problem impairing identification of the

factor model, and this pertains to separating Λ from F . Without further restrictions, there

are infinite ways of finding such matrices that provide exactly the same values for the common

component. Put more formally, if P is an k × k orthogonal matrix such that PP ′ = Ik, then

the factor model can be rewritten as

Xt = ΛF t + εt ⇒ (205)

Xt = ΛPP ′F t + εt ⇒ (206)

Xt = Λ⋆F ⋆
t + εt, (207)

whereΛ⋆ and F ⋆
t are alternative estimates toΛ and F t that provide exactly the same likelihood

value (they are observationally equivalent). Given that the variance of the factors is normalized

to be one, unique identification of the loadings and the factors requires an additional k(k−1)/2

restrictions on the loadings matrix Λ. A standard restriction that is imposed in this case

(Lopes and West, 2004) is to restrict Λ to be lower triangular, that is, the top k × k block

of this matrix has its k(k − 1)/2 upper triangular elements equal to zero. This restriction

provides local identification up to a rotation of the sign, meaning that we could multiply any

column of Λ with −1 and do the same to the respective column of the factors F , and arrive

to an observationally equivalent solution. For that reason, Geweke and Zhou (1996) suggest

to further assume the k diagonal elements of Λ to be restricted to be positive.

When modeling comovements between financial time series, the assumption F t ∼ Nk(0, I)

is often not empirically relevant, and instead it is assumed that F t ∼ Nk(0,Σ
F ) with ΣF a

diagonal matrix, with possibly heteroskedastic elements that capture changing (over time)

volatility of financial variables (see for example Chib et al., 2006). In this case further

restrictions on Λ are needed, and Chib et al. (2006) choose to fix the diagonal elements of the

34This is known as the exact factor model assumption, as opposed to the class of approximate factor models

that allow for “some” weak correlation among the variables in X and a Σ covariance that has some non-zero
off-diagonal elements. Approximate factor models are typically not estimated with likelihood-based methods,
so we don’t consider this class of models here.
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loadings matrix to be one. Bernanke et al. (2005) extract factors from a large macroeconomic

dataset and in their methodology it is imperative for ΣF to be a full covariance matrix (it is

the covariance matrix of a VAR from which they want to identify shocks and estimate impulse

response functions). Therefore, with ΣF a full matrix, these authors further restrict the upper

k × k block of the loadings matrix to be the identity matrix.

All these identification restrictions in various applications of the factor model do not come

at no cost. Imposing zeros in the loadings matrix means that certain variables are excluded

from determining the factors. In the case of Bernanke et al. (2005), in particular, the identity

restriction means that the first variable exclusively loads on the first factor, the second variable

exclusively on the second factor, and so on. Therefore, the ordering of the variables in X ends

up affecting the estimates of F , and in their case this restriction turns out to be empirically

detrimental.35

Bayesian shrinkage and variable selection in the factor model

Despite the fact that statistical identification of the factor model using zero and sign restrictions

on the loadings might contradict evidence in the data, once the factor model is fully identified

Bayesian inference becomes straightforward. To see this, we re-write for convenience the factor

model including now all relevant identification restrictions that are imposed prior to estimation

Xt = ΛF t + εt, t = 1, ..., T, (208)

F t ∼ Nk(0, I), (209)

εt ∼ Nn(0,Σ), (210)

Σij = 0, i ̸= j, i, j = 1, ..., n (211)

Λij = 0, i < j, i = 1, ..., n, j = 1, ..., k, (212)

Λij > 0, i = j, i = 1, ..., n, j = 1, ..., k. (213)

Lopes and West (2004) show that this model is conveniently estimated sequentially via the

Gibbs sampler, by sampling from conditional posteriors. The priors are of the form

Λij ∼





N(0, τ2), , i > j

N(0, τ2)I(Λij > 0), , i = j

δ0(Λij), , i < j

(214)

Σii ∼ Inv −Gamma(a0, b0), (215)

35While their factors are statistically identified, they do not carry any economic content (i.e. they are not
“structurally identified”). Bernanke et al. (2005) is one of the few papers that estimates a factor model both
with principal components and least squares (the “plug-in” approach explained previously) and with Bayesian
inference. Comparing the impulse response functions for some key variables using the two estimation methods,
there are marked differences. Whenever PCA has been used to estimate the unknown factors, impulse response
functions have the signs and shapes expected by economic theory. When likelihood-based factors have been
used, the impulse responses of variables such as inflation degenerate to zero for all horizons; (compare Bernanke
et al., 2005, Figures II and IV).
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where δ0(Λij) is the Dirac delta function, that is, a point mass function for Λij that is

concentrated at zero. The conditional posteriors are

F i|• ∼ N
(
V F

(
Λ′Σ−1X

)
,V F

)
, (216)

Λi|• ∼ N

(
V L,i

(
1

Σii
FXi

)
,V L,i

)
, i = 1, ..., n, (217)

Σii|• ∼ Inv −Gamma (a0 + n/2, b0 + SSEi) , i = 1, ..., n, (218)

where V F = (I+Λ′Σ−1Λ)−1, V L,i = (D−1+ 1
Σii

F ′F )−1 and SSEi = (Xi−FΛi)
′(Xi−FΛi).

The |• notation above is used to denote conditioning on other parameters and data.

By updating Λ conditional on F and vice-versa, the Gibbs sampler works around the issue

that the product of these two parameters shows up in the likelihood function. Of course, this

sequential updating of the common component by updating each of Λ and F conditional on

the other, will inevitably generate unwanted correlation in the Gibbs chain. In order to deal

with the sampling inefficiency associated with correlated MCMC draws, Chib et al. (2006)

proposed an alternative Metropolis-Hasting step for updating Λ conditional on the factors,

while Ghosh and Dunson (2009) proposed a parameter-expanded Gibbs sampler (see also

Ročková and George, 2016, for a similar parameter expanded factor model estimated with

an EM algorithm). Notice that the fact that Λ has the required zero and sign restrictions

imposed prior to estimation, means that every time we sample F conditional on Λ the factors

will be sampled from a unique, identified posterior distribution. Had we not imposed these

restrictions, the Gibbs sampler would still work numerically, but lack of identification means

that each sample could correspond to different pairs of solutions for Λ and F . That is, in the

case where Λ and F are not separately identified, their product (the common component ΛF )

is always identified. There are certain inference exercises, such as prediction, where it might

be the case that identification and interpretation of the factors is not required; see for example

the arguments in favor of this approach in Bhattacharya and Dunson (2011) and in Korobilis

(2020).

An early attempt to full-Bayes inference in factor models is West (2003) who developed a

variable selection prior in the loadings of the static factor model. Under the Lopes and West

(2004) identification scheme, the extension proposed by West (2003) simply involves replacing

the prior in Equation 214 with a spike and slab prior. As long as the identification restrictions

are maintained, the presence of the variable selection prior can be used to find further data-

based restrictions in the loadings matrix. Carvalho et al. (2008) extend the variable ideas in

West (2003) to create a very sparse static factor model for genome data; see our discussion

of their prior in subsection 2.10. Knowles and Ghahramani (2011) further extend these ideas

to a spike and slab prior that is semiparametric, utilizing the ability of an Indian Buffet

Process prior to allow for infinitely many factors. These authors use a Metropolis-within-

Gibbs algorithm for inference. Ročková and George (2016) propose a similar spike and slab

formulation based on the Indian Buffet Process, but unlike Knowles and Ghahramani (2011)
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they propose maximum a posteriori (MAP) inference by means of approximating the posterior

mode using an EM algorithm. The Bayesian asymptotic theory and posterior contraction rates

for the sparse static factor model with continuous spike and slab priors is explored in detail in

Pati et al. (2014).

Ghosh and Dunson (2009) proposed a heavy-tailed prior on Λ (using a normal/inverse

gamma mixture prior) which they argue performs better than the default normal/truncated-

normal prior in Equation 214. Bhattacharya and Dunson (2011) proposed a novel multiplicative

gamma process prior on the factor loadings that shrinks more aggressively columns of Λ that

correspond to a higher number of factors. They call their approach a sparse infinite factor

model, as it allows to specify a maximum number of factors and the prior is able to determine

zero and non-zero loadings, as well as the number of factors. The gamma process prior for the

loadings matrix is of the following “global-local shrinkage” form

Λij |ϕij , τj ∼ N(0, ϕ−1
ij τ

−1
j ), (219)

ϕij ∼ Gamma(v/2, v/2), (220)

τj =

j∏

l=1

δl, j = 1, ..., k, (221)

δ1 = Gamma(a1, 1), (222)

δl = Gamma(a2, 1), l ≥ 2. (223)

While the local shrinkage parameter is the same for each element of Λ, the global shrinkage

parameter τj is shrinking more aggressively as the index j increases, where j = 1, ..., k indexes

the number of factors. This is because τj is a j-dimensional product of gamma-distributed

random variables. Legramanti et al. (2020) propose a cumulative shrinkage process prior and

Srivastava et al. (2017) propose a multi-scale generalized double Pareto prior; both these priors

are similar in spirit to the Bhattacharya and Dunson (2011) prior in terms of shrinking the

loadings towards zero and selecting the appropriate number of factors at the same time.

We close this section by mentioning ongoing research on alternative solutions to the

identification problem (rotational interdeterminacy) in factor models, that do not rely on

preimposing zero restrictions on the loadings matrix. The expanded parametric forms proposed

in papers such as Bhattacharya and Dunson (2011) and Legramanti et al. (2020) discussed

above, deal with this issue efficiently. Other approaches include the ex-post processing

approaches of Assmann et al. (2016) and Kaufmann and Schumacher (2019). Früwirth-

Schnatter and Lopes (2018) introduce a generalized lower triangular representation of the factor

model and propose a sparsity-inducing prior that overshrinks. While papers like West (2003)

apply sparsity after imposing zero identifying restrictions, the parameterization of Früwirth-

Schnatter and Lopes (2018) allows the prior to impose zeros that are sufficient for identification

and inference, thus, not suffering from the rotation problem. Finally, Chan et al. (2018) propose

an invariant parameterization of the static factor model that is based on the singular value
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decomposition.

4.3 Dynamic sparsity and shrinkage

When working in a time series setting the concepts of shrinkage, variable selection, and

model averaging need not be static. This is true for economics where there has always

been evidence that predictors can be unstable. There is significant theoretical and empirical

evidence that when forecasting oil prices, stock prices, consumer prices, exchange rates, and

numerous other economic/financial variables there is hardly a single exogenous predictor that

can be claimed to be important over a substantial time sample. In practice, we observe

“pockets of predictability”, that is, short periods where a specific variable might have predictive

information for another variable of interest. This concept of unstable predictors has been

popularized since the global financial crisis of 2007-2009, a period when it was obvious

that all constant parameter relationships between economic variables completely broke down.

Combined with the availability of new Bayesian tools for high-dimensional inference, a large

literature has emerged since then that uses terms such as “time-varying sparsity” or “dynamic

model averaging” or “time-varying dimension models”. Koop and Korobilis (2018) provide a

detailed discussion of this literature.36

The starting point for imposing dynamic sparsity and dynamic shrinkage is a regression

with time-varying parameters (TVPs) and stochastic volatility (henceforth, abbreviated as

TVP regression) of the form

yt = Xtβt + htzt, (224)

βt = βt−1 + ut, β0 ∼ Np(0,P ), (225)

log ht = log ht−1 + vt, log h0 ∼ N(0, δ), (226)

where yt is a scalar time series observation for t = 1, ..., T , Xt is a p-dimensional vector of

covariates (that can include an intercept, own lags of y and exogenous predictors), βt is a

vector of time-varying (or drifting) regression coefficients, and ht is the scalar time-varying (or

stochastic) variance/volatility parameter. Additionally, we assume zt ∼ N(0, 1), ut ∼ Np(0,Q)

with Q a p× p covariance matrix, and vt ∼ N(0, δ2) with δ2 a scalar variance parameter.

