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USING THE ASYMPTOTIC APPROXIMATION OF THE MAXWELL 

ELEMENT MODEL FOR ANALYSIS OF STRESS IN CONVEYOR BELT 

 

Oleh Pihnastyi, Svіtlana Chernіavska 

 

The features of the propagation of dynamic stresses in a conveyor belt, the 

material properties of which correspond to the Maxwell element model, are 

considered. Analytical expressions are presented for calculating the dynamic modulus 

of elasticity, the modulus of loss, and the angle of mechanical loss depending on the 

frequency of longitudinal vibrations in the belt of an extended transport conveyor. To 

analyze the dynamic stress propagation process, dimensionless parameters are 

introduced that characterize the specific features of the viscoelastic process in a 

conveyor belt, the material properties of which correspond to the Maxwell element 

model. The transition to the dimensionless Maxwell element model is made and the 

analysis of the relationship between stress and deformation of a conveyor belt element 

for extremely large and small values of dimensionless parameters is made. The 

substantiation of the scope of the Maxwell element model is given. It is shown that at 

sufficiently high frequencies of longitudinal voltage oscillations in a conveyor belt, at 

which the oscillation period is much less than the characteristic time of oscillation 

damping, the relationship between stress and deformation of the conveyor belt element 

corresponds to Hooke's law. A qualitative analysis of the relaxation time was carried 

out for a conveyor belt material, the properties of which correspond to the Maxwell 

element model. The analysis of the propagation of dynamic stresses in the conveyor 

belt for the characteristic modes of operation of the transport conveyor is carried out. 

The mode of operation of the conveyor with a constant deformation speed of the belt 

element has been investigated; a mode in which a constant load is suddenly applied to 

a belt element; mode of operation of the conveyor with an instantly applied load to the 

belt element. It was determined that in cases where the characteristic process time 

significantly exceeds the stress relaxation time in the conveyor belt or the longitudinal 

oscillation period is much less than the stress relaxation time in the conveyor belt, the 

Maxwell element model can be replaced with a sufficient degree of accuracy by the 

Hooke element model. 

Key words: viscoelastic process, Maxwell element, Hooke element, transport 

conveyor, dynamic modulus of elasticity 

 

1. Introduction 

One of the characteristics of a transport conveyor, which determines its 

operational capabilities, is the strength of the conveyor belt [1, 2]. The mechanical 

strength of the belt is the ability of the belt to resist destruction under the action of the 

dynamic Maxwell element loads that occur during material transport.  The tensile 

strength of the belt depends on the properties of the material, the speed of deformation, 

and the temperature of the tape material [3, 4]. For transport conveyors that operate 

continuously for a long time, belt failure occurs at stresses that are significantly lower 

than the ultimate strength of the belt material. The behavior of the material of the belt 

at the moment of destruction is determined by the relaxation and strength properties of 



the material of the conveyor belt, between which there is a relationship [5]. The 

viscoelastic properties of the material of the conveyor belt, caused by relaxation 

processes, affect the speed of the destruction of the conveyor belt [6, 7], are closely 

related to the problem of saving costs for transportation of the material. One of the 

ways to reduce transport costs, which occupy a significant part in the cost of material 

extraction, is the use of a conveyor belt speed control system [8]. Switching speed 

modes leads to acceleration or deceleration of the conveyor belt, and, accordingly, to 

the emergence of dynamic stresses in the belt. This imposes additional restrictions on 

the speed limits of the transport system. The proposed algorithms for stepwise 

regulation of the belt speed imply instant switching of speed modes, and algorithms for 

smooth speed control do not take into account the propagation of dynamic disturbances 

in the conveyor belt. At the same time, with a non-stationary incoming of material at 

the input of the transport system, the duration of the transient process takes up a fairly 

large part of the total time of the control process. For an in-depth analysis of these 

limitations, which consists in determining the dependence of the stresses value on the 

magnitude of the belt speed and acceleration, a solution of the wave equation is 

required. For the Hooke-element model, the solution to the wave equation is obtained 

in an analytical form. For more complex elastic element models, among which the 

Maxwell element model should be distinguished, the solution of the wave equation is 

associated with additional difficulties. In this regard, the problem of constructing 

simple analytical dependencies between the stress and deformation of a belt element is 

urgent, which would simplify the solution of the wave equation and make it possible 

to form constraints on the phase coordinates when designing algorithms for optimal 

control of the belt speed, the material properties of which correspond to the Maxwell 

element model. 

