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Abstract

What factors determine a minority group’s extent/pattern of assimilation with the mainstream

population in a country? We study this question in a dynamic multi-generation model, and formal-

ize the sociological theory of segmented assimilation propounded by Portés and Zhou (1993). Our

key assumptions are: there exists cultural heterogeneity within a minority group, minority members

can shift their inherited culture traits to an extent, shifting culture traits closer to the mainstream

culture increases economic opportunities, benefits from being close to the dominant local culture

generate social interaction effects in minority and mainstream locations, and minority members are

motivated by short-term goals. We show that specific features of the socio-economic environment –

regarding the extent of initial culture heterogeneity among the minority, and the influence of local

social interaction effects on their payoffs – lead to segmented assimilation in the long run: In a

sequence of generations, some minority members – those born with culture traits ‘close enough’ to

the mainstream culture – move towards assimilating with the mainstream, while other members dis-

sociate from the mainstream and become more entrenched in the traditional minority sub-culture.

Such intertemporal segmentation, that arises in the absence of a minority preference for opposi-

tional identities, can impose significant costs on the entire minority group in the long-run: poverty,

inequality, and polarization. There can be hysteresis in the evolution of minority lineages. The

efficacy of a policy intervention will depend on how it impacts the minority assimilation trajectory:

an ill-timed affirmative-action policy can lower payoffs of all minority members in the long-run.
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1 Introduction

In many countries, various minority groups – minorities with respect to ethnicity, language, and

religion – reside alongside a mainstream population. Some minority members might be recent im-

migrants, others might be the progeny of immigrants who came a long time ago, and still others

might be the descendants of indigenous populations. Obvious examples include African-Americans,

Latin-Americans, and Native Americans in the US, North Africans in France, West Indians and

South Asians in the UK, Palestinians in Israel, Muslims in India, Hindus in Bangladesh and Pak-

istan, Tamils in Sri Lanka, and Aborigines in Australia. Any inquiry into the ‘evenness’ of economic

progress of a nation must look into the extent to which the country’s disparate minority communi-

ties find themselves included in (or excluded from) the development process.

There is substantial evidence that an important way for a minority community to share the fruits

of economic progress is to assimilate with the mainstream culture. Chiswick (1978) and McManus,

Gould and Welch (1983) estimate that learning the mainstream language generates better labour

market outcomes in the US; Dustmann and Fabbri (2003) and Bisin, Patacchini, Verdier, and Zenou

(2011a) find similar evidence for immigrants to European countries. Do such economic incentives

induce minorities across the world to ‘uniformly assimilate’ with the majority culture? This question

is very relevant today in light of persistent high poverty and inequality rates among many minority

populations, and the current and possible future flows of refugees to developed countries.

In the sociology literature on immigrant group dynamics in the US, the classical assimilation the-

ory of the 1920s predicted that over time, minority populations exhibit monotonic and complete

assimilation with the mainstream; see Park (1928). While empirical evidence on early European im-

migrants to the US is consistent with that theory, the history of more recent (non-white) migrants to

the US belies such a prediction of complete minority assimilation. In the late 1980s and early 1990s,

sociological studies of immigrant experiences in the US revealed that while some sections of specific

immigrant groups had indeed come closer to the mainstream, other sections of the same groups

remained significantly apart; see, for instance, Hirschman and Falcon (1985) and Gans (1992).

The sociological theory of segmented assimilation of immigrant minorities was propounded by Portés

and Zhou (1993). This theory recognizes that interaction with the mainstream can cause an im-

migrant community to fracture into multiple segments over successive generations. Some segments

(especially ones with human capital advantages) succeed in ‘assimilating upwards’ with the main-

stream, while other segments (that are socio-economically more disadvantaged) find it too costly

to do so and remain dissociated from the mainstream. In surveying studies of assimilation of the

descendants of 20th century immigrants to the US, Zhou (1997) concludes: “[We] have observed the

following possible patterns of adaptation among contemporary immigrants and their offspring: one

[pattern] replicates the time-honored portrayal of growing acculturation and parallel integration

into the white middle-class, while another leads straight into the opposite direction to permanent

poverty and assimilation into the underclass.”

It is important to recognize that the phenomenon of segmented assimilation need not be specific to

immigrant experiences. It can be reasonably claimed that many minority communities in different
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countries have experienced such segmented assimilation. Note that such segmentation is likely to

generate an intertemporal increase in socio-economic inequality within a minority group. Recent

empirical evidence suggests that this has indeed been the case with respect to income inequality

in many countries. Regarding African-Americans in the US, Nembhard, Pitts, and Mason (2005)

write: “In 1966, the Gini coefficient for African-American families [in the US] was 0.35; in 1993, the

figure had increased to 0.49. By way of comparison, the corresponding figures for white families were

0.36 and 0.41 respectively.” In the UK Report of the National Equality Panel, Hills et. al. (2010)

note that “the rise in inequality over the last forty years [in the UK] is mostly attributable to

growing inequality within social groups, however those groups are defined; differences in outcomes

between the more and less advantaged within each social group are much greater than differences

between groups.” In India, for a set of states with significant Muslim populations – Andhra Pradesh,

Assam, Bihar, Kerala, Uttar Pradesh, and West Bengal – our own calculations (based on National

Sample Survey data) show that the Gini coefficient for Muslim families in 2004-05 was 0.33 while

in 2011-12 it had increased to 0.39; the corresponding figures for Hindu families were 0.34 and 0.36.

1.1 Overview of Current Research

We study a dynamic model of minority assimilation over infinitely many generations. We identify

conditions under which the long-run trajectory of a minority community generates segmented as-

similation, and uncover socio-economic impacts of such segmentation on long-run minority welfare.

Our model is based on five key premises: (1) There is cultural heterogeneity within a minority

community, with different community members exhibiting distinct overt culture traits (dialects,

adherence to religious restrictions, social etiquette, dress codes, etc.), while no member has a

preference for ‘oppositional identity’ against the mainstream. (2) In their youth, members get

stochastic opportunities to alter their inherited overt culture traits to a limited extent. (3) Shifting

overt culture traits closer to the mainstream culture improves the chances of securing lucrative

mainstream employment. (4) There are distinct location-specific social interaction effects in the

‘minority village V’ and the ‘mainstream city C’ that include benefits from being close to the

dominant local culture. (5) Minority decision-making is predominantly guided by short-term goals

that do not take into account the impact of intra-generation decisions on descendants’ well-being.

Different kinds of long-run assimilation patterns can arise in our model: eventual ‘complete as-

similation’ of the entire minority population either in the minority village V or in the mainstream

city C, or eventual ‘segmented assimilation’ in which the minority community fractures into two

subgroups, with one residing in the village and the other in the city generation after generation. We

identify distinct sets of (minimal) sufficient conditions that guarantee the emergence of long-run

segmented-assimilation outcomes of different forms. The sufficient conditions involve specifying

rankings of a set of minority payoffs in V and in C. The conditions are quite intricate since we con-

struct them to be ‘tight’ – segmentation outcomes cannot be guaranteed to emerge in equilibrium if

any condition is relaxed. At the same time, the conditions are simple in a specific way: they have to

hold for an initial generation – once they do so, a ‘recursion property’ guarantees that they will hold

for all subsequent generations. As we clarify below, there exist particular parameter configurations
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in our model that correspond to specific structural features of the socio-economic environment –

regarding the nature of initial culture heterogeneity among the minority, and the influence of local

social interaction effects on minority payoffs – that make it likely that our stated payoff-ranking

conditions will hold and thus lead to equilibrium segmentation of the minority community.

In our model, when the minority group completely assimilates in V or in C in equilibrium, all

members have ‘very similar’ culture traits and payoffs in the long-run due to the presence of

local social-interaction effects in V and in C. In contrast, when there is equilibrium segmented

assimilation, the minority population gets partitioned into two homogenized subgroups, one in V and

the other in C, and that can impose large socio-economic costs on the community in the long run.

There can be significant payoff poverty and inequality, and there can arise substantial polarization

(à la Esteban and Ray (1994)) in culture traits and in payoffs across the entire minority population.

Along a segmented-assimilation trajectory, there can be hysteresis in the evolution of minority lin-

eages: if two members born in the same period with identical inherited culture traits in V face

different opportunity realizations, then their progeny can have very different life experiences; fur-

ther, a minority parent and her offspring, born with identical inherited culture traits in V, can have

different life outcomes – with the offspring of a mainstream-oriented minority parent becoming more

minority-focused – even when they experience identical opportunities.1 Our analysis also clarifies

that the efficacy of a policy intervention depends on the prevailing minority culture distribution in

V at the time of implementation, and the short-term and long-term impacts of a policy can be very

different as an intervention can alter the minority assimilation trajectory. Specifically, we uncover

the following policy dilemma: a well-intentioned but ill-timed affirmative action policy intervention

can lower payoffs of all minority members in the long-run, irrespective of their assimilation status.

In our study, within-minority-group culture trait heterogeneity plays a crucial role in generating

long-run segmentation of the community, and the associated adverse effects on minority welfare.

Within the minority community, we view the members’ overt culture traits – e.g., their communi-

cation/dress/religious codes – as being located at different positions in a minority culture interval.

Accordingly, we model a minority population that is distributed, in its first generation, over a set

of culture positions ‘P = {1, · · · , P}’. In P, we view the positions located more to the left to be

ones steeped in traditional culture traits farthest from the mainstream, and ones located more to

the right to be closer to the mainstream. We assume that while a minority member’s birth culture

position is determined by heredity, local social interactions in her youth (stochastically) provide

her an opportunity to culture-shift to an adjacent culture position.2

1 We note that such path dependence in minority lineages accords well with the principal theme of the Hanif

Kureishi (1994) short story My Son the Fanatic.

2 Our assumed structure of culture transmission follows that in the ‘social economics’ literature: one’s culture

traits arise partly from heredity and partly from local social interactions; see Bisin and Verdier (2011).

Regarding the altering of overt culture trait by, say, learning the mainstream language, our assumption that

a member can shift only to an adjacent culture position is intended to capture the feature that ‘acquired

mainstream language fluency’ of an offspring can be significantly constrained by her parent’s fluency.
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In this environment, each minority member in every generation faces a trade-off. If she ‘culture-

shifts right’ her chance of getting higher mainstream returns will rise; but, if she still fails to secure

a city job (which is possible), she will be left behind in the village to interact with minority peers

who, on average, will be more immersed in the traditional minority sub-culture. Then, given that

‘closeness to the dominant local culture’ matters for a V-resident, her optimal culture-shift strategy

might be fractured: “If I am born at a culture position close enough to the mainstream culture,

I will culture-shift right to improve my chance of getting higher mainstream returns. But if I am

not born that close to the mainstream, I will culture-shift left (rather than right) to stay culturally

close to those minority peers who are more likely to remain behind in the village.”

We show that such a fractured culture-shift strategy within a minority generation in V can lead to a

partitioning of the culture position set P into an entrenched culture subset – with no one culture-

shifting out of the subset and no migration to the city, and an unentrenched culture subset –

from which there will be city-migration. We then establish that along an equilibrium trajectory

of minority generations, if every intra-generation equilibrium has an entrenched culture subset while

some (or all) of these equilibria also contain unentrenched culture subsets, then the trajectory can

generate the kind of segmented assimilation outcomes that sociologists have identified. Our analysis

clarifies that when the model parameters exhibit the following features, then equilibrium segmented

assimilation is more likely to occur: (a) the ‘initial’ minority culture distribution is sufficiently right-

skewed; and (b) for a class of right-skewed culture distributions, ‘city payoffs’ of minority members

born close enough to the mainstream culture are significantly higher than their ‘village payoffs’

while the opposite is true for members born sufficiently distant from the mainstream culture.

1.2 Relation to the Literature

There is a burgeoning ‘social economics’ literature that studies the phenomenon of minority assim-

ilation with the mainstream. Our paper builds upon that literature, and aims to contribute to it.

Starting from Lazear (1999), the ‘minority assimilation’ literature has assumed that minority mem-

bers can improve their mainstream opportunities by acquiring mainstream-oriented socio-cultural

attributes (e.g., by learning the mainstream language). We maintain that assumption, and addition-

ally assume the following heterogeneity: within a generation, minority members decide on limited

culture-shifting starting from different inherited culture positions. This specification creates a map

from an inherited minority culture distribution to a distinct non-degenerate acquired-culture distri-

bution. That creates differential opportunities to different minority members regarding mainstream

returns, and thus opens up the possibility of segmented assimilation. Our specification is to be

contrasted with that in Battu, Mwale, and Zenou (2007) and related papers, in which all minority

members decide on culture-shifting from a common culture position, and so shift (if they do) to an-

other common position closer to the mainstream, thus securing identical mainstream opportunities.

The study by Battu et. al. (2007) belongs in another important strand of the social economics lit-

erature that incorporates the feature that some minority group members in different societies have

a preference for an oppositional identity vis-à-vis the mainstream, and that limits minority assimi-
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lation with the mainstream.3 We recognize the logic of this argument and the empirical evidence in

the US on the existence of identity preferences. But it is not clear to us how widespread/significant

minority preference for oppositional identity is in other parts of the world.4 Our aim is to com-

plement the extant research by clarifying that the existence of ‘oppositional identity preference’

among the minority is not necessary for the emergence of segmented assimilation.

Further, we assume that once a minority member migrates to the mainstream, her welfare depends

on her closeness to the mainstream culture in C, and is unaffected by her ‘culture distance’ from her

minority peers who have stayed back in V. While minority members in Cmight indeed have residual

social connections with their ‘kin’ in V, we focus on the case where such ties are insignificant.5

This modeling choice distinguishes our study from those in which minority members care about

the (cultural) location of all their peers, either because minority interaction benefits are global (as

in Akerlof (1997)), or because members moving to the mainstream are affected by the resentment

of their left-behind peers (as in Austen-Smith and Fryer (2005)).

In a recent paper, Sato and Zenou (2020) study minority assimilation in a static model, where there

is minority preference heterogeneity over the relative benefit of income vis-a-vis the cost of shift-

ing from one’s ‘culture of origin’. Given that, the authors establish the possibility of a ‘mixed social

identity equilibrium’ in which some minority members assimilate with the mainstream while others

do not.6 Our paper complements this research by proving the existence of dynamic equilibrium as-

similation paths that generate minority segmentation over generations, when all minority members

have identical preferences. Specifically, we show how minority assimilation trajectories leading to

long-run segmented assimilation – along with their adverse consequences for the well-being of the

entire minority community – can arise not due to heterogeneity in minority preferences, but due to

heterogeneity in initial conditions and subsequent opportunities of different minority members.

The rest of our paper is organized as follows. Section 2 presents the model. Existence of an intra-

generation social interactions equilibrium – when agents care about neighbors’ culture traits and

take discrete sequential decisions under uncertainty – is established in Section 3. In Section 4, we

3 In the literature, papers that study minority assimilation given preference for oppositional identity include

Battu and Zenou (2010), Bisin, Patacchini, Verdier, and Zenou (2011a, 2016), and Panebianco (2014);

papers that explain emergence of minority oppositional identity preference as an equilibrium outcome

include Akerlof (1997), Austen-Smith and Fryer (2005), and Bisin, Patacchini, Verdier, and Zenou (2011b).

4 In the US, a large empirical literature finds evidence for the phenomenon of ‘aversion to acting White’ – the

resentment of African-American youth toward those African-Americans moving toward the White culture;

see, for instance, Fordham and Ogbu (1986) and Fryer and Torelli (2010). But the extent of resentment

against ‘acting White’ possibly differs across different ethnic groups even in the US; a New York Times

article on 22 May 2014 reported that more Hispanics are declaring themselves as Whites in the US.

5 In fact, minority members in the city might have incentives to break ‘village kinship ties’ so as to be free

of kin-transfer obligations and thus be able to secure higher mainstream payoffs; see Hoff and Sen (2006).

6 Another important aim of the Sato-Zenou analysis is to study the impact of urban city structures on

minority assimilation choices. That is an issue that we do not address. We also do not study the impact of

cultural leaders or of social networks on minority assimilation decisions; see Verdier and Zenou (2017, 2018).
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run simulations on a set of parametric examples, and define alternative assimilation trajectories.

Minimal sufficient conditions for the existence of equilibrium segmented-assimilation trajectories are

identified in Section 5. In Section 6, we study the adverse consequences of segmented assimilation

on minority welfare. We conclude in Section 7 by discussing the sensitivity of our results to some

specific features of our model. All formal proofs are presented in Appendices A and B.

2 Minority and the Mainstream: A Model

There are two locations: a minority village V, and a mainstream city C. We study the inter-

generational evolution of ‘overt culture traits’ and ‘livelihood locations’ of members of a minority

community (whose first generation is born in V), when, in every generation, the V-born minority

members receive two kinds of stochastic opportunities: an opportunity to alter inherited cultural

traits to a limited extent, and a subsequent opportunity to migrate to a higher-paying city-job.

2.1 Minority Culture-shift and Migration Decisions over Generations

The first minority generation, consisting of a continuum of members of measure one, is born in V

in period 1. The members differ in the degree of their adherence to minority norms and traditions,

and this is reflected in distinguishable ‘overt culture traits’: dialects, social etiquette, dress codes,

observance of religious edicts, etc.. We take P = {1, · · · , P} (for some P ≥ 2) to be the set of mi-

nority culture positions, and µ
0
= {µ0(1), · · · , µ0(P )} to be the initial minority culture distribution

in V in period 1. We assume that initially a strictly positive measure of members µ0(p)>0 is born

at every p ∈ P, and consider every position p to be ‘more steeped in minority culture’ than p+ 1.

In the first generation, and in every subsequent generation, each minority member born at every

culture position p in V gets a chance – with probability σ ∈ (0, 1) – to culture-shift to any ‘adjacent

feasible culture position’ (i.e., either to max{1, p − 1} or to min{p + 1, P}). When she gets this

chance, a member might want to culture-shift to improve her mainstream opportunities and/or

to be closer to the dominant local culture in her livelihood-location (these conflicting objectives

are clarified below). Culture-shift decisions made by the V-residents, before they start working,

generate the acquired culture distribution µa
1
= {µa1(1), · · · , µ

a
1(P )} in V in generation/period 1.7

We now describe the relation between the minority and the mainstream. At the beginning of

period 1, C is populated entirely by a large mainstream population, which we assume (only for

simplicity) to be culturally homogeneous at the common mainstream culture position Pmain > P .

In period 1, after the V-born minority have made their culture-shift choices, each member located

at every acquired position p ∈ P in V receives a city job offer (that pays higher wages than a village

job) with probability g(p) ∈ (0, 1). The mainstream access vector G := (g(1), · · · , g(P )), with

7 The terms ‘generation t’ and ‘period t’, for t ≥ 1, will be used interchangeably in what follows. Further,

the acquired culture position of a minority member will refer to her position after she has executed her

culture-shift decision given her opportunity; for a person who does not get the opportunity or chooses not

to culture-shift, her inherited culture position will be her acquired position.
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0 < g(1) ≤ g(2) ≤ · · · ≤ g(P ) < 1, states the probabilities with which minority members situated at

different acquired culture positions in V get city job offers; G assumes that city access is more likely

for those who are ‘culturally closer’ to the mainstream. When she gets a city offer, a member decides

whether to migrate to C ‘carrying her acquired culture position’, or to stay back in V (where a village

job is always available). The trade-off arises from the fact that in addition to wages, a member cares

about her net social-interaction benefits in her final ‘livelihood location’; in Section 2.2, we specify

these benefits in V and in C. In period 1, minority migration generates the final culture distribution

of the minority population that stays back in V: µ
1
= {µ1(1), · · · , µ1(P )}, and the minority culture

distribution in C: κ1 = {κ1(1), · · · , κ1(P )}, κ1(p) being the measure of members at acquired

position p who migrate to C.8 After period 1 migration, minority residents in V and C get employed

and receive wages; the wages and the social interaction benefits in their ‘livelihood locations’ (where

they live and work) determine the members’ payoffs V (·) in V and C(·) in C; see Section 2.2.

The evolution of the minority group over generations occurs as follows. Each member lives for one

period, and before her death, gives birth to one offspring who is born in her parent’s livelihood-

location at her parent’s acquired culture position. Thus, in period 2, the second generation of

minority members born in V has µ
1
as its inherited culture distribution. Then these members get

similar opportunities as their parents; their culture-shift choices lead to the acquired culture dis-

tribution µa
2
, and their responses to city offers determine the final culture distribution µ

2
in V of

the members who stay behind in V and the culture distribution of the period 2 migrants to C.

In C in period 2, the minority have κ1 as their inherited culture distribution. We posit that a

minority member born in C at some p < P in any period always gets a chance to ‘culture-shift right’

to p+ 1.9 In C, culture-shifting right is induced by the gains from being closer to the mainstream

culture; see Section 2.2. This culture-shifting is followed by migration of new members from V;

taken together, these movements determine the final culture distribution κ2 in C in period 2.

