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ABSTRACT 

 

Cyber risk, a type of operational risk, is today considered a key component in the enterprise risk management 

framework. Under BASEL regulations, a bank could recognize the risk mitigating impact of the Cyber 

Liability Insurance (CLI) contract while calculating the minimum operational risk capital requirement. 

Despite this benefit and the onerous data protection acts, organizations are still reluctant to buy CLI 

contracts.  

 

In this work, we price and analyze a CLI contract using Gaussian, t and Gumbel copulas and evaluate the 

contract’s cyber risk mitigation effectiveness. We find that the current structure of the CLI contract with the 

limits and sub-limits may be inefficient at mitigating the cyber risk especially if the cyber risk losses were 

correlated and showed upper tail dependency. We then propose a case for a traded index for the cyber risk 

similar to the Property Claim Services (PCS) index for the catastrophic risk. A traded cyber risk index could 

offer wider cyber risk hedging alternatives to the insurers. Given such risk hedging alternatives, the insurers 

may have lower impetus to set conservative limits in the CLI contracts thus making the contracts more 

effective in mitigating the cyber risk of the organizations. 
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1. INTRODUCTION 

 

Despite a plethora of cyber liability insurance (CLI) products in the market, organizations are still reluctant 

to buy them largely due to the lack of standardization and an inadequate coverage [Scharf (2014), Richards 

(2014)]. The randomness of loss occurrence, information asymmetries and cover limits are the main factors 

that impede the market development of the cyber liability insurances [Bandyopadhyay, Mookerjee, Rao 

(2009), Biener et. al. (2015)]. Despite these factors the cyber liability insurance market could grow as the 

insurance risk pool becomes larger and more data becomes available. This issue of limited success of the 

CLI contracts is pertinent for the banking sector as the cyber risk is a type of operational risk3. Under one 

of the prescribed approaches for the operational risk measurement (Advanced Measurement Approach) in 

BASEL regulations, a bank is allowed to recognize the risk mitigating impact of the insurance while 

calculating the minimum regulatory capital requirement [Basel Committee (2006)]. Furthermore, today 

cyber risk is also considered as a key component in the enterprise risk management frameworks and the data 

protection acts and corresponding fines are getting more onerous [World Economic Forum (2015), IT 

Governance UK (2015)]. Thus it is important to analyze the effectiveness of the CLI contract in mitigating 

the cyber risk losses.  

 

In this paper, we price a CLI contract and analyze its effectiveness in mitigating the cyber risk. We 

demonstrate our method by providing a numerical example based on simple Monte Carlo simulations. Our 

objective though is not to undertake a survey of various CLI contract structures available in the market 

today. We then propose a case for a cyber risk index – an index similar to Property Claim Services (PCS) 

index for catastrophic risk. If an index were to track the cyber risk claims filed by the CLI contract holders 

with the insurers then this index could be used to develop derivatives that could serve as hedging tools for 

the insurers.  

The paper is structured as follows: In section 2 we describe and price a CLI contract and measure the 

effectiveness of this contract structure in mitigating the cyber risk losses under the assumption that the sub-

cyber risks are independent. Section 3 performs this same analysis under the assumption that the sub-cyber 

risks are correlated and exhibit upper tail dependency and we use Gaussian, t and Gumbel copulas to capture 

this dependency. We then take insurer’s perspective and discuss a possible rationale in adopting the 

discussed CLI contract structure. In section 4 we propose a case for a cyber risk index by showing that such 

an index could help reduce the premium for the CLI contract and provide an impetus to the insurers to design 

less conservative CLI contracts. Section 5 concludes the paper. 