As is the case with the constant parameter regression, shrinkage is mainly desirable in the

TVPs βt, but this can take now a dual form: shrinkage towards time-invariance (βt becomes

a constant parameter) and “traditional” shrinkage towards zero.37 Notice that the TVP

regression as is specified in equations (224) - (226) is a hiearchical model, and Equation 225 in

particular can be though of as a hiearchical prior for βt of the form βt|βt−1,Q ∼ N(βt−1,Q).

36At the same time, in the field of signal processing there is a related literature on “dynamic compressive
sensing” for streaming signals (e.g. video); see Ziniel and Schniter (2013).

37Shrinkage of ht towards a constant variance specification is feasible, but it is not desirable for economic
and financial time series data, since we know that economic shocks are very volatile and constant parameter
specifications are always inferior (both using in-sample and out-of-sample measures of fit).
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Seen like this, it is straightforward to assume that Q is diagonal and allow its elements to follow

of the hyperpriors we examined previously (e.g. Student-t, Laplace etc). However, doing so

would only regularize the evolution of βt around βt−1, where in the limit of Q = 0 then βt

becomes a constant parameter. Shrinking βt towards zero requires different treatment, and

there are numerous ways one can deal with this problem.

Dynamic variable selection or dynamic model averaging can be implemented in this setting

by simply placing appropriate hierarchical priors that will allow to test the hypothesis H0 :

βjt = 0 vsH1 : βjt ̸= 0 for all j = 1, ..., p and for all t = 1, ..., T . Recall that in “static” Bayesian

model averaging the challenge is to average over 2p regressions. Therefore, the dynamic version

of model averaging implies that one has to average over 2p regression models for each t =

1, ..., T . It is not surprising then that many proposed approaches in the literature for dealing

with this problem are not based on computationally intensive MCMC algorithms. For example,

Koop and Korobilis (2012) and Dangl and Halling (2012) use variance discounting methods

(see for example West and Harrison, 1997) in order to provide plug-in estimators of ht and Q

and estimate a single time-varying parameter regression very quickly. Subsequently, dynamic

variable selection and model averaging can be implemented by enumerating and estimating all

2p possible models – as long as p is fairly small (e.g. 20 predictors).

In terms of directly introducing shrinkage and sparsity via hierarchical priors, there are

numerous ways of doing so in a TVP regression model. Belmonte et al. (2014) and Bitto

and Frühwirth-Schnatter (2019) place hierarchical priors in an equivalent “non-centered”

parameterization of the TVP regression that takes the form

yt = Xtθ +XtWθt + htzt, (227)

θt = θt−1 + dt, θ0 = 0, (228)

log ht = log ht−1 + vt, log h0 ∼ N(0, δ) (229)

where dt ∼ Np(0, Ip) and W is a diagonal matrix with elements wj , j = 1, ..., p. This

formulation is observationally equivalent to the TVP regression of equations (224) - (226). As

long as the initial condition is θ0 it holds that θ + θt = βt. This allows to split the time-

varying parameter into a constant parameter level θ (determined by data Xt) and the additive

time-variation around the constant level. Additionally, notice that the state equation is now

standardized (dt has unit variance) which can be done by setting W ′−1W−1 = Q. Belmonte

et al. (2014) place a Bayesian lasso (Laplace) prior on θ and on the diagonal elements of W .

By doing so, they can shrink the total coefficient βj,t into a constant parameter θj (if wj → 0),

or shrink it to zero (when both βj,t and wj are shrunk towards zero). Alternatively, the model

can become an unrestricted TVP regression when both βj,t and wj are not shrunk towards

zero by the Laplace prior.

Nakajima and West (2013a) convert the TVP regression into a latent threshold dynamic
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regression of the form

yt = Xtbt + htzt, (230)

bt = βtSt, (231)

βt = βt−1 + ut, β0 ∼ N(0,P ), (232)

log ht = log ht−1 + vt, log h0 ∼ N(0, δ), (233)

where St is a p× p diagonal matrix with element sj,t = I(βj,t ≥ dj). That is, the sj,t are 0/1

indicators that can shrink bj,t either towards zero or towards the unrestricted TVP βj,t. The

threshold value dj can be estimated endogenously such that the data decide which coefficients

are zero (or not) at each point in time. Of course, similar to interpretation of spike and slab

priors, the condition I(βj,t ≥ dj) is a soft, rather than a hard, thresholding rule, due to the

fact that sj,t (in a Bayesian setting) is a random variable. This means that once considering

the full uncertainty in the posterior the approach of Nakajima and West (2013a) provides a

class of smooth thresholding models; see also Nakajima and West (2013b, 2015, 2017).

Ročková and McAlinn (2017) specify a dynamic spike and slab prior of the form

βt|µt,γ, λ0, λ1 ∼ (I − Γ)N(0, λ0Ip) + ΓN(µt, λ1Ip), (234)

µt ∼ N(µt−1,Q), (235)

where Γ = diag(γ) = diag(γ1, ..., γp) and λ0 and λ1 can also have further exponentional prior

distributions, converting this prior into a dynamic version of the spike and slab lasso of Ročková

and George (2018). This prior is a spike and slab prior for βt but it is only the slab component

that incorporates the random walk evolution via the prior mean for µt. In contrast, Koop and

Korobilis (2018) propose a similar but non-hierarchical prior of the form

βt|βt−1,Q ∼ Np(βt−1,Q), (236)

βt|γ, τ 2 ∼ (I − Γ)Np(0, cDτ ) + ΓNp(0,Dτ ), (237)

where Dτ = diag(τ 2) = diag(τ21 , ..., τ
2
p ) and c is a small constant (set to c = 0.0001 in Koop

and Korobilis, 2018). Again it is trivial to allow τ 2 to have its own hyperprior, such that we

can combine shrinkage with sparsity in one setting. Finally, Kalli and Griffin (2014) modify

Equation 225 and introduce a normal-gamma mixture evolution for βt, which can be written

in the following hyperprior form

βj,t|βj,t−1, ψj,t, ψj,t−1 ∼ N

(
ψj,t
ψj,t−1

ϕjβj,t−1,
(
1− ϕ2j

)
ψj,t

)
, (238)

ψj,t|κj,t−1 ∼ Gamma

(
λj + κj,t−1,

λj
µj(1− ρj)

)
, (239)

κj,t ∼ Poisson

(
ρjλjψj,t−1

µj(1− ρj)

)
, (240)
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which makes this a normal-gamma-Poisson mixture distribution. While this mixture having a

very flexible distributional form, implying interesting shapes for βt, there might be sensitivity

to the choice of the key hyperparameters (λj , ρj , µj).

All the examples above use the state-space form of the TVP regression and rely on recursive

estimation methods, either in the form of the simple Kalman filter or (within the context of

simulation methods) forward filtering backward sampling (FFBS) algorithms. However, as

noted by Korobilis (2021) one can simply discard the prior βt|βt−1,Q ∼ N(βt−1,Q) and

treat the TVP regression as a constant parameter regression. This can be seen if we stack all

observations in Equation 224 and write it as




y1

y2

...

yT−1

yT




=




X1 0 ... 0

0 X2
. . . 0

...
. . .

...

0 ... XT−1 0

0 ... 0 XT







β1

β2

...

βT−1

βT



+




ε1

ε2

...

εT−1

εT



, (241)

y X B ε, (242)

where εt ∼ N(0, h2t ). In this form, the TVP regression is a model with T observations and Tp

covariates and it can be estimated as a high-dimensional “static” regression with data matrices

y and X as defined in Equation 242. Korobilis (2021) shows that a large class of hierarchical

shrinkage priors can be placed on the Tp × 1 parameter vector B, and inference can proceed

using the regression form in Equation 242 without the need to rely on state-space methods.

Since B has T time copies of parameters on the p predictors in Xt, more structured shrinkage

can be placed by using a group lasso or other similar grouping prior.

Applying a shrinkage or variable selection prior directly to the vector of parameters βt
means that a certain βj,t might be unrestricted in period s, then restricted to zero in period

s + 1, then switch back to being unrestricted in s + 2, and so on, for s ∈ {1, ..., T}. This

is a noisy approach to dynamic shrinkage/sparsity, and more persistent estimates over time

might be desirable such that we prevent an important coefficient from becoming sparse just

for a period or two, and vice-versa for a sparse coefficient. In many economic data, there is

evidence of prolonged regimes where coefficients are either important or not important (e.g.

macroeconomic recessions vs expansions, or bull vs bear stock markets). In this case, it might

be desirable to incorporate the information in βt|βt−1,Q ∼ N(βt−1,Q) alongside a hierarchical

shrinkage prior. A simple way to do this is to write the TVP regression as a static regression
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for the parameters ∆βt = βt − βt−1. This takes the form




y1

y2

...

yT−1

yT




=




X1 0 ... 0

X2 X2
. . . 0

...
. . .

. . .
...

XT−1 ... XT−1 0

XT ... XT XT







β1

∆β2

...

∆βT−1

∆βT



+




ε1

ε2

...

εT−1

εT



, (243)

y Z B∆ ε, (244)

where we implicitly assume that β0 = 0 such that ∆β1 = β1. The t-th equation of the system

above can be written as:

yt = Xt∆βt +Xt∆βt−1 + ...+Xt∆β2 +Xtβ1 + εt, (245)

= Xt(∆βt +∆βt−1 + ...+ β1) + εt, (246)

= Xtβt + εt, (247)

that is, equations (224) and (243) are observationally equivalent. Under this specification the

prior implied by Equation 225 becomes (in matrix form)

B∆ ∼ N[Tp](0,Q), (248)

and this prior can now be converted into a hierarchical prior by placing appropriate hyper-prior

distributions on Q.

Dynamic shrinkage and sparsity is a very active area of research, and there are several

other important contributions that we don’t explore here due to space constraints. For further

readings we direct the reader to Chan et al. (2012), Irie (2019), Kowal et al. (2019) and Uribe

and Lopes (2017), among others.

4.4 High-dimensional causal inference

Let yi denote an outcome variable and Ti be some treatment variable. Suppose that the

p-dimensional vector of cofounders xi is high-dimensional. The parameter of interest is the

treatment effect α in the model below:

yi = β0 + αTi + x′
iβ + ϵi (249)

A naive post selection approach would be to apply the lasso to the equation above, excluding

α from the l1-penalty and then regress yi on Ti as well as on the selected covariates to estimate

and conduct inference about the treatment effect. Any control variable that is highly correlated

with Ti but weakly with yi tends to drop out of the selection in the first stage, and could lead

to omitted variable bias in estimating α in the second stage. Belloni et al. (2014) propose
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post-double selection to overcome such bias. Hahn et al. (2018) and Antonelli et al. (2019)

offer Bayesian counterparts in linear models, using shrinkage priors.

Using the model (249) as a benchmark, Hahn et al. (2018) consider the following system

of equations:

Ti = x′
iγ + ϵi, ϵi ∼ N(0, σ2ϵ ) (Selection eq.)

yi = αTi + x′
iβ + vi, vi ∼ N(0, σ2v) (Response eq.)

The likelihood can be factorized:

f (Y, T |X,γ, α,β, σϵ, σv) = f (Y |X, T, α,β, σϵ) f (T |X,γ, σv)

With re-parameterization (α,β + αγ,γ)′ → (α,βd,βc)
′, the system can be written as

Ti = x′
iβc + ϵi, ϵi ∼ N(0, σ2ϵ ) (Selection eq.)

yi = α
(
Ti − x′

iβc
)
+ x′

iβd + vi, vi ∼ N(0, σ2v) (Response eq.)

The authors place independent shrinkage priors over βc and βd:

π(βij) ∝
1

v
log

(
1 +

4

(βj/v)2

)
j = 1, ..., p, i = c, d

v ∼ C+(0, 1)

where C+(0, 1) denotes a folded standard Cauchy distribution. This prior is a proxy of the

horseshoe prior. Non-informative priors are used for other parameters α ∝ 1, σϵ ∝ 1
σϵ
, and

σv ∝ 1
σv
. They use a slice sampler for posterior sampling. Hahn et al. (2020) extends the

approach to nonparametric case using regression trees.