In periods t = 3, 4, 5, · · · , successive minority generations experience the same chain of events in

their lifetimes. In every period t ≥ 2: µ
t−1

and κt−1 are the initial culture distributions of members

born in V and C respectively. Culture-shift decisions then generate acquired culture distributions

µa
t
in V and κat in C, and migration decisions generate final culture distributions µ

t
in V and κt in

C. Recognize that along a feasible outcome trajectory {µ
t
, κt}, population measures in V and in

C (denoted subsequently by m[µ
t
] and m[κt]) will add up to 1 in every period t.

Our model assumes that no minority member born in C can reverse migrate to V. In Section 5.2, we

identify conditions under which no reverse-migration incentives will exist along equilibrium paths.

In Section 7, we briefly discuss the robustness of our results with regard to two other model features:

8 For the continuum of members born at any culture position p in V, the law of large numbers imply that a

fraction σ of them will get the chance to culture-shift. Analogously, for every p ∈ P, a fraction g(p) of the

minority population measure situated at acquired culture position p in V will get a city job offer.

9 It is plausible to assume that the chance to culture-shift will be much higher than σ in C, as local

interactions will provide minority children in C greater opportunities to shift toward the mainstream. Our

central results will be unaffected even if the C shift-probability is less than 1; but see footnote 34.
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(a) inability of minority members to culture-shift globally and jump over multiple culture positions,

and (b) inability of members to bemulti-cultural and occupy multiple culture positions concurrently.

2.2 Minority Payoffs in the Village and in the City

For any culture distribution µ on P, we define the following measures: m[p |µ] :=
∑p

p′=1 µ(p
′) and

m[µ] := m[P |µ]. We then define the culture distribution sets: ∆+ := {µ ∈ RP++ : m[µ] ≤ 1},

and ∆+[µ] := {µ′ ∈ ∆+ : m[µ′] ≤ m[µ]}. Given our specification that µ
0
∈ ∆+ with m[µ

0
] = 1,

recognize that if µ
t−1

is the inherited culture distribution in some generation t, then the inherited

culture distribution µ
t
in the next generation t+ 1 must belong in ∆+[µt−1

].10

We now define village payoffs. In any generation, if µ is the final culture distribution in V, we posit

that post migration, the payoff to a V-resident situated at culture position p will be:

V (p |µ) := w + b
(
m[µ], d(p, µ)

)
,

where w>0 is the village wage rate, and b
(
m[µ], d(p, µ)

)
is the social-interaction benefit at p. We

posit that b(·, ·) at p depends positively on the measure m[µ] of V-residents, and negatively on the

p-resident’s aggregate culture distance from all V peers given by the culture distance measure d(p, µ):

d(p, µ) :=

(
1

P − 1

)
.
P∑

p′=1

[|p− p′| · µ(p′)].11

We assume that for any µ and µ′ of equal measure m ∈ (0, 1], and for any p ∈ P, b
(
m, d(p, µ)

)
>

b
(
m, d(p, µ′)

)
if and only if d(p, µ) < d(p, µ′). Regarding the impact of a change in V population,

in size and/or distribution, on b(·, ·), we assume that the following dominance condition [D] holds.

[D]: For 1≥m̃>m>0, b(m̃, d) > b(m, d) for all d ∈(0, 1]; and for {µ, µ̃}∈∆+, if µ̃(p
′′) > µ(p′) for

some p′′∈P and µ̃(p′) = µ(p′) for all other p′∈P, then b(m[µ̃], d(p, µ̃)) ≥ b(m[µ], d(p, µ)) for all p∈P.

[D] requires the impact of V’s population-size on b(·, ·) to be positive and to dominate the negative

impact of culture dispersion in V, so that starting from any µ in V, if more minority members are

‘added’ to V given unchanged culture-positions of the original members, then interaction benefits

to the original members go up; see a parametric representation of b(·, ·) in Section 4.1. Since

d(p, µ) = 0 for all p when m[µ] = 0, [D] ensures that if m[µ] > 0 then b
(
m[µ], d(p, µ)

)
≥ b(0, 0).

Our assumptions thus imply that b(0, 0) is the smallest value and b(1, 0) is the largest value of b(·, ·).

Next, we define minority city-payoffs. Let µ and κ be the final culture distributions of the minority

sub-populations in V and in C in some period, with m[µ]+m[κ] = 1. We posit that post migration,

10 As σ < 1, and g(p) < 1 and µ0(p) > 0 for all p ∈ P, µt(p) will be strictly positive for all p ∈ P and t ≥ 1;

further, as there can be no reverse-migration, m[µ
t
] will be no larger than m[µ

t−1
] for all t ≥ 1.

11 The term
(

1
P−1

)
in d(., .) normalizes the distance measure with respect to the number of culture position

in P, ensuring that d(p, µ) ∈ [0, 1]. We study the case where d(., .) is linear in |p − p′| because it is not

obvious to us whether considering a concave or a convex distance measure would be more appropriate. We

note, however, that our central results will remain valid for any d(., .) that is arbitrarily close to being linear.
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payoff to a minority C-resident at position p (defined in terms of µ, rather than in terms of κ) will be:

C(p |µ) := [w +Π(p)] + [a(1−m[µ])− Γ(p)].

Here, [w+Π(p)] is the city-wage that includes a ‘city-premium’ Π(p) > 0, and [a(1−m[µ])−Γ(p)] is

the net social-interaction benefit for a minority C-resident situated at p. We posit that interaction

effects in C arise from two sources: a minority C-resident enjoys interaction benefit of a(m[κ]) ≡

a(1−m[µ]) > 0 from minority co-residents in C (independent of their culture distribution in C), but

incurs a discrimination cost Γ(p) > 0 due to her distance from the mainstream culture Pmain > P .

We assume that the ‘city wage premium net of discrimination costs’ [Π(·)−Γ(·)] is strictly increasing

in p, and the ‘minority complementarity effect’ a(·) is strictly increasing in m[κ].12

Our posited city payoff structure implies that each C-born minority member will culture-shift right

from every birth-position p < P to raise received wages and to reduce discrimination. Thus, when

studying a generational equilibrium in any period, we will take as given this culture-shift behaviour

of the C-minority, and focus only on the culture-shift and migration decisions of the V-minority.

2.3 Equilibria within and across Minority Generations

We assume that minority members have short-term (within-generation) goals – they ignore the im-

pact of their decisions on their progeny. Below, we describe the implications of such ‘short-termism’

for generational minority decision-making; we then discuss our reasons for assuming short-termism.

A minority member born in V in period t will observe her generation’s inherited µ
t–1

, and form

a conjecture µe
t
about the final culture distribution in V.13 Given µe

t
, the expected-utility maxi-

mizing member will then determine her feasible sequentially-optimal decision rule: she will identify

her optimal migration decision from all feasible acquired culture positions, and then backward-

induct her optimal culture-shift decision. Under a commonly-held conjecture µe
t
, the collection of

sequentially-optimal decision rules of all V-born minority in period t will constitute a sequentially-

optimal decision profile for generation t. Every such decision profile will map the generation’s

inherited distribution µ
t–1

to a unique final culture distribution µ
t
under a common conjecture µe

t
.

We define an intra-generation equilibrium outcome for a minority generation t in terms of the final

culture distribution in V. Given inherited µ
t−1

in period t ≥ 1, µ∗
t
will be an intra-generation

(rational-expectations) equilibrium outcome if: (a) the V-born minority in period t, given short-

term goals, pursue a sequentially-optimal decision profile X∗
t under the common conjecture µ∗

t
; and

(b) X∗
t generates µ∗

t
(from µ

t−1
) as the final culture distribution in V. Starting from µ

0
, we will

call an infinite sequence of such equilibrium outcomes {µ∗
t
: t ≥ 1 |µ

0
} an equilibrium trajectory if

12 Our ‘minority complementarity in C’ assumption (that a′(·) > 0) is similar to that in Sato and Zenou

(2020). We assume that ‘within-minority culture dispersion’ is ignored by the C-minority as that is vastly

dominated by culture heterogeneity between the mainstream and the minority in C.

13 When a member observes µ
t–1

, she also learns the measure of the minority population (1−m[µ
t–1

]) born

in C, and µe

t
also includes her conjecture about the final minority population (1−m[µe

t
]) in C.
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µ∗
t
is an intra-generation equilibrium outcome given inherited µ∗

t−1
in every period t ≥ 1.14

The assumption of minority short-termism greatly simplifies our analysis by ensuring that the only

inter-generational link that exists in our model is the following: for all t ≥ 1, minority decisions

period in t determine the inherited culture distributions in V and C in period t+1. But we assume

minority short-termism also for an additional reason. To explain that, we clarify that our analysis

will be carried out under the assumption that the following payoff-ranking condition [R] holds.

[R]: Vmax≡w+b(1, 0) > Cmin≡ w+Π(1)−Γ(1)+a(0); Cmax≡w+Π(P )−Γ(P )+a(1) > Vmin≡w+b(0, 0).

[R] requires the minimum C-payoff Cmin to be below the maximum V-payoff Vmax (since other-

wise all V-born minority will always prefer to migrate), and the minimum V-payoff Vmin to be

below the maximum C-payoff Cmax (since otherwise all V-born minority will always prefer to stay

back). Given that, recognize that if each minority member in every period cares predominantly

and sufficiently about the generational welfare of her distant progeny, then the following will be

true: If Cmax > Vmax (respectively, if Vmax > Cmax), there will exist an equilibrium trajectory in

which everyone born in V in every period will prefer to migrate to C (respectively, to culture-shift

towards some common culture position p̄ in V). This equilibrium trajectory – which will generate

the long-run outcome in which the minority population will be completely assimilated at P in C

(respectively, completely assimilated at p̄ in V) – will Pareto-dominate all other equilibrium tra-

jectories, with individual minority payoffs attaining the optimum optimorum level in the long-run.

Thus, if we focused on Pareto-dominant equilibrium trajectories, we would conclude that minority

members’ concerns about descendant welfare induce the community either to get ‘fully assimilated’

with the mainstream or to get ‘fully homogenized’ in the minority village in the long-run. Without

denying real-world progeny concerns, we aim to explore the consequences of decision-making by

successive minority generations when members have significantly shorter-term objectives.15

3 Existence of Intra-generation Equilibria

In this section, we prove that at least one intra-generation equilibrium exists in every period t ≥ 1,

given inherited distribution µ
t−1

∈ ∆+. To establish existence, we need to find a culture distribu-

14 In any period t, an intra-generation equilibrium outcome for the minority population spread across V and

C needs to be described by a vector {µ∗

t
, κ∗t }. But given that apart from µ∗

t
, onlym[κ∗t ] = 1−m[µ∗

t
] matters

for decision-making, each generation’s equilibrium outcome can indeed be adequately represented by µ∗

t
.

We will thus use the sequence {µ∗

t
: t ≥ 1 |µ

0
} to represent an (intertemporal) equilibrium trajectory.

Further, as is well understood, there can be multiple (rational-expectations) equilibrium outcomes in any

given generation – disparate individual expectations of aggregate behaviors can be self-fulfilling prophecies;

as a result, many equilibrium trajectories can arise from a particular initial culture distribution.

15 We note that our current results will continue to hold when minority parents care about their children’s

payoffs to a limited extent; see footnote 21 indicating the robustness of our simulation results in this regard.

Also note that minority short-termism can generate reverse-migration incentives: ‘(t+ n)th generation C-

born progeny’ of a ‘period t-born C-migrant’ may want to reverse-migrate to V depending on how the ‘left

behind culture distribution’ in V evolved over the intervening n periods; we study this issue in Section 5.2.
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tion µ∗
t
that maps onto itself when V-residents make their optimal decisions under the conjecture

µ∗
t
(starting from µ

t−1
). This exercise is complicated by the fact that the agents’ decisions are

sequential and their choice spaces are discrete. Our analysis clarifies that equilibrium existence

can be guaranteed for each generation by requiring specific fractions of the minority population to

make distinct choices precisely when they are indifferent between those choices.

We begin by describing feasible and sequentially optimal decision rules of a minority member either

born at or (after culture-shifting) situated at some p ∈ P in V. Within a generation, a feasible

decision rule χp at p will be specified as follows (where Sn := {x ∈ Rn
+ :

∑
n

k=1
xk ≤ 1} is the

n-dimensional unit simplex): χp = {χSp = (χSLp , χSRp ) ∈ S2;χMp ∈ S1}, where χSLp (respectively,

χSRp ) is the probability with which a member born at p will culture-shift left (respectively, right),

and χMp is the probability with which a member situated at acquired position p will migrate to C.16

To identify optimal decisions of an expected-utility maximizing member, we define U∗(p |µe) to be

the maximal expected payoff of a member situated at acquired p in V under conjecture µe:

U∗(p |µe) := [1− g(p)].V (p |µe) + [g(p)].max{V (p |µe), C(p |µe)}.

Under µe, it will be sequentially optimal for a member born at p′ to act as follows: if given the chance

to culture-shift then situate at any p ∈ {max{1, p′ − 1}, p′,min{P, p′ + 1}} for which U∗(p |µe) is

maximal, and then if given the chance, migrate if (resp., only if) C(p |µe) > (resp., ≥) V (p |µe).

In order to state a (symmetric) sequentially-optimal decision rule χ̄p(.) ≡ {χ̄Sp (.); χ̄
M
p (.)}, we need

to specify a vector of fractions: ϕ
p
≡ (ϕlsp , ϕ

rs
p , ϕ

lr
p , ϕ

l
p, ϕ

r
p) ∈ [0, 1]3 × S2, and a scalar ψp ∈ [0, 1],

such that a member’s culture-shift and/or migration will occur with a specific probability when she

is indifferent. While the optimal decision rule χ̄p(.) for p ∈ P is fully stated in Appendix A, it

is easy to see its structure for every p ∈ P, given {V (p |µe), C(p |µe), U∗(p |µe)}. For instance, if

U∗(p − 1 |µe) > max{U∗(p |µe), U∗(p + 1 |µe)} then χ̄SLp (µe |ϕ
p
) = 1 and χ̄SRp (µe |ϕ

p
) = 0, while

if U∗(p− 1 |µe) = U∗(p |µe) = U∗(p+ 1 |µe) then χ̄SLp (µe |ϕ
p
) = ϕlp and χ̄SRp (µe |ϕ

p
) = ϕrp; and if

C(p |µe) > V (p |µe) then χ̄Mp (µe |ψp) = 1, while if C(p |µe) = V (p |µe) then χ̄Mp (µe |ψp) = ψp.

We define ϕ ≡ (ϕ
1
, · · · , ϕ

P
) with ϕ

p
≡ (ϕlsp , ϕ

rs
p , ϕ

lr
p , ϕ

l
p, ϕ

r
p) for all p ∈ P, and ψ ≡ (ψ1, · · · , ψP ).

We let Φ denote the set of all feasible sets of fraction vectors ϕ and Ψ denote the set of all feasible

sets of fractions ψ. For a selected ϕ ∈ Φ and ψ ∈ Ψ, χ̄p(µ |ϕp, ψp) ≡ (χ̄Sp (µ |ϕp); χ̄
M
p (µ |ψp)) will

be the unique sequentially-optimal decision rule relevant for culture position p in V in a generation

under the conjecture µ.17 Collection of these decision-rules will constitute the optimal migration

profile Z̄(µ |ϕ) and the sequentially optimal culture-shift profile Ȳ (µ |ψ); taken together, they will

constitute the unique sequentially optimal decision profile X̄(µ |ϕ, ψ) = (Ȳ (µ |ϕ), Z̄(µ |ψ)) under

16 Here, (1− χSL
p − χSR

p ) (respectively, (1− χM
p )) will be the probability with which a member born at p in

V will not culture-shift (respectively, a member situated at acquired p will stay back in V).

17 We clarify that starting from µi, under a conjecture µ, if measure mp members are born at p and are

indifferent between culture-shifting left and not shifting, then χ̄LS(.) will specify that [ϕls
p .σ] fraction of mp

will shift left; and if measure ma
p members are situated at acquired p and are indifferent between migrating

and staying back, then χ̄M (.) will specify that [ψp.g(p)] fraction of ma
p will migrate; etc..
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µ for the V-minority in that generation. X̄(µ |ϕ, ψ) will generate a unique final culture distribution

µf (µ, µi, ϕ, ψ) ≡
(
µf (1 |µ, µi, ϕ, ψ), · · · , µf (P |µ, µi, ϕ, ψ)

)
, where µf (p |µ, µi, ϕ, ψ) is the measure

of minority members who will be finally situated at p in V in the generational equilibrium.18

Before stating the equilibrium existence result, we present a thought experiment that captures

its logic. In a period t given inherited µ
t−1

, a Walrasian auctioneer announces a conjecture µ
t
′

about the final culture distribution in V and asks the V-born to report their sequentially-optimal

decisions under µ
t
′. Once they do so, the auctioneer chooses fraction sets {ϕ, ψ} that are used to split

the total measures of those V-members who are indifferent between (subsets of) discrete actions.

Starting from µ
t−1

, the members’ decisions and the assigned fractions generate a unique final

culture distribution µ
t
. If µ

t
equals µ

t
′, then an equilibrium is identified. If not, the auctioneer

chooses a different set of ‘splitting fractions’ ϕ̃ ∈ Φ and ψ̃ ∈ Ψ (keeping the announced conjecture µ
t
′

unchanged) and repeats the process. If no set of feasible splitting fractions lead to a fixed point given

µ
t
′, then the auctioneer announces a different conjecture µ

t
′′ and repeats the process. Theorem 3.1

below assures us that the auctioneer will eventually succeed in finding a fixed point.

Formally, we fix a generation and its inherited distribution µi ∈ ∆+
1 and note that a culture distribu-

tion µ∗ will be an equilibrium outcome if and only if for every p ∈ P, µ∗(p) equals µf(p |µ∗, µi, ϕ, ψ)

for some ϕ ∈ Φ and ψ ∈ Ψ. We have the following existence result, whose proof is in Appendix A.

Theorem 3.1. For µi ∈ ∆+, let ∆
† be a non-empty, convex, compact subset of ∆+[µ

i]. Define a

correspondence Mf (· |µi) on the domain ∆† by Mf (µ |µi) ≡
{
µf (µ, µi, ϕ, ψ) : ϕ ∈ Φ, ψ ∈ Ψ

}
. If

Mf (µ |µi) ⊆ ∆† for all µ ∈ ∆† given µi, then Mf (· |µi) has a fixed point in ∆†.

Note that ∆+[µ
i] is a non-empty, convex, compact set, and Mf (µ |µi) ⊆ ∆+[µ

i] for all µ ∈ ∆+[µ
i].

So, if we take ∆† = ∆+[µ
i] in Theorem 3.1 then Mf (· |µi) will have a fixed point in ∆+[µ

i] which

will be an intra-generation equilibrium. We thus have the following corollary.

Corollary 3.2. For every minority generation t ≥ 1, with an inherited culture distribution µ
t−1

∈

∆+, there exists an intra-generation equilibrium µ∗
t
(µ
t−1

) ∈ ∆+[µt−1
].

The above results might be of independent interest in the context of research on equilibrium exis-

tence in social interactions models (see Brock and Durlauf (2001), Horst and Scheinkman (2006),

and the references therein) where agents care about characteristics distributions and actions of neigh-

bours, and take sequential decisions under uncertainty on a discrete choice set over multiple stages.

4 Long-run Assimilation Patterns

In this section, we run simulations on a set of parametric examples that satisfy our model specifica-

tions (including [D] and [R]). In different simulation regimes, we identify equilibrium trajectories

18 The distribution µf arises from the composition of the culture-shift profile Ȳ (µ |ϕ) and the migration

profile Z̄(µ |ψ): Ȳ (µ |ϕ) maps µi to a unique acquired culture distribution µa and Z̄(µe |ψ) maps µa to µf .
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that exhibit distinct long-run outcomes. We use these findings to motivate our definitions of al-

ternative ‘assimilation trajectories’. We then highlight some important features of intra-generation

equilibria in our model that are instrumental in generating distinct long-run assimilation patterns.

4.1 Equilibrium Trajectories: Definitions and Simulations

For P ≥ 2, we define E [P ] to be the set of parametric examples [E] that contain the following

functional forms for V and C payoffs, and satisfy the following parameter restrictions:

[E1] V (p |µ) = w +
β.m[µ]

1+λ.d(p,µ) , with w > 0, β > 0, and λ > 0;

[E2] C(p |µ) = w + [δ + θ.p] + α.(1−m[µ]), with θ > 0 and α > 0; and

[E3] (i) λ ≤ 1, (ii) δ + θ < β < δ + Pθ + α, (iii) λ < θ.

[E1] and [E2] impose specific functional forms for social-interaction effects in the village and in the

city, with b
(
m[µ], d(p, µ)

)
=

β.m[µ]

1+λ.d(p,µ) , [Π(p) − Γ(p)] = [δ + θ.p], and a(m[κ]) = α.(m[κ]). [E3(i)]

guarantees [D], and [E3(ii)] implies that [R] holds with Cmax > Vmax. Finally, [E3(iii)] ensures

that the following global preference-monotonicity condition [P] holds in every [E]∈ E [P ].