 

 

  

                                                                 

3  Basel regulations define operational risk as the risk of loss resulting from inadequate or failed internal processes, people and systems or 

from external events [Basel Committee (2006)]. 
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2. PRICING AND ANALYSIS OF A CLI CONTRACT WHEN SUB – CYBER RISKS ARE 

INDEPENDENT 

 

CLI contracts are largely stop loss insurances. Under an example CLI contract that we consider in this work, 

a claim is causally attributed to a sub-cyber risk and a sub limit (li) i.e. limit on the liability of the insurer, 

is imposed on each individual claim under a sub-cyber risk category4. Furthermore, there is also an aggregate 

limit of liability (L) imposed per policy period on the aggregate claims under all the sub-cyber risks covered 

under the CLI contract. Note: retention is not applied to the sub limits4. The table below lists six sub-cyber 

risks in our example CLI contract. 

 

Table 1: Structure of an example CLI contract4 

Sub-cyber 

risk Loss, (Xi ) 
Cause of the Claim/ Loss (Sub-cyber risks) Sub Limit, USD, li 

X1 Data administration related investigations l1 

X2 Data administration related fines l2 

X3 Pro-active forensic services l3 

X4 Company’s reputation l4 

X5 Individual’s reputation l5 

X6 Restoring, recreating, or recollecting electronic data l6 

 

Each sub-cyber risk loss process with limits (𝑋𝑖𝑙(𝑡)) (limits denoted by superscript – l ) and aggregate cyber 

risk loss process with limits (𝑌𝑙(𝑡)) for our example CLI contract can be expressed as: 

 𝑋𝑖𝑙(𝑡) = ∑ min(𝑙𝑖, 𝑆𝑖𝑗)𝑁𝑖(𝑡)𝑗=1 = ∑ (𝑙𝑖 − 𝑚𝑎𝑥 ((𝑙𝑖 − 𝑆𝑖𝑗), 0)) , 𝑡 ≥ 0𝑁𝑖(𝑡)𝑗=1                                                     (1) 

 𝑌𝑙(𝑡) = 𝑚𝑖𝑛(𝐿, ∑ 𝑋𝑖𝑙(𝑡)𝑛𝑖=1 )  = 𝐿 − max ((𝐿 − ∑ ∑ (𝑙𝑖 − 𝑚𝑎𝑥 ((𝑙𝑖 − 𝑆𝑖𝑗), 0))𝑁𝑖(𝑡)𝑗=1𝑛𝑖=1 ) , 0) , 𝑡 ≥ 0                                                     (2) 

 

 

 

Where (𝑆𝑖𝑗) is the severity of the jth claim pertaining to the ith sub-cyber risk (as defined in the Table 1),  (𝑁𝑖(𝑡)) is the number (frequency) of claims pertaining to the ith sub-cyber risk and n is the number of the 

sub-cyber risks, in our case n = 6. We wish to analyze if the aggregate limit and the sub limits in the structure 

of the CLI contract affect the contract’s effectiveness as a tool to mitigate cyber risk losses. For the 

comparison, we also analyze a CLI contract without the aggregate limit and the sub limits (no limits denoted 

by superscript - nl) and juxtapose its results with our example CLI contract with limits. Each sub-cyber risk 

loss process (𝑋𝑖𝑛𝑙(𝑡)) and aggregate cyber risk loss process (𝑌𝑛𝑙(𝑡)) without the limits can be expressed as: 

                                                                 

4 http://www.aig.com/chartis/internet/uk/eni/AIGPROFCYBER%20CyberEdge%20Cyber%20Liability%20Insurance_tcm2538-409823.pdf 
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 𝑋𝑖𝑛𝑙(𝑡) = ∑ 𝑆𝑖𝑗𝑁𝑖(𝑡)𝑗=1 , 𝑡 ≥ 0                                                                                                 (3) 

 𝑌𝑛𝑙(𝑡) = ∑ ∑ 𝑆𝑖𝑗𝑁𝑖(𝑡)𝑗=1𝑛𝑖=1 , 𝑡 ≥ 0                                                                                                                   (4) 

 