Antonelli et al. (2019) propose a spike-and-slab lasso prior approach. Their proposed

framework is

yi|Ti,xi, α,β, σ2 ∼ N
(
β0 + αTi + x′

iβ, σ
2
)

p(β|γ, σ2) =
p∏

j=1

γjψ1(βj ;λ1, σ
2) + (1− γj)ψ0(βj ;λ0, σ

2)

p(γ|θ) =
p∏

j=1

θωjγj (1− θωj )1−γj

p(θ|a, b) ∼ Beta(1, 0.1p)

p(σ2|c, d) ∼ Inv −Gamma(c, d)

β0, α ∼ N(0,K)

where ψ0(βj ;λ0, σ
2) = λ0

2σe
−λ0|βj |/σ and ψ1(βj ;λ1, σ

2) = λ1
2σe

−λ1|βj |/σ. λ1 is fixed to be a
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small value, say 0.1, so that the prior variance in the slab component is high enough to be

uninformative.

The hyperparameter λ0 is chosen via empirical Bayes. A new feature that they introduce

is the weights ωj which are tuning parameters that they use to prioritize variables to be

included (i.e. γj = 1) if they are associated with the treatment. Specifically, they first fit the

standard lasso on the model for predicting T given X. If the jth covariate xj has non-zero

coefficient from the lasso, they set ωj = δ for some δ ∈ (0, 1). For other variables, ωj = 1.

On the one hand, a smaller value of δ leads to higher inclusion probability and hence more

protection against the omitted variable bias. On the other hand, one needs to ensure a small

enough inclusion probability for an unimportant variable in the outcome model. To balance

the trade off, the authors choose δ ∈ (0, 1) as the smallest value of ωj such that the inclusion

probability of βj = 0 is less than 0.1. See also Antonelli et al. (2020), who introduce how

posterior distributions of treatment and outcome models can be used together with doubly

robust estimators.

4.5 Bayesian quantile regression

A regression specification can be represented more generally using the formulation

yi = f(yi|Xi) + ε, (250)

where f(yi|Xi) is a conditional mean function for y (conditional on covariates X). Using this

notation, the linear regression model can be recovered if we set f(yi|Xi) = E(yi|Xi) = Xiβ,

that is, the linear regression only models the (conditional) mean of y. The distribution of y is

fully determined by the assumptions we make about the disturbance term ε. In many cases it

is desirable to use the information in covariates in such a way that the full distribution of y is

determined by X. While such feature can also be incorporated implicitly in a traditional linear

regression setting38, a structured (and popular) way is to model the conditional quantiles of

y, Qr(yi|Xi), where r ∈ (0, 1) denotes the quantile of y. While the conditional quantile can be

modeled using either linear or nonlinear functional forms, the linear form is by far the most

widely used.

In this case, we replace in Equation 250 f(yi|Xi) = Qr(yi|Xi) = Xiβr and obtain the

following quantile regression specification

yi = Xiβr + εi. (251)

The model above is a linear regression for each quantile level r. Koenker and Bassett (1978)

38For example, we can assume εi ∼ N(0, σ2
i ), where σ2

i can be some function of Xi.
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show that an estimator of this quantile regression model can be obtained as

β̂r = min
βr

E

(
n∑

i=1

ρr(εi)

)
, (252)

where ρr(u) = (r − I(u < r)) is a loss function. Yu and Moyeed (2001) show that the same

estimator β̂r can be obtaining by obtaining the maximum likelihood estimator under the

assumption that εi is distributed as asymmetric Laplace, i.e. if it has the density

p(εi; r, σ
2) ∝ τ(1− τ)

σ2r

[
e
(1−r) εi

σ2
r I(εi ≤ 0) + e

−r εi
σ2
r I(εi > 0)

]
, (253)

where σ2r is a scale parameter. Therefore, the contribution of Yu and Moyeed (2001) provides

a parametric framework for implementing Bayesian inference.39 In particular, Kozumi and

Kobayashi (2011) take advantage of the fact that the asymmetric Laplace likelihood can be

written as a normal-exponential mixture of the form

εi|ui, zi,r ∼ θrzi,r +
√
σ2rκ

2
rzi,rut, (254)

where zi,r ∼ Exp(σ2r ) and ut ∼ N(0, 1), while θr, κ
2
r are parameters defined as θr = 1−2r

r(1−r) ,

κ2r =
2

r(1−r) . If we marginalise Equation (254) over the exponentially distributed zi,r we obtain

Equation (253); see a derivation in Khare and Hobert (2012).

Therefore, the Bayesian quantile regression model has the following representation

yi = Xiβr + θrzi,r +
√
σ2rκ

2
rzi,rut, (255)

where zi,r ∼ Exp(σ2r ) and ut ∼ N(0, 1) can either be thought of two disturbance terms (similar

to frontier models in econometrics), or equivalently ut can be interpreted as the disturbance

term and zi,r can be thought of as an unobserved factor (similar to the factors we examined

in subsection 4.2). In any case, conditional posteriors are trivial to derive as conditional on all

other parameters, the posterior of each parameter of interest has standard form. This is easier

39Of course here we have similar conceptual issues as with the Bayesian representation of the lasso estimator:
while Tibshirani (1996) showed that the l1 optimization problem for the lasso is equivalent to the posterior
mode of Bayesian regression estimator under a Laplace prior, Castillo et al. (2015) show that the posterior
distribution does not contract at the same rate as the posterior mode. Similarly here, there is an equivalence
between quantile regression and maximizing the likelihood under an asymmetric Laplace likelihood as both
problems provide unique point solutions. Bayesian inference, in contrast, assumes that coefficients are random
variables and (unless one focuses on MAP or MMSE estimation) cannot be obtained as the solution to an
optimization problem. In practice, however, it turns out that Bayesian quantile regression estimation using the
asymmetric Laplace likelihood is a very flexible model, even if it is not identical to the model introduced by
Koenker and Bassett (1978).
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to see for instance for the coefficients βr by rewriting the model as

(yi − θrzi,r) = Xiβr +
√
σ2rκ

2
rzi,rut ⇒ (256)

y⋆i = Xiβr + σ⋆rut, (257)

where y⋆i = (yi − θrzi,r) and σ⋆r =
√
σ2rκ

2
rzi,r. As long as we condition on zi,r, σ

2
r , κ

2
r , θr, we

can obtain a sample of βr (assuming a normal prior), from the standard formulas for a linear

regression of y⋆i on Xi with known variance σ⋆r .

In more detail, we assume the following priors

βr ∼ N (0,Dτ,r) , (258)

σ2r ∼ Inv −Gamma(n0,r, s0,r), (259)

zi,r ∼ Exponential(σ2r ), (260)

where for simplicity assume that Dτ,r = Dτ = τ × Ip where τ is fixed and known for all r.

The conditional posteriors (Khare and Hobert, 2012) are of the form

βr|• ∼ Np

(
V ×

(
X ′U−1ỹ

)
,V
)
, (261)

σ2r |• ∼ Inv −Gamma

(
ar, s0,r +

n∑

i=1

(y⋆i )
2

2zi,rκ2r
+

n∑

i=1

zi,r

)
, (262)

z−1
i,r |• ∼ IG

( √
θ2r + 2κ2r

|yi −Xiβr|
,
θ2r + 2κ2r
σ2rκ

2
r

)
, (263)

where the notation |• means “conditioning on other parameters and data”, V =(
X ′U−1X +D−1

τ,r

)−1
, U =

(
σ2rκ

2
r

)
× diag (z1,r, ..., zn,r), ỹ = (y − θrzr), y⋆i =

(yi −Xiβr − θrzi,r), and ar = n0,r +
3n
2 .

We need to note here a few important points regarding the implementation of this model

1. The Gibbs sampler in equations (261) - (263) is only one of the many implementations

of the Bayesian quantile regression using an asymmetric Laplace likelihood. Kozumi

and Kobayashi (2011) first developed a Gibbs sampler were zi,r is sampled from a

three-parameter generalized inverse Gaussian (GIG) distribution. Khare and Hobert

(2012) proved that this Gibbs sampler is ergodic, but proposed to sample z−1
i,r from the

two-parameter inverse Gaussian (IG) posterior of (263). While the two sampling steps

are identical (the transformation utilizes the ability of GIG distribution to be written

as an equivalent IG distribution), the consequences in programming might be more

important. For example, MATLAB only has a built-in random number generator for

the IG distribution but not for the GIG (although contributed packages on the internet

do exist), while in R there are libraries that provide reliable generators for both the IG

and GIG distributions.
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2. The Gibbs sampler needs to be run for each quantile level r. Therefore, we need

to choose quantile levels that are reasonable. For most empirical cases the grid

r = 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95 covers the most important areas of a distribution

of interest, but of course one can consider much finer grids at the cost of increased

computation.

3. Estimation of the quantile r = 0.5 is the most accurate, as 50% of the data lie on the

left/right of the median. As r approaches 0 or 1, estimation accuracy might decrease as

for some problems the number of observations in the tails could be too low (e.g. short,

quarterly macroeconomic time series). If ultra high-frequency financial data are available

(e.g. 1-min data) then typically the researcher is able to consider values of r closer to 0

or 1 without problems.

4. The conditional posteriors are applied for each quantile level independently. If we

consider small grid of quantiles, for example r = 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95 then

one can use vectorized operations (for matrix programming languages, such as MATLAB)

to obtain βr for all r – despite the fact that these samples of βr will be uncorrelated

across r. If we consider a very fine grid for values of r, then further benefits can be

achieved if we parallelize and split the sampling equations for each r in different cores.

5. The fact that the regression for each quantile is estimated independently, means that

one can obtain estimates of the conditional quantile function Qr(yi|Xi) that are not

ordered. That is, solutions of the form Q̂r1(yi|Xi) > Q̂r2(yi|Xi) for r1 < r2 are not

compatible with the concept of quantile. Putting this in context, we can’t allow the

model to predict that the conditional median of inflation is 2% while its first quartile is

2.5%! This problem, which is known as quantile crossing, pertains to all quantile models

for which every conditional quantile level is estimated independently from the others

(regardless of whether estimation is Bayesian or not). However, Rodrigues and Fan

(2017), among numerous others, provide a fully Bayesian algorithm for post-processing

MCMC draws of the conditional quantiles in order to ensure monotonicity. The idea is to

use a nonparametric smoothing function in order to ensure that this monotinicity exists.

The approach of Rodrigues and Fan (2017) is attractive from a Bayesian parametric

perspective because it uses the properties of the asymmetric Laplace distribution in

order to derive the implied information that a quantile level r′ conveys for some other

quantile level r, thus, using an expanded information set when smoothing conditional

quantile estimates.

After taking the modeling points above into consideration, estimation of the Bayesian quantile

regression model is not much more challenging than the normal (Gaussian) linear regression

model. All the hierarchical priors described previously can be readily applied to the quantile

model, with very minor modifications to the conditional posteriors presented in equations (261)
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- (263). The interesting feature is that because a separate regression needs to be run for each r,

we can also use shrinkage or sparsity priors to allow different covariates in X to affect different

quantiles of the distribution of y. Exactly because application of hierarchical priors is so trivial,

we won’t provide detailed examples and derivations here. Kozumi and Kobayashi (2011), while

proposing a Gibbs sampler for the Bayesian quantile model, they also show in a subsection how

easy it is to adopt the double-exponential (lasso) prior. Other applications include Alhamzawi

and Yu (2012), Yu et al. (2013), Korobilis (2017) and Korobilis et al. (2021), and the reader

can consult these papers for modeling details. Lim et al. (2020) is the case of a paper that

estimates a Bayesian quantile regression using variational Bayes methods.

5 Concluding remarks

We have reviewed a wide range of concepts and algorithms for Bayesian sparse and shrinkage

estimation. Our focus was on recent contributions in the field, covering the mainly

academic publications during the decade 2010-2020, that are increasingly focusing on efficient

computation and inference in high-dimensional models. A major contribution of our work is

to collect in a single document all these recent contributions, as other reviews and surveys we

are aware of provide only very focused reviews of certain hierarchical priors and algorithms.