[P]: For all µ ∈ ∆+ and for all p ∈ P, the payoff difference [C(p|µ)− V (p|µ)] increases in p.

Condition [P] states that if a member situated at any acquired culture position p ∈ P prefers to

migrate to C (respectively, to stay back in V) then all members situated at acquired positions p′ > p

(respectively, p′′ < p) will also prefer to migrate (respectively, to stay back). While we will assume

a condition weaker than [P] when presenting our central ‘assimilation results’ in Sections 5 – 6, we

will derive additional results about equilibrium trajectories when [P] holds.

We run simulations on parametric examples [E] belonging in the set E [P=3]. To that end, we define

a set of feasible intra-generation decision profiles that specify preferred culture-shift and migration

decisions of minority members (i.e., those decisions that they will take when they get the relevant

opportunities) in V from every position p = 1, 2, 3. [See Figure 1.]

Figure 1: Minority Decision Profiles DP(I), DP(II.2), and DP(III)

: prefer not to culture-shift, : prefer to culture-shift, : prefer not to migrate, : prefer to migrate

1 2 3p =

DP(I)

1 2 3p =

DP(II.2)

1 2 3p =

DP(III)

Profile DP(I) : members born at culture positions 1 and 3 prefer to culture-shift toward position 2,

while those born at position 2 prefer not to culture-shift; and no one prefers to migrate to C.

Profile DP(II.q) : members born at position 1 (respectively, position 2) prefer to culture-shift

toward position 2 (respectively, position 3), while those born at position 3 prefer not to shift; and

only those members situated at acquired position p ≥ q, for q = 1, 2, 3, prefer to migrate to C.
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Profile DP(III) : members born at 1 and 3 prefer to culture-shift toward position 2, while those

born at 2 do not prefer to shift; and only those situated at acquired position 3 prefer to migrate.

Next, we define the following trajectories of intra-generation outcomes in V:

Trajectory TA : In all periods t ≥ 1, the intra-generation outcome in V is generated by DP(I).

Trajectory TB(t1, t2) : In each of the periods {1, · · · , t1}, the intra-generation outcome in V is

generated by DP(II.3); in each of the periods {t1+1, · · · , t2}, the outcome is generated by DP(II.2);

and in all periods after t2, the outcome is generated by DP(II.1).19

Trajectory TC : In all periods t ≥ 1, the intra-generation outcome in V is generated by DP(III).

Our first set of simulations study a case where there is no equilibrium migration. The following

parameter values constitute our Simulation Regime [1]: α = 1.4, β = 4, δ = −0.9, λ = 0.5, θ = 1.2,

σ = 0.3, and G = {0.1, 0.3, 0.5}; and a ‘symmetric’ initial culture distribution µ
[1]
0 = {0.3, 0.4, 0.3}

(there is no need to specify a numerical value for w in our simulations). In Regime [1], trajectory TA

is an equilibrium outcome trajectory, while TB(·) and TC are not. Along TA, all minority members

stay back in V in every period, and come ‘culturally closer’ to each other over generations. Beyond

the 60th period, position 2 in V is the livelihood-location of (almost) all minority members in every

period, each of whom receive payoff arbitrarily close to Vmax=w+4. We view the long-run outcome

generated by TA as one of ‘complete assimilation in V’.

Our second set of simulations identify a case where the entire minority population ‘eventually

resides’ in C. From Regime [1], we go to Simulation Regime [2] by making only the following

changes: we set β = 3 and δ = −0.8 (to achieve a uniform fall in the V-payoff level and a

uniform rise in the C-payoff level); and take a ‘more left-skewed’ initial culture distribution: µ
[2]
0 =

{0.15, 0.45, 0.4}. In Regime [2], TB(1,2) is an equilibrium outcome trajectory, while TA and TC

are not. Along trajectory TB(1,2), in every period, all minority members in V culture-shift right

and some migrate to C, and this leads to ‘complete assimilation in C’. Beyond the 50th period,

position 3 in C is the birth-position and livelihood-location of (almost) all minority members in every

generation, each of whom receive payoff arbitrarily close to Cmax = w+4.2. We note that TB(0,1) is

also an equilibrium trajectory in Regime [2], and generates the same long-run outcome as TB(1,2).

In our third set of simulations, the minority group does not completely assimilate in any one

location. We create Simulation Regime [3] by setting β = 3.5 (which is intermediate to β-values in

Regimes [1] and [2]), and by setting δ = −1 and θ = 1.3 (thereby making the C-payoff rise more

steeply in p as compared to that in Regimes [1] and [2]); and take an initial culture distribution

that is ‘right-skewed’: µ
[3]
0 = {0.4, 0.5, 0.1}. In Regime [3], TC is an equilibrium outcome trajectory,

while TA and TB(·) are not. Along TC, in every period, all members born in V prefer to culture-

shift to position 2 (thereby coming culturally closer), while those situated in acquired position 3

19 TB(0, t) will refer to the trajectory: In periods {1, · · · , t}, the intra-generation outcome in V is generated

by DP(II.2), and in all periods after t, the outcome in V is generated by DP(II.1); and TB(0, 0) will refer

to the trajectory: In all periods t ≥ 1, the outcome in V is generated by DP(II.1).
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prefer to migrate.20 In every period beyond the 50th, about 94.6% of all minority members are

born at and live at position 2 in V, each getting payoff close to w + 3.312; and about 5.4% of all

members are born at and live at position 3 in C, each getting payoff close to w+2.975. We identify

this long-run outcome as one of ‘segmented assimilation’ of the minority group across V and C.

Formally, we will say that an equilibrium trajectory {µ∗
t
: t ≥ 1|µ

0
} generates complete assimilation

in V (respectively, complete assimilation in C) if, for any ε > 0 however small, there exists finite

t(ε) ≥ 1 such that m[µ∗
τ
] < ε (respectively, m[µ∗

τ
] ∈ (1− ε, 1)) in all periods τ ≥ t(ε). In contrast,

we will say an equilibrium trajectory {µ∗
t
: t ≥ 1|µ

0
} generates segmented assimilation if there

exists some η ∈ (0, 1) such that for all ε > 0 (however small) there exists a finite t(ε) > 0 such that

m[µ∗
τ
] ∈ (η − ε, η + ε) in all periods τ ≥ t(ε) (with the rest of the minority group in C).

Table 1: Minority Payoffs under the ‘static conjecture’ in Simulation Regimes [1], [2], and [3]

regimes

positions

µ
0

C(p |µ
0
)

V (p |µ
0
)

U∗(p |µ
0
)

Regime [1]

1 2 3

0.3 0.4 0.3

0.3 1.5 2.7

3.2 3.49 3.2

3.2 3.49 3.2

Regime [2]

1 2 3

0.15 0.45 0.4

0.4 1.6 2.8

2.29 2.64 2.54

2.29 2.64 2.67

Regime [3]

1 2 3

0.4 0.5 0.1

0.3 1.6 2.9

2.79 3.11 2.63

2.79 3.11 2.77

In our simulations, the structure of µ
0
, and of the payoff functions in V and in C, play important

roles in generating specific equilibrium assimilation patterns. Table 1 presents the city, village, and

expected payoffs of a minority member in Regimes [1] – [3], for different acquired culture position

and under the ‘static conjecture’ that all members will stay at their birth-positions in V under µ
0
.

Note that µ
[3]
0 is significantly more right-skewed than µ

[1]
0 and µ

[2]
0 ; C(p |µ

[3]
0 ) rises more steeply in

p as compared to C(p |µ
[1]
0 ) and C(p |µ

[2]
0 ); and while the V-payoff peaks at the median position ‘2’

in all three regimes, V (3 |µ
0
) < V (1 |µ

0
) only in Regime [3]. Thus, in Regime [3], for the smaller

culture positions, the V-payoff dominates the C-payoff more than in Regime [2]; while for the larger

culture positions, the C-payoff dominates the V-payoff in contrast to Regime [1]. As a result, if

a first-generation member made decisions holding the static conjecture, in Regime [1] she would

prefer to act according to DP(I), in Regime [2] she would prefer to act according to DP(II.3), and in

Regime [3] she would prefer to act according to DP(III). The structural differences in the parameter

regimes – that generate these distinct preferences – are crucial in determining whether or not there

will be segmented assimilation in the long run; we will confirm this intuition in Section 5.4.21

20 This clarifies that a minority member can optimally decide to act as follows along an equilibrium trajectory:

“If I get opportunities to culture-shift and to migrate then I will move away from the mainstream culture

and stay back in V, but if I get a chance only to migrate then I will move to C”.

21 The equilibrium trajectories TA in Regime [1], TB(1, 2) and TB(0, 1) in Regime [2], and TC in Regime [3]

have the following property: if each member in V makes decisions to maximize {own payoff + (ν×child’s

payoff)}, then there exists ν̄ ∈ (0, 1) such that for all ν < ν̄, they remain equilibrium trajectories. Further,
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In Regime [3], TC leads to a long-run outcome in which individual payoffs of the minority sub-

populations in V and in C are less than min{Vmax, Cmax}. This shows that minority decision-making

with short-term goals can give rise to a dynamic dilemma: in the long run, each member’s payoff

(irrespective of her location) can be worse than what she would get if all members fully assimilated

either in V or in C. Further, under TC in Regime [3], the minority culture and payoff distributions

limit to two-point distributions. We will confirm in Section 6.1 that segmented assimilation can

generate significant poverty, inequality, and polarization across the entire minority population.

4.2 Entrenched Culture Sets and Median Culture Positions

We now present the notions of ‘entrenched culture sets’ and ‘median culture positions’ of minority

(sub-)populations that will be central to our analysis of minority assimilation trajectories.

In a generation, we will say that a set of culture positions {p′, · · · , p′′} ⊂ P is an entrenched culture

set under some µ ∈ ∆+ if the following conditions hold when members hold the conjecture µ: [1] no

member born at any p ∈ {p′, · · · , p′′} in V prefers to culture-shift out of {p′, · · · , p′′} (members

born outside {p′, · · · , p′′} can prefer to culture-shift into it), and [2] no member situated at any

acquired position p ∈ {p′, · · · , p′′} in V prefers to migrate. In contrast, we will say that a position p̃

is unentrenched under µ in a generation if p̃ does not belong in any entrenched culture set under µ.

We will say that an intra-generation equilibrium outcome is fully-entrenched (respectively, wholly-

unentrenched) if in that outcome, entire culture set P is entrenched (respectively, each p in P is un-

entrenched). In contrast, we will say that an equilibrium outcome µ∗ is fractured if in that outcome,

P can be partitioned into two non-empty sets P∗
E and P∗

U such that under µ∗, P∗
E is an entrenched

set while each p ∈ P∗
U is unentrenched. Further, we will say that an equilibrium outcome µ∗ is

fractured at p∗E if: p∗E < P , the set {1, · · · , p∗E} is entrenched, and all p > p∗E are unentrenched.22

Note that an equilibrium trajectory will generate complete assimilation in V if and only if every

intra-generation equilibrium outcome is fully-entrenched, as is the case for TA in Regime [1]. Alter-

natively, if every intra-generation equilibrium outcome is wholly-unentrenched along an equilibrium

trajectory beyond some finite period τ ≥ 1, then it will lead to complete assimilation in C, as is

the case for TB(1, 2) in Regime [2] for τ = 1. In contrast, the segmented-assimilation equilibrium

trajectory TC in Regime [3] contains a fractured equilibrium in every period. We will say that

an equilibrium trajectory {µ∗
t
: t ≥ 1 |µ

0
} exhibits incessant fracture from period τ (respectively,

perpetual fracture) if µ∗
t
is fractured for all t ≥ τ (respectively, for all t ≥ 1).

We clarify, via our next simulation, that incessant fracture in an equilibrium trajectory, while

sufficient for generating segmented assimilation, is not necessary. We create Simulation Regime [4]

by changing only the following parameters in Regime [3]: β = 3.55, θ = 1.2, andG = {0.1, 0.3, 0.45},

as we will explain in Section 5.2, there is no reverse-migration incentive along these trajectories.

22 In a fractured equilibrium, multiple entrenched culture sets can exist (some subsets of others) with P∗
E

being the largest entrenched set, and there must be migration from some p ∈ P∗
U . Further, P

∗
E must be of

the ‘contiguous’ form {1, · · · , p∗E} whenever the preference-monotonicity condition [P] holds. Along TC

in Regime [3], each generational equilibrium is fractured at ‘2’, with {1, 2} and {2} being entrenched sets.
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and setting µ
[4]
0 = µ

[3]
0 . In Regime [4], the following trajectory TD is an equilibrium trajectory:

“The V-population follows the decision profile DP(III) in periods t = 1, 2, 3; and follows DP(I)

forever after”. Along TD, the first three generational equilibria are fractured while all subsequent

ones are fully-entrenched, and that is enough to generate segmented assimilation, with 4.83% of the

minority population in C and the rest in V in the long run.

Next, we study the properties of certain median culture positions of a minority generation in V.

For µ ∈ ∆+ and p > 1, we let M(p |µ) (respectively, M(µ)) be the set of median positions of

the culture subset {1, · · · , p} (respectively, of P), and define r̂(p |µ) to be the minimal element of

the set {r ∈ {1, · · · , p} : m[r |µ] > 1
2m[p |µ]}. By construction, we have the following result: if

m[(r̂(p |µ)−1)|µ] < 1
2m[p |µ] then M(p |µ) = {r̂(p |µ)}, while if m[(r̂(p |µ)−1)|µ] = 1

2m[p |µ] then

M(p |µ) = {r̂(p |µ)− 1, r̂(p |µ)}.23 We let p̂(µ) := r̂(P |µ), and let q̂(µ) denote the smaller element

of the median position set M(p̂(µ) |µ). Note that if µ is an intra-generation equilibrium outcome,

then p̂(µ) will be the ‘larger’ median culture position in V in that outcome; while q̂(µ), satisfying

1 ≤ q̂(µ) ≤ p̂(µ), will be the ‘smaller’ median culture position of the sub-population situated in the

subset {1, · · · , p̂(µ)}. In our Simulation Regimes [1], [2], and [3], p̂(µ
[k]
0 ) = q̂(µ

[k]
0 ) = 2 for k = 1, 2, 3.

Our next result clarifies the influence of median culture positions on minority payoffs. The proof

of Lemma 4.1, and proofs all subsequent results in Sections 5–6, are contained in Appendix B.

Lemma 4.1. For any µ ∈ ∆+, if pm ∈ M(µ) then b(m[µ], d(pm, µ)) > b(m[µ], d(p′, µ)) for all

p′ /∈ M(µ). Further, [C(p |µ)− V (p |µ)] strictly increases in p for all p ≥ pm.

Lemma 4.1 proves that in a generation, when members conjecture µ to be the final culture distribu-

tion in V, the social-interaction benefits in V will be maximal for those who stay back at a median

culture position pm ∈ M(µ). The lemma also assures us that even if the model parameters are such

that global preference monotonicity [P] fails to hold, the following ‘partial preference monotonicity

condition’ will always hold in our model: if, under a conjecture µ, a member situated at some

p ≥ p̂(µ) prefers to migrate (respectively, not to migrate) to C, then members situated at every

p′ > p (respectively, p′ ∈ {p̂(µ), · · · , (p− 1)}) will prefer to migrate (respectively, not to migrate).

5 Segmented Assimilation: Possibility Results

In our model, different kinds of assimilation patterns can emerge as long-run equilibrium outcomes

under alternative parameter configurations. Note that in the different simulation regimes in Section

4.1, there exist distinct equilibrium trajectories that generate complete assimilation either in V or

in C, or segmented assimilation. Our aim, now, is to delineate sufficient conditions for the existence

of different forms of equilibrium trajectories all of which generate segmented assimilation.24

In Section 5.1, we delineate conditions that guarantee the existence of a fractured equilibrium in a

single generation. In Section 5.2, we find sufficient conditions for the existence of an equilibrium

23 As equilibrium {µ∗

t
} arise endogenously, we cannot claim that M(µ∗

t
) will be generically unique for all t.

24 Distinct sufficient conditions for the existence of equilibrium trajectories that generate complete assimi-

lation in V and in C are available from the authors.
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trajectory that exhibits incessant fracture from a specific period. We then identify, in Section 5.3,

minimal sufficient conditions for the existence of an equilibrium trajectory that leads to segmented

assimilation. In each case, the sufficient conditions – that need to hold in one specific generation

– specify a set of rankings of V- and C-payoffs at a particular culture position under a specific

conjecture about the final culture distribution in V. In Section 5.4, we clarify that there exist

parameter configurations in our model that conform to a set of well-defined features – which we

denote as Feature Set [∗] – that make it likely that all stated payoff-ranking conditions will hold,

thus guaranteeing that long-run segmentation of the minority group will be an equilibrium outcome.

5.1 Equilibrium Fracture in a Generation

When [D] and [R] hold, we look for conditions that guarantee that in a specific period, given the

inherited culture distribution, there will exist an equilibrium whose outcome is fractured.

Define ∆̂+ (respectively, ∆̂+[µ]) to be the set of all culture distributions µ′ ∈ ∆+ (respectively, µ′ ∈

∆+[µ]) for which p̂(µ
′) < P .25 For an inherited µi ∈ ∆̂+, define XF (µi) to be the set of all feasible

decision profiles in V that satisfy the following properties: (a) the culture-subset {1, · · · , p̂(µi)−

1} is entrenched, and within it {q̂(µi), · · · , p̂(µi)} is also entrenched, while all members born in

{1, · · · , q̂(µi) − 1} (if that set is non-empty) prefer to culture-shift toward q̂(µi), and (b) at least

measure [g(P ).(1 − σ).µi(P )] of minority members migrate from acquired position P . Letting

∆F (µi) ⊂ ∆̂+ be the set of culture distributions generated from µi by all decision profiles in XF (µi),

we define the following feasible decision profiles XF1(µi) and XF2(µi) belonging in XF (µi):

XF1(µi) ≡members born at all p ∈ {1, · · · , p̂(µi)} prefer to culture-shift toward q̂(µi) and stay back

in V; members born at all p′ ∈ {p̂(µi) + 1, · · · , P} prefer to culture-shift toward P and migrate;

XF2(µi) ≡ members born at all p ∈ {1, · · · , p̂(µi)} (resp. p′ ∈ {p̂(µi) + 1, · · · , P}) prefer to

culture-shift toward p̂(µi) (resp., P ); and g(P ).(1− σ).µi(P ) measure of members migrate from P .

Proposition 5.1. Define the following three conditions for a given µi ∈ ∆̂+:

[F0]: For all p < p̂(µi), [V (p |µ)− C(p |µ)] ≥ [V (q̂(µi) |µ)− C(q̂(µi) |µ)] for all µ ∈ ∆F (µi);26

[F1]: V (p̂(µi) |µF1(µi)) ≥ C(p̂(µi) + 1 |µF1(µi)), for µF1(µi) uniquely generated by XF1(µi);

[F2]: V (P |µF2(µi)) ≤ C(P |µF2(µi)), for µF2(µi) uniquely generated by XF2(µi).

In a generation with inherited µi ∈ ∆̂+, if [F0], [F1], and [F2] hold then there exists an equilibrium

outcome µ∗ ∈ ∆F (µi) that is fractured at some culture position p∗E ≥ p̂(µi).

Proposition 5.1 asserts that in a generation, if conditions [F0], [F1], and [F2] hold for an inherited

µi ∈ ∆̂+, then there exists a fractured equilibrium containing an entrenched set of ‘low culture po-

25 Thus, it is required that in each culture distribution in ∆̂+ and ∆̂+[µ], at least half the measure of the

V-population be born at positions to the left of P . In what follows, we will focus on inherited culture

distributions that are more right-skewed, with median culture position(s) being ‘sufficiently close’ to 1.

26 Condition [F0], and condition [L0] defined in the statement of Proposition 5.2 in Section 5.2, are weaker

than the global preference-monotonicity condition [P], and will necessarily hold if [P] holds.
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sitions’ {1, · · · , p∗E} and a migrant set (i.e., a set of acquired culture positions from which migration

occurs) of ‘high culture positions’ {p∗M , · · · , P}, with p̂(µ
i) ≤ p∗E < p∗M ≤ P .

To understand Proposition 5.1, recognize that Lemma 4.1 implies that all µ ∈ ∆F (µi) will be

fractured at some pE(µ) ≥ p̂(µi). Let µc ∈ ∆F (µi) be the common conjecture of the V-born minority

in some generation. Note that V (p̂(µi) |µc) > V (p̂(µi) + 1 |µc) since m[p̂(µi) |µc] > 0.5m[µc].