Any CLI contract with the cyber risk loss as an underlying is currently priced in the incomplete markets 

because the underlying cyber loss is not a tradable asset and hence a replicating portfolio cannot be built 

using such an underlying. Thus there is no unique price for a CLI contract. But if the markets were liquid, 

in order to avoid arbitrage opportunities, the CLI contracts in the market may satisfy some internal 

consistency relationship between them. But currently the CLI contracts are tailored to the client’s need and 
are thus not liquid. Hence the market price of cyber risk is not easily known. If the cyber risk were assumed 

to be not diversifyable, the insurer could price the CLI contract using the standard Utility Principle5 [Delbaen 

and Haezendonck (1989), Embrechts (1996), Gerber and Pafumi (1998), Gritzalis et. al. (2007), 

Yannacopoulos et. al. (2008)]. Under this principle the total premium for underwriting a CLI contract will 

be such that the utility of the initial wealth of the insurer is same as the expectation of the utility of the 

summation of the initial wealth and the premium charged less the expected payoff under the contract 

[Yannacopoulos et. al. (2008), Shah, Dahake and Sri Hari Haran (2015)]. In this and the following section, 

we assume that the cyber risk is idiosyncratic and diversifyable and thus the market price of risk is zero. 

This assumption implies that the risk neutral distribution (Q measure) of the cyber risk coincides with the 

real life distribution (P measure). Thus the premium charged by an insurer at the time t, (Π(𝑡)) for 

underwriting a CLI contract is equal to the expectation of the discounted cyber risk loss (X) at time T under 

the P measure. For a constant interest rate (Π(𝑡)) is given as [Bjork (2009)]: 

 Π(𝑡) =  𝑒−𝑟(𝑇−𝑡)𝐸𝑡𝑃[𝑋(𝑇)]                                                                                                                                           (5) 

 

This financial pricing is now equivalent to the pure premium or equivalence premium actuarial pricing 

principle [Bühlmann, (1980), Mikosch (2009),]. For zero interest rate, the premium charged (Π(𝑡)) is given 

as: 

 Π(𝑡) =  𝐸𝑡𝑃[𝑋(𝑇)]                                                                                                                                         (6) 

 

We use variance, value and risk (VaR) and conditional tail expectation (CTE) as risk measures for the cyber 

risk loss that the CLI contract is supposed to mitigate. VaR is a 𝛼th quantile of a cyber risk loss (X) 

distribution and CTE is average loss if VaR were exceeded. Formally, VaR and CTE of a loss variable (X) 

for a given quantile (𝛼) at given time t are defined as [McNeil, Frey and Embrechts, (2005), Panjer (2006)]: 

 𝑉𝑎𝑅𝛼(𝑋) =  𝐹𝑋−1(𝛼), for 𝑉𝑎𝑅𝛼(𝑋) = 𝑥𝛼  

 

                                                                 

5 The applicability of the Utility principle is plagued with the difficulty of choosing an appropriate utility function. The standard deviation 

principle is more frequently used for pricing the insurance contracts in the property and casualty insurance [Bühlmann (2005)]. 
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𝐶𝑇𝐸𝛼(𝑋) = 𝐸[𝑋 | 𝑋 > 𝑥𝛼] = ∫ 𝑥𝑓(𝑥)𝑑𝑥∞𝑥𝛼 1 − 𝛼  

 

Here we refrain from further discussion on these risk measures and direct the reader to the work by McNeil, 

Frey and Embrechts (2005). We measure the effectiveness of a CLI contract in mitigating cyber risk using 

a ratio of the extent of risk covered by the CLI contract (measured using a risk measure) to the premium 

charged by the insurer to underwrite the CLI contract. Following ratios are similar to the coefficient of 

variation which is a standardized measure of dispersion in the probability theory: 

 √𝑉𝑎𝑟(𝑋)Π(𝑡) , 𝑉𝑎𝑅𝛼(𝑋)Π(𝑡)  𝑎𝑛𝑑 𝐶𝑇𝐸𝛼(𝑋)Π(𝑡)  

 

 

We assume that the sub-cyber risk loss process without limits, is a compound Poisson6 [Bowers et. al. 