While we believe contributions to the field of Bayesian sparse and shrinkage estimation will

keep expanding at a polynomial rate, we do hope that this review will become a useful manual

for PhD students and researchers who want an accessible introduction to the field.
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Dehaene, G. and Barthelmé, S. (2018). Expectation propagation in the large data limit. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):199–217.

Dellaportas, P., Forster, J. J., and Ntzoufras, I. (2002). On Bayesian model and variable

selection using mcmc. Statistics and Computing, 12(1):27–36.

DiCiccio, T. J., Kass, R. E., Raftery, A., and Wasserman, L. (1997). Computing Bayes factors

by combining simulation and asymptotic approximations. Journal of the American Statistical

Association, 92(439):903–915.

82



Dunson, D. B., Herring, A. H., and Engel, S. M. (2008). Bayesian selection and clustering of

polymorphisms in functionally related genes. Journal of the American Statistical Association,

103(482):534–546.

Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors – an empirical

Bayes approach. Journal of the American Statistical Association, 68(341):117–130.

Eicher, T. S., Papageorgiou, C., and Raftery, A. E. (2011). Default priors and predictive

performance in Bayesian model averaging, with application to growth determinants. Journal

of Applied Econometrics, 26(1):30–55.

Fernández, C., Ley, E., and Steel, M. F. (2001a). Benchmark priors for Bayesian model

averaging. Journal of Econometrics, 100(2):381–427.

Fernández, C., Ley, E., and Steel, M. F. J. (2001b). Model uncertainty in cross-country growth

regressions. Journal of Applied Econometrics, 16(5):563–576.

Figueiredo, M. A. T. (2003). Adaptive sparseness for supervised learning. IEEE Trans. Pattern

Anal. Mach. Intell., 25(9):1150–1159.

Foster, D. P. and George, E. I. (1994). The risk inflation criterion for multiple regression. The

Annals of Statistics, 22(4):1947–1975.

Fourdrinier, D., Strawderman, W. E., and Wells, M. T. (2018). Shrinkage Estimation, volume

Springer Texts in Statistics. Springer International Publishing.

Fragoso, T. M., Bertoli, W., and Louzada, F. (2018). Bayesian model averaging: A systematic

review and conceptual classification. International Statistical Review, 86(1):1–28.
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A Inference with non-hierarchical natural conjugate and

independent priors

In this section, we review non-hierarchical Bayesian estimation of simple regression models

under natural conjugate and independent priors. Most of the shrinkage priors that we review in

this paper have forms of either conjugate or independent prior, conditional on the parameters

such as prior variances of the slope coefficients. Therefore, it is helpful to first review the

conditional posterior distributions under the non-hierarchical priors.

Consider the simple linear regression model of the form

yi = xiβ + εi, εi ∼ N(0, σ2), i = 1, ..., n (A.1)

where β is a p × 1 vector. We define y = (y1, ..., yn)
′, X = (x′1, ..., x

′
n)

′ and ε = (ε1, ..., εn)
′,

such that the stacked form of the regression model is

y = Xβ + ε, (A.2)

where ε ∼ Nn(0n×1, σ
2In). In this section, we assume that the prior variances on β are fixed

and will review posterior sampling under generic normal-inverse-gamma priors on β and σ2.

The prior of β can be defined either dependent or independent on σ2. In both cases, assume

an inverse gamma prior1 on σ2.

σ2 ∼ Inv −Gamma (a, b) (A.3)

where we use the parametrization so that if x ∼ Inv − Gamma (a, b), then it has density

p(x) = ba

Γ(a)

(
1
x

)a+1
exp

(
− b
x

)
.

1The conditional posteriors under the improper prior σ ∼ 1
σ2 dσ

2 are similar.

1



A.1 Natural conjugate prior

In the first case, the prior on β is defined conditional on σ2. The hierarchical structure is

summarized as follows.

β|σ2 ∼ Np

(
µβ , σ

2V β

)
(A.4)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×

[
X ′y + V −1

β µβ

]
, σ2V

)
, (A.5)

σ2 | • ∼ Inv −Gamma

(
a+

n+ p

2
, b+

1

2

[
(y −Xβ)

′

(y −Xβ) +
(
β − µβ

)
V −1

β

(
β − µβ

)])
(A.6)

where V = (X ′X + V −1
β )−1. and • denotes data and all the parameters except for the

parameter that is being updated.

Derivation

The joint prior is

p(β, σ2) = (2π)−p/2|σ2V β |−1/2exp

[
− 1

2σ2
(β − µβ)

′V −1
β (β − µβ)

]
ba

Γ(a)

(
1

σ2

)a+1

exp

(
− b

σ2

)

∝
(

1

σ2

)a+p/2+1

exp

[
− 1

σ2

{
b+

1

2
(β − µβ)

′V −1
β (β − µβ)

}]

where the proportionality sign is with respect to the parameters (β, σ2). The likelihood is

p(y|β, σ2)(2π)−n/2
(

1

σ2

)n/2
exp

[
− 1

2σ2
(y −Xβ)′(y −Xβ)

]

The posterior is

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2)

∝
(

1

σ2

)a+ p+n
2

+1

exp

[
− 1

σ2

{
b+

1

2

[
(β − µβ)

′V −1
β (β − µβ) + (y −Xβ)′(y −Xβ)

]}]

From the right-hand-side above, it is easy to see that the conditional posterior p(σ2|β,y) is of
the form (A.6).

To see (A.5), note that

(β − µβ)
′V −1

β (β − µβ) + (y −Xβ)′(y −Xβ) = β′V −1
β β − 2β′V −1

β µβ + µ′

βV
−1
β µβ

+ y′y − 2β′X ′y + β′X ′Xβ

= β′

[
V −1

β +XX
]
β − 2β′

[
V −1

β µβ +X ′y
]
+
[
µβV

−1
β µβ + y′y

]

= (β − µ
∗
)′V −1

∗
(β − µ

∗
)− µ′

∗
V −1

∗
µ

∗
+
[
µ′

βV
−1
β µβ + y′y

]

2



where we used the identity

u′Au− 2α′u = (u−A−1α)′A(u−A−1α)−α′A−1α

in the last equality with u = β,A = V −1
β +XX, and α = V −1

β µβ +X ′y and defined

µ∗ = A−1α =
[
V −1
β +XX

]−1 [
V −1
β µβ +X ′y

]

V ∗ = A−1 =
[
V −1
β +XX

]−1

Hence the posterior is

p(β, σ2|y) ∝
(

1

σ2

)a∗+1

exp

[
− 1

σ2

{
b∗ +

1

2
(β − µ∗)

′V −1
∗ (β − µ∗)

}]

where a∗ = a + n/2 + p/2 and b∗ = b + 1
2

[
µ′
βV

−1
β µβ + y′y − µ′

∗V
−1
∗ µ∗

]
. Therefore, the

conditional posterior for β is of the form (A.5).

A.2 Independent prior

In this case, β and σ2 are a priori independent.

β ∼ Np

(
µβ ,V β

)
, (A.7)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×

[
X ′y/σ2 + V −1

β µβ

]
,V
)
, (A.8)

σ2 | • ∼ Inv −Gamma

(
a+

n

2
, b+

1

2
(y −Xβ)′ (y −Xβ)

)
(A.9)

where V = (X ′X/σ2 + V −1
β )−1.

Derivation

The joint prior is

p(β, σ2) = (2π)−p/2|V β |−1/2exp

[
−1

2
(β − µβ)

′V −1
β (β − µβ)

]
ba

Γ(a)

(
1

σ2

)a+1

exp

(
− b

σ2

)

∝
(

1

σ2

)a+1

exp

[
− 1

σ2

{
b+

1

2
(β − µβ)

′(V β/σ
2)−1(β − µβ)

}]

3



The posterior is

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2)

∝
(

1

σ2

)a+n
2
+1

exp

[
− 1

σ2

{
b+

1

2

[
(β − µβ)

′(V β/σ
2)−1(β − µβ) + (y −Xβ)′(y −Xβ)

]}]

To see (B.106), note that

p(σ2|β,y) ∝
(

1

σ2

)a+n
2
+1

exp

[
− 1

σ2

{
b+

1

2
(y −Xβ)′(y −Xβ)

}]

To see (B.105), note that

(β − µβ)
′(V β/σ

2)−1(β − µβ) + (y −Xβ)′(y −Xβ)

= β′(V β/σ
2)−1β − 2β′(V β/σ

2)−1µβ + µ′
β(V β/σ

2)−1µβ + y′y − 2β′X ′y + β′X ′Xβ

= β′ [(V β/σ
2)−1 +XX

]
β − 2β′ [(V β/σ

2)−1µβ +X ′y
]
+
[
µβ(V β/σ

2)−1µβ + y′y
]

= (β − µ∗)
′V −1

∗ (β − µ∗)− µ′
∗V

−1
∗ µ∗ +

[
µ′
β(V β/σ

2)−1µβ + y′y
]

where

µ∗ =
[
(V β/σ

2)−1 +XX
]−1 [

(V β/σ
2)−1µβ +X ′y

]
=
[
V −1
β +XX/σ2

]−1 [
V −1
β µβ +X ′y/σ2

]

V ∗ =
[
(V β/σ

2)−1 +XX
]−1

= σ2
[
V −1
β +XX/σ2

]−1

Hence the posterior is

p(β, σ2|y) ∝
(

1

σ2

)a∗+1

exp

[
− 1

σ2

{
b∗ +

1

2
(β − µ∗)

′V −1
∗ (β − µ∗)

}]

where a∗ = a+ n/2 and b∗ = b+ 1
2

[
µ′
β(V β/σ

2)−1µβ + y′y − µ′
∗V

−1
∗ µ∗

]
.
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B MCMC inference in linear regression model with

hierarchical priors

We use the simple linear regression model of the form

yi = xiβ + εi, εi ∼ N(0, σ2), i = 1, ..., n (B.1)

where β is a p × 1 vector. We define y = (y1, ..., yn)
′, X = (x′1, ..., x

′
n)

′ and ε = (ε1, ..., εn)
′,

such that the stacked form of the regression model is

y = Xβ + ε, (B.2)

where ε ∼ Nn(0n×1, σ
2In).

B.1 Normal-Jeffreys

The Normal-Jeffreys hierarchical prior takes the form

β|{τ2j }pj=1, σ
2 ∼ Np(0, σ

2D), (B.3)

τ2j ∼ 1

τ2i
, for j = 1, ..., p, (B.4)

σ2 ∼ 1

σ2
(B.5)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.6)

τ2j | • ∼ Inv −Gamma

(
1

2
,
β2j
2σ2

)
, for j = 1, ..., p, (B.7)

σ2 | • ∼ Inv −Gamma

(
n+ 2

2
,
Ψ+ β′D−1β

2

)
(B.8)

where V =
(
X ′X +D−1

)−1
and Ψ = (y −Xβ)′(y −Xβ).

B.2 Student-t shrinkage

The Normal-Inv-Gamma prior is the scale mixture of Normals representation of the fat-tailed

Student-t distribution. This hierarchical prior, which is also called “sparse Bayesian Learning”
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prior in signal processing, takes the form

β|{τ2j }pj=1, σ
2 ∼ Np(0, σ

2D), (B.9)

τ2j ∼ inv −Gamma (ρ, ξ) , for j = 1, ..., p, (B.10)

σ2 ∼ 1

σ2
(B.11)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.12)

τ2j | • ∼ Inv −Gamma

(
ρ+

1

2
, ξ +

β2j
2σ2

)
, for j = 1, ..., p, (B.13)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1β

2

)
(B.14)

where V =
(
X ′X +D−1

)−1
and Ψ = (y −Xβ)′(y −Xβ).