Among all conjectures in ∆F (µi), µF1(µi) is the best conjecture for someone considering migrating

from [p̂(µi) + 1] and the worst conjecture for someone considering staying back at p̂(µi); thus

V (p̂(µi) |µc) ≥ V (p̂(µi) |µF1(µi)) and C(p̂(µi) + 1 |µc) ≤ C(p̂(µi) + 1 |µF1(µi)), implying that

when [F1] holds a member born at p̂(µi) in V will prefer to stay back in V within the culture set

{1, · · · , p̂(µi)} under µc. Then, under µc, [F0] ensures that no one situated in {1, · · · , p̂(µi)−1} will

prefer to migrate to C; all members born in {1, · · · , q̂(µi)− 1} will prefer to culture-shift right; and

those born in q̂(µi) will not prefer to culture-shift left (since m[q̂(µi)− 1 |µc] < 0.5m[µc]). Further,

µF2(µi) is the worst conjecture in ∆F (µi) for someone considering migrating from P and the best

conjecture for someone considering staying back; thus V (P |µc) ≤ V (P |µF2(µi)) while C(P |µc) ≥

C(P |µF2(µi)), implying that a member at acquired position P will prefer to migrate when [F2]

holds. For the above reasons, {[F0], [F1], [F2]} ensure that if µ∗ is the final culture distribution in V

generated by an optimal decision profile X∗(µi) given conjecture µc ∈ ∆F (µi), then µ∗ ∈ ∆F (µi).27

Theorem 3.1 then ensures the existence of a fractured equilibrium in the generation.

Our subsequent results on assimilation patterns will build on the logic of Proposition 5.1. Specif-

ically, to prove the existence of different forms of segmented-assimilation equilibrium trajectories,

we will look for conditions under which, starting from a period τ , the culture set {1, · · · , p̂(µ
τ−1

)}

will remain entrenched in the continuation equilibrium trajectory while culture position P will be

unentrenched in a non-empty set of periods, precisely when V-residents hold such conjectures.

5.2 Equilibrium Trajectories with Incessant Fracture

We now look for sufficient conditions for there to exist an equilibrium trajectory that exhibits

incessant fracture from some period τ ≥ 1 onward. Recall the decision profiles XF1(·) and XF2(·).

Note that starting from a period t with inherited µi ∈ ∆̂+, if the V-born members act according to

XF1(µi) in every period from t, then in the limit, the progeny of those born in {q̂(µi), · · · , p̂(µi)}

(respectively, in {(p̂(µi) + 1), · · · , P}) will be situated at q̂(µi) in V (respectively, at P in C).

Alternatively, if the V-born members act according to XF2(µi) forever after from t, then in the

limit, the progeny of those born in {q̂(µi), · · · , p̂(µi)} will be situated at p̂(µi) in V, the culture set

{(p̂(µi)+ 1), · · · , (P − 1)} will be ‘empty’, and the measure of the minority population in C will be

27 Note that if [F0] does not hold for some µ ∈ ∆F (µi) it cannot be guaranteed that there will not exist

‘migration preference’ from some p < p̂(µi); if [F1] does not hold for µF1(µi) it cannot be guaranteed

that there will not exist ‘rightward culture-shift preference’ from p̂(µi); and if [F2] does not hold for

µF2(µi) it cannot be guaranteed that there will exist ‘migration preference’ from P . It is in this sense

that conditions {[F0], [F1], [F2]} in Proposition 5.1 are ‘tight’. It is precisely in this sense that the

corresponding conditions specified in Propositions 5.2 – 5.4 are also ‘tight’.
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at least [g(P ).(1− σ).µi(P )]. Given that, we define the following infeasible decision profiles:28

XL1(µi) ≡ each member born at every p ∈ {1, · · · , (q̂(µi) − 1)} culture-shifts one position toward

q̂(µi) with σ probability and stays back in V; ‘all’ members born at every p ∈ {q̂(µi), · · · , p̂(µi)} go

to q̂(µi) ‘in one jump’ and stay back in V; ‘all’ members born in {(p̂(µi) + 1), · · · , P} migrate.

XL2(µi) ≡ ‘all’ born in {1, · · · , p̂(µi)} go to p̂(µi) ‘in one jump’; ‘all’ born in {(p̂(µi) + 1), · · · , P}

go to P ‘in one jump’; and the measure g(P ).(1− σ).µi(P ) of minority members migrate from P .

Then defining ∆FL(µi) (for µi ∈ ∆̂+) to be the set of all infeasible culture distributions in which

at least the measure m[p̂(µi)|µi] of members are situated in {q̂(µi), · · · , p̂(µi)} in V and at least

measure (1− σ)g(P )µi(P ) of members reside in C, we have the following result.

Proposition 5.2. Define the following three conditions for a given µi ∈ ∆̂+:

[L0]: For all µ ∈ ∆FL(µi), [V (p |µ)− C(p |µ)] ≥ [V (q̂(µi) |µ)− C(q̂(µi) |µ)] ∀ p < q̂(µi);

[L1]: V (p̂(µi) |µL1(µi)) ≥ C((p̂(µi) + 1) |µL1(µi)), for µL1(µi) uniquely generated by XL1(µi);

[L2]: V (P |µL2(µi)) ≤ C(P |µL2(µi)), for µL2(µi) uniquely generated by XL2(µi).

Suppose there exists an equilibrium trajectory {µ∗
t
: t ≥ 1 | µ

0
} such that in a finite period τ ≥ 1

with inherited µ∗
τ−1

(which equals µ
0
if τ = 1): µ∗

τ−1
∈ ∆̂+, and [L0], [L1], and [L2] hold for

µi = µ∗
τ−1

. Then there exists an equilibrium trajectory {µ†
t
: t ≥ 1 | µ0} (with µ†

t
= µ∗

t
∀ t < τ) that

exhibits incessant fracture from period τ , with µ†
t
fractured at some p†t ≥ p̂(µ

τ−1
) for all t ≥ τ .

Proposition 5.2 presents a set of payoff-ranking conditions under which an equilibrium trajectory

exhibits incessant fracture beyond some period τ for the following reasons. Note that conditions

[L0], [L1], and [L2] – which are modifications of [F0], [F1], and [F2] – are devised by considering

the ‘limit outcomes’ when V-born members act according to XF1(·) and XF2(·) in every period

t ≥ τ . Thus, in period τ with inherited µ∗
τ−1

, if {[L0], [L1], [L2]} hold for µ∗
τ−1

, then, for similar

reasons as in Proposition 5.1, the optimal decision profile under a conjecture in ∆F (µ∗
τ−1

) generates

a final culture distribution in ∆F (µ∗
τ−1

). By Theorem 3.1, that guarantees the existence of a period τ

equilibrium outcome µ†
τ
that is fractured at some p†τ ≥ p̂(µ∗

τ−1
). Then the following recursion result

holds in period τ+1: a set of conditions ‘similar’ to {[L0], [L1], [L2]} hold for µ†
τ
, and that ensures

the existence of an equilibrium outcome µ†
τ+1

that is fractured at some p†τ+1 ≥ p̂(µ∗
τ−1

). Such a

recursion result then continues to hold in every subsequent period, thus guaranteeing the existence

of an equilibrium trajectory that exhibits incessant fracture.29 Of course, if {[L0], [L1], [L2]} hold

for µi = µ
0
, then there exists an equilibrium trajectory exhibiting perpetual fracture (in all t ≥ 1).

Note that even when the initial minority culture distribution µ
0
satisfies [L0], [L1], and [L2],

Proposition 5.2 – while guaranteeing the existence of a perpetually-fractured equilibrium trajectory

28 Decision profiles XL1(·) and XL2(·) (and XS(µi) in Section 5.3) are infeasible because: requiring ‘all’

to culture-shift in V requires setting σ = 1; requiring members to go to some p ‘in one jump’ requires

culture-shifting over many positions; and requiring ‘all’ to migrate from some p requires setting g(p) = 1.

29 [L0] (which is a weaker condition than [F0]), and [L1] and [L2] (which are stronger than [F1] and [F2]),

are the precise modifications of [F0], [F1], and [F2] that ensure that these recursion results hold.
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– does not predict precisely how the minority population will be ‘split’ between V and C in the

long run. Our next result shows that if µ
0
satisfies a stronger set of conditions, then a perpetually-

fractured equilibrium trajectory will exist in which the long-run measures of the minority sub-

populations in V and C will be m[p̂(µ
0
) |µ

0
] and (1−m[p̂(µ

0
) |µ

0
]) respectively.

Proposition 5.3. Suppose that the initial culture distribution µ
0
∈ ∆̂+ satisfies: 1 ≤ p̂(µ

0
) ≤ P−2,

conditions [L0] and [L1], and the following conditions [L3] and [L4]:

[L3]: For infeasible two-point distribution µ[L3](µ
0
) := {p̂(µ

0
), p̂(µ

0
) + 2; m[p̂(µ

0
) |µ

0
]}, it is the

case that C(p̂(µ
0
) + 2 |µ[L3](µ

0
)) ≥ V (p̂(µ

0
) + 2 |µ[L3](µ

0
));30

[L4]: For the infeasible distribution µ[L4](µ
0
) := {p̂(µ

0
), p̂(µ

0
) + 1; m̂(µ

0
) + σµ0(p̂(µ0)+1)} and

for the infeasible one-point distribution µ[L5](µ
0
) := {q̂(µ

0
); m̂(µ

0
)}, it is the case that

g(p̂(µ
0
)+2).C(p̂(µ

0
)+2 |µ[L4](µ

0
))+(1−g(p̂(µ

0
)+2)).V (p̂(µ

0
)+2 |µ[L5](µ

0
)) > V (p̂(µ

0
) |µ[L4](µ

0
)).

Then there exists an equilibrium trajectory {µ‡
t
: t ≥ 1|µ

0
} with µ‡

t
fractured at p̂(µ

0
) for all t ≥ 1.

To understand Proposition 5.3, note the following implications of Lemma 4.1. A generational

equilibrium µ∗, given inherited µi, will be fractured at some p∗E satisfying p̂(µi) ≤ p∗E ≤ P − 2 only

if the following preference conditions hold: [PR1] a member situated at acquired position p∗E + 2

prefers to migrate, and [PR2] a member born at p∗E+1 prefers either to culture-shift to p∗E+2, or to

migrate from p∗E +1, or both.31 Now note that as in Proposition 5.2, the satisfaction of conditions

[L0] and [L1] by µ
0
ensures that there exists an equilibrium trajectory {µ‡

t
: t ≥ 1} in which the

culture set {1, · · · , p̂(µ
0
)} is entrenched in every period t ≥ 1. Then the stated payoff-ranking

conditions [L3] and [L4] imply that in the period 1 equilibrium µ‡
1
, conditions [PR1] and [PR2] are

satisfied for p∗E = p̂(µ
0
), thus ensuring that µ‡

1
is fractured at p̂(µ

0
).32 Next, take any period τ ≥ 2

and assume that µ‡
t
is fractured at p̂(µ

0
) in every period t = 1, · · · , τ − 1. Then conditions [L3]

and [L4] (which hold for µ
0
) imply that µ‡

τ
is fractured at p̂(µ

0
). Thus, there exists an equilibrium

trajectory {µ‡
t
: t ≥ 1} in which every generational equilibrium outcome is fractured at p̂(µ

0
).

In Section 6.1 we will make use of Proposition 5.3 to study the extent of polarization in the minority

population that a segmented-assimilation trajectory will generate in the long run. Below, we clarify

how the proposition helps in identifying scenarios in which there will be no equilibrium minority

incentive for reverse migration from C to V, even when such migration is permitted.

We recognize that in any period τ with final V-distribution µ
τ
, a C-born minority member situated

30 Here {p, q;m} denotes a two-point distribution in which m measure of minority are located at p and

(1−m) measure at q in V; and {r;m′} is a one-point distribution with m′ measure of minority at r in V.

31 If µ∗ is fractured at p∗E for p̂(µi) ≤ p∗E ≤ P − 2, then by Lemma 4.1, if there is no migration preference

at p∗E + 2, there will be none at p∗E + 1, and then one born at p∗E + 1 will prefer to culture-shift left. If

there is migration preference at p∗E +2, and if one born at p∗E +1 prefers neither to culture-shift right nor

to migrate, then {1, · · · , p∗E + 1} must be entrenched. In either case, µ∗ cannot be fractured at p∗E .

32 Note that for any conjecture µe that is fractured at p̂(µ
0
), C(p̂(µ

0
) + 2 |µe) ≥ C(p̂(µ

0
) + 2 |µ[Lk](µ

0
))

for k = 3, 4, V (p̂(µ
0
) + 2 |µ[L3](µ

0
)) ≥ V (p̂(µ

0
) + 2 |µe), V (p̂(µ

0
) + 2 |µe) ≥ V (p̂(µ

0
) + 2 |µ[L5](µ

0
)), and

V (p̂(µ
0
) |µ[L4](µ

0
)) ≥ V (p̂(µ

0
) |µe).
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at an acquired p will prefer to reverse-migrate if and only if C(p |, µ
τ
) < [w+ ρ.b

(
m[µ

τ
], d(p, µ

τ
)
)
],

where ρ ∈ (0, 1] is the fraction of the social-interactions benefit in V that a C-born minority

member will get if she returns to V.33 Given that, suppose there exists an equilibrium trajectory

{µ∗∗
t

: t ≥ 1|µ
0
} in the ‘model that does not permit reverse-migration’ that satisfies the following

monotonicity in migration condition: “if there is migration from V to C from some p ∈ P in some

period τ , then there is migration from min{p+ 1, P} in every period t > τ”. It is clear that for all

ρ ∈ (0, 1], {µ∗∗
t

: t ≥ 1|µ
0
} will also be an equilibrium trajectory when reverse migration is allowed

(as the conjecture that no one will reverse-migrate will be self-fulfilling). Note further that every

equilibrium perpetual-fracture trajectory {µ†
t
: t ≥ 1|µ

0
} in which the generational ‘fracture point’

p†t is non-increasing in t will satisfy the stated monotonicity condition. In particular, the trajectory

{µ‡
t
: t ≥ 1|µ

0
} in Proposition 5.3 satisfies the monotonicity condition, and consequently, for any

ρ ∈ (0, 1] it will remain an equilibrium trajectory even when reverse-migration is allowed.34

We want to emphasize that even if an equilibrium trajectory in our ‘no reverse migration model’

does not satisfy the monotonicity-in-migration condition, it can still be an equilibrium trajectory

when reverse-migration is permitted, so long as the magnitude of ρ is small. In our Simulation

Regime [4], this is the case for the equilibrium trajectory TD. Along TD, beyond period 3, the C-

born minority at culture position 3 will want to reverse-migrate to V if they are assured of enjoying

the same social interactions benefit as those born in V. Our simulation results show that if the

reverse-migrants are to receive anything less than 90% of the social interactions benefit b(·, ·), then

there will exist no incentive to reverse-migrate in any generation along TD.

Of course, equilibrium trajectory TD in Regime [4] also reminds us that there can exist segmented-

equilibrium trajectories in our model that do not exhibit incessant fracture. Given that, in the

next subsection we look for weaker sufficient conditions for the existence of such trajectories.

5.3 Minimal Sufficient Conditions for Segmented Assimilation

Note that an equilibrium trajectory will generate segmented assimilation if, along the trajectory,

not all generational equilibria are fully-entrenched and not infinitely-many generational equilibria

are wholly-unentrenched. Recognizing that, our next result presents condition [S] – that is weaker

than [L2] in specific scenarios as indicated below – which, along with [L0] and [L1], ensures that

given an initial distribution µ
0
, there will exist an equilibrium segmented-assimilation trajectory.

Proposition 5.4. Define the following condition for a given µi ∈ ∆̂+:

33 It will be quite plausible to assume that ρ is less than 1, since a city-born minority returnee will likely

enjoy lesser social-interaction benefits in V as compared to a minority member born in V.

34 The claim regarding {µ‡

t
: t ≥ 1|µ

0
} is true as we have assumed that C-born minority can always culture-

shift right; thus, if a parent situated at some p migrated in period t, her offspring will be in min{p+1, P} in

C in period t+1. If the culture-shift probability in C is less than 1, then to ensure ‘no reverse migration’,

we will need to assume either a stronger monotonicity-in-migration condition where ‘min{p + 1, P}’ is

replaced by ‘p’, or a ρ that is ‘sufficiently’ small. In our simulations, the identified equilibrium trajectories

in Simulations Regime [1] – [3] satisfy the stronger monotonicity-in-migration condition.
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[S]: V (P |µS(µi)) < C(P |µS(µi)) for the infeasible one-point distribution µS(µi) ≡ {p̂(µi); 1}.

Suppose there exists an equilibrium trajectory {µ∗
t
: t ≥ 1 | µ

0
} such that in a finite period τ ≥ 1

with inherited µ∗
τ−1

(which equals µ
0
if τ = 1): µ∗

τ−1
∈ ∆̂+, and [L0], [L1], and either [L2] or

[S] (or both) hold for µi = µ∗
τ−1

. Then there exists an equilibrium trajectory {µS
t
: t ≥ 1 | µ0}

(with µS
t
= µ∗

t
for t < τ) that generates segmented assimilation, with the long-run measure of the

minority population in V being at least m[p̂(µ∗
τ−1

) | µ∗
τ−1

].

Recognize that when (a) there are many culture positions in P, (b) the initial culture distribution

µ
0
is sufficiently right-skewed (so that p̂(µ

0
) is ‘close enough’ to 1), and (c) [g(P ).(1 − σ).µ0(P )]

is small, condition [S] is weaker than [L2] in that there can exist an equilibrium trajectory {µ∗
t
:

t ≥ 1 | µ
0
} such that [S] holds for the equilibrium inherited µ∗

τ−1
in some period τ even though

no generational equilibrium µ∗
t
satisfies [L2]. When that is the case, if µ∗

τ−1
also satisfies [L0] and

[L1], then Proposition 5.2 implies that there exists a continuation equilibrium trajectory {µ∗∗
t

: t ≥

τ | µ∗
τ−1

} from period τ onward in which {1, · · · , p̂(µ∗
τ−1

)} is an entrenched culture set in every intra-

generation equilibrium µ∗∗
t

for t ≥ τ . Note that if µ∗∗
t′

is not fully-entrenched in some period t′ ≥ τ

then {µ∗∗
t

: t ≥ τ | µ∗
τ−1

} generates segmented assimilation, while if µ∗∗
t′

is fully-entrenched then all

V-residents born in {p̂(µ∗
τ−1

)+1, · · · , P} must culture-shift left in period t′. Then the fact that [S]

holds for µ∗
τ−1

rules out the possibility that every generational equilibrium in {µ∗∗
t

: t ≥ τ | µ∗
τ−1

}

will be fully-entrenched. That is because [S] ensures that if, along an equilibrium trajectory,

there exists a sequence of fully-entrenched intra-generation equilibria in which all V-residents born

in {p̂(µ∗
τ−1

)+ 1, · · · , P} culture-shift left, then that sequence will necessarily be followed by a

fractured intra-generation equilibrium (with migration from P ). The conclusion of Proposition 5.4

then follows. Note that the result requires only a ‘one time check’ of whether the model parameters

satisfy {[L0], [L1], [S]} for the ‘initial’ distribution µ∗
τ−1

.

The conditions in Proposition 5.4 are not necessary for equilibrium segmented-assimilation trajec-

tories to exist, as is shown by the equilibrium trajectory TD in Simulation Regime [4] which violates

both [L2] and [S].35 Given that, we now establish that our stated sufficient conditions are minimal

in the following specific sense: there exist particular model parameter regimes, that satisfy our

maintained assumptions as well as condition [P], in which an equilibrium segmented-assimilation

trajectory will exist if and only if the initial µ
o
satisfies conditions [L1] and [S]. Recall the set

of parametric examples [E] ∈ E [P ] described in Section 4.1, and note that since each [E] ∈ E [P ]

satisfies condition [P] it also satisfies [L0]. For this class of models, we have the following result.

Proposition 5.5. Consider a model [E] ∈ E [P=2]. There exists a positive measurable set of values

of the parameter set {w,α, β, λ, δ, θ, σ,G;µ
0
} of [E] such that if either [L1] or [S] is violated, then

there does not exist an equilibrium trajectory that generates segmented assimilation.

Proposition 5.5 clarifies the sense in which conditions [L1] and [S] are minimal sufficient conditions

35 Our stated sufficient conditions are indeed tight, in that if the conditions are relaxed then existence of

equilibrium segmentation cannot be guaranteed. But we cannot claim in general that if a set of sufficient

conditions fail to hold, that will imply non-existence of an equilibrium segmented-assimilation trajectory.
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for the existence of equilibrium segmented-assimilation trajectories. Its proof establishes that in

a model [E] ∈ E [P=2], there exist parameter values such that if [L1] (respectively, [S]) is violated

then all equilibrium trajectories will generate complete assimilation in C (respectively, in V).