(1996), Mikosch (2009)], cyber loss severities (𝑆𝑖𝑗) for each sub-cyber risk loss (𝑋𝑖) are independent and 

identically Gamma distributed i.e. (𝑆𝑖1, 𝑆𝑖2, … ) severities are independent and identically distributed with 

Gamma distribution and the frequency 𝑁𝑖(𝑡) is independent of the severities and follows a homogenous 

Poisson process as given below: 

 𝑆𝑖𝑗 ~ 𝐺𝐴𝑀(𝜃𝑖 , 𝜅𝑖) , 𝑠𝑖𝑗 > 0,  𝜃𝑖 > 0, 𝜅𝑖 > 0 𝑤ℎ𝑒𝑟𝑒 𝜃𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝜅𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
 𝑁𝑖(𝑡) ~ 𝑃𝑂𝐼(𝜆𝑖𝑡),           𝜆𝑖 > 0   𝑤ℎ𝑒𝑟𝑒 𝜆𝑖𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑁𝑖(𝑡) 
 

 

The literature is divided on the nature of the severity distribution of the actuarial losses and assumptions of 

log-normality or Gamma are more common [Fu and Moncher (2004)]. We adopt a Gamma distribution in 

this analysis because Gamma distribution is closed under convolutions and such an assumption would make 

the analysis more simple and transparent without affecting our conclusions qualitatively. Furthermore, in 

this section the sub-cyber risk losses are assumed to be independent but we relax this assumption in the next 

section. It is trivial to derive the following expressions for the expectation, the variance, VaR and CTE of 

various cyber risk loss processes [Mack (1984), Tan and Cai (2008)]: 

 

 𝐸(𝑋𝑖𝑙) = 𝜆𝑖𝑙𝑖𝑡[1 − 𝐹(𝑙𝑖;  𝜃𝑖 , 𝜅𝑖)] + 𝜆𝑖𝜃𝑖𝜅𝑖𝑡𝐹(𝑙𝑖;  𝜃𝑖 , 𝜅𝑖 + 1)                                                                       (7) 

 𝐸(𝑋𝑖𝑛𝑙) = 𝜆𝑖𝜃𝑖𝜅𝑖𝑡                                 (8) 

 

                                                                 

6 The compound Poisson processes that we simulate in this work have high kurtosis. 
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𝐸(𝑌𝑛𝑙) = ∑ 𝜆𝑖𝜃𝑖𝜅𝑖𝑡𝑛𝑖=1                                            (9) 

 𝑉𝑎𝑟(𝑋𝑖𝑙) = 𝜆𝑖𝑡𝐸 ((𝑋𝑖𝑙)2) = 𝜆𝑖𝑡 (𝑙𝑖2(1 − 𝐹(𝑙𝑖;  𝜃𝑖 , 𝜅𝑖)) + 𝜃𝑖2𝜅𝑖(𝜅𝑖 + 1)𝐹(𝑙𝑖;  𝜃𝑖 , 𝜅𝑖 + 2))                       (10) 

 𝑉𝑎𝑟(𝑋𝑖𝑛𝑙) = 𝜆𝑖(𝜅𝑖𝜃𝑖2 + 𝜅𝑖2𝜃𝑖2)𝑡                                        (11) 

 𝑉𝑎𝑟(𝑌𝑛𝑙) = ∑ 𝜆𝑖(𝜅𝑖𝜃𝑖2 + 𝜅𝑖2𝜃𝑖2)𝑡𝑛𝑖=1                   (12) 

 