 

2. Literature analysis and problem statement 

In [9], the results of studies of the propagation of dynamic stress disturbances in 

conveyor belts made of a material whose characteristics correspond to the Voigt 

element model are presented. It is shown that the materials of the conveyor belt have 

pronounced viscoelastic properties, which impose specific features on the process of 

propagation of disturbances [7]. For some modes of operation of the conveyor, a 

numerical calculation of the values of the conveyor belt speed, acceleration, and stress 

in the conveyor belt is carried out. However, the questions of constructing a solution 

to the problem in an analytical form remained open. The reason for this is the objective 

difficulties caused by the relationship between stress and deformation in the Voigt 

element model. The problem of constructing a solution to the problem in an analytical 

form remained open in the works [5, 10, 11]. In work [5] for the conveyor belt of the 

elastic model Kelvin-Voigt element, the tension of the belt in the steady-state and 

transient conditions is analyzed.  For the numerical calculation, the Lagrange equation 

system was used. The work [10] presents an analysis of the main models of elastic 

elements for a conveyor belt: Hooke element, Newtonian element, Maxwell element, 

Kelvin element, Venant element, CDI geometric element, CDI five-element. The 

calculation of two transport systems (conveyor length nine kilometers) for start and 

stop modes with the CDI five-element composite model was performed using the finite 



element method. The dynamic stress in a conveyor belt, the material characteristics of 

which correspond to the Kelvin-Voigt element model, the combination of Hooke and 

Kelvin-Voigt element, was investigated in [11]. The conveyor belt segment is 

represented by a two-parameter rheological model. 

In some cases, these difficulties can be overcome if, during the operation of the 

conveyor, it is assumed that there are small deformations in the belt, at which the 

relationship between stress and deformation in an element can be approximately 

represented by Hooke's law 

 

   , , ,t S E t S        (1) 

 

where σ(t, S), ε(t, S) фку stress and deformation of the belt at time t at point S of the 

conveyor section of length  Sd; E is the modulus of elasticity of the material. This 

approach to the analysis of the propagation of long-wave oscillations in the conveyor 

belt of the transport system is implemented in [12]. Also, an attempt to construct an 

approximate analytical solution in a particular case was carried out in [13] for a 

transport system, the belt material of which corresponds to the Winkler foundation 

model. All this allows us to assert the feasibility of conducting a study on the 

construction of approximate Maxwell element models with their subsequent use to 

calculate the propagation of longitudinal vibrations in a conveyor belt. 

 

3. The purpose and objectives of the study 

The aim of the study is to develop asymptotic models of viscoelastic processes in 

a conveyor belt, the material of which corresponds to the model of the Maxwell 

element. This made it possible to synthesize algorithms for controlling the belt speed, 

taking into account the limitations associated with the presence of dynamic 

disturbances in the conveyor belt, and, accordingly, to further reduce the cost of 

transporting material by optimizing the speed modes. 

To achieve this goal, the following tasks were set: 

– perform an asymptotic analysis of the model of the Maxwell element and justify 

the scope of the model;  

– to analyze the characteristic modes of operation of the transport conveyor, to 

carry out for each of the considered modes the transition from the general model  of 

the Maxwell element to the asymptotic model of the viscoelastic element, justifying its 

use. 