B.3 Bayesian Lasso

As noted first by Tibshirani (1996), the lasso estimator

β̂ = argmin
β

(y −Xβ)′ (y −Xβ) + λ1

p∑

j=1

|βj | (B.15)

is equivalent to the posterior mode under the Laplace prior

β|σ ∼
p∏

j=1

λ

2
√
σ2
e−λ|βj |/

√
σ2
, (B.16)

which can be written as the following Normal-Exponential mixture

β|σ ∼
p∏

j=1

∫ ∞

0

1√
2πσ2sj

e

(

−
β2j

2σ2sj

)

λ2

2
e
− λ

2sj dsj . (B.17)

This is the mixture prior analyzed by Park and Casella (2008), which is by far the most popular

form for the Bayesian lasso. Hans (2009) provides an alternative formulation by means of the

orthant-truncated Normal distribution. A third possible formulation of the Laplace prior is

the scale mixture of uniform distributions proposed by Mallick and Yi (2014). A related

representation is that of a mixture of truncated Normal distributions (see ?).
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B.3.1 Park and Casella (2008) algorithm

The Park and Casella (2008) Laplace prior takes the form

β|{τ2j }pj=1, σ
2 ∼ Np(0, σ

2D), (B.18)

τ2j |λ2 ∼ Exponential

(
λ2

2

)
, for j = 1, ..., p, (B.19)

λ2 ∼ Gamma(r, δ) (B.20)

σ2 ∼ 1

σ2
(B.21)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.22)

1

τ2j
| • ∼ IG

(√
λ2σ2

β2j
, λ2

)
, for j = 1, ..., p, (B.23)

λ2 | • ∼ Gamma

(
r + p,

∑p
j=1 τ

2
j

2
+ δ

)
, (B.24)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1β

2

)
(B.25)

where V =
(
X ′X +D−1

)−1
, D = diag(τ21 , ..., τ

2
p ), and Ψ = (y −Xβ)′(y −Xβ).

B.3.2 Hans (2009) algorithm

Before we proceed we need to define the notion of the Normal orthant distribution, following

Hans (2009). Let Z= {−1, 1}p represent the set of all 2p possible vectors of length p whose

elements are ±1. For any realization z ∈ Z define the orthant Oz ⊂ IRp. If β ∈ Oz, then βj ≥ 0

if z = 1 and βj < 0 if z = −1. Then β follows the Normal-orthant distribution with mean m

and covariance S, which is of the form

β ∼ N [z] (m,S) ≡ Φ (m,S)Np (m,S) I (∈ Oz) . (B.26)

The Hans (2009) prior takes the form

β|λ, σ ∼
(

λ

2
√
σ2

)p
exp


−λ

p∑

j=1

|βj |/
√
σ2


 , (B.27)

λ ∼ Gamma(r, δ), (B.28)

σ2 ∼ 1

σ2
, (B.29)

where the prior for β is an equivalent representation of the Laplace density in Equation B.16.
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The conditional posteriors are of the form

βj |β−j , λ, σ2,y ∼ ϕjN
[+]
(
µ+j , ω

−1
jj

)
+ (1− ϕj)N

[−]
(
µ−j , ω

−1
jj

)
, (B.30)

λ|y ∼ Gamma

(
p+ r,

∑p
j=1 |β|√
σ2

+ δ

)
, (B.31)

σ|β,y ∝ (σ2)−(n+p
2

+1) exp

(
Ψ

2σ2
−
λ
∑p

j=1 |β|√
σ2

)
, (B.32)

where:

❼ N [−] and N [+] correspond to the N [z] distribution for z = −1 and z = 1, respectively;

❼ µ+j = β̂OLSj +
{∑p

i=1,i ̸=j

(
β̂OLSi − βi

)
(ωij/ωjj)

}
+
(
− λ√

σ2ωjj

)
;

❼ ωij is the ij element of the matrix Ω = Σ−1 =
(
σ2(X ′X)−1

)−1
;

❼ ϕj =
Φ

(
µ+
j√
ωjj

)

/N(0|µ+j ,ω
−1
jj )

Φ

(
µ+
j√
ωjj

)

/N(0|µ+j ,ω
−1
jj )+Φ

(

−
µ−
j√
ωjj

)

/N(0|µ−j ,ω
−1
jj )

;

❼ Ψ = (y −Xβ)′(y −Xβ).

Notice that the conditional posterior of σ2 does not belong to a standard form we can sample

from. Hans (2009) proposes a simple accept/reject algorithm in order to obtain samples from

σ2. The posterior of σ2 simplifies to the standard Inv-Gamma form, if we consider a Laplace

prior for β that is independent of σ, i.e. the prior β|λ ∼
(
λ
2

)p
exp

(
−λ
∑p

j=1 |βj |
)
. Finally,

notice that sampling of βj conditional on β−j (i.e. all elements of the vector β other than

the j-th) becomes very inefficient when predictors X are correlated. Hans (2009) proposes

to use an alternative Gibbs sampler algorithm that orthogonalizes predictors, which comes at

the cost of increased computational complexity (due to the rotations of data and parameters

involved when orthogonalizing the predictors).

B.3.3 Mallick and Yi (2014) algorithm

The Mallick and Yi (2014) Laplace prior takes the form

β|{τ2j }pj=1, σ
2 ∼

p∏

j=1

Uniform
(
−
√
σ2τj ,

√
σ2τj

)
, (B.33)

τj |λ ∼ Gamma (2, λ) , for j = 1, ..., p, (B.34)

λ ∼ Gamma (r, δ) , (B.35)

σ2 ∼ 1

σ2
. (B.36)
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The conditional posteriors are of the form

β | • ∼ Np

(
β̂OLS , σ

2
(
X ′X

)−1
) p∏

j=1

I
(
|βj | <

√
σ2τj

)
, (B.37)

τj | • ∼ Exponential (λ) I

(
τj >

|βj |√
σ2

)
, for j = 1, ..., p, (B.38)

λ ∼ Gamma


r + 2p, δ +

p∑

j=1

|βj |


 , (B.39)

1

σ2

∣∣∣∣ • ∼ Gamma

(
n− 1 + p

2
,
Ψ

2

)
I


σ2 < 1

maxj

(
β2j /τ

2
j

)


 , (B.40)

where I(•) is the indicator function and Ψ = (y −Xβ)′(y −Xβ). Because of the truncation

of the conditional posteriors, Mallick and Yi (2014) suggest the following sampling steps:

1. Generate first τj from the truncated Exponential distribution in Equation B.38: Sample

a τ⋆j ∼ Exponential(λ), and then set τj = τ⋆j +
|βj |√
σ2
.

2. Sample β from the truncated Normal distribution in Equation B.37

3. Sample λ from the Gamma distribution in Equation B.39

4. Generate σ2 from the right truncated Gamma distribution in Equation B.40: Use simple

accept/reject sampling, that is, sample 1
σ2⋆ from Gamma

(
n−1+p

2 , Ψ2

)
until the condition

σ2⋆ < 1
maxj(β2

j /τ
2
j )

is met. If it is, set σ = 1
σ2⋆ .

B.4 Bayesian Adaptive Lasso

? showed that the lasso can perform automatic variable selection but it produces biased

estimates for the larger coefficients. Thus, they argued that the oracle properties do not hold

for the lasso. To obtain the oracle property, ? introduced the adaptive lasso estimator as

β̂ = argmin
β

(y −Xβ)′ (y −Xβ) +

p∑

j=1

λj |βj | (B.41)

with the weight vector λj = λ|β̂j |−r for j = 1, ..., p where β̂j is a
√
n consistent estimator such

as the least squares estimator. The adaptive lasso enjoys the oracle property and it leads to a

near-minimax-optimal estimator.

Alhamzawi and Ali (2018) proposed Bayesian adaptive lasso. They show that a Laplace
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density can be written as a exponential scale mixture of truncated normal distribution i.e.

λj

2
√
σ2
e−λ|βj |/

√
σ2

=

∫ ∞

0

∫

uj>
√
λ2j/σ

2|βj |

1√
2πσ2sj

e

(

−
β2j

2σ2sj

)

e

(
−uj

2

)
λ2j
8
e

(

−
λ2j sj

8

)

dujdsj

=

∫ ∞

0

∫

uj>
√
λ2j/σ

2|βj |
N(βj ; 0, σ

2sj)Exponential

(
uj ;

1

2

)
Exponential

(
sj ;

λ2j
8

)
dujdsj

Based on this fact, they propose the following conditional prior for Bayesian adaptive lasso

βj |σ2, λ2j , sj ∼ N(0, σ2sj)I
(
|βj | <

√
σ2/λ2juj

)
j = 1, ..., p, (B.42)

sj |λ2j ∼ Exponential

(
λ2j
8

)
j = 1, ..., p, (B.43)

uj ∼ Exponential

(
1

2

)
j = 1, ..., p, (B.44)

λ2j ∼ Gamma(a, b) j = 1, ..., p, (B.45)

σ2 ∼ σ−2dσ2 (B.46)

The conditional posteriors are of the form

β | • ∼ Np

(
V ×Xy, σ2V

) p∏

j=1

I
(
|βj | <

√
σ2/λ2juj

)
(B.47)

σ2 | • ∼ Inv −Gamma (a∗, b∗) I

(
σ2 > maxj

{
λ2jβ

2
j

u2j

})
(B.48)

s−1
j | • ∼ IG

(√
σ2λ2j
4β2j

,
λ2j
4

)
j = 1, ..., p, (B.49)

p(uj | • ) ∝ Exponential

(
1

2

)
I


uj >

√
λ2j
σ2

|βj |


 j = 1, ..., p, (B.50)

p(λ2j | • ) ∝ Gamma
(
a+ p, b+

sj
8

)
I

(
λ2j <

σ2u2j
β2j

)
j = 1, ..., p (B.51)

where V = (X ′X + S−1)−1 with S = diag(s1, ..., sp), a∗ = n−1+p
2 , and b∗ =

1
2

[
(y −Xβ)′ (y −Xβ) +

∑p
j=1

β2
j

sj

]
.

B.5 Bayesian Fused Lasso

In some applications, there might be a meaningful order among the covariates (e.g. time).

The original lasso ignores such ordering. To compensate the ordering limitations of the lasso,

the fused lasso was introduced. It penalizes the L1-norm of both the coefficients and their
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differences:

β̂ = argmin
β

(y −Xβ)′ (y −Xβ) + λ1

p∑

j=1

|βj |+ λ2

p∑

j=2

|βj − βj−1| (B.52)

Kyung et al. (2010) proposed Bayesian group lasso with the following conditional prior.

p
(
β|σ2

)
∝ exp


−λ1

σ

p∑

j=1

|βj | −
λ2
σ

p∑

j=2

|βj − βj−1|


 (B.53)

σ2 ∼ σ−2dσ2 (B.54)

where the conditional prior is equivalent to the following gamma mixture of normals prior.

β|{τ2j }pj=1, {ω2
j }p−1
j=1, σ

2 ∼ Np(0, σ
2Σβ), (B.55)

τ2j ∼ λ21
2
e−λ1τ

2
j /2dτ2j for , j = 1, ..., p, (B.56)

ω2
j ∼ λ22

2
e−λ2ω

2
j /2dω2

j for , j = 1, ..., p− 1 (B.57)

where τ21 , ..., τ
2
p and ω2

1, ..., ω
2
p−1 are mutually independent, and Σβ is a tridiagonal matrix with

Main diagonal =

{
1

τ2i
+

1

ω2
i−1

+
1

ω2
i

, i = 1, ..., p

}
, (B.58)

Off diagonals =

{
− 1

ω2
i

, i = 1, ..., p− 1

}
(B.59)

where 1/ω2
0 = 1/ω2

p = 0.