For 𝑉𝑎𝑅𝛼(𝑋𝑖𝑛𝑙) = 𝑥𝑖,𝛼𝑛𝑙        𝛼 = 𝐹𝑋𝑖𝑛𝑙(𝑥𝑖,𝛼𝑛𝑙 ) = 𝑒−𝜆𝑖𝑡 (1 + ∑ (𝜆𝑖𝑡)𝑗𝑗!∞𝑗=1 𝐹(𝑥𝑖,𝛼𝑛𝑙 ;  𝜃𝑖 , 𝑗𝜅𝑖))                    (13) 

 𝐶𝑇𝐸𝛼(𝑋𝑖𝑛𝑙) = ∑ (𝜆𝑖𝑡)𝑗𝑗! 𝑒−𝜆𝑖𝑡[𝑗𝜅𝑖𝜃𝑖(1−𝐹(𝑥𝑖,𝛼𝑛𝑙 ; 𝜃𝑖,𝑗𝜅𝑖+1))]∞𝑗=1 (1−𝛼)                                            (14) 

 

 

The expectation, variance, VaR and CTE of the aggregate cyber risk loss process with limits (𝑌𝑙) and VaR 

and CTE of the no limit aggregate cyber risk loss process (𝑌𝑛𝑙) can be computed numerically using Monte 

Carlo simulations. We illustrate the methodology to compare the effectiveness of the two CLI contract 

structures, with and without the limits using a simple numerical example. The table below summarizes the 

limits and the parameter values used in our example (Table 2): 

 

Table 2: Limits and the parameter values used in the numerical simulation 

 (X1)  (X2)  (X3)  (X4) (X5) (X6) 

Sub limit per claim, ‘00,000 

USD, 𝑙𝑖 5.00 4.00 2.00 1.50 2.00 3.00 

Poisson distribution 

parameter, 𝜆𝑖 0.05 0.03 0.10 0.10 0.10 0.05 

Gamma distribution, 

Shape parameter, 𝜅𝑖  20.26 35.16 34.06 14.29 126.18 14.55 

Gamma distribution, Scale 

parameter, 𝜃𝑖  0.17 0.09 0.04 0.07 0.01 0.14 

Aggregate limit of liability, 00,000’ USD = 7.5 

 

The VaR and CTE are calculated for 𝛼 = 99.9% and t = 1 year as these values are stipulated under BASEL 

regulations for calculating the operational risk capital requirement. Following are the results (Table 3): 
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Table 3: Simulation results for the independent sub-cyber risk losses 

 

 Values for aggregate 

cyber risk loss with 

limits (𝑌𝑙)  
Values for aggregate 

cyber risk loss - no 

limits, (𝑌𝑛𝑙) 

Expectation, Π(𝑡) ’00,000 USD  

0.8 0.8 

Standard deviation 1.3 1.3 𝑉𝑎𝑅𝛼(𝑋) , ’00,000 USD 7.5 8.1 𝐶𝑇𝐸𝛼(𝑋) , ’00,000 USD 7.5 9.1 √𝑉𝑎𝑟(𝑋)Π(𝑡) , 1.7 1.7 

𝑉𝑎𝑅𝛼(𝑋)Π(𝑡)  
9.6 10.5 𝐶𝑇𝐸𝛼(𝑋)Π(𝑡)  
9.6 11.8 

 

 

For the set of parameter values that we have selected (table 2), the effectiveness of a CLI contract without 

limits is better than that of a CLI contract with limits i.e. the loss protection offered by a CLI contract without 

limits for a dollar of premium paid is better, especially for the tail risk measures such as VaR and CTE. 