 

4. Materials and research methods 

The materials from which the conveyor belts are made have both elastic and 

viscous properties, which leads to a rather complex relationship between the stress    

σ(t, S) in the conveyor belt and its deformation ε(t, S). One of the common models used 

to describe the viscoelastic properties of a conveyor belt material is the model of the 

Maxwell element. An analytical solution to the problem of the propagation of 

longitudinal dynamic stress disturbances in a conveyor belt, the material of which 

corresponds to the model of the Maxwell element, was obtained for a number of simple 

cases. A common way to solve this problem for more complex cases is to use numerical 



methods [5, 10, 13]. However, a numerical experiment is not a sufficiently convenient 

tool for determining the general patterns between stress and deformation in a conveyor 

belt element, which creates the preconditions for the further development of analytical 

methods that allow, in a particular case, to study the propagation of longitudinal 

dynamic stress disturbances in a conveyor belt, the material of which corresponds to 

the Maxwell element model. An alternative way to solve the problem is that the 

analytical solution can be achieved by introducing simplifications in the formulation 

of the problem or in the course of its solution. The proposed simplification is based on 

the use of a small parameter, the presence of which reflects the essence of the 

formulation of the problem of determining the general patterns between stress and 

deformation in the model of the Maxwell element. In this regard, characteristic 

dimensionless numbers are introduced that determine the features of the viscoelastic 

process in the belt for studying the properties of the Maxwell element. The transition 

to dimensionless variables and the use of similarity criteria made it possible to 

generalize the research results for conveyor belts made of different materials. The next 

step of the study consisted in the fact that for the limiting values of the introduced 

similarity criteria, asymptotic models of the Maxwell element were obtained, which 

characterize the features of the viscoelastic process in a conveyor belt. Essentially, 

asymptotic Maxwell element models are represented as simple relationships between 

stress and deformation in a conveyor belt, some of which are consistent with Hooke's 

Law to the required degree of accuracy. The area of application of asymptotic models 

is determined in accordance with the characteristic values of the introduced similarity 

criteria for a viscoelastic process. 

 

5. Study results from asymptotical approximation for the model of the 

Maxwell element 

5. 1. Asymptotic analysis and justification for the application of the model of 

the Maxwell element 

The relationship between stress σ(t, S) and deformation ε(t, S) can be represented 

in general form 

 
   , , ,ct S E t S     1 2,cE E iE   
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where Ec is the complex modulus of elasticity of the material. The real part of the 

complex modulus of elasticity of the material Re(Ec)=E1 is the dynamic modulus of 

elasticity, which characterizes the process of energy transfer through the element of the 

conveyor belt. The imaginary part of the complex modulus of elasticity of the material 

Im(Ec)=E2 is the modulus of losses, which characterizes the process of dissipation of 

vibration energy in a viscoelastic body, during which the conveyor belt is heated.  If at 

the point S0 of the conveyor belt there is a dynamic, periodically varying stress             

σ(t, S0)=ε0cos(ωt), then taking into account the relations Ec=│Ec│(cosδisinδ),              
εt S0=ε0(cosϕisinϕ) and, using the Moivre formula, the dependence follows: 
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A viscoelastic element of a conveyor belt is characterized by a phase shift between 

stress and deformation, which is set by the tangent of the angle δ of mechanical losses. 

The dynamic modulus of elasticity and the modulus of loss are the main parameters 

that determine the propagation of longitudinal vibrations in a conveyor belt. One of the 

important problems in the analysis of the propagation of disturbances is to establish the 

dependence of the dynamic modulus of elasticity E1 and the modulus of loss E2 on the 

vibration frequency ω. Let's obtain the indicated dependencies for the models used to 

describe the process of propagation of longitudinal vibrations in a conveyor belt.  

The equation defining the relationship between stress σ(t, S) and deformation      

ε(t, S) at point S0 of the conveyor belt, the material of which corresponds to the model 

of the Maxwell element (Fig. 1), has the form 

 
     0 0 0, , ,1
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where E is the modulus of elasticity of the element; η is element viscosity.
 