The conditional posteriors are of the form

β | • ∼ Np

(
V ×Xy, σ2V

)
(B.60)

1/τ2j | • ∼ IG



(
λ21σ

2

β2j

)1/2

, λ21


 1(1/τ2j > 0), j = 1, ..., p (B.61)

1/ω2
j | • ∼ IG

((
λ22σ

2

(βj+1 − βj)2

)1/2

, λ22

)
1(1/ω2

j > 0), j = 1, ..., p− 1 (B.62)

σ2 | • ∼ Inv −Gamma (a∗, b∗) (B.63)

where V = (X ′X +Σ−1
β )−1, a∗ = n−1+p

2 , and b∗ = 1
2

[
(y −Xβ)′ (y −Xβ) + βΣ−1

β β
]
.
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When we place Gamma(r, δ) priors on λ1 and λ2, the conditional posteriors are

λ21 | • ∼ Gamma


p+ r,

1

2

p∑

j=1

τ2j + δ


 (B.64)

λ22 | • ∼ Gamma


p− 1 + r,

1

2

p−1∑

j=1

ω2
j + δ


 (B.65)

B.6 Bayesian Group Lasso

If there is a group of covariates among which the pairwise correlation is high (e.g. dummy

variables), the lasso tends to select only individual variables from the group. The group lasso

takes such group structure into account:

β̂ = argmin
β

(
y −

K∑

k=1

Xkβk

)′(
y −

K∑

k=1

Xkβk

)
+ λ

K∑

j=k

||βk||Gk
(B.66)

where K is the number of groups, βk is the vector of β’s in the group k, and ||β||Gk
=(

β′Gkβ
)1/2

with positive definite matrices Gk’s. Typically, Gk = Imk
wheremk is the number

of variables in group k.

Kyung et al. (2010) proposed Bayesian group lasso with the following conditional prior.

p
(
β|σ2

)
∝ exp


−λ

σ

K∑

j=k

||βk||Gk


 (B.67)

σ2 ∼ σ−2dσ2 (B.68)

where the conditional prior is equivalent to the following gamma mixture of normals prior.

βGk
|τ2k , σ2 ∼ Nmk

(0, σ2τ2kImk
), (B.69)

τ2k |σ2 ∼ Gamma

(
mk + 1

2
,
λ2

2

)
for k = 1, ...,K (B.70)

The conditional posteriors are of the form

βGk
|β−Gk

, σ2, τ21 , ..., τ
2
K , λ,y ∼ Np


V k ×X ′

k


y − 1

2

∑

k′ ̸=k
Xk′βGk′


 , σ2V k


 , (B.71)

1/τ2k | • ∼ IG

((
λ2σ2

||βGk
||2
)1/2

, λ2

)
1(1/τ2k > 0), for k = 1, ...,K (B.72)

σ2 | • ∼ Inv −Gamma


n− 1 + p

2
,
1

2
||y −Xβ||2 + 1

2

K∑

j=k

1

τ2k
||βGk

||2

(B.73)
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where β−Gk
=
(
βG1

, ...,βGk−1
,βGk+1

, ...,βGK

)
and V k = (X ′

kXk + τ−2
k Imk

)−1.

When we place a Gamma(r, δ) prior on λ, the posterior conditional on λ is

λ2 | • ∼ Gamma

(
p+K

2
+ r,

1

2

K∑

k=1

τ2k + δ

)
(B.74)

B.7 Bayesian Elastic Net

Here again we have various alternative algorithms. We look into the algorithm of Kyung et al.

(2010) and the algorithm of Li and Lin (2010), but we can also mention here the algorithm of

? that is based on the algorithm of Hans (2009) we examined for the Bayesian lasso.

The elastic net combines the benefits of ridge regression (l2 penalization) and the lasso

(l1 penalization). The Bayesian prior that provides the solution to the elastic net estimation

problem is of the form

β|σ2 ∼ exp



− 1

2σ2


λ1

p∑

j=1

|βj |+ λ2

p∑

j=1

β2j





 . (B.75)

Li and Lin (2010) start from this prior and derive a mixture approximation and a Gibbs sampler

that has the minor disadvantage that requires an accept-reject algorithm for obtaining samples

from the conditional posterior of σ2 (similar to the sampler of Hans (2009) for the lasso). The

formulation of the elastic net prior in Kyung et al. (2010) is slightly different to the one above,

but they manage to derive a slightly different mixture representation and a slightly more

straightforward Gibbs sampler.

B.7.1 Li and Lin (2010) algorithm

The Li and Lin (2010) prior takes the form

β|{τ2j }pj=1, λ2, σ
2 ∼ Np

(
0,
σ2

λ2
Dτ

)
, (B.76)

τ2j |σ2 ∼ TG(1,∞)

(
1

2
,
8λ2σ

2

λ21

)
, for j = 1, ..., p, (B.77)

σ2 ∼ 1

σ2
. (B.78)

where TG(1,∞) is the Gamma distribution truncated to the support (1,∞), and Dτ =

diag
(
τ21−1

τ21
, ...,

τ2p−1

τ2p

)
. Notice that λ1, λ2 do not have their own prior distributions, that is,

they are not considered to be random variables in this algorithm. Instead, Li and Lin (2010)

suggest to use empirical Bayes methods to calibrate these two parameters.
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The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.79)

τ2j − 1 | • ∼ GIG

(
1

2
,

λ1
4λ2σ2

,
λ2β

2
j

σ2

)
, for j = 1, ..., p, (B.80)

p(σ2| • ) ∝
(

1

σ2

)n
2
+p+1{

ΓU

(
1

2
,

λ21
8λ2σ2

)}
(B.81)

exp


− 1

2σ2



Ψ+ λ2

p∑

j=1

τ2j
τ2j − 1

β2j +
λ21
4λ2

p∑

j=1

τ2j






 (B.82)

where V =
(
X ′X + λ2D

−1
τ

)−1
, D−1

τ = diag
(

τ21
τ21−1

, ...,
τ2p
τ2p−1

)
, and Ψ = (y −Xβ)′(y −Xβ).

ΓU (•) is the upper incomplete gamma function. GIG is the three parameter Generalized

Inverse Gaussian distribution.2 The conditional posterior distribution of σ2 does not belong

to a known density we can sample from. Therefore, for each Monte Carlo iteration we sample

the first two parameters directly from their conditional posteriors but we sample σ2 indirectly

from its conditional posterior using an accept/reject step.

B.7.2 Kyung et al. (2010) algorithm

The Kyung et al. (2010) prior takes the form

β|{τ2j }pj=1, λ2, σ
2 ∼ Np(0, σ

2Dτ,λ2), (B.83)

τ2j |λ2 ∼ Exponential

(
λ21
2

)
, for j = 1, ..., p, (B.84)

λ21 ∼ Gamma(r1, δ1), (B.85)

λ2 ∼ Gamma(r2, δ2), (B.86)

σ2 ∼ 1

σ2
(B.87)

where Dτ,λ2 = diag((τ−2
1 + λ2)

−1, ..., (τ−2
p + λ2))

−1).

2CRAN has several implementations in R of random number generators that allow sampling from the GIG

distribution. As of the time of writing of this document, Mathworks does not provide a built-in function for
MATLAB that allows to generate from this distribution, but external contributions do exist.
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The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.88)

1

τ2j
| • ∼ IG

(√
λ21σ

2

β2j
, λ21

)
I(1/τ2j > 0), for j = 1, ..., p, (B.89)

λ21 | • ∼ Gamma

(
r1 + p,

∑p
j=1 τ

2
j

2
+ δ1

)
, (B.90)

λ2 | • ∼ Gamma

(
r2 +

p

2
,

∑p
j=1 β

2
j

2σ2
+ δ2

)
, (B.91)

σ2 | • ∼ Inv −Gamma

(
n− 1 + p

2
,
Ψ+ β′D−1

τ,λ2
β

2

)
(B.92)

where V =
(
X ′X +D−1

τ,λ2

)−1
, D−1

τ,λ2
= diag((τ−2

1 + λ2), ..., (τ
−2
p + λ2))), and Ψ = (y −

Xβ)′(y −Xβ).

B.8 Generalized Double Pareto

Armagan et al. (2013) propose the following Generalized Double Pareto (GDP) prior on β

β|σ ∼
p∏

j=1

1

2σδ/r

(
1 +

1

r

|βj |
σδ/r

)−(r+1)

. (B.93)

This distribution can be represented using the familiar, from the Bayesian lasso, Normal-

Exponential-Gamma mixture, see subsubsection B.3.1. The only difference is that, while the

Exponential component has the same rate parameter for all j = 1, ..., p, in the representation

of the GDP mixture this parameter is adaptive.

The Generalized Double Pareto prior takes the form

β|{τj}pj=1, σ
2 ∼ Np

(
0, σ2D

)
, (B.94)

τ2j |λj ∼ Exponential

(
λ2j
2

)
, for j = 1, ..., p, (B.95)

λj ∼ Gamma(r, δ), for j = 1, ..., p, (B.96)

σ2 ∼ 1

σ2
, (B.97)

where D = diag(τ21 , ..., τ
2
p ).
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The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.98)

1

τ2j

∣∣∣∣ • ∼ IG

(√
λ2jσ

2

β2j
, λ2

)
, for j = 1, ..., p, (B.99)

λ2j | • ∼ Gamma


r + 1,

√
β2j
σ2

+ δ


 , (B.100)

σ2 | • ∼ Inv −Gamma

(
n− 1 + p

2
,
Ψ+ β′D−1β

2

)
(B.101)

where V =
(
X ′X +D−1

)−1
, D = diag(τ21 , ..., τ

2
p ), and Ψ = (y −Xβ)′(y −Xβ).

B.9 Normal-Gamma

The Normal-Gamma prior of Griffin and Brown (2010) takes the form

β|{τj}pj=1 ∼ N (0,D) , (B.102)

τ |λ, γ2 ∼ Gamma

(
λ,

1

2γ2

)
, (B.103)

σ2 ∼ 1

σ2
, (B.104)

where D = diag(τ21 , ..., τ
2
p ).

The conditional posteriors β and σ2 are of the usual form

β | • ∼ Np

(
V ×X ′y/σ2,V

)
, (B.105)

σ2 | • ∼ Inv −Gamma

(
n

2
,
1

2
(y −Xβ)′ (y −Xβ)

)
(B.106)

where V = (X ′X/σ2 +D−1)−1.

The parameters τ1, ..., τp can be updated in a block since the full conditional distributions

of τ1, ..., τp are independent. The full conditional distribution of τj follows a generalized inverse

Gaussian distribution

τj | • ∼ GIG(λ− 0.5, 1/γ2, β2j ), j = 1, ..., p (B.107)

B.10 Multiplicative Gamma process

Suppose we have the factor model

Xt = ΛF t + ϵt (B.108)

ϵt ∼ Nn(0,Σ), t = 1, ..., T (B.109)
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where Xt is a n × 1 vector, Λ is a n × k matrix of factor loadings, F t is a k × 1 vector, and

Σ = diag(Σ11, ...,Σnn).

Bhattacharya and Dunson (2011) proposed a novel multiplicative gamma process prior on

the factor loadings that shrinks more aggressively columns of Λ that correspond to a higher

number of factors. They call their approach the sparse infinite factor model, as it allows to

specify a maximum number of factors and the prior is able to determine zero and non-zero

loadings, as well as the number of factors. The gamma process prior for the loadings matrix

is of the following “global-local shrinkage” form

Λij |ϕij , τj ∼ N(0, ϕ−1
ij τ

−1
j ), (B.110)

ϕij ∼ Gamma(v/2, v/2), (B.111)

τj =

j∏

l=1

δl, j = 1, ..., k, (B.112)

δ1 ∼ Gamma(a1, 1), (B.113)

δl ∼ Gamma(a2, 1), l ≥ 2, (B.114)

Σii ∼ Inv −Gamma(a0, b0), i = 1, ..., n (B.115)

While the local shrinkage parameter is the same for each element of Λ, the global shrinkage

parameter τj is shrinking more aggressively as the index j increases, where j = 1, ..., k indexes

the number of factors. This is because τj is a j-dimensional product of gamma distributions.