 

 

3. ANALYSIS OF A CLI CONTRACT WHEN SUB – CYBER RISKS ARE CORRELATED AND 

SHOW UPPER TAIL DEPENDENCE 

 

Maillart and Sornette (2009) find that the tail of personal identity losses per event exhibit power law, 

suggesting that cyber risk losses are heavy tailed. In this section we repeat the analysis in the previous 

section albeit under the assumption that the sub-cyber risks (Xi) are now correlated and exhibit upper tail 

dependence. By upper tail dependence we mean a higher tendency for the sub-cyber risk Xi to be extreme 

when the sub-cyber risk Xj is extreme. We model the dependence between the sub-cyber risks using the 

concept of a copula. Simply put a copula is a d-dimensional distribution function on [𝟎, 𝟏]𝒅 with standard 

uniform marginal distributions and a copula joins univariate probability distributions to form a multivariate 

probability distribution. Under the condition of continuity of the marginals, the famous theorem due to Sklar 

guarantees the uniqueness of a copula. We suggest works by Genest and MacKay (1986), Frees and Valdez 

(1997), and Emberechts (2009) for further reference. Copulas have been used before to model the cyber 

risk; Herath et. al. (2011) model the loss pertaining to a breach event as a function of number of affected 

computers and observed dollar losses. They use copulas to couple the marginal distributions of these two 
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factors and obtain a joint distribution for the loss pertaining to a breach event. They do not use a compound 

Poisson distribution though to model the cyber losses.  

 

We could model the dependence between the sub-cyber risk losses using a common shock model where the 

claims due to multiple sub risks occur at the same time due to some common event. The dependence between 

the severity of these claims could be modeled using copulas [Linskog, McNeil (2003), Avanzi, Cassar and 

Wong (2011)]. But despite the flexibility offered under this approach we decide against the common shock 

model due to its lack of parameter parsimony. For example our six sub-cyber risks could require 

specification of up to 63 independent Poisson arrival processes (combinations of 𝝀𝒊 of each sub-cyber risk) 

and 15 bivariate, 20 trivariate, 15 quadvariate, 6 pentavariate and 1 hexavariate copulas for describing 

dependence between the sub-cyber loss severity distributions [Avanzi, Cassar and Wong (2011)].  

Hence instead of the common shock model we simply use a six dimensional copula (C) to couple marginal 

sub-cyber risk loss (Xi) distributions 𝑭𝑿𝒊(𝒙𝒊) to obtain a multivariate aggregate cyber risk loss (Y) 

distribution 𝑭𝒀(𝒚) at a specific time, t = 1 [McNeil, Frey and Embrechts (2005)]. The multivariate aggregate 

cyber risk distribution is defined below: 
 

Let 𝒀 = (𝑋1, 𝑋2 … , 𝑋6)𝑇 be 6 dimensional vector of sub-cyber risk loss random variables.  ∀(𝒙𝟏, 𝒙𝟐 ⋯ 𝒙𝟔) ∈ [𝟎, ∞)𝟔, hence the joint cumulative distribution function of Y is given by: 
 𝑭𝒀(𝒚) = 𝐹𝑋1,𝑋2⋯𝑋6(𝑥1, 𝑥2 ⋯ 𝑥6) = 𝐶 (𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2) ⋯ 𝐹𝑋6(𝑥6))                                         (15) 

Where 𝑭𝑿𝒊(𝒙𝒊) is the marginal distribution of the sub-cyber risk loss Xi 

 

Thus we are now treating the sub-cyber risk losses as the static random variables at t = 1 instead of the 

stochastic processes evolving over the time t. This approach suffices our present goal; alternatively if one 

wished to model the aggregate cyber risk loss (Y) over time while preserving its compound Poisson property 

(in no limits case), Levy copulas as proposed by Tankon and Cont (2004) and Böcker and Klüppelberg 

(2010) could be used.  