 
Fig. 1. Viscoelastic Maxwell element 

 

Let us seek a solution to equation (5) in the form 

 

 0 0, .i tt S e        (6) 

 

Taking into account relations (2), after substituting expression (6) into (5), the 

equation is obtained 
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which was used to determine the dynamic elastic modulus E1 and loss modulus E2: 
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Introduced dimensionless parameters 
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are used to transform the system of equations (8) to the form 
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The solution of the system of equations (10) made it possible to obtain the 

dependences of the dynamic modulus of elasticity ε and the modulus of losses ε on 

the parameter χ which have the form (Fig. 2) 
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The parameter χ is the dimensionless vibration frequency 
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where t0 is the characteristic decay time of the oscillations. For a viscoelastic Maxwell 

element with parameters E=2.5e8 (Pa) and =1875 (Nsec/m2) ), the characteristic 

decay time of oscillations is t0~10-5(sec). 

Using solution (11), the analysis of the dependence of the dynamic elastic 

modulus ε and the loss modulus ε on the dimensionless frequency χ of stresses 

fluctuations in the conveyor belt for the model of the Maxwell element is carried out. 

At large values of vibration frequencies (χ), the solution to equation (11) can be 

represented in the form 
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Рис. 2. Characteristics of a viscoelastic element depending on the frequency χ:  
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а – dynamic modulus of elasticity ε, loss modulus ε; б – angle of mechanical losses 

δ 

 

At large values of dimensionless frequencies χ, the value of the dynamic 

modulus of elasticity ε tends to the value of Young's modulus E. Losses that lead to 

the dissipation of elastic energy in the conveyor belt and are characterized by the 

modulus ε can be neglected (Fig. 2). There is no phase shift  δ between stress σ(t, S) 

and deformation ε(t, S) at point S0 of the conveyor belt. Thus, solution (2) for equation 

(5) is presented in the form of Hooke's law (1). For high vibration frequencies, the 

relationship between stress and strain in the model of the Maxwell element follows 

Hooke's law. 

For small values of the parameter χ, the solution to equation (11) has the form 
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The results obtained for the case of low vibration frequencies showed that the 

dynamic modulus of elasticity ε does not have a nonzero value. The close-to-zero 

value of the elastic modulus does not agree with the experimental data. Therefore, to 

describe the dynamic viscoelastic properties at low vibration frequencies, the use of 

the model is incorrect due to the fact that the stress in the belt element tends to zero at 

an arbitrary value of the deformation of the viscoelastic element. 

A qualitative assessment of the value of the characteristic damping time of 

oscillations t0 in a viscoelastic element was made taking into account the results of 

studies of the experimental reference dependences storage G1(ω)~E1(ω)/3 and loss 

modules G2(ω)~E2(ω)/3 for materials of a conveyor belt, which were obtained in [14]. 

The results of the experiment [14] (Fig. 4), presented in the form of graphical 

dependencies G1(ω), G2(ω), , for the convenience of processing and perception of the 

results, are transformed into a tabular presentation (Table 1). 

 

Table 1 

Typical values of the parameters of a viscoelastic element [14] 

G1(ω), MPa E1(ω), MPa G2(ω), MPa E2(ω), MPa f, Hz ω, rad/sec 

5,2 15,6 0,9 2,7 10-9 2π 10-9 

11,2 33,6 1,4 4,2 10-5 2π 10-5 

20,0 60.0 2,8 8,4 10-1 2π 10-1 

22,0 66,0 3,0 9,0 1/ 2  1 

27,0 81.0 3,8 11,4 100 2π 100 

33,0 99.0 5,0 15,0 101 2π 101 

40,0 120.0 6,0 18,0 102 2π 102 

170,0 510.0 90,0 270,0 105 2π 105 

1700,0 5100.0 100,0 300,0 1010 2π 1010 



1720,0 5160.0 20,0 60,0 1011 2π 1011 

 

Taking into account the dimensionless expression (11), the characteristic damping 

time of oscillations t0, was determined by presenting the value of the dynamic elastic 

modulus E1(ω) for an arbitrary value of the frequency ω and the dynamic modulus of 

elasticity E1(1) for the frequency ω in the following form: 
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Divide the first equation by the second equation, we get the equation 
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which let's will solve for the characteristic time of damping of oscillations 
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Substitution of the values E1(ω), E1(), ω into the last equation made it possible to 

obtain a qualitative dependence of the characteristic decay time of oscillations  t0(ω) 

[sec] for the model of the viscoelastic Maxwell element  on the frequency ω [rad/sec] 

(Fig. 3). 