5.4 Model Structures for Segmented Assimilation

In Sections 5.2 – 5.3, we have identified specific sets of payoff-ranking conditions that are (mini-

mally) sufficient for the existence of intra- and inter-generational equilibria that generate segmented

assimilation in general, and incessant fracture in particular. Drawing upon the intuition gained

from our simulations in Section 4.1, we now clarify that there exist particular parameter structures

in our model that will ensure the satisfaction of those payoff ranking conditions, given that the

rankings need to be guaranteed only for a specific ‘initial generation’. To that end, we define the

following ‘feature set’ – that we denote as Feature Set [∗] – of our model.

Feature Set [∗]: The initial culture distribution µ
0
is sufficiently right-skewed, with p̂(µ

0
) much

closer to culture position 1 than to P . For all µ ∈ ∆+, C(p |µ) rises steeply in p, with C(1 |µ)

taking a low value and C(P |µ) taking a high value. For all sufficiently right-skewed µ ∈ ∆̂+ that

have m[µ] ≥ 0.5, V (p |µ) is single-peaked achieving a maximum at a p′ close to 1, and V (P |µ) is

significantly smaller than V (1 |µ), so that the following is true: V (p |µ) is sufficiently larger than

C(p |µ) for all p ≤ p̂(µ) while the opposite is true for all p close to P . [See Figure 2.]

Figure 2: Models structures that do / do not conform to Feature Set [∗]

: µ0, : C(p |µ0), : V (p |µ0)

P1 2 3

Panel A: conforms to [∗]

P1 2 3

Panel B: does not conform to [∗]

Recognize that [L0] and [L1] are likely to be satisfied for µ
0
when p̂(µ

0
) is close to 1, C(p |µ

0
)

rises steeply in p, and V (p |µ
0
) is sufficiently larger than C(p |µ

0
) for all p ∈ {1, · · · , p̂(µ

0
)}.36

Further, [L2] as well as [S] are likely to be satisfied for a sufficiently right-skewed µ
0
when C(p|µ

0
)

36 Rewriting [L0] as: [C(q̂(µi)|µi) − C(p|µi)] ≥ [V (q̂(µi)|µi) − V (p|µi)] for all p < q̂(µi), note that LHS is

likely to be larger than RHS for µi = µ
0
when C(p|µ

0
) rises steeply in p and q̂(µ

0
) (≤ p̂(µ

0
)) is close to 1.
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is substantially bigger than V (p|µ
0
) for p close to P . These observations allow us to conclude

that when our model structure conforms to Feature Set [∗], long-run segmentation of the minority

population – with or without perpetual / incessant fracture – will likely be an equilibrium outcome.

6 Dilemmas of Segmented Assimilation

In this section, we focus on three features of equilibrium segmented-assimilation trajectories: (a) the

impact of segmentation on long-run minority payoff-poverty, inequality, and polarization; (b) the

possibility of hysteresis in the evolution of minority lineages, and (c) the possibility of adverse

impact of affirmative-action policies on minority welfare in the long-run.

6.1 Poverty, Inequality, and Polarization

Our simulations have shown that along an equilibrium segmented-assimilation trajectory – viz.

trajectory TC in Regime [3] – minority decisions over generations can lead to a long-run scenario

in which each member’s payoff (irrespective of her location) is less than min{Vmax, Cmax}.
37 To

further explore the issue of long-run minority payoff poverty under segmentation, suppose that

Cmax > Vmax, and consider a segmented-assimilation trajectory that generates a long-run outcome

in which mS ∈ (0, 1) measure of minority members remain V-residents. Defining m̃ > 0 as the

measure of V-residents that satisfies: b(1, 0) = Π(P )−Γ(P )+a(1−m̃), note that ifmS ∈ (m̃, 1), then

the limit payoff to every minority member in V and in C will be lower than Vmax.
38 Alternatively, if

mS ∈ (0, m̃) then there will certainly be payoff-inequality in the long run with C-residents getting

higher payoffs than V-residents, and this long-run payoff-inequality will be greater the smaller ismS .

Under any complete-assimilation outcome, the entire minority population will get substantially ho-

mogenized in terms of overt culture traits and payoffs, and that can be beneficial for them in many

socio-economic scenarios. In contrast, a segmented-assimilation outcome can generate significant

polarization across the minority population in V and C – with respect to culture traits, and con-

comitantly with respect to payoffs – if the equilibrium trajectory limits to ‘two-point distributions’

(as do the trajectories TC and TD in our simulations).39

Formally, we will say that an equilibrium segmented-assimilation trajectory {µ∗
t
: t ≥ 1 |µ

0
} leads to

extreme culture bi-modality in the long-run if there exists some η ∈ (0, 1) and some position p̄ < P

such that for all ε > 0 (however small) there exists a period t(ε) > 0 such that µ∗t (p̄) ∈ (η−ε, η+ε)

and µ∗t (p) ∈ (0, ε) for all p ∈ P \ {p̄} and for all t ≥ t(ε). We then have the following result:

37 In contrast, ‘complete assimilation in V’ trajectory TA in Regime [1] leads to long-run payoff Vmax, and

‘complete assimilation in C’ trajectories TB(1,2) and TB(0,1) in Regime [2] generate long-run payoff Cmax.

38 In the case where Cmax < Vmax, the limit payoff to every minority member (irrespective of livelihood

location) will be lower than Cmax when mS is smaller than a critical value.

39 If a minority group is polarized in different socio-economic dimensions, it may be unable to effectively

resist ethnicity-targeted attacks on it; more generally, it might be very costly for a polarized minority

group to take various kinds of collective actions necessary to protect and sustain group members.
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Proposition 6.1. Suppose there exists an equilibrium trajectory {µ∗
t
: t ≥ 1 | µ

0
} such that the

hypotheses of Proposition 5.4 hold for an inherited culture distribution µ∗
τ−1

in some finite period

τ ≥ 1 (which equals µ
0
if τ = 1). Then there exists an equilibrium trajectory {µB

t
: t ≥ 1 | µ0}

(with µB
t
= µ∗

t
for t < τ) that exhibits extreme culture bi-modality.

Along a segmented-assimilation trajectory, the desire to raise wage premium and to limit discrim-

ination costs induce the minority sub-population in C to ‘converge’ to culture-position P over

time; while in V, the presence of local social interactions benefits also encourage the V-residents to

culture-shift ‘closer to each other’. But whether the agglomeration incentives in V will induce the

residents to converge to a unique culture position in V depends on whether they succeed in resolving

a dynamic coordination problem. Remarkably, Proposition 6.1 assures us that the conditions that

ensure the existence of a segmented-assimilation equilibrium trajectory also guarantee that there

will exist at least one equilibrium trajectory in which the minority sub-population in V will success-

fully coordinate and converge to a common culture position, thereby ensuring that the trajectory

will generate extreme culture bi-modality in the long run.

The class of polarization measures proposed by Esteban and Ray (1994), hereafter referred to as the

E-R class, allows us to determine the extent of culture (and payoff) polarization in the limit out-

comes of equilibrium trajectories that exhibit extreme bi-modality. Consider two such trajectories

{µB(J)
t

: t ≥ 1 |µ0} for J = 1, 2, that generate the limit outcomes {pB(J),mB(J)} for J = 1, 2, where

pB(J) is the limit culture position of all V-residents under trajectory J and mB(J) is their measure

(with [1−mB(J)] measure of minority residing at P in C). If pB(1) ≤ pB(2) and mB(1) is (weakly)

closer to 0.5 than mB(2), with at least one condition strict, then for all measures in the E-R class,

trajectory J = 1 will generate strictly greater ‘culture polarization’ (i.e., polarization with respect

to overt culture-traits) for the minority population in the long run than trajectory J = 2.

For an equilibrium trajectory {µB(J)
t

: t ≥ 1 |µ0} that leads to the limit outcome {pB(J),mB(J)},

we can say more about the location of pB(J) and the size of mB(J) if µ
0
satisfies the hypotheses of

Proposition 5.3. In that case, we are assured that 1 ≤ pB(J) ≤ p̂(µ
0
) and thatmB(J) = m[p̂(µ

0
) |µ

0
],

implying that the closer are p̂(µ
0
) to 1 and m[p̂(µ

0
) |µ

0
] to 0.5 the more like it is that long-run

culture polarization will be close to its maximal value. In an additional simulation exercise, we

create Simulation Regime [5] by changing only the values of α and µ
0
in Regime [3]: we set α = 0.9,

and µ
[5]
0 = {0.5, 0.25, 0.25}. We find that in Regime [5], there exists an equilibrium trajectory TE in

which there is perpetual fracture at culture position 1. As a result, the long-run outcome exhibits

maximum culture polarization, with 50% of the minority having position 1 in V as their birth- and

livelihood-location, and the remaining population being born at and residing at position P in C.

Next, consider an equilibrium trajectory that generates extreme culture bi-modality, with the mea-

sure of long-run V-population being mB ∈ (0, 1). Then the limit minority payoff in V will be

[w + b(mB, 0)] and that in C will be [w + Π(P )− Γ(P ) + a(1−mB)]. Thus, except in the special

case where these two payoffs are equal, the trajectory will also generate extreme payoff bi-modality.

Will an equilibrium trajectory that exhibits greater culture polarization also exhibit greater payoff

polarization? Not necessarily, as our simulations reveal. In Simulation Regime [5], the individual
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limit payoffs are (w+1.75) for the V-minority and (w+3.35) for the C-minority. We contrast this

outcome to that in a modified Simulation Regime [5′] where we set µ
[5′]
0 = {0.475, 0.275, 0.25}. In

Regime [5′], there is an equilibrium trajectory TE ′ that is perpetually fractured at position 1, but

with a long-run outcome in which 47.5% of all minority members reside at position 1 in V, each

getting payoff w + 1.6625, while the remaining 52.5% reside at position 3 in C, receiving payoff

w + 3.3725. Following the ‘two-point distribution analysis’ in Esteban and Ray (1994), it is easily

verified that for any polarization measure in the E-R class, trajectory TE in Regime [5] leads to

greater culture polarization but to lesser payoff polarization than does TE ′ in Regime [5′].

In essence, given the social interactions effects in V and C, it is the fracturing of the minority pop-

ulation in a segmented-assimilation trajectory that creates the following dilemmas for the minority

community: payoff poverty and/or inequality, and substantial culture (and payoff) polarization.

6.2 Hysteresis in Minority Lineages

In our simulations, if the minority population is on trajectory TA in Regime [1] (respectively, on

TB(1,2) or TB(0,1) in Regime [2]) leading to complete homogenization in V (respectively, in C),

then for every minority member i, the culture location and payoff of her distant progeny will be

independent of the generation and the culture position in which member i was born, and also

independent of her realized opportunities to culture-shift and to migrate. It is in this sense that

minority lineages are path-independent in these complete-assimilation trajectories.

In contrast, there can be different kinds of path dependence in the evolution of minority lineages in

segmented-assimilation trajectories. Below, we focus on two kinds of hysteresis. In Scenario 1, two

minority members i and j, born in the same period at the same culture-position in V, are subject

to different opportunity realizations; as a result, their distant progeny have very different life expe-

riences. In Scenario 2, a minority parent i and her offspring j, born at a common culture position

in V, have very different life outcomes even when experiencing identical opportunity realizations,

due to altered intertemporal incentives regarding culture-shifting.

Scenario 1: Consider an equilibrium trajectory in which every generational equilibrium is frac-

tured at some pE . Assume that in every period, the preferences of a member born at (pE +1) are:

culture-shift left to pE , but migrate if stuck at (pE+1) (as is the case for members at ‘3’ in V along

trajectory TC in Simulation Regime [3]). When that is the case, consider members i and j born

in V at (pE + 1) in some period τ , where i gets the chance to culture-shift, while j only gets the

opportunity to migrate. It is immediate that i’s distant progeny will be situated within the culture

set {1, · · · , pE} in V, while j’s distant progeny will be situated at position P in C.

Scenario 2: Next, we consider a case in which equilibrium entrenched culture sets expand over time.

We create Simulation Regime [6] from Regime [2] by changing the values of α, σ, andG thus: α=0.6,

σ=0.2, G= {0.1, 0.2, 0.46}, and by setting µ
[6]
0 = {0.55, 0.35, 0.1}. The following trajectory TF is

an equilibrium trajectory in Regime [6]: “The V-population follows the decision profile DP(II.3) in

period 1, and follows DP(III) forever after”. Along TF, the (largest) generational entrenched set

expands from the null set in period 1 to the set {1, 2} in period 2. Along TF, consider a parent
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born in period 1 at position 3 in V, who gets the chance to culture-shift but not to migrate. Then

the parent will refuse to culture-shift, and so her child will be born at position 3 in V. When the

offspring gets a chance to culture-shift, she will shift to position 2 in V and reside there. Given that

the parent and her offspring receive similar opportunities (i.e., only to culture-shift), it is the change

in minority incentives over the two generations that causes such change in their worldviews, and thus

in their life experiences, with the offspring becoming ‘more minority-immersed’ than the parent.

6.3 Affirmative Action Policy Dilemma

In our model, it is natural to contemplate policy interventions aimed at improving the long-run

well-being of the entire minority community. To that end, we simulate a simple affirmative action

policy intervention, and uncover a particular policy dilemma.

We consider the country’s government instituting an affirmative action policy in some period τ that

aims to raise minority welfare by reducing mainstream discrimination of minority workers in C. In

the class of models [E], this can be achieved by permanently raising parameter θ from some period

τ , so that Γ(p) is ‘lowered and made steeper’, thereby reducing the extent of discrimination for all C-

minority and more for those culturally closer to the mainstream. We reconsider Simulation Regime

[1], where TA is an equilibrium trajectory in the absence of any policy intervention (while TB(·) and

TC are not), and study the impact of a policy that permanently raises θ from 1.2 to 1.32 in period

τ . We take the government’s aim to be to ‘induce’ an equilibrium trajectory of the form TB(·) that

will lead to complete assimilation in C ensuring maximum minority payoff Cmax = (w + 4.46) in

the long-run, with the minority being ‘nudged’ to shift to such a trajectory from TA if need be.

Our first simulation result is that if the policy intervention comes late – in period 10 – then it will be

ineffective. Specifically, the rise in θ will fail to induce a trajectory of the form TB(·) or trajectory

TC to be an equilibrium continuation trajectory, while TA will remain an equilibrium trajectory.

Our second simulation result considers the policy to be implemented earlier – in period 4. Then the

following problem arises. Along TA, when θ is raised to 1.32 in period 4, TA remains an equilibrium

trajectory and TC becomes one, but no trajectory of the form TB(·) does so. If the government’s

‘migration-promoting nudges’ cause the minority to switch from TA to TC from period 4, then while

some migrants will benefit in the immediately following periods, the economy will move to a new

path that will lead to long-run minority payoffs of (w + 3.778) for the V-residents and (w + 3.138)

for the C-residents, both lower than min{Vmax, Cmax}. That is because the segmented-assimilation

trajectory TC ‘pulls’ only a small fraction of the minority to C. Thus, an affirmative-action policy

introduced at an intermediate time period can have the long-run effect of lowering the payoffs of

all minority members. Further, TC will lead to significant culture (and payoff) polarization (in

contrast to TA that generates none), and that can impose additional welfare costs on the minority.

In contrast, our final simulation result shows that if the policy is implemented soon enough along

TA, then it can be possible to achieve complete minority assimilation in C. Specifically, if the

intervention happens in period 2, then TA, TB(2,3) and TC will all become continuation equilibrium

trajectories. If appropriate nudging can induce the minority to shift from TA to TB(2,3), then,
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beyond the 40th generation, the entire minority population will be born at position 3 in C, live

there, and enjoy the optimal payoff Cmax = (w + 4.46).

In our simulation model, the timing of an affirmative action policy’s implementation matters pre-

cisely because the policy’s long-run impact depends on the prevailing culture distribution in the

minority sub-population in V at the time of implementation. Further, determining the optimal

timing can be a non-trivial exercise. It is not necessarily the case that the long-run impact of the

policy will more beneficial the earlier it is implemented – policy implementation in the 4th period in

our example can generate a worse long-run outcome than implementation in the 10th period. More

generally, the above-described policy dilemma clarifies that in many real world scenarios, policy

makers cannot simply focus on the immediate impact of a policy change, but have to consider its

long-run impact that results from a change in the dynamic equilibrium path. This also means that

a ‘past policy mistake’ – that adversely altered the long-run equilibrium trajectory of the society –

might be more difficult to rectify by a policy correction in the future.40

7 Concluding Remarks

This paper has considered a formalization of the sociological theory of ‘segmented assimilation’ in

order to study dynamic assimilation patterns of minority populations with a country’s mainstream.

We have aimed to understand the causes and the impacts of segmentation of a minority community

into subgroups – some of which ‘assimilate upward’ with the mainstream while others remain

dissociated. Our analysis has delineated the following logic behind minority segmentation: when a

minority community is initially heterogeneous with respect to overt culture traits, and when there

are benefits to being close to the dominant local culture, minority members with birth culture traits

‘close enough’ to the mainstream feel encouraged to take the risk of culture-shifting away from the

‘median’ minority culture in order to improve mainstream returns, while those born with more

traditional culture traits are induced to become more entrenched in the minority subculture.

We recognize that it will be worthwhile to further explore the nature of minority assimilation

trajectories in an environment in which some of our critical modeling assumptions are relaxed. In

the course of our analysis, we have discussed the import of our assumptions of ‘minority myopia’ and

‘no reverse migration’ on our segmentation results. In this concluding section, we briefly comment

on two other restrictions in our model: (a) that minority members can culture-shift only by one

position, and (b) that they cannot concurrently ‘reside’ at multiple culture positions.

Note that if the V-born minority could culture-shift globally and jump to any culture position p′

from any other p ∈ P whenever they got the chance to culture-shift, and it was the case that

Cmax > Vmax and g(P ) ≈ 1, then in every generation there would exist an equilibrium in which all

40 Our simulation model considers an affirmative action policy that aims to reduce discrimination by raising θ

from 1.2 to 1.32. Suppose that this policy was implemented in period 4, and that forced the society to shift

from TA to TC. Then in a future period, a ‘stronger’ policy that raises θ even higher might fail to redirect

the society to a desired trajectory TB(·), while it could have done so if it was implemented in period 4.
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V-born minority would prefer to jump to culture position P and then migrate to C. That might

suggest that the ability to culture-shift globally would severely limit the occurrence of equilibrium

segmented assimilation. But recall our Simulation Regime [3] (where Cmax > Vmax but g(P ) = 0.5)

and note that even if ‘global culture-shifting’ was possible in V with probability σ = 0.3 in every

generation, TC would remain an equilibrium trajectory.

Next, recognize that if a minority member could be fully multi-cultural and could concurrently locate

at every p ∈ P whenever she got the chance to culture-shift, then it would be a dominant strategy for

her to do so. Again, if it was the case that Cmax > Vmax and g(P ) ≈ 1, then complete assimilation

in C would be a long-run equilibrium outcome. In contrast, consider the following case of ‘limited

multiculturalism’: when a member born at some p in V got the chance to culture-shift, she could

concurrently locate at p and at an adjacent position. Note that even if such limited multiculturalism

was possible in Simulation Regime [3], TC would still be an equilibrium trajectory.

The above arguments indicate that while relaxing the assumptions of ‘limited culture-shifting’ and

‘no multiculturalism’ would likely expand the set of possible equilibrium assimilation trajectories,

segmented assimilation of the minority community would still remain an equilibrium possibility.

A formal analysis identifying conditions that would guarantee the emergence of long-run minority

segmentation given more sophisticated minority culture-shifting possibilities awaits further research.

Appendix A

In the text, we have defined the culture distribution sets ∆+, ∆+(µ), ∆̂+, and ∆̂+(µ). Let ∆,

∆(µ), ∆̂, and ∆̂(µ) be the closure of ∆+, ∆+(µ), ∆̂+, and ∆̂+(µ), respectively. For any µ ∈ ∆,

we define ∆(p|µ) = {µ′ ∈ ∆(µ) : m[p|µ′] ≥ m[p|µ]}, and extend this definition in obvious ways

to define ∆+(p|µ) and ∆̂+(p|µ). Further, for any p ∈ P and 0 < η < 1, we define ∆∗(p, η) ={
µ ∈ ∆ :

∑P
p′=p+1 µ(p

′) < η
}
.