 

We perform the analysis using Gaussian, t and Gumbel copulas as these copulas exhibit differences in the 

type of upper tail dependence. A Gaussian copula in our case is defined as below [McNiel et. al. (2005), 

Alexander (2008), Fusai (2008)]: 

 𝐶𝑃𝐺𝑎(𝑢1, 𝑢2, … , 𝑢6) = 𝚽𝑃(Φ−1(𝑢1), Φ−1(𝑢2), … , Φ−1(𝑢6))                         (16) 𝑢𝑖 = 𝐹𝑋𝑖(𝑥𝑖);  𝑢𝑖 ∈ [0,1] 
 

Where 𝚽𝑷 denotes the joint distribution function of the 6-variate standard normal distribution with linear 

correlation matrix P and Φ−1denotes the inverse of the distribution function of the univariate standard 

normal distribution. Gaussian copulas are symmetric and do not exhibit upper tail dependence [Embrechts, 

Lindskog and McNeil (2001)]. In the appendix, we define and illustrate the upper tail dependence in the 

context of the copulas discussed in this work. 
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A t copula is defined as below [McNiel et. al. (2005), Alexander (2008), Fusai (2008)]: 

 𝐶𝜐,𝑃𝑡 (𝑢1, 𝑢2, … , 𝑢6) = 𝒕𝜐,𝑃(𝑡𝜐−1(𝑢1), 𝑡𝜐−1(𝑢2), … , 𝑡𝜐−1(𝑢6))              (17) 

 

Where 𝒕𝜐,𝑃 and 𝑡𝜐 are multivariate and univariate student t distributions respectively with 𝜐 degree of 

freedom and P correlation matrix. As the degree of freedom, 𝜐 → ∞, t copula approaches the corresponding 

Gaussian copula [Demarta et. al. (2004)]. Also a t copula is symmetric i.e. its upper and lower tail 

dependence are equal and its upper tail dependence increases with increasing correlation and decreasing 

degree of freedom. The upper tail dependence tends to zero as 𝜐 → ∞. 

 

If the simultaneous occurrence of high sub-cyber risk losses were more likely than the lower sub-cyber risk 

losses, we could use Gumbel copula to model this asymmetric dependence. The Gumbel copula in our case 

is defined as: 

 𝐶𝛿𝐺𝑢𝑚(𝑢1, 𝑢2, … , 𝑢6) = 𝑒𝑥𝑝 {− [∑ (−𝑙𝑛(𝑢𝑖))𝛿6𝑖=1 ]1𝛿} , 1 ≤ 𝛿 < ∞                (18) 

 

The parameter 𝛿 captures the extent of dependence between the sub-cyber risk losses. If 𝛿 = 1 the sub-

cyber risk losses are independent and as 𝛿 → ∞ the sub-cyber risks show perfect positive dependence 

[Alexander (2008), Fusai and Roncoroni (2008)]. We demonstrate the impact of the correlation and upper 

tail dependence between the sub-cyber risks on the CLI contract by continuing the numerical example 

provided in the section 2. Note: the values reported in the table 3 in the section 2 were under the assumption 

that the sub-cyber risk losses are independent. We report the effectiveness ratios of each CLI contract 

structure i.e. the one with and the other without limits in Table 4 and 5 respectively. The analysis is 

performed using Gaussian, t and Gumbel copulas. 

 

The parameter sets used in the analysis are generated using the following procedure: 

 

1. We select (𝛿), the Gumbel copula parameter7 and compute the corresponding Kendall’s tau, 

 𝜏 = 1 − 𝛿−1 

2. Then we use the Kendall’s tau from step 1 to estimate the correlation coefficient (𝜌) between the 

sub-cyber risks in a t copula using the following expression: 𝜏 = 2𝜋 arcsin (𝜌) 

The correlation coefficients between various sub-cyber risks are assumed to be equal. Thus once the 

correlation matrix, P is calibrated using Kendall’s tau, we estimate the degree of freedom 𝜐 of the t 

copula from the Gumbel copula data8 using maximum likelihood method [Alexander (2008)]. 

3. The correlation matrix P for the Gaussian copula is assumed to be equal to the correlation matrix of 

the t copula. 

 
                                                                 

7 The selection of the Gumbel copual parameter 𝛿 in this analysis is arbitrary. Our choice of 𝛿 = 1.3 𝑎𝑛𝑑 3.0 is motivated to qualitatively 

demonstrate the impact of differing correlations and upper tail dependence on the effectiveness ratios. 