 

 

 
Fig. 3. The characteristic decay time of oscillations t0(ω) [sec] for the model of 

viscoelastic Maxwell element  

 

The length of time required for the transient mode of acceleration of the conveyor 

belt is several minutes [15–17], which significantly exceeds the characteristic decay 

time of high-frequency oscillations t0 in a viscoelastic element. With a decrease in the 

frequency of oscillations, the characteristic damping time of oscillations t0 in a 

viscoelastic element increases significantly (11), (17). 
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5. 2. Construction of asymptotic models for the main modes of operation of 

the transport conveyor 

Let us consider the solution of equation (5) for some common cases of operation 

of a transport conveyor using conveyor belts made of a material whose characteristics 

correspond to the model of the viscoelastic element Maxwell element. 

Let us introduce dimensionless parameters 
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Since the choice of the scale factors σ0, ε0 is arbitrary, then setting
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we obtain equation (5) in dimensionless form 
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which we use to analyze the characteristic modes of operation of the transport 

conveyor. For extremely high vibration frequencies  (χ , the solution to equation 

(20) is determined by the quasi-linear relationship between stress and deformation in a 

belt element (1). 

 

5. 2. 1. The case of a constant deformation speed of a conveyor belt 

This mode of operation of the transport system is characteristic of the initial 

tension of the conveyor belt at the start of the transport conveyor. In the presence of a 

constant deformation speed dεχ/dτ=νε, equation (16) can be represented as follows: 
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Let's write the solution of equations (21) in the form (Fig. 4): 
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At τ/χ>>1, it follows that the stress σχ for the case of a constant deformation speed 

tends to the value χνε. The deformation grows indefinitely (Fig. 4). 

 

εχ/χνε, σχ/χνε, ε1 



 
 

Fig. 4. Stress σχ, deformation εχ and dynamic modulus of elasticity ε1 at a constant 

deformation speed of the conveyor belt 

 

If the characteristic time of the deformation process t is much shorter than the 

relaxation time t0 (τ/χ<<1), then 
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At small values of the dimensionless parameter τ/χ the behavior of the viscoelastic 

Maxwell element of the conveyor belt obeys Hooke's law (1). 

 

5. 2. 2. The case of a constant speed of stress change in the element of a 

conveyor belt  

With a uniform distribution of material along the conveyor belt and a constant 

force of primary resistance, the stress in the belt changes linearly along the length of 

the section. If the conveyor belt moves at a constant speed, then the speed of change in 

the stress dσχ/dτ=νσ in the dS element during its movement as a result of material 

transportation will also be constant in magnitude. At a constant speed of stress change 

νσ equation(16) takes the form: 
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where the value of σχ is determined by the tension of the belt to eliminate its sagging 

during material transportation. The solution of equations (25) is presented in the form: 
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At τ/χ<<1 (t<<t0) , the solution (26) implies a relationship between the magnitude 

of the stress and deformation of the belt element dS 
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The behavior of the viscoelastic Maxwell element of the conveyor belt follows 

Hooke's law. For the case τ/χ>>1, when the characteristic time of the process 

significantly exceeds the relaxation time (t>>t0) 
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a nonlinear increase in the value of deformation εχ with time is observed. 

 

5. 2. 3. The conveyor belt element is suddenly subjected to a constant load 

The element of the conveyor belt is quite often subjected to a sudden change in 

the value of the load as a result of damage to the structural elements of the transport 

conveyor, which leads to a sharp increase in the value of the primary resistance to the 

movement of the belt. The constant stress  σχ0, suddenly applied to the element dS of 

the conveyor belt, can be represented in the following form 
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where H(τ), δ(τ) are the Heaviside function and the Dirac function, respectively. 