We now define the culture-shift map (and hence the acquired culture distribution) under a given

(common) conjecture µe.41 To do this, we now introduce a few notations:

(i) Alp =
{
µe ∈ ∆+[µ

i] : U∗(p− 1|µe) > U∗(p+ j|µe), j = 0, 1
}
;

(ii) Asp =
{
µe ∈ ∆+[µ

i] : U∗(p|µe) > U∗(p+ j|µe), j = −1, 1
}
;

(iii) Arp =
{
µe ∈ ∆+[µ

i] : U∗(p+ 1|µe) > U∗(p+ j|µe), j = −1, 0
}
;

(iv) Alsp =
{
µe ∈ ∆+[µ

i] : U∗(p− 1|µe) = U∗(p|µe) > U∗(p+ 1|µe)
}
;

(v) Arsp =
{
µe ∈ ∆+[µ

i] : U∗(p|µe) = U∗(p+ 1|µe) > U∗(p− 1|µe)
}
;

41 In order to describe decision rules compactly, we extend the culture position set to P+ ≡ P ∪ {0, P + 1}.

This allows us to specify culture-shift decisions of all members in a consistent manner without having to

worry about members born at the ends of P. We exogenously set U∗(0|µe) = U∗(P + 1|µe) = 0 for all

µe ∈ ∆+
1 , so that no member born at culture-position 1 (respectively, P ) will want to culture-shift left

(respectively, right) since U∗(p|µe) is strictly positive for all p ∈ P.
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(vi) Alrp =
{
µe ∈ ∆+[µ

i] : U∗(p− 1|µe) = U∗(p+ 1|µe) > U∗(p|µe)
}
;

(vii) Alsrp =
{
µe ∈ ∆+[µ

i] : U∗(p− 1|µe) = U∗(p|µe) = U∗(p+ 1|µe)
}
.

For any p ∈ P, we can see that Ajp ∩ Akp = ∅ if j 6= k. Furthermore, for any (common) conjecture

µe of final distribution of individuals in V and any p ∈ P, there is some j such that µe ∈ Ajp. Let

A(p) = {Alp, A
s
p, A

r
p, A

ls
p , A

rs
p , A

lr
p , A

lsr
p }. Hence, any conjecture µe belongs to exactly one element

of A(p) for each culture position p ∈ P.

For any D ⊆ ∆+[µ
i], we now define the indicator function 1D on ∆+[µ

i] by letting

1D(µ
e) =

{
1, if µe ∈ D;

0, otherwise.

Thus, χ̄SLp (µe|ϕ
p
) = 1Al

p
(µe) + ϕlsp 1Als

p
(µe) + ϕlrp 1Alr

p
(µe) + ϕl(p)1Alsr

p
(µe), and χ̄SRp (µe|ϕ

p
) =

1Ar
p
(µe) + ϕrsp 1Ars

p
(µe) + (1− ϕlrp )1Alr

p
(µe) + ϕrp1Alsr

p
(µe).

From each culture position p and a (common) conjecture µe, let Sl(p|µe, ϕ), Ss(p|µe, ϕ) and

Sr(p|µe, ϕ) be the measures of individuals who culture-shift left (i.e., to p−1), the measure of indi-

viduals who stay back (i.e., at p) and the measure of individuals who culture-shift right (i.e., to p+1),

respectively. Consequently, Sl(p|µe, ϕ) = σµi(p)χ̄SLp (µe|ϕ
p
) and Sr(p|µe, ϕ) = σµi(p)χ̄SRp (µe|ϕ

p
).

A similar argument yields

Ss(p|µe, ϕ) = σµi(p)[1As
p
(µe) + (1− ϕlsp )1Als

p
(µe) + (1− ϕrsp )1Ars

p
(µe)

+ (1− ϕlp − ϕrp)1Alsr
p
(µe)].

It is worth to pointing out that Sl(p|µe, ϕ) + Ss(p|µe, ϕ) + Sr(p|µe, ϕ) = σµi(p). Moreover, if all

minority individuals in V holding the conjecture µe of the final culture distribution of minority

individuals in V, the measure of individuals with acquired culture position p in V for any given ϕ

is given by µa(p|(µe, ϕ)) = (1− σ)µi(p) + Ss(p|µe, ϕ) + Sr(p− 1|µe, ϕ) + Sl(p+ 1|µe, ϕ).

We denote by µa(µe, ϕ) := (µa(1|(µe, ϕ)), · · · , µa(P |(µe, ϕ))) the acquired culture distribution in V

under the (common) conjecture µe and ϕ ∈ Φ. In order to prove the next lemma, we now introduce

some notations: consider two sets C (p) and D(p) for every p ∈ P, defined as follows:

C (p) =
{
Arp−1, A

s
p, A

l
p+1

}
and D(p) =

{
Arsp−1, A

lr
p−1, A

lsr
p−1, A

ls
p , A

rs
p , A

lsr
p , Alsp+1, A

lr
p+1, A

lsr
p+1

}
.

For any µe ∈ ∆+[µ
i] and p ∈ P, define

Υp(µ
e) =

{
(p′, j) : Ajp′ ∈ C (p) and µe ∈ Ajp′

}

and

Λp(µ
e) =

{
(p′, j) : Ajp′ ∈ D(p) and µe ∈ Ajp′

}
.

Clearly, |Λp(µ
e)| ≤ 3 for all µe ∈ ∆+[µ

i], where |Λp(µ
e)| is the number of elements in Λp(µ

e).

Moreover, for any p ∈ P, the value of µa(p|(µe, ϕ)) is independent of ϕ if Λp(µ
e) = ∅. For all p ∈ P,
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let

Θ(p, x) =





{ls, lr, lsr}, if x = l;

{ls, rs, lsr}, if x = s;

{lr, rs, lsr}, if x = r.

For any y ∈ {ls, rs, lr, lsr}, we now define a set Z(y) by

Z(y) =





{l, s, ls}, if y = ls;

{s, r, rs}, if y = rs;

{l, r, lr}, if y = lr;

{l, s, r, ls, rs, lr, lsr}, if y = lsr.

Lemma 7.1. Let ∆̃ be a non-empty subset of ∆+[µ
i]. Suppose that {µk : k ≥ 1} is a sequence in

∆̃ converging to a point µ0 ∈ ∆̃. For any sequence {ϕk : k ≥ 1} of elements in Φ, if the sequence

{µa(µk, ϕk) : k ≥ 1} converges to some µa then µa = µa(µ0, ϕ0) for some ϕ0 ∈ Φ.

Proof. Since U∗(p|µ) is continuous in µ, we obtain Υp(µ
0) ⊆ Υp(µ

k) for all large k and Λp(µ
0) =

∅ ⇒ Λp(µ
k) = ∅ for all large k and all p ∈ P. We need to consider the following cases.

Case 1.
⋃
p∈P Λp(µ

0) = ∅. In this case, for each p ∈ P, the value of µa(p|(µ0, ϕ)) is the same for

every ϕ, and

µa(p|(µ0, ϕ)) = (1− σ)µi(p) +
∑

(p′,j)∈Υp(µ0)

σµi(p′).

Hence, for all large k, µa(p|(µk, ϕk)) is also independent of ϕk and

µa(p|(µk, ϕk)) = (1− σ)µi(p) +
∑

(p′,j)∈Υp(µk)

σµi(p′).

Note that, in this case, we must have Υp(µ
0) = Υp(µ

k) for all p ∈ P and for all large k. Otherwise,

there must exist a culture position p, a subsequence {µs : s ≥ 1} of {µk : k ≥ 1} and a (p0, j0) such

that (p0, j0) ∈
⋂∞
s=1Υp(µ

s) and (p0, j0) /∈ Υp(µ
0). Thus, (p0, z) ∈ Λp(µ

0) for some z ∈ Θ(p0, j0),

which contradicts with the fact that
⋃
p∈P Λp(µ

0) = ∅. Hence, µa(µk, ϕk) = µa(µ0, ϕ0) for all large

k and for any ϕ0 ∈ Φ. It follows that for every ϕ0 ∈ Φ, we have µa = µa(µ0, ϕ0).

Case 2.
⋃
p∈P Λp(µ

0) 6= ∅. Without loss of generality, we assume that {ϕk : k ≥ 1} converges

to ϕ∗ (if that is not the case, we will work with one of its convergent sub-sequences). Define

Q =
{
p ∈ P : Λp(µ

0) 6= ∅
}
. Thus, the value of µa(p|(µ0, ϕ)) is the same for every ϕ ∈ Φ if and only

if p /∈ Q. Moreover, µa(p|(µk, ϕk)) is also independent of ϕk for all large k and all p /∈ Q, and

{µa(p|(µk, ϕk)) : k ≥ 1} converges to µa(p|(µ0, ϕ0)) for all p /∈ Q. Let

K =
{
(p′, j) : (p′, j) ∈ Λp(µ

0) for some p ∈ Q
}
.

For convenience, we rewrite K as K = {(p1, j1), · · · , (pK , jK)} with p1 < · · · < pK (recall that,

for every p′ ∈ P, µ0 belongs to exactly one element of A(p′)). Thus, for every p ∈ Q, there must
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exist at least one element (pm, jm) ∈ K such that Ajmpm ∈ D(p), and the family of sets associated

with elements of K can be summarized as M (µ0) =
{
Aj1p1 , · · · , A

jK
pK

}
.

For every Ajmpm ∈ M (µ0), we let Σm =
{
z ∈ Z(jm) : µ

k ∈ Azpm for infinitely many k
}
. Choose a

sub-sequence {µs : s ≥ 1} of {µk : k ≥ 1} such that for every (pm, jm) ∈ K there is some zm ∈ Σm

such that {
µs : s ≥ 1

}
⊆

{
µk : k ≥ 1

}
∩Azmpm .

It is given that the sequence {µa(µs, ϕs) : s ≥ 1} converges to µa. We now calculate the value of

ϕ0
p
:= (ϕlsp , ϕ

rs
p , ϕ

lr
p , ϕ

l
p, ϕ

r
p), for all p ∈ P, such that µa = µa(µ0, ϕ0), where ϕ0 := (ϕ0

1
, · · · , ϕ0

P
) ∈ Φ.

Firstly, note that ϕjp0 can be chosen to be any member of [0, 1] if j ∈ {ls, rs, lr} and (p0, j) /∈ K ;

and (ϕlp0 , ϕ
r
p0
) can be chosen to be any member of Γ2 if (p0, lsr) /∈ K . For (pm, jm) ∈ K and

jm = ls, we have the following: (i) if zm = l then ϕjmpm = 1; (ii) if zm = s then ϕjmpm = 0; and

(iii) if zm = ls then ϕjmpm = ϕ∗jm
pm (ϕ∗jm

pm is the sl-component of ϕ∗
pm

for ϕ∗ ∈ Φ). Likewise, one

can easily calculate the value of ϕjmpm if jm ∈ {rs, lr} and (pm, jm) ∈ K . If (pm, lsr) ∈ K , then

we have the following: (i) if zm = l then ϕlpm = 1; (ii) if zm = r then ϕrpm = 1; (iii) if zm = s

then ϕlpm = ϕrpm = 0; (iv) if zm = ls then ϕlpm = ϕ∗ls
pm and ϕrpm = 0; (v) if zm = rs then ϕlpm = 0

and ϕrpm = ϕ∗rs
pm ; (vi) if zm = lr then ϕlpm = ϕ∗lr

pm and ϕrpm = 1 − ϕ∗lr
pm ; and (vii) if zm = lsr then

ϕlpm = ϕ∗l
pm and ϕrpm = ϕ∗r

pm . This completes the proof.

For any (common) conjecture µe, acquired culture distribution µa and any ψ ∈ Ψ, the measure of

individuals not migrating from p is denoted by R(p|µe, µa, ψ) and is defined as

R(p|µe, µa, ψ) =





µa(p), if V (p|µe) > C(p|µe);

(1− g(p))µa(p), if V (p|µe) < C(p|µe);

(1− g(p) + ψpg(p))µ
a(p), if V (p|µe) = C(p|µe).

Remark 7.2. Let {µa
k
: k ≥ 1} be a sequence in ∆+[µ

i] converging to µa ∈ ∆+[µ
i] and let

{ψ
k
: k ≥ 1} ⊆ [0, 1]P be a sequence converging to ψ ∈ [0, 1]P . Assume further that {µe

k
: k ≥ 1} ⊆

∆+[µ
i] converges to µe ∈ ∆+[µ

i]. From the continuity of V (p|·) and C(p|·), we conclude that if

V (p|µe) > C(p|µe) (resp. V (p|µe) < C(p|µe)) then V (p|µe
k
) > C(p|µe

k
) (resp. V (p|µe

k
) < C(p|µe

k
))

for all large k, which immediately implies that limk→∞R(p|µe
k
, µa

k
, ψ

k
) = R(p|µe, µa, ψ). So, we

assume that V (p|µe) = C(p|µe), and let ψ1
p, ψ

0
p be arbitrary elements of Ψ such that the pth-

coordinate of ψ1
p and ψ0

p are 1 and 0, respectively. Then we have the following possibilities:

(O1) limk→∞R(p|µe
k
, µa

k
, ψk) = R(p|µe, µa, ψ1

p) if V (p|µe
k
) > C(p|µe

k
) for all large k.

(O2) limk→∞R(p|µe
k
, µa

k
, ψk) = R(p|µe, µa, ψ0

p) if V (p|µe
k
) < C(p|µe

k
) for all large k.

(O3) limk→∞R(p|µe
k
, µa

k
, ψk) = R(p|µe, µa, ψ) if V (p|µe

k
) = C(p|µe

k
) for all large k.

Proof of Theorem 3.1: Clearly, Mf (µe|µi) is a non-empty convex set for each µe ∈ ∆†. It is

claimed that Mf (·|µi) is closed. To that end, let {µe
k
: k ≥ 1} be a sequence of minority culture

distributions in ∆† converging to a distribution µe
0
∈ ∆† and let µf (µe

k
, µi, ϕ

k
, ψ

k
) ∈ Mf (µe

k
|µi) be
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such that {µf (µe
k
, µi, ϕ

k
, ψ

k
) : k ≥ 1} converges to µf

0
. We will show that µf

0
∈ Mf (µe

0
|µi). To that

end, without any loss of generality, we assume that {ψ
k
: k ≥ 1} converges to ψ

∗
. First, note that

µf (p|µe
k
, µi, ϕ

k
, ψ

k
) = R(p|µe

k
, µa(p|(µe

k
, ϕ

k
)), ψ

k
), (7.1)

for all k ≥ 1. We now choose a subsequence {µs : s ≥ 1} of {µk : k ≥ 1} that satisfies the following

property: for each p ∈ P, either V (p|µs) > C(p|µs) for all s or V (p|µs) < C(p|µs) for all s or

V (p|µs) = C(p|µs) for all s (for a different value of p a different inequality or equality may occur).

Choose an arbitrary p ∈ P. Consequently, by (7.1), {µa(µe
s
, ϕ

s
) : s ≥ 1} converges to µa

0
, where

(i) µa0(p) = µf0(p) if V (p|µe
s
) > C(p|µe

s
) for all s ≥ 1;

(ii) µa0(p) =
µ
f
0
(p)

1−g(p) if V (p|µe
s
) < C(p|µe

s
) for all s ≥ 1; and

(iii) µa0(p) =
µ
f
0
(p)

1−g(p)+ψ∗pg(p)
if V (p|µe

s
) = C(p|µe

s
) for all s ≥ 1.

By Lemma 7.1, we conclude that there is some ϕ
0
such that µa

0
= µa(µe

0
, ϕ

0
). Define ψ

0
:=

(ψ01, · · · , ψ0P ) ∈ Ψ by letting42

ψ0p =





1, if V (p|µe
s
) > C(p|µe

s
) for all s ≥ 1;

0, if V (p|µe
s
) < C(p|µe

s
) for all s ≥ 1;

ψ∗p, if V (p|µe
s
) = C(p|µe

s
) for all s ≥ 1.

It can be easily verified that µf
0
= µf (µe

0
, µi, ϕ

0
, ψ

0
).Thus, µf

0
∈ Mf (µe

0
|µi). Consequently, by

Kakatuni’s fixed point theorem, we infer that there is a point µe
00

∈ ∆† such that µe
00

∈ Mf (µe
00
|µi).

Appendix B

Proof of Lemma 4.1: Choose some µ ∈ ∆+. It can be verified that

d(p+ 1, µ)− d(p, µ) =
1

(P − 1)




p∑

p′=1

µ(p′)−
P∑

p′=p+1

µ(p′)


 ,

for all p ∈ P\{P}. It follows that if M(µ) contains two elements p̄, p̂ then d(p̄, µ) = d(p̂, µ). Let pm

be an element ofM(µ). Recognized that, for any p /∈ M(µ) and p < pm, we have d(p, µ) > d(p+1, µ).

Similarly, for any p /∈ M(µ) and p > pm, we have d(p, µ) < d(p + 1, µ). Combining these, we get

d(pm, µ) < d(p′, µ) for all p′ /∈ M(µ), which implies that b(m[µ], d(pm, µ)) > b(m[µ], d(p′, µ)) for all

42 Note that V (p|µe

s
) > C(p|µe

s
) for all s ≥ 1 imply V (p|µ0

s
) ≥ C(p|µ0

s
). In case the strict inequality

occurs one can take any value of ψ0p as nobody will be migrating from p and thus the exact value of

ψ0p is irrelevant. However, if the inequality occurs with equality then any fraction of g(p)µa(µe

0
, ϕ

0
) can

migrate to C. As nobody is migrating from p under the conjecture µe

s
for all s ≥ 1 and µe

0
is the limit of

{µe

s
: s ≥ 1}, we choose ψ0p = 1 in order to maintain the fact that {µf (µe

s
, µi, ϕ

s
, ψ

s
) : s ≥ 1} converges to

µf (µe

0
, µi, ϕ

0
, ψ

0
). A similar argument applies when V (p|µe

s
) < C(p|µe

s
) for all s ≥ 1.
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p′ /∈ M(µ). For the second part, note that d(p, µ) < d(p + 1, µ) for all p ≥ pm with p + 1 /∈ M(µ)

implies V (p|µ) > V (p + 1|µ) for all p ≥ pm with p + 1 /∈ M(µ); while C(p|µ) < C(p + 1|µ) for all

p ≥ 1. Thus, C(p|µ)− V (p|µ) strictly increases in p for all p ∈ {pm, · · · , P}.

Let µi ∈ ∆̂+ be the initial distribution of minority individuals in some generation τ . Pick an

element p̃0 ∈ P such that P > p̃0 ≥ p̂(µi). Then, let X̃ denote the set of all feasible decision profiles

that satisfy the following properties: when relevant culture-shifting and/or migration opportunities

arise, (i) all minority members born in the culture-subset {1, · · · , q̂(µi)−1} (if the set is non-empty)

culture-shift towards q̂(µi) and do not migrate, (ii) all born in {q̂(µi), · · · , p̃0} culture-shift within

the subset and do not migrate, and (iii) all born at p̂(µi) do not culture-shift right. Let ∆̃(µi) be

the set of all culture distribution generated from µi by all decision profiles in X̃. Recognize that

the set ∆̃(µi) is non-empty, convex and compact.

Lemma 7.3. Consider some generation τ with the inherited culture distribution µi ∈ ∆̂+. Select

two culture positions p̃0, q̃0 ∈ P satisfying P > p̃0 ≥ p̂(µi) and q̃0 ≤ q̂(µi). If {p̃0, q̃0} satisfy either

conditions [A0]-[A1] or conditions [B0]-[B1] stated below, then there exist an equilibrium outcome

µ∗ in generation τ that belongs in ∆̃(µi) and satisfies q̂(µi) ≤ q̂(µ∗) ≤ p̂(µ∗) ≤ p̂(µi).

[A0]: For all µ ∈ ∆̃(µi), [V (p|µ)− C(p|µ)] ≥ [V (p̃0|µ)− C(p̃0|µ)] for all p < p̃0;

[A1]: V (p̃0|µ
A1(µi)) ≥ C(p̃0 + 1|µA1(µi)), where µA1(µi) is uniquely generated from µi by the

following feasible decision profile: “whenever relevant opportunities arise, members born at p ∈

{1, · · · , p̃0} culture-shift toward q̃0 and stay back in V, and members born at p′ ∈ {p̃0 + 1, · · · , P}

culture-shift toward P and migrate to C”.

[B0]: For all µ ∈ ∆̃(µi), [V (p|µ)− C(p|µ)] ≥ [V (q̃0|µ)− C(q̃0|µ)] for all p < q̃0;

[B1]: V (p̃0|µ
B1(µi)) ≥ C(p̃0 + 1|µB1(µi)), where µB1(µi) is uniquely generated from µi by the

following infeasible decision profile: “members born at p ∈ {1, · · · , p̃0} culture-shift toward q̃0 and

stay back in V, and all members born in {p̃0 + 1, · · · , P} migrate to C in one shot”.

Proof. Letting µe ∈ ∆̃(µi) be the conjecture of the minority members born in V, we begin by

proving that under µe, members’ optimal decision profiles will belong in X̃.

First, we establish that a member born at p̃0 will neither culture-shift right under µe nor mi-

grate to C from p̃0. Since m[p̃0|µ
e] ≥ m[p̃0|µ

i] > 1
2m[µi] ≥ 1

2m[µe], we have b
(
m[µe], d(p̃0, µ

e)
)
>

b
(
m[µe], d(p̃0 + 1, µe)

)
. Consequently, V

(
p̃0|µ

e
)
> V

(
p̃0 + 1|µe

)
, implying that under µe, a mem-

ber born at p̃0 in V will not culture shift right and stay back in V.