Let X(i) be the ith column of the n× k matrix X Λ′
i be the ith row of Λ. The conditional

posterior distributions are

Λi | • ∼ Nk

(
V Li

(
F ′Σ−1

ii X(i)
)
,V Li

)
i = 1, ..., n, (B.116)

F t | • ∼ Nk

(
V F

(
Λ′Σ−1Xt

)
,V F

)
t = 1, ..., T, (B.117)

ϕij | • ∼ Gamma

(
v + 1

2
,
v + τjΛ

2
ij

2

)
i = 1, ..., n, j = 1, ..., k, (B.118)

τ
(j)
ℓ =

ℓ∏

t=1,t ̸=j
δt j = 1, ..., k (B.119)

δ1 | • ∼ Gamma

(
a1 + 0.5nk, 1 + 0.5

k∑

ℓ=1

τ
(1)
ℓ

n∑

i=1

ϕiℓΛ
2
iℓ

)
, (B.120)

δj | • ∼ Gamma


a2 + 0.5n(k − j + 1), 1 + 0.5

k∑

ℓ=j

τ
(j)
ℓ

n∑

i=1

ϕiℓΛ
2
iℓ


 , j ≥ 2,(B.121)

Σii | • ∼ Inv −Gamma (a0 + n/2, b0 + SSEi) , i = 1, ..., n, (B.122)

where V Li = (D−1
i + Σ−1

ii F ′F )−1, D−1
i = diag(ϕi1τ1, ..., ϕikτk), V F = (I +Λ′Σ−1Λ)−1, and

SSEi = (X(i) − FΛi)
′(X(i) − FΛi).
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B.11 Dirichlet-Laplace

The Dirichlet-Laplace prior of Bhattacharya et al. (2015), as analyzed in Zhang and Bondell

(2018), takes the form

β|{τj}pj=1, {ψj}
p
j=1, λ, σ

2 ∼ Np

(
0, σ2Dλ,τ,ψ

)
, (B.123)

τ2j ∼ Exponential(1/2), for j = 1, ..., p, (B.124)

ψj ∼ Dirichlet(α), for j = 1, ..., p, (B.125)

λ ∼ Gamma(nα, 1/2), (B.126)

σ2 ∼ 1

σ2
, (B.127)

where Dλ,τ,ψ = diag(λ2τ21ψ
2
1, ..., λ

2τ2pψ
2
p).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.128)

1

τ2j

∣∣∣∣ • ∼ IG

(√
λ2ψ2

jσ
2

β2j
, 1

)
, for j = 1, ..., p, (B.129)

λ | • ∼ GIG

(
2

∑p
j=1 |βj |
ψjσ

, 1, p(α− 1)

)
, (B.130)

Tj | • ∼ GIG


2

√
β2j
σ2
, 1, α− 1


 , for j = 1, ..., p, (B.131)

ψj =
Tj∑p
j=1 Tj

, for j = 1, ..., p, (B.132)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1

τ,λ,ψβ

2

)
(B.133)

where V =
(
X ′X +D−1

τ,λ,ψ

)−1
, Dτ,λ,ψ = diag(λ2τ21ψ

2
1, ..., λ

2τ2pψ
2
p), and Ψ = (y −Xβ)′(y −

Xβ).

B.12 Horseshoe

The horseshoe prior on a regression coefficient β takes the following hierarchical form

β|{λj}pj=1, τ ∼ N
(
0, σ2τ2Λ

)
, (B.134)

λj |τ ∼ C+(0, 1), for j = 1, ..., p, (B.135)

τ ∼ C+(0, 1), (B.136)
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where Λ = diag(λ21, ..., λ
2
p), and C

+(0, α) is the half-Cauchy distribution on the positive reals

with scale parameter α. That is, λj has conditional prior density

λj |τ =
2

πτ (1 + (λj/τ)2)
. (B.137)

B.12.1 Makalic and Schmidt (2016) algorithm

Makalic and Schmidt (2016) note that the half-Cauchy distribution can be written as a mixture

of inverse-Gamma distributions. In particular, if

x2|z ∼ Inv −Gamma(1/2, 1/z), z ∼ Inv −Gamma(1/2, 1/α2), (B.138)

then x ∼ C+(0, α). Therefore, the Makalic and Schmidt (2016) prior takes the form

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2Λ

)
, (B.139)

λ2j |vj ∼ Inv −Gamma(1/2, 1/vj), for j = 1, ..., p, (B.140)

vj ∼ Inv −Gamma(1/2, 1), for j = 1, ..., p, (B.141)

τ2|ξ ∼ Inv −Gamma(1/2, 1/ξ), (B.142)

ξ ∼ Inv −Gamma(1/2, 1), (B.143)

σ2 ∼ 1

σ2
, (B.144)

where Λ = diag(λ21, ..., λ
2
p).

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.145)

λ2j | • ∼ Inv −Gamma

(
1,

1

vj
+

β2j
2τ2σ2

)
, for j = 1, ..., p, (B.146)

vj | • ∼ Inv −Gamma

(
1, 1 +

1

λ2j

)
, for j = 1, ..., p, (B.147)

τ2 | • ∼ Inv −Gamma


p+ 1

2
,
1

ξ
+

1

2σ2

p∑

j=1

β2j
λ2j


 (B.148)

ξ | • ∼ Inv −Gamma

(
1, 1 +

1

τ2

)
, (B.149)

σ2 | • ∼ Inv −Gamma

(
n+ p

2
,
Ψ+ β′D−1β

2

)
, (B.150)

where V =
(
X ′X +D−1

)−1
, D = diag(τ2λ21, ..., τ

2λ2p) = τ2Λ, and Ψ = (y −Xβ)′(y −Xβ).
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B.12.2 Slice sampler

Under the hosrshoe prior,

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2diag(λ21, ..., λ

2
p)
)
, (B.151)

λj ∼ C+(0, 1), for j = 1, ..., p, (B.152)

τ ∼ C+(0, 1) (B.153)

σ2 ∼ 1

σ2
(B.154)

the conditional posteriors are of the form

β | • ∼ Np

(
V ×X

′
y, σ2V

)
, (B.155)

σ2 | • ∼ Inv −Gamma

(
n

2
+
p

2
,
1

2

[
(y −Xβ)′ (y −Xβ) + β′D−1β

])
(B.156)

p(λj | • ) ∝
(

1

λ2j

)1/2

exp

[
− βj
2σ2τ2

1

λ2j

]
1

1 + λ2j
dλj , for j = 1, ..., p (B.157)

p(τ | • ) ∝
(

1

τ2

)p/2
exp


− 1

2σ2

p∑

j=1

β2j
λ2j

1

τ2


 1

1 + τ2
dτ (B.158)

where V = (X ′X +D−1)−1 with D = diag(τ2λ21, ..., τ
2λ2p).

With a change of variable ηj =
1
λ2j
, it can be seen that

ηj |β, τ2, σ2 ∝ exp (−µjηj)
1

1 + ηj
dηj (B.159)

where µj =
βj

2σ2τ2
. The λj ’s are updated with a slice sampler (see Section ??):

1. Sample uj ∼ Unif
[
0, 1

1+ηj

]
,

2. Sample ηj |uj ∼ exp (−µjηj) I
(
ηj <

1−uj
uj

)
3,

3. Set λj = η
−1/2
j .

Similarly, with a change of variable η = 1
τ2
, we have

η|β, {λj}pj=1, σ
2,y ∝ η

p+1
2

−1 exp (−µη) 1

1 + η
dη (B.160)

where µ = 1
2σ2

∑p
j=1

β2
j

λ2j
. The τ can be updated in a similar fashion:

1. Sample u ∼ Unif
[
0, 1

1+η

]
,

3This is an exponential density with parameter µ−1
j truncated on

(

0,
1−uj

uj

)

.
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2. Sample η|u ∼ η
p+1
2

−1 exp (−µη) I
(
η < 1−u

u

)
4,

3. Set τ = η−1/2.

B.12.3 Johndrow et al. (2020) algorithm

The horseshoe prior in Johndrow et al. (2020) has its original form

β|{λj}pj=1, τ, σ
2 ∼ N

(
0, σ2τ2Λ

)
, (B.161)

λj |τ ∼ C+(0, 1), for j = 1, ..., p, (B.162)

τ ∼ C+(0, 1), (B.163)

σ2 ∼ 1

σ2
, (B.164)

In order to improve the mixing of the global parameter τ2, they propose a blocked

Metropolis-within-Gibbs sampler where (β, τ2, σ) are updated in one block. The conditional

posterior of τ2 given λ = (λ21, ..., λ
2
p) is

p(τ2|λ,y) ∝ |M |−1/2

(
1

2
y′M−1y

)−n
2

× τ

1 + 1
τ2

(B.165)

where M = In +XDX ′. Their Metropolis-within-Gibbs algorithm is as follows

p(λ2j |τ2,β, σ2) ∝
λ2j

λ2j + 1
exp

(
− βj
2σ2τ2

1

λ2j

)
, for j = 1, ..., p, (B.166)

log(τ−2∗) ∼ N
(
log(τ−2), s

)
, accept τ2∗ w.p.

p(τ2∗|λ,y)τ2∗
p(τ2|λ,y)τ2 , (B.167)

σ2 |τ2,λ2 ∼ Inv −Gamma

(
n

2
,
y′M−1y

2

)
, (B.168)

β |τ2,λ2, σ2 ∼ Np

(
V ×X ′y, σ2V

)
(B.169)

where V =
(
X ′X +D−1

)−1
and D = diag(τ2λ21, ..., τ

2λ2p).

The λ2j can be updated via a slice sampler:

1. Sample u ∼ Unif

[
0,

λ2j
λ2j+1

]
,

2. Sample λ2j |u ∼ exp

(
− βj

2σ2τ2
1
λ2j

)
I

(
1−u
u > 1

λ2j

)
.

4This is a gamma density with the shape parameter p+1
2

and the scale parameter µ−1 truncated on
(

0, 1−u
u

)

.
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B.13 Generalized Beta mixtures of Gaussians

In their paper, Armagan et al. (2011) motivate the use of a three-parameter beta (TPB)

distribution as a flexible class of shrinkage priors. The TPB distribution takes the form

p(x|a, b, φ) = Γ (a+ b)

Γ (a) Γ (b)
φbxb−1(1− x)a−1 [1 + (φ− 1)x]−(a+b) , (B.170)

for 0 < x < 1, a, b, φ > 0. Proposition 1 in Armagan et al. (2011) shows that this distribution

can either be written as Normal-inverted beta mixture, or a Normal-Gamma-Gamma mixture.

The second choice gives a very straightforward Gibbs sampler scheme so we present an

algorithm based on the Normal-Gamma-Gamma representation of TPB.

The Generalized Beta mixtures of Gaussians prior takes the form

β|{τ2j }pj=1, σ
2 ∼ Np

(
0, σ2Dτ

)
, (B.171)

τ2j |λj ∼ Gamma (a, λj) , for j = 1, ..., p, (B.172)

λj |φ ∼ Gamma(b, φ), for j = 1, ..., p, (B.173)

φ ∼ Gamma

(
1

2
, ω

)
, (B.174)

ω ∼ Gamma

(
1

2
, 1

)
, (B.175)

σ2 ∼ 1

σ2
, (B.176)

where Dτ = diag(τ21 , ..., τ
2
p ). Note that setting a = b = 1/2 we can obtain the horseshoe prior

of Carvalho et al. (2010). For other choices we can recover popular cases of shrinkage priors.

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, (B.177)

τ2j | • ∼ GIG

(
a− 1

2
, 2λj ,

β2j
σ2

)
, for j = 1, ..., p, (B.178)

λj | • ∼ Gamma(a+ b, τ2j + φ), for j = 1, ..., p, (B.179)

φ | • ∼ Gamma


pb+ 1

2
,

p∑

j=1

λj + ω


 , (B.180)

ω | • ∼ Gamma(1, φ+ 1), (B.181)

σ2 | • ∼ Gamma

(
n+ p

2
,
Ψ+ β′D−1

τ β

2

)
, (B.182)

where V =
(
X ′X +D−1

τ

)−1
, Dτ = diag(τ21 , ..., τ

2
p ), and Ψ = (y −Xβ)′(y −Xβ).
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B.14 Spike and slab

B.14.1 Kuo and Mallick (1998) algorithm

Kuo and Mallick (1998) consider the following modified formulation of the regression problem.

y|β,γ, σ2 ∼ Np

(
Xθ, σ2I

)
(B.183)

where X = (x1, . . . ,xp) and θ = (β1γ1, . . . , βpγp)
′ with γj = 1 if xj is included in the model

and 0 otherwise.