Substitution of the expression that determines the value of the suddenly applied stress 

(28) into equation (16) makes it possible to obtain an equation that determines the 

deformation of the belt element 
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( ) ( ) .

d
H

d


 


      

 
    (29) 

 

Having integrated the last equation, let's write down the solution for the load 

applied at the time τ=0, in the form (Fig. 5): 
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For an arbitrary moment of time when the load is applied τ=τs, the solution to 

equation (29) can be represented in the general form 
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1
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With an increase in the time of application of the load, the deformation increases 

linearly. 

 

 
Fig. 5. Deformation of a conveyor belt element under a suddenly applied load σχ0 

 

If the load is applied for a long time (even at small values), for the case τ/χ>>1, 

when the characteristic time of the process significantly exceeds the relaxation time 

(t>>t0), the deformation value exceeds the maximum permissible value. The 

deformation process becomes irreversible. 

 

5. 2. 4. Element of a conveyor belt with an instantaneous force of resistance 

to the movement of the belt 
Instantaneous loading can be caused by instant braking of a belt element of 

thickness b and width h as a result of instantaneous sharp jamming of moving or 

rotating parts of the conveyor structure. The resulting instantaneous stress σχ(τ), caused 

by the instantaneously acting force of resistance to the movement of the belt Pχ(τ) is 

determined in the following way 

 

( ) ( ) ,        const,   ( ) ( ) .P bh        (31) 

 

At the moment of jamming, a sharp increase in the force of resistance to the 

movement of the bel Pχ(τ), is observed, the action of which is instantaneous, which 

leads to instant braking of the tape, followed by the restoration of the functioning of 

the transport system. Substitution of expression (31) into equation (16) allows one to 

obtain an equation for determining the change in the deformation of the element dS 

depending on time 
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Having integrated the last equation, let's write the solution in the form (Fig. 6) 
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where 
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Fig. 6. Deformation of a belt element under an instantaneous applied load 

σχ(τ)=δ(τ)σχτ 
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Analysis of solution (33) for values of time τ in the vicinity of zero using the Dirac 

function δ(τ) and Heavisite H(τ) in the form
 

1/ ,     if / 2,
( )

0,            otherwise,

       


 1
( ) d ,H


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allowed to represent solution (33) in the form 
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     (36) 

 

The behavior of the viscoelastic element for the considered case corresponds to the 

Hooke model. 

 

6. Discussion of the results of the study of asymptotic models of the Maxwell 

element of the conveyor belt 

The result of the study is an asymptotic analysis of the Maxwell element model. 

The peculiarities of the proposed method lie in the use of similarity criteria to describe 

viscoelastic processes in a belt, the material properties of which correspond to the 

model of the Maxwell element. Reducing the original model to a dimensionless form, 

the specific properties of which are characterized by the values of the similarity criteria 

of the process under consideration, making it possible to construct asymptotic models 

of the Maxwell element for some cases of the transport system functioning. Asymptotic 

models of a viscoelastic element in the form of simple analytical expressions that 

determine the relationship between stress and deformation of a conveyor belt element 

are convenient for practical use in solving specific engineering problems. The 

application of the proposed approach made it possible to replace the model of the 

Maxwell element with an asymptotic model close to the model of the Hooke element 

for individual modes of a transport conveyor operation.  

The asymptotic analysis of the model of the Maxwell element clearly 

demonstrates that at sufficiently high frequencies of longitudinal stress fluctuations in 

the conveyor belt, at which the oscillation period is much less than the characteristic 

decay time of the oscillations, the model of the Maxwell element can be replaced with 

a sufficient degree of accuracy by the model of the Hooke element. This is due to the 

fact that over a period of time equal to the period of longitudinal oscillations, there is 

a slight change in stress associated with the component determined by the viscous 

properties of the model of the Maxwell element. In this case, the main contribution to 

the propagation of longitudinal vibrations along the conveyor belt is made, 

respectively, by the Hooke element (Fig. 1). A similar explanation can be given as a 

result of the analysis of the typical modes of operation of the transport conveyor. If the 



characteristic time of the considered process of propagation of disturbances is much 

less than the characteristic time of damping of oscillations in the material of the 

conveyor belt, then the viscous properties of the Maxwell element can be neglected. In 

this case, as in the case of high frequencies of longitudinal stress fluctuations in the 

conveyor belt, the Maxwell element can be replaced with a sufficient degree of 

accuracy by the Hooke element. The analysis of the propagation of longitudinal 

disturbances in the material of a belt in the general case is based on the numerical 

solution of the wave equation, the foundation of which is the model of a viscoelastic 

element [5, 10, 11], in particular, the model of the Maxwell element in general form 