It follows from [D] that V
(
p̃0|µ

e
)
≥ V

(
p̃0|µ

A1(µi)
)
≥ V

(
p̃0|µ

B1(µi)
)
. On the other hand, C(p̃0 +

1|µB1(µi)) ≥ C(p̃0+1|µA1(µi)) ≥ C(p̃0+1|µe). Consequently, by [A1] or [B1], we have V
(
p̃0|µ

e
)
≥

C(p̃0 + 1|µe) > C(p̃0|µ
e). Therefore, V

(
p̃0|µ

e
)
> (1− g(p))V (p̃0 + 1|µe) + g(p)C(p̃0 + 1|µe). These

inequalities imply that under µe, a member born at p̃0 will neither culture-shift right (either to

stay in V at p̃0 + 1 or to migrate to C from p̃0 + 1) nor migrate to C from p̃0.

Second, given the above conclusion, the following arguments prove that the culture set {1, · · · , p̃0}

will be entrenched under µe, with there being no migration from any of these culture positions. If
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[A0] is satisfied, then the result is immediate. So, consider the case where [A0] is not satisfied but

[B0] and [B1] are. [B0] ensures that no one will migrate from any position in {1, · · · , q̃0−1} under

µe whenever V
(
q̃0|µ

e
)
> C(q̃0|µ

e). Thus, in order to guarantee that {1, · · · , p̃0} will be entrenched

under µe, we need to show that no one will migrate from {q̃0, · · · , p̃0 − 1}. This conclusion follows

from the fact that when [B1] holds (with µB1(µi) having zero measure of members at every p > p̃0),

we have V
(
p|µe

)
≥ V

(
p̃0|µ

B1(µi)
)
and C(p̃0 + 1|µB1(µi)) ≥ C(p̃0 + 1|µe) ≥ C(p|µe) for every

p ∈ {q̃0, · · · , p̃0 − 1}.

Third, the following arguments prove that optimal decision profiles under µe satisfy conditions

(i)-(iii) in the definition of X̃. If q̂(µi) > 1 then µe ∈ ∆̃(µi) implies that

q̂(µi)−1∑

p=1

µe(p) <

q̂(µi)−1∑

p=1

µi(p) <
1

2
m[p̃0|µ

i] ≤
1

2
m[p̃0|µ

e] ≤
1

2
m[µe].

Thus, under conjecture µe, a member born at p in V will culture-shift right for all p < q̂(µi), thus

ensuring that the optimal decision profile will satisfy condition (i). Further, condition (i) also implies

that no member born at q̂(µi) will culture-shift left; and that, together with the fact that {1, · · · , p̃0}

will be entrenched under µe will imply the satisfaction of condition (ii). Finally, note that

m[p̂(µi)|µe] ≥ m[p̂(µi)|µi] >
1

2
m[µi] ≥

1

2
m[µe].

Consequently, V (p̂(µi)|µe) > V (p̂(µi)+1|µe). Further, note that it will be the case that V (p̂(µi)|µe) ≥

C(p̂(µi) + 1|µe) irrespective of whether p̂(µi) = p̃0 or p̂(µi) < p̃0. As a result, one born at p̂(µi)

will not culture-shift right under µe. Thus, condition (iii) will also be satisfied by optimal decision

profiles under µe.

We have thus proved that for any conjecture µe ∈ ∆̃(µi), an optimal decision profile of minority

members in V will belong to X̃F , and will thus generate a final distribution µf (µe, µi, ϕ, ψ) ∈ ∆̃(µi)

for any ϕ ∈ Φ and ψ ∈ Ψ. Given that, we now define a correspondence Mf (·|µi) : ∆̃(µi) ⇒ ∆̃(µi)

such that

Mf (µe|µi) =
{
µf (µe, µi, ϕ, ψ) : (ϕ, ψ) ∈ Φ×Ψ

}
.

Then by Theorem 3.1, we conclude that there exists a fixed point µ∗ of Mf (·|µi). Consequently,

µ∗ = µf (µ∗, µi, ϕ, ψ) ∈ ∆̃(µi) for some (ϕ, ψ) ∈ Φ × Ψ. As {1, · · · , p̃0} is entrenched under µ∗

and all minority members born in the culture-subset {1, · · · , q̂(µi) − 1} (if the set is non-empty)

culture-shift towards q̂(µi) under the conjecture µ∗, we must have q̂(µi) ≤ q̂(µ∗). Further, it is

immediate that p̂(µ∗) ≤ p̂(µi), since otherwise, members born at p̂(µi) would strictly prefer to

culture-shift right (to improve both V and C payoffs) under the conjecture µ∗.

Let X̃F be the set of all feasible decision profiles in X̃ such that at least the measure (1−σ)g(P )µi(P )

of members migrate from P under any decision profile in X̃F , and let ∆̃F (µi) denote the set of all

culture distributions generated from µi by all decision profiles in X̃F .
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Lemma 7.4. Consider some generation τ with the inherited culture distribution µi ∈ ∆̂+. Select

two culture positions p̃0, q̃0 ∈ P satisfying P > p̃0 ≥ p̂(µi) and q̃0 ≤ q̂(µi). If {p̃0, q̃0} satisfy either

conditions [A0]-[A1] or conditions [B0]-[B1] stated in Lemma 1.1, and the condition [A2] stated

below, then there exist an equilibrium outcome µ∗ in generation τ that belongs in ∆̃F (µi), satisfies

q̂(µi) ≤ q̂(µ∗) ≤ p̂(µ∗) ≤ p̂(µi).

[A2]: V (P |µA2(µi)) ≤ C(P |µA2(µi)), where µA2(µi) is uniquely generated from µi by the following

feasible decision profile: “whenever relevant opportunities arise, members born at p ∈ {1, · · · , p̃0}

culture-shift toward p̃0 and stay back in V, members born at p′ ∈ {p̃0+1, · · · , P} culture-shift toward

P , and the measure (1− σ)g(P )µi(P ) of members situated at acquired position P migrate to C”.

Proof. For any µe ∈ ∆̃F (µi), we have C(P |µe) ≥ C
(
P |µA2(µi)

)
. We now introduce a distribution

µ′′, which is not necessarily feasible, as follows: µ′′(p) = µe(p) for all p 6= p̃0 + 1; and µ′′(p̃0 + 1) =

µe(p̃0 + 1) +m[µA2(µi)] −m[µe]. It follows that m[µ′′] = m[µA2(µi)]. By the construction of µ′′,

we have V
(
P |µA2(µi)

)
> V (P |µ′′). Moreover, in the light of [D], V (P |µ′′) ≥ V (P |µe). Combining

all these inequalities with [A2], we get C(P |µe) > V (P |µe).

Hence, applying an argument similar to that in Lemma 7.3, we can guarantee the existence of an

equilibrium outcome µ∗ that belongs in ∆̃F (µi), satisfies q̂(µi) ≤ q̂(µ∗) ≤ p̂(µ∗) ≤ p̂(µi).

Proof of Proposition 5.1: The result follows from Lemma 1.1 and Lemma 1.2 for p̃0 = p̂(µi)

and q̃0 = q̂(µi).

Proof of Proposition 5.2: Note that when [L0]-[L2] hold for µi = µ
τ−1

, conditions [B0], [B1]

and [A2] hold for µi = µ
τ−1

, p̃0 = p̂(µ
τ−1

) and q̃0 = q̂(µ
τ−1

). Thus, by Lemmas 7.3 and 7.4,

there exists an equilibrium outcome µ∗
τ
in generation τ that belongs in ∆̃(µ

τ−1
), satisfies q̂(µ

τ−1
) ≤

q̂(µ∗
τ
) ≤ p̂(µ∗

τ
) ≤ p̂(µ

τ−1
), and exhibits the property that all minority members situated in acquired

culture position P migrate to C whenever they get the opportunity. Choose such an equilibrium µ∗
τ

for generation τ and note that it will be inherited distribution in generation τ + 1. We now prove

the following result: If conditions [L0], [L1], and [L2] hold for µi = µ
τ−1

, then conditions [B0],

[B1], and [A2] hold for µi = µ∗
τ
, p̃0 = p̂(µ

τ−1
) and q̃0 = q̂(µ

τ−1
). As above, [L0] hold for µi = µi

τ−1

implies that [B0] holds for µi = µ∗
τ
, p̃0 = p̂(µ

τ−1
) and q̃0 = q̂(µ

τ−1
). Second, note that [L1] and

[D] imply that the distribution µB1(µ∗
τ
) satisfies [B1] for µi = µ∗

τ
, p̃0 = p̂(µ

τ−1
) and q̃0 = q̂(µ

τ−1
).

We now claim that if [L2] holds for µi = µ
τ−1

, then [A2] hold for µi = µ∗
τ
, p̃0 = p̂(µ

τ−1
) and

q̃0 = q̂(µ
τ−1

). Since the measure (1−σ)g(P )µτ−1(P ) of minority individuals have already migrated

in generation τ , we have

C
(
P |µA2(µ∗

τ
)
)
> C

(
P |µL2(µ

τ−1
)
)
.

We now introduce two distributions µ′ and µ′′ as follows: µ′ and µ′′ both have the same measure

of members in every culture position in the set {1, · · · , p̂(µ
τ−1

)} as does µA2(µ∗
τ
), and both have

zero measure of members in every culture position in the set {p̂(µ
τ−1

) + 1, · · · , P − 1}; but while

the measure of members at P (in V) under µ′ is the same as under µL2(µ
τ−1

), the corresponding
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measure under µ′′ is the aggregate measure of µA2(µ∗
τ
) over {p̂(µ

τ−1
) + 1, · · · , P}. Then, by [D],

we have V
(
P |µA2(µ∗

τ
)
)
≤ V

(
P |µ′′

)
≤ V

(
P |µ′

)
≤ V

(
P |µL2(µ

τ−1
)
)
. This proves our claim.

Hence, by Lemmas 7.3 and 7.4, there exists an equilibrium outcome µ∗
τ+1

in generation τ + 1 such

that (i) all minority members born in the culture-subset {1, · · · , q̂(µ∗
τ
)−1} (if the set is non-empty)

culture-shift towards q̂(µ∗
τ
) and do not migrate, and (ii) all born in {q̂(µ∗

τ
), · · · , p̂(µ

τ−1
)} culture-

shift within the subset and do not migrate; (iii) all situated at acquired culture position P migrate

whenever they get opportunity; and (iv) q̂(µ∗
τ
) ≤ q̂(µ∗

τ+1
) ≤ p̂(µ∗

τ+1
) ≤ p̂(µ∗

τ
). Continuing in this

way, one can find a continuation equilibrium trajectory {µ∗
t
: t ≥ τ |µ

τ−1
} such that for all t ≥ τ , µ∗

t

is a fractured equilibrium outcome such that {1, · · · , p̂(µ
τ−1

)} is entrenched and there is migration

from P under µ∗
t
.

Proof of Proposition 5.3: As in Proposition 4.2, one can find an equilibrium trajectory {µ∗
t
:

t ≥ 1|µ
0
} such that {1, · · · , p̂(µ

0
)} will be entrenched under µ∗

t
and all born in {1, · · · , q̂(µ

0
) − 1}

culture shift towards q̂(µ
0
) whenever relevant opportunities arise, for all t ≥ 1. We now show that

the set {p̂(µ
0
)+1, · · · , P} is unentrenched under µ∗

t
, for all t ≥ 1. Consider an arbitrary generation

t, and note that

C(p̂(µ
0
) + 2|µ∗

t
) ≥ C(p̂(µ

0
) + 2|µ[L3](µ

0
)) ≥ V (p̂(µ

0
) + 2|µ[L3](µ

0
)) > V (p̂(µ

0
) + 2|µ∗

t
).

Thus, all minorities with acquired culture position p̂(µ
0
) + 2 migrate to C whenever relevant

opportunities arise, which implies that minority individuals will migrate from any position p ≥

p̂(µ
0
) + 2 whenever relevant opportunities arise. Furthermore, by [L4], U∗(p̂(µ

0
) + 2|µ∗

1
) >

V (p̂(µ
0
)|µ[L4](µ

0
)) > V (p̂(µ

0
)|µ∗

1
) = U∗(p̂(µ

0
)|µ∗

1
). This means that all born at p̂(µ

0
) + 1 do

not culture-shift left in generation 1. We now prove by the principle of mathematical induction

that all born at p̂(µ
0
) + 1 do not culture shift left in any generation. To this end, suppose that

all born at p̂(µ
0
) + 1 do not culture shift left in generations t = 1, · · · , t0. We show that the same

holds in generation t = t0 + 1. As nobody culture shift left under µ∗
t
for all t = 1, · · · , t0, we have

U∗(p̂(µ
0
) + 2|µ∗

t0+1
) > V (p̂(µ

0
)|µ[L4](µ

0
)) > V (p̂(µ

0
)|µ∗

t0+1
) = U∗(p̂(µ

0
)|µ∗

t0+1
).

Thus, all individuals with acquired culture position p̂(µ
0
) + 1 will not culture shift left whenever

relevant opportunities arise. Consequently, by the principle of mathematical induction, we conclude

that nobody culture shift left from p̂(µ
0
) + 1 under µ∗

t
in any generation t. Thus, individuals at

p̂(µ
0
) + 1 migrate from p̂(µ

0
) + 1 or culture shift right whenever opportunities arise.

Proof of Proposition 5.4: Given the initial culture distribution µ
0
, suppose that there exists

an equilibrium trajectory {µ∗
t
: t ≥ 1|µ

0
} such that µ∗

τ−1
(for some τ ≥ 1) belongs in ∆̂+ and

satisfies [L0] and [L1]. Then, by our previous results, there must exist a continuation equilibrium

trajectory {µ′′
t
: t ≥ τ |µ∗

τ−1
} in which{1, · · · , p̂(µ∗

τ−1
)} will be an entrenched set in the current and

every subsequent intra-generation equilibrium. Further, if there is no migration to C in any specific

intra-generation equilibrium µ′′
t
, then {1, · · · , P} will be an entrenched set in that equilibrium,

and consequently, all members born in the culture set {p̂(µ∗
τ−1

) + 1, · · · , P} will culture-shift left

whenever they get the chance.
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So, consider the following equilibrium trajectory {µ∗∗
t

: t ≥ 1|µ
0
} in which µ∗∗

t
= µ∗

t
for all t < τ

and µ∗∗
t

= µ′′
t
for all t ≥ τ . Recognize that {µ∗∗

t
: t ≥ 1|µ

0
} cannot exhibit complete assimilation

in C. Alternatively, for {µ∗∗
t

: t ≥ 1|µ
0
} to exhibit complete assimilation in V it must be that

m[µ∗
τ−1

] = 1 as well as that {1, · · · , P} is an entrenched set in every equilibrium µ′′
t
with t ≥ τ .

Now recognize that if [S] holds for µi = µ∗
τ−1

, then irrespective of the magnitude of m[µ∗
τ−1

], it

cannot be that {1, · · · , P} is an entrenched set in every µ′′
t
for t ≥ τ for the following reason (the

case of [L2] has already been discussed in Proposition 5.2). If that is indeed the case, then

µ∗∗t (p) =

{
(1− σ)µ∗∗t−1(p) + σµ∗∗t−1(p+ 1), if p̂(µ∗

τ−1
) < p < P ;

(1− σ)µ∗∗t−1(P ), if p = P ,

for all t ≥ τ . It can be checked that, for any p̂(µ∗
τ−1

) < p ≤ P and t ≥ τ ,

µ∗∗t (p) =

t−τ+1∑

r=0

(
t− τ + 1

r

)
(1− σ)t−τ+1−rσrµ∗∗τ−1(p+ r),

where µ∗∗τ−1(p + r) is taken as 0 for all r > P − p. As a consequence, for every ǫ > 0, there

will exist a T large enough such that in every µ∗∗
t

for t > T , V (P |µ∗∗
t
) will be strictly less than

[V (P |µS(µ∗
τ−1

)) + ǫ]. Since [S] requires that V (P |µS(µ∗
τ−1

)) < C(P |µS(µ∗
τ−1

)), by suitable choice

of ǫ and T we will be able to find at least one generation t̂ far enough into the future in which every

member in acquired position P will prefer to migrate to C under the conjecture µ∗∗
t̂
.

The above arguments imply the following conclusion: Given µ
0
, if there exists an equilibrium

trajectory {µ∗
t
: t ≥ 1|µ

0
} such that in some finite generation τ ≥ 1, µ∗

τ−1
∈ ∆̂+ satisfies [L0],

[L1], and [S], there will exist an equilibrium trajectory {µS
t
: t ≥ 1|µ0} that exhibits segmented

assimilation in the long-run with the long-run measure of the minority population in V being at

least m[p̂(µ∗
τ−1

)|µ∗
τ−1

].

Recall that E [2] is the set of models [E] satisfying restrictions [E1] - [E3] and the additional re-

striction P = 2; and let ∆̂
[2]
0 be the set of all feasible initial culture distributions in ∆̂+ for the

case P = 2. When P = 2, note that for any µ = (µ(1), µ(2)) ∈ ∆̂
[2]
0 (which requires m[µ] = 1 and

µ(1) > 0.5), µL1(µ) = (µ(1), 0) and µS(µ) = (1, 0). Consequently, for a model [E] ∈ E [2] and for a

culture distribution µ ∈ ∆̂
[2]
0 , condition [L1] is: V (1 | (µ(1), 0)) = w + β.µ(1) ≥ C(2 | (µ(1), 0)) =

w + δ + 2θ + α.µ(2), and condition [S] is: V (2 | (1, 0)) = w + β
1+λ < C(2 | (1, 0)) = w + δ + 2θ.

Here, [S] is independent of µ, while [L1] is not. Further, note that [S] is violated if and only if
β

1+λ ≥ δ + 2θ, which is a parameter condition that is neither required by the payoff ranking condi-

tion [R] nor is in violation of [R]; and [L1] is violated for all µ
0
∈ ∆̂

[2]
0 if and only if δ + 2θ > β,

which is also a parameter condition that is neither required by [R] nor is in violation of [R].

Restricting attention to the set of models in E [2], we now study the necessity of condition [S] and

of condition [L1] in order for there to exist an equilibrium trajectory that exhibits segmented

assimilation. To that end, we present the following result that considers the case where a model

[E] ∈ E [2] violates [S].
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Lemma 7.5. Consider a model [E] ∈ E [2] with parameter values of {β, λ, δ, θ} such that β
1+λ ≥

δ+2θ, implying that [S] is violated. In that case,for any initial culture distribution µ
0
∈ ∆̂

[2]
0 , there

exists σ̄ ∈ (0, 1) and ḡ ∈ (0, 1), such that if the culture-shift probability is any σ < σ̄ and if the

migration probability vector G satisfies the restriction 0 < g(1) ≤ g(2) < ḡ, there does not exist an

equilibrium trajectory that exhibits segmented assimilation.

Proof. Given that the parameter values of {β, λ, δ, θ} in the given model [E] ∈ E [2] are such that
β

1+λ ≥ δ + 2θ. Suppose that µ
0
is the inital distribution in generation 1. Choose σ̄ so small that

(1− σ̄)µ0(1) > 0.5 and ḡ very small such that min{V (2 |µ1), V (2 |µ2)} > V (2 | (1, 0)), where µ1 =

((1− ḡ)(µ0(1)+ σ̄µ0(2)), (1− ḡ)(1− σ̄)µ0(2)), and µ
2 = ((1− ḡ)(1− σ̄)µ0(1), (1− ḡ)(σ̄µ0(1)+µ0(2))).

Take any σ and g(2) such that σ ≤ σ̄ and g(2) < ḡ. We now show that every equilibrium trajectory

must exhibit complete assimilation in V.

In the first generation, consider a conjecture µe that is generated by a decision profile under which

there is culture-shifting in any direction (i.e., either from 1 to 2 or from 2 to 1). Then, it must be

that V (2 |µe) > V (2 | (1, 0)) ≥ C(2 | (1, 0)), implying that under conjecture µe, members in acquired

position 2 will strictly prefer to stay back in V. [P] implies then that the same will hold for position

1. Hence, the culture set {1, 2} must be fully entrenched in every equilibrium in generation 1. Since

(1− σ)µ0(1) > 0.5, there will be culture-shifting from position 2 to position 1 in equilibrium.

The generation 1 results imply that an equilibrium inherited distribution for generation 2 must

be of the form µ
1
= (µ1(1) > µ0(1), µ1(2) < µ0(2)) with m[µ

1
] = 1. Then the above arguments

can be repeated to establish that {1, 2} will be fully entrenched in every generation 2 equilibrium.

Repeating this set of arguments over successive generations yields the result that in the suitably

structured model [E] (that violates [S]), starting from any µ
0
∈ ∆̂

[2]
0 , every equilibrium trajectory

must exhibit complete assimilation in V.

Our next result considers the case where a model [E] ∈ E [2] violates [L1] for all µ
0
∈ ∆̂

[2]
0 .