8 Once the assumption of parameter 𝛿 is made in step 1, we simulate the Gumbel Copula data. 
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Table 4: Simulation results for the dependent sub-cyber risk losses for the CLI contract with limits 

 

 Parameter Set 1 Parameter Set 2 

Copulas Gaussian 

Copula,  𝜌𝑖𝑗 = 0.355 

t – Copula, 𝜌𝑖𝑗 = 0.355, 𝜈 = 20 

Gumbel 

Copula 

parameter,  𝛿 = 1.3 

Gaussian 

Copula, 𝜌𝑖𝑗 = 0.866 

t – Copula, 𝜌𝑖𝑗 = 0.866, 𝜈 = 6 

Gumbel 

Copula 

parameter,  𝛿 = 3.0 

Expectation, Π(𝑡) ’00,000 

USD  

0.7 0.8 0.7 0.6 0.6 0.6 

Standard 

deviation 

1.5 1.6 1.5 1.7 1.7 1.7 

𝑉𝑎𝑅𝛼(𝑋) , 

’00,000 USD 

7.5 7.5 7.5 7.5 7.5 7.5 

𝐶𝑇𝐸𝛼(𝑋) , 

’00,000 USD 

7.5 7.5 7.5 7.5 7.5 7.5 

√𝑉𝑎𝑟(𝑋)Π(𝑡) , 2.0 2.1 2.2 2.8 2.9 3.1 

𝑉𝑎𝑅𝛼(𝑋)Π(𝑡)  
10.0 10.0 10.8 12.3 12.4 13.4 𝐶𝑇𝐸𝛼(𝑋)Π(𝑡)  
10.0 10.0 10.8 12.3 12.4 13.4 

 

For our current choice of parameters under the table 2 in the section 2, in case of the CLI contracts with 

limits, the VaR and CTE for the varying degree of dependency are constant and equal to the gross aggregate 

limit of 0.75 million USD. Thus the limits and sub-limits could be set by the insurers such that VaR and 

CTE are not affected by the levels of correlation and upper tail dependence. As the expectation of the payoff 

decreases with the increasing sub-cyber risk correlation, the effectiveness ratios marginally increase with 

increasing correlation and upper tail dependence. 
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Table 5: Simulation results for the dependent sub-cyber risk losses for the CLI contract - No limits 

 

 

 Parameter Set 1 Parameter Set 2 

Copulas Gaussian 

Copula,  𝜌𝑖𝑗 = 0.355 

t – Copula, 𝜌𝑖𝑗 = 0.355, 𝜈 = 20 

Gumbel 

Copula 

parameter,  𝛿 = 1.3 

Gaussian 

Copula, 𝜌𝑖𝑗 = 0.866 

t – Copula, 𝜌𝑖𝑗 = 0.866, 𝜈 = 6 

Gumbel 

Copula 

parameter,  𝛿 = 3.0 

Expectation, Π(𝑡) ’00,000 

USD  

0.8 0.8 0.8 0.8 0.8 0.8 

Standard 

deviation 

1.7 1.8 2.1 2.5 2.6 2.8 

𝑉𝑎𝑅𝛼(𝑋) , 

’00,000 USD 

14.1 14.8 19.8 21.6 20.9 22.7 

𝐶𝑇𝐸𝛼(𝑋) , 

’00,000 USD 

15.8 17.1 23.2 23.7 25.1 24.7 

√𝑉𝑎𝑟(𝑋)Π(𝑡) , 2.2 2.3 2.7 3.3 3.3 3.6 

𝑉𝑎𝑅𝛼(𝑋)Π(𝑡)  
18.4 18.9 25.3 28.2 27.2 29.3 𝐶𝑇𝐸𝛼(𝑋)Π(𝑡)  
20.6 21.7 29.7 30.9 32.7 32.0 

 

 

In the case of a CLI contract without any limits all the three risk measures namely