(5). This significantly complicates the construction of an analytical solution that 

determines the amount of dynamic stress in the material along the conveyor belt. An 

analytical solution can be obtained when using fairly simple models of a viscoelastic 

element [12], the model of the Hooke element. Thus, a natural step is to build simplified 

models of the viscoelastic Maxwell element for the main modes of operation of the 

transport system. The developed asymptotic models of the viscoelastic Maxwell 

element make it possible to construct an analytical solution of the wave equation for 

the corresponding operating modes of the transport conveyor, greatly simplifying the 

analysis of the propagation of longitudinal stresses in the material of the conveyor belt, 

which is a significant advantage of using the proposed approach. However, it should 

be noted that the area of application of asymptotic models is limited to the range of 

limiting values of the introduced similarity criteria for a viscoelastic process. A rather 

important result of the study is the fact that the use of the asymptotic approximation 

made it possible to substantiate and determine the area of application of the general 

original model of the Maxwell element (5). To construct asymptotic models of the 

Maxwell element, a linear approximation is used, which limits the accuracy of the 

model. Future research may be aimed at eliminating this drawback by replacing linear 

models with nonlinear models with a given degree of accuracy to solve the problem. 

The possibility and expediency of using nonlinear asymptotic models require 

additional research. The practical significance of the study lies in the use of the results 

obtained for the design of systems for optimal control of the conveyor belt speed, 

taking into account the restrictions on the phase coordinates and the propagation of 

dynamic stresses in the conveyor belt. A prospect for further research is the analysis of 

the propagation of stress disturbances in a conveyor belt for cases in which the 

properties of the conveyor belt material can be represented by asymptotic models of 

the Kelvin-Voigt element. 

 

7. Conclusions  

1.  The use of the asymptotic approximation to analyze the characteristic modes 

of operation of an extended transport conveyor, the properties of the belt material of 

which corresponds to the Maxwell element, made it possible to:  

а) determine, for the limiting values of similarity criteria, the relationship between 

stress and deformation; 

б) justify the scope of the model of the Maxwell element.  

It is shown that at high frequencies ω>>ω0, for which the oscillation period is 

much shorter than the relaxation time  t0, the behavior of the viscoelastic Maxwell 



element corresponds to Hooke's law. A qualitative analysis shows that for the 

oscillation frequencies ω÷, the characteristic oscillation decay time is several 

seconds, t0÷. Thus, in the case of a quasi-stationary mode of 

acceleration/deceleration of the belt during the transition period, which is several 

minutes, the disturbances that arise quickly damp out. The most dangerous is the initial 

moment of acceleration/deceleration of the belt. For small values of frequencies ω<<ω0 

the application of the model of the Maxwell element requires additional justification. 

2. Analysis of the main modes of operation of the transport conveyor made it 

possible to draw additional conclusions: for the case of a constant deformation rate of 

the conveyor belt, with a characteristic process time significantly exceeding the 

relaxation time t>>t0, the stress in the conveyor belt tends to a constant value. In this 

case, an increase in the magnitude of deformation reaches its limiting values. For small 

values of the characteristic time of the process in comparison with the relaxation time 

t<<t0 the model of the Maxwell element can be replaced by the model of the Hooke 

element. A similar situation is typical for the case of a constant speed of stress change 

in a conveyor belt element. Of practical interest is the analysis of the functioning of the 

transport conveyor for cases when a constant or instantaneous load is suddenly applied 

to a belt element. Of particular importance, in this case, is the analysis of the transient 

process with the characteristic time of the process t<<t0. In this case, the model of the 

Maxwell element can be replaced by the model of the Hooke element.  
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