The authors consider the following independent prior.

β ∼ Np (0,D) , (B.184)

γj ∼ Bernoulli(pj), for j = 1, . . . , p, (B.185)

σ2 ∼ Inv −Gamma (a, b) (B.186)

With X∗ = (γ1x1, ..., γpxp), the conditional posteriors can be written as follows.

β | • ∼ Np

(
V ×X∗′y/σ2,V

)
, (B.187)

σ2 | • ∼ Inv −Gamma

(
a+

n

2
, b+

1

2
(y −X∗β)′ (y −X∗β)

)
, (B.188)

γj | • ∼ Bernoulli

(
cj

cj + dj

)
(B.189)

where γ−j = (γ1, . . . , γj−1, γj+1, . . . , γp) and V =
(
X∗′X∗/σ2 +D−1

)−1
and

cj = pj exp

[
− 1

2σ2
(
y −Xθ∗

j

)′ (
y −Xθ∗

j

)]
, (B.190)

dj = (1− pj) exp

[
− 1

2σ2
(
y −Xθ∗∗

j

)′ (
y −Xθ∗∗

j

)]
(B.191)

where θ∗
j is θ with the j-component replaced by βj and θ∗∗

j is θ with the j-component replaced

by 0. Note that the conditional posterior of γj depends on γ−j . In order to facilitate the mixing,

it is preferred to update γj for j = 1, . . . , p in random order.

Note that although the formulation above holds for a generic prior variance V β , but an

important special case is when it is a diagonal matrix V β = diag
(
τ21 , . . . , τ

2
p

)
. This is equivalent

to assume a spike and slab prior on θj , which is a mixture of a point mass at 0 with probability

1− pj and a normal density N
(
µβ,j , τ

2
j

)
with probability pj .
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B.15 Stochastic search variable selection

Consider the following stochastic search variable selection prior with fixed values of the prior

variances.

βj |σ2, γj = 0 ∼ N
(
0, σ2τ20j

)
, (B.192)

βj |σ2, γj = 1 ∼ N
(
0, σ2τ21j

)
, (B.193)

P (γj = 1) = θ for j = 1, . . . , p, (B.194)

θ ∼ Beta(c, d) (B.195)

σ2 ∼ Inv −Gamma(a, b) (B.196)

George and McCulloch (1993) use non-conjugate prior in (B.192) and (B.193).

(B.192) and (B.193) can be equivalently written as

β|σ2,γ, {τ20j , τ21j}pj=1 ∼ Np

(
0, σ2D

)
(B.197)

where D is a diagonal matrix with diagonal elements with {(1− γj)τ
2
0j + γjτ

2
1j}

p
j=1

The conditional posteriors are of the form

β | • ∼ Np

(
V ×X ′y, σ2V

)
, where V = (X

′
X +D−1)−1, (B.198)

σ2 | • ∼ Inv −Gamma

(
a+

n

2
+
p

2
, b+

1

2

[
(y −Xβ)′ (y −Xβ) + β′D−1β

])
,(B.199)

γj | • ∼ Bernoulli




ϕ
(
βj |0, σ2τ21j

)
θ

ϕ
(
βj |0, σ2τ21j

)
θ + ϕ

(
βj |0, σ2τ20j

)
(1− θ)


 , for j = 1, ..., p,(B.200)

θ| • ∼ Beta


c+

p∑

j=1

γj , d+

p∑

j=1

(1− γj)


 , for j = 1, ..., p (B.201)

where ϕ(x|m, v) is the normal density with mean m and variance v.

Narisetty et al. (2018) propose to fix the value of the prior variance parameters as τ20j =
σ̂2

10n

and τ21j = σ̂2max
(
p2.1

100n , log(n)
)

where σ̂2 is the sample variance of yi. The prior inclusion

probability θ is chosen so that Pr
(∑p

j=1 γj > K
)
= 0.1 for K = max (10, log(n)).

B.16 Spike and slab lasso

Consider the generic SSVS prior (B.192)-(B.196). Instead of fixing the prior variances τ0j and

τ1j , one could place priors on them. A hierarchical Bayes version of the spike and slab lasso

prior in Ročková and George (2014) and Bai et al. (2021)5 would correspond to placing two

5They propose an EM algorithm for estimation.
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separate Laplace densities on the components i.e.

τ20j |λ20 ∼ Exponential

(
λ20
2

)
, for j = 1, ..., p, (B.202)

τ21j |λ21 ∼ Exponential

(
λ21
2

)
, for j = 1, ..., p (B.203)

with λ0 ≫ λ1 so that the density for N(0, σ2τ20j) is the “spike” and N(0, σ2τ21j) is the “slab”.

The prior variances are updated according to

1/τ20j | • ∼ IG
(√

λ20σ
2/β2j , λ

2
0

)
, for j = 1, ..., p, (B.204)

1/τ21j | • ∼ IG
(√

λ21σ
2/β2j , λ

2
1

)
, for j = 1, ..., p (B.205)

B.17 Semiparametric spike and slab

Dunson et al. (2008) allows for simultaneous selection of important predictors and soft

clustering of predictors having similar impact on the variable of interest. This prior is a

generalization of the typical “spike and slab” priors used for Bayesian variable selection and

model averaging in the statistics literature. The coefficient β admit a prior of the form

βj ∼ πδ0(β) + (1− π)G

G ∼ DP (αG0)

G0 ∼ N(0, τ2)

G is a nonparametric density which follows a Dirichlet process with base measure G0 and

concentration parameter α. In this case the base measure G0 is Gaussian with zero mean

and variance τ2, which is the typical conjugate prior distribution used on linear regression

coefficients. Hence, this prior implies that each coefficient βj will either be restricted to 0 with

probability π, or with probability 1 − π will come from a mixture of Gaussian densities. If it

comes from a mixture of Gaussian densities, then due to a property of the Dirichlet process,

βj ’s in the same mixture component will share the same mean and the variance.

As an example, consider coefficients βj , j = 1, ..., 6 with (β1, β3) ∼ N(0, 106), (β2, β4) ∼
N(0, 0.1), and (β5, β6) ∼ δ0. In this case, (β1, β3) are clustered together and have a Gaussian

prior with variance 106 which means that their posterior mean/median will be close to the

least squares estimator. The second cluster consists of (β2, β4) which have prior variance 0.1,

hence their posterior median will be equivalent to a ridge regression estimator. Finally, (β5, β6)

are restricted to be zero.

Inference using the Gibbs sampler is straightforward, once we write the Dirichlet process

prior using its stick-breaking representation, that is, an infinite sum of point mass functions.
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The general form of the semiparametric spike and slab prior we use is of the form

βj ∼ πδ0 (β) + (1− π)G (B.206)

G ∼ DP (αG0) (B.207)

G0 ∼ N
(
µ, τ2

)
(B.208)

τ2 ∼ Inv −Gamma (a1, a2) (B.209)

α ∼ Gamma
(
ρ
1
, ρ

2

)
(B.210)

π ∼ Beta (c, d) , (B.211)

σ2 ∼ 1

σ2
, (B.212)

, where µ, a1, a2, ρ1, ρ2, c, d are parameters to be chosen by the researcher. The usual stick

breaking representation for βj conditional on β−j and marginalized over G is of the form

(
βj |β−j

)
∼ α (1− π)

α+K − pβ1 − 1
N
(
µ, τ2

)
+ πδ0 (β) +

kβ∑

l=2

pβl (1− π)

α+K − pβ1 − 1
δβl (β) (B.213)

where kβ is the number of atoms in the above equation (number of mixture components plus

the δβ (0) component), and pβn is the number of elements of the vector β which which are equal

to δβl (β), n = 1, 2, ..., kβ , where it holds that δβ1 (β) = δ0 (β). Additionally, for notational

convenience define the prior weights as

w0 =
α (1− π)

α+K − pβ1 − 1
w1 = π

wl =
pβl (1− π)

α+K − pβ1 − 1
, l = 2, ..., kβ .

Gibbs sampling from the conditional posterior:

❼ Given kβ number of mixture components, sample θ =
(
θ1, ...,θkβ

)
from

(θ|−) ∼ N (Eθ,V θ) ,

with Eθ = V θ

(
D−1M + σ−2X ′

πy
)
and V β =

(
D−1 + σ−2X ′

πXπ

)−1
, where D =

τ2Ikβ and M = µ1kβ . Here X ′
π denotes the matrix X with the columns corresponding

to coefficients belonging to θ1 being replaced with zeros (or equivalently, with these

columns removed). Hence the remaining columns correspond to unrestricted coefficients

which belong to one of the remaining kβ − 1 mixture components.
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❼ Sample βj conditional on β−j , data, and other model parameters for j = 1, ...,K from

(
βj |β−j ,−

)
∼ w0N (Eβ , Vβ) +

kβ∑

l=1

wlθl,

so that with probability wl we assign βj equal to the atom of mixture component l (i.e.

βj = θl), while with probability w0 we assign βj to a new N (Eβ , Vβ) component. In the

expression above it holds that

Eβ = Vβ
(
τ−2µ+ σ−2X ′y

)

Vβ =
(
τ−2 + σ−2X ′X

)−1
,

and that

w0 ∝
w0N

(
0;µ, τ2

)∏n
i=1N

(
ỹi; 0, σ

2
)

N (0;Eβ , Vβ)

wl ∝ wlN
(
0;µ, τ2

)∏n

i=1
N
(
ỹi;Xi,lθl, σ

2
)
, l = 1, ..., kβ ,

where ỹi = yi−
∑

j′ ̸=j Xi,j′βj′ = yi−(Xπ)i θ+Xj′,iβj′ for j, j′ = 1, ...,K, (Xπ)i is the i-th

observation of the matrix Xπ constructed in step 1, and N (a; b, c) denotes the normal

density with mean b and variance c, evaluated at observation a.

❼ Introduce an indicator variable Sβ = l if the coefficient βj belongs to cluster l, where

j = 1, ...,K and l = 1, ..., kβ , in which case it holds that βj = θl. In addition, set Sβ = 0

if βj ̸= θl, that is when βj does not belong to a preassigned cluster and a new cluster is

introduced for this coefficient. Then the conditional posterior of Sβ is

(Sβ |−) ∼Multinomial
(
0, 1, ..., kβ ;w0, w1, ..., wkβ

)
.

❼ Sample the restriction probability π from the coniditional distribution

(π|−) ∼ Beta

(
c+

∑K

j=1
I (Sβ = 1) , d+

∑K

j=1
I (Sβ ̸= 1)

)

❼ Sample the latent variable η from the posterior conditional

(η|−) ∼ Beta

(
a+ 1,K −

∑K

j=1
I (Sβ = 1)

)
.

❼ Sample the Dirichlet process precision coefficient α from the conditional posterior

(α|−) ∼ πηGamma
(
ρ
1
+ kβ − nSβ=1, ρ2 − log η

)
+

(1− πη)Gamma
(
ρ
1
+ kβ − nSβ=1 − 1, ρ

2
− log η

)
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where the weight πη is given by

πη
1− πη

=
ρ
1
+ kβ − nSβ=1 − 1

(
K −

∑K
j=1 I (Sβ = 1)

)(
ρ
2
− log η

) ,

and nSβ=1 = 1 if
∑K

j=1 I (Sβ = 1) > 0, and it is 0 otherwise (i.e. when no coefficient βj

is restricted).

❼ Sample the variance τ2 coefficient from the conditional density

(
τ2|−

)
∼ iGamma


a1 +

1

2
(kβ − 1) , a−1

2 +
1

2

kβ∑

l=2

(
θl − µ1

)2

 .
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