Lemma 7.6. Consider a model [E] ∈ E [2] with parameter values of {β, δ, θ, σ, g(1), g(2)}. There ex-

ist a positive measurable set of parameter values such that if [L1] is violated for a positive measurable

set of values of µ
0
∈∆̂

[2]
0 then all equilibrium trajectories must exhibit complete assimilation in C.

Proof. Define

Υ =

{
(λ, σ, κ) ∈ (0, 1]3 : κ >

1

1 + λ(1− σ)κ

}
.

Thus, for λ̄ sufficiently close to 1 and small σ̄, there is an κ̄ ∈ (0, 1) such that (λ̄, σ̄, κ̄) ∈ Υ. Fix such

a (λ̄, σ̄, κ̄). Note also that (λ̄, σ, κ) ∈ Υ for all σ ≤ σ̄ and κ ≥ κ̄. Define µ(κ, σ) = ((1−σ)κ, 1−κ+σκ)

for all σ ≤ σ̄ and κ ≥ κ̄. Recognize that

V(1|(κ, 0)) = w + βκ > w +
β

1 + λ̄(1− σ)κ
= V(2|µ(κ, σ))

for all κ ≥ κ0 and all σ ≤ σ̄. Moreover, V(1|(κ, 0)) − V(2|µ(κ, σ̄)) increases as κ tends to 1, and

C(2|(κ, 0))−C(2|µ(κ, σ̄)) decreases and converges to 0 as κ approaches to 1. Let κ0 ∈ [κ̄, 1) be such
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that for all κ ≥ κ0, we have V(1|(κ, 0)) − V(2|µ(κ, σ̄)) > C(2|(κ, 0)) − C(2|µ(κ, σ̄)). For all σ ≤ σ̄,

as V(2|µ(κ, σ)) ≤ V(2|µ(κ, σ̄)) and C(2|µ(κ, σ)) = C(2|µ(κ, σ̄)), we have

V(1|(κ, 0))− V(2|µ(κ, σ)) > C(2|(κ, 0))− C(2|µ(κ, σ)). (7.2)

Let ∆Υ := {µ ∈ ∆+ : µ0(1) ≥ κ0}. Choose an initial distribution µ
0
∈ ∆Υ. Since [L1] is not

satisfied, there is some σ0 ≤ σ̄ small enough so that V(1|µσ
0
) < C(2|µσ

0
) for all σ ≤ σ0, where

µσ
0
:= (µ0(1) + σµ0(2), (1− σ)µ0(2)). We can choose σ0 in such a way that σ0µ0(1) <

µ0(2)
2 . Take

any σ ∈ (0, σ0], and let µ̃σ
0
= µ(µ0(1), σ). Thus, by (7.2), we have

V(1|µL1(µ
0
))− V(2|µ̃σ

0
) > C(2|µL1(µ

0
))− C(2|µ̃σ

0
).

This implies that

C(2|µ̃σ
0
)− V(2|µ̃σ

0
) > C(2|µL1(µ

0
))− V(1|µL1(µ

0
)) > 0.

Let {µ∗
t
: t ≥ 1} be an equilibrium trajectory. Note that C(2|µ∗

1
) ≥ C(2|µ̃σ

0
) and V(2|µ∗

1
) ≤ V(2|µ̃σ

0
).

It follows that

C(2|µ∗
1
)− V(2|µ∗

1
) ≥ C(2|µ̃σ

0
)− V(2|µ̃σ

0
) > 0.

Hence, minorities with acquired culture position 2 migrate to C in generation 1. In order to show P

is unentrenched under µ∗
t
for all t ≥ 1, we now define lower bounds on the migration probabilities

g(1) and g(2). Take any η ∈ (0, µ0(2)2 ) satisfying V(1|µσ) < (1 − η)C(2|µσ). Choose g(1) and g(2)

such that g(1) ≥ σ0 and g(2) > 1− η. Note that V(1|µ∗
1
) ≤ V(1|µσ

0
) < g(2)C(2|µσ

0
) ≤ U∗(2|µ∗

1
).

Thus, under the equilibrium µ∗
1
, either a positive measure of individual with acquired culture

position 1 will culture shift to 2 or migrate to C from position 1. So, P is unentrenched under µ∗
1
.

We prove by the principle of mathematical induction that P is unentreched under µ∗
t
for all t ≥ 1.

To do this, suppose that P is unentrenched under µ∗
t
for all t = 1, · · · , t0. It remains to verify

that P is unentrenched under µ∗
t0+1

. The maximum village payoff will be attained at position 2

in generation t0 + 1 whenever σ-fraction of µ∗t0(1) will culture-shift right and nobody migrate to

the city. Thus, we consider the distribution µ̃σ
t0

= µ(µt0(1), σ). Since P is unentrenched under

µ∗t for all t = 1, · · · , t0 and g(1) ≥ σ, we have µ∗t0(1) ≤ (1 − σ)µ0(1)
43 and µ∗t0(2) < η. Thus,

V(2|µ̃σ
t0
) < V(2|µ̃σ

0
). In view of C(2|µ̃σ

t0
) ≥ C(2|µ̃σ

0
), it follows that

C(2|µ̃σ
t0
)− V(2|µ̃σ

t0
) > C(2|µ̃σ

0
)− V(2|µ̃σ

0
) > 0. (7.3)

By Equation (7.3), as C(2|µ∗
t0+1

) ≥ C(2|µ̃σ
t0
) and V(2|µ∗

t0+1
) ≤ V(2|µ̃σ

t0
), we have C(2|µ∗

t0+1
) >

V(2|µ∗
t0+1

). Hence, minorities with acquired culture position 2 migrate to C in generation t = t0+1.

Furthermore, as µ∗t0(1) ≤ (1− σ)µ0(1) and µ
∗
t0
(2) < η, we have

V(1|µ∗
t0+1

) ≤ V(1|µσ
0
) < g(2)C(2|µσ

0
) ≤ U∗(2|µ∗

t0+1
).

43 If U∗(1|µ∗

1
) < U∗(2|µ∗

1
) then σ-fraction of µ0(1) will culture shift right and thus, µ∗

t0
(1) ≤ (1 − σ)µ0(1);

if U∗(1|µ∗

1
) > U∗(2|µ∗

1
) then g(1)-fraction of µ0(1) will migrate from position 1 and so µ∗

t0
(1) ≤ (1 −

g(1))µ0(1) ≤ (1−σ)µ0(1); and if U∗(1|µ∗

1
) = U∗(2|µ∗

1
) then ασ-fraction of µ0(1) will culture shift right for

some α ∈ [0, 1] and thus, µ∗
t0
(1) = (1− g(1))(1− ασ)µ0(1) ≤ (1− σ)µ0(1).
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Consequently, as above, P is unentrenched under the equilibrium distribution µ∗
t0+1

. Thus, by the

principle of mathematical induction, we conclude that P is unentrenched under µ∗
t
for all t ≥ 1.

Proof of Proposition 5.5: The result follows from Lemma 7.5 and Lemma 7.6.

Suppose there exists an equilibrium trajectory {µ∗
t
: t ≥ 1 | µ

0
} such that in a finite period τ ≥ 1

with inherited µ∗
τ−1

(which equals µ
0
if τ = 1): µ∗

τ−1
∈ ∆̂+, and [L0], [L1], and either [L2] or [S]

(or both) hold for µi = µ∗
τ−1

. For any τ ≥ 1, let Aτ denote the set of all equilibrium trajectories

{µS
t
: t ≥ 1|µ

0
} (with µS

t
= µ∗

t
for t < τ) that exhibits segmented assimilation in the long-run such

that {1, · · · , p̂(µS
τ−1

)} is entrenched under µS
t
for all t ≥ τ and {p̂(µS

t
) : t ≥ τ} is a monotonically

decreasing sequence of elements in {q̂(µS
τ−1

), · · · , p̂(µS
τ−1

)}, where µS
τ−1

is the inherited distribution

for generation τ (µ
τ−1

= µ
0
if t = 1). Under the hypothesis of Proposition 5.4, we have Aτ 6= ∅.

Lemma 7.7. For any {µS
t
: t ≥ 1|µ

0
} ∈ Aτ for some τ ≥ 1 with limt→∞ p̂(µ∗

t
) exists, if the set

P0 = {p ∈ P : p < limt→∞ p̂(µ∗
t
)} is non-empty then {µ∗t (p) : t ≥ 1} converges to 0 for all p ∈ P0.

Proof. It follows from the fact {µS
t
: t ≥ 1|µ

0
} ∈ Aτ that {1, · · · , p̂(µS

τ−1
)} is entrenched under

µS
t
for all t ≥ τ , which means that no individual will migrate from each of these positions in all

generations t ≥ τ . Furthermore, all minority individuals at any p ∈ P0 culture-shift right in all

large generations whenever relavant opportunities arise. Take such a period t ≥ τ . It follows that

µSt (p) =

{
(1− σ)µSt−1(p) + σµSt−1(p− 1), if p ∈ P0 \ {1};

(1− σ)µSt−1(1), if p = 1.

Therefore,

µSt (p) =

t−τ+1∑

m=0

(
t− τ + 1

m

)
(1− σ)t−τ+1−mσmµτ (p−m),

where µτ (p −m) is taken as 0 for all m ≥ p. As a consequence, we conclude that {µSt (p) : t ≥ 1}

converges to 0 for all p ∈ P0.

Lemma 7.8. Given the initial distribution µ
0
, for any equilibrium trajectory {µS

t
: t ≥ 1|µ0} ∈ Aτ

satisfying the condition [S], {µSt (p) : t ≥ 1} converges to 0 for all p ∈ P with p > limt→∞ p̂(µSt ).

Proof. Let {µS
t
: t ≥ 1|µ

0
} ∈ Aτ for some τ ≥ 1. For t ≥ τ , defineΨ(µS

t
) =

{
p ∈ P : V (p|µSt ) < C(p|µSt )

}
.

It is immediate from the proof of Proposition 5.4 that P ∈ Ψ(µS
t
) for some t ≥ τ . Define t1 to

be the minimum of all those t’s. We claim that there must exist a generation t2 > t1 such that

P ∈ Ψ(µS
t2
). If not, all minority individuals move from p to p − 1 for all p̂(µS

τ−1
) < p ≤ P in

each generation t > t1 and thus, as in the proof of Proposition 5.2, one can show that there is

some generation t > t1 such that P ∈ Ψ(µS
t
), which is a contradiction. So, the claim is verified.

By invoking the same argument, we can generate a sequence {t1, t2, · · · } of generations such that

t1 < t2 < · · · and P ∈ Ψ(µS
ti
) for all i ≥ 1.

Next, we define P∞ =
{
p ∈ P : p ∈ Ψ(µ∗

t
) for infinitely many t

}
. From above, we have P∞ 6= ∅.

Let pmin = minP∞. It thus follows that pmin > p̂(µSτ−1) and there is some t̃ ≥ τ such that

pmin − 1 /∈ Ψ(µS
t
) for all t ≥ t̃. Define p∞ = pmin − 1, and consider the following two cases.
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Case 1. p∞ = p̂(µSτ−1). Recognize that {1, · · · , p∞} is entrenched under µS
t
for all t ≥ t̃. Thus,

{
∑

p∈P∞ µSt (p) : t ≥ t̃} is a monotonically decreasing sequence of real numbers. Let b be the limit

of this sequence.We claim that b = 0. Let {t1, t2, · · · } be a sequence of generations such that

t̃ ≤ t1 < t2 < · · · and p ∈ Ψ(µS
tk
) for all p ∈ P∞ and all k ≥ 1. Since {µ∗tk(p) : k ≥ 1} is a

bounded sequence, it has a convergent sub-sequence for all p ∈ P∞. Without any loss of generality,

we assume that {µStk(p) : k ≥ 1} converges to bp for all p ∈ P∞. Consequently, b =
∑

p∈P∞ bp. By

the way of contradiction, we assume that bp0 > 0 for some p0 ∈ P∞. Choose some cp0 > 0 such

that cp0 < bp0 <
cp0

1−g(p0)
. Let ε > 0 be such that ε < g(p0)cp0 . Let K be a positive integer such

that for all k ≥ K, we have: (i)
∑

p∈P∞ µStk(p) < b+ ε; and (ii) µStk(p0) ∈
(
cp0 ,

cp0
1−g(p0)

)
.

Choose some k′ > K and let dp0 > 0 be the number such that dp0(1 − g(p0)) = µStk′ (p0). Thus,

dp0 is the measure of minority individuals with acquired culture position p0 in generation tk′ in

V following the culture-shift decisions by minority residents, but before the migration decisions

under the equilibrium µ
tk′
. It follows from (ii) that dp0 > cp0 . Therefore, the measure g(P )dP

of individuals will migrate in generation tk′ , and hence, it is evident from the definition of ε that∑
p∈P∞ µSt (p) < b, which contradicts with the fact that

∑
p∈P∞ µSt (p) ≥ b for all t ≥ t̃. Therefore,

we conclude that bp = 0 for all p ∈ P∞, which means b = 0. Hence, the claim is verified. As in the

proof of Lemma 7.7, if the set Q = {p ∈ P : limt→∞ p̂(µSt ) < p ≤ p∞} is non-empty, then one can

easily show that {µSt (p) : t ≥ 1} converges to 0 for all p ∈ Q.

Case 2. p∞ > p̂(µSτ−1). It yields that V (p∞ − 1|µS
t
) > V (p∞|µS

t
) ≥ C(p∞|µS

t
) for all t ≥ t̃, which

further implies that {1, · · · , p∞ − 1} is entrenched and the σ-fraction of minority individuals in

p∞ in V move to either p∞ − 1 or pmin under µS
t
, in all generations t ≥ t̃. Thus, the sequence

{
∑

p∈P∞∪{p∞} µ
S
t (p) : t ≥ t̃} is a monotonically decreasing sequence of real numbers, which is

assumed to converge to some non-negative real number b. We claim that b = 0. Suppose by the

way of contradiction that b > 0. As in Case 1, there is a sequence {t1, t2, · · · } of generations such

that (i) t̃ ≤ t1 < t2 < · · · and p ∈ Ψ(µS
tk
) for all p ∈ P∞ and all k ≥ 1; and (ii) {µStk(p) : k ≥ 1}

converges to some non-negative real number bp for all p ∈ P∞∪{p∞}. An argument similar to that

in Case 1 guarantees that bp = 0 for all p ∈ P∞. As a consequence, we get b = bp∞ . Choose cp∞

such that cp∞ < bp∞ and then pick some K such that

∑

p∈P∞

µStk(p) < min

{
(1− σ)(1− g(pmin))cp∞

2
,
σ(1− g(pmin))cp∞

4

}

for all k ≥ K. Hence, the total measure of minority individuals with inherited culture positions

in P∞ is less than
cp∞

2 in generation tk for all k ≥ K. Thus, the total measure of individuals

with inherited culture position p∞ in V in generation tk must be at least
cp∞

2 , for all k ≥ K.

Therefore, at least the measure
σcp∞

2 of individuals move to either p∞ − 1 or pmin from p∞ in

generation tk, for all k ≥ K. Let ε > 0 be such that ε <
σcp∞

4 . Choose some K0 ≥ K such that∑
p∈P∞∪{p∞} µ

S
tk
(p) < b+ ε for all k ≥ K0. Pick an element k′ > K0. If at least the measure

σcp∞

4

of minority individuals in p∞ in V move to p∞ − 1 in generation tk′ then
∑

p∈P∞∪{p∞} µ
S
tk′
(p) < b,

which is a contradiction. On the other hand, if at least the measure
σcp∞

4 of minority individuals

in p∞ in V move to pmin in generation tk′ then µStk′ (p
min) ≥

σ(1−g(pmin))cp∞

4 , which is again a
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contradiction. Hence, we conclude that b = 0. Therefore, {µSt (p) : t ≥ 1} converge to 0 for all

p ≥ p∞. Similar to Case 1, if the set Q = {p ∈ P : limt→∞ p̂(µSt ) < p < p∞} is non-empty, then

one can easily show that {µSt (p) : t ≥ 1} converges to 0 for all p ∈ Q.

Proof of Proposition 6.1: Let {µS
t

: t ≥ 1} ∈ Aτ . Since {q̂(µS
τ−1

), · · · , p̂(µS
τ−1

)} has only

finitely many elements, there is some p′ ∈ {q̂(µS
τ−1

), · · · , p̂(µS
τ−1

)} such that p̂(µS
t
) = p′ for all

t ≥ t0 for some t0 ≥ τ , which implies that the social interaction is maximized on {p′ − 1, p′} in

generation t ≥ t0. By Lemmas 7.7 and 7.8, we conclude that {µSt (p) : t ≥ 1} converges to 0 for all

p ∈ P \ {p′ − 1, p′}.

We now show that there exist an element {µB
t
: t ≥ 1} ∈ Aτ and some p̃ ∈ P such that all village

residents will eventually move to p̃ under this equlibrium trajectory. To this end, we define

Q =
{
p ∈ P : p = lim

t→∞
p̂(µS

t
) for some {µS

t
: t ≥ 1|µ

0
} ∈ Aτ

}
.

AsAτ 6= ∅, from above it follows that Q 6= ∅. Let p0 denote the smallest element of Q. It follows that

p0 = p̂(µ∗∗
t
) for all large t and for some {µ∗∗

t
: t ≥ 1|µ

0
} ∈ Aτ . We claim that {µ∗∗t (p0 − 1) : t ≥ 1}

converges to 0. Recognized that if p0 = q̂(µ∗
τ−1

) then there is nothing remains to prove. Thus, we

assume that p0 > q̂(µ∗
τ−1

) and {µ∗∗t (p0 − 1) : t ≥ 1} does not converge to 0. Then there must exist

a subsequence {tk : k ≥ 1} of {t : t ≥ 1} such that d(p0, µ
∗∗
tk
) = d(p0 − 1, µ∗∗

tk
) for all k ≥ 1. Note

that, in the light of [L2] or [S], there is some η0 ∈ (0, 1) satisfying: µ ∈ ∆∗(p̂(µ∗
τ−1

), η0) implies

V (P |µ) < C(P |µ). Recogized that µ∗∗
t

∈ ∆∗(p̂(µ∗
τ−1

), η0) for all large t. Pick an integer k0 ≥ 1

such that tk0 ≥ τ be such a generation, and note that µi = µ∗∗
tk0

is the inherited distribution in

generation tk0 + 1. We now construct a continuation equilibrium trajectory {µ′′
t
: t ≥ tk0 + 1|µ∗∗

tk0
}

that exhibits incessant fracture with {1, · · · , p̂(µ∗
τ−1

)} being entrenched and p̂(µ′′
t
) ≤ p0 − 1 in each

generation t > tk0 . First note that when [L0]-[L1] hold for µi = µ∗
τ−1

, conditions [B0]-[B1] hold for

µi = µ∗∗
tk0

, p̃0 = p̂(µ∗
τ−1

) and q̃0 = q̂(µ∗
τ−1

). For µi = µ∗∗
tk0

and p̃0 = p̂(µ∗
τ−1

), we define by XP the

set of decision profiles in X̃ such that all born at p0 − 1 do not culture-shift right. Let ∆P (µ∗∗
tk0

) be

the set of all culture distribution generated from µi = µ∗∗
tk0

by all decision profiles in XP . Recognize

that the set ∆P (µ∗∗
tk0

) is non-empty, convex and compact. For any conjecture µe ∈ ∆P (µ∗∗
tk0

),

as the set {1, · · · , p̂(µ∗
τ−1

)} is entrenched under µe, we have µe ∈ ∆∗(p̂(µ∗
τ−1

), η0), which yields

V (P |µe) < C(P |µe). This implies that m[p0 − 1|µe] ≥ m[p0 − 1|µ∗∗
tk0

] = 1
2m[µ∗∗

tk0
] > 1

2m[µe].

Consequently, V (p0−1|µe) > V (p0|µ
e) > C(p0|µ

e). As a result, one born at p0−1 will not culture-

shift right under µe. Thus, there exists an equilibrium outcome µ′′
tk0+1

in generation tk0 + 1 that

belongs in ∆P (µ∗∗
tk0

), satisfies q̂(µ∗∗
tk0

) ≤ q̂(µ′′
tk0+1

) ≤ p̂(µ′′
tk0+1

) ≤ p̂(µ∗∗
tk0

), and exhibits the property

that all minority members situated at acquired culture position P migrate to C whenever they

get the opportunity. Invoking a similar argument, we can construct a continuation equilibrium

trajectory {µ′′
t
: t ≥ tk0 + 1|µ∗∗

tk0
} that exhibits incessant fracture with {1, · · · , p̂(µ∗

τ−1
)} being

entrenched and p̂(µ′′
t
) ≤ p0 − 1 in each generation t > tk0 . Thus, the equilibrium trajectory

{µ00
t

: t ≥ 1|µ
0
} in which µ00

t
= µ∗∗

t
for all t ≤ tk0 and µ00

t
= µ′′

t
for all t > tk0 , belongs in Aτ . This

implies that p0 is not the smallest element of Q, which is a contradiction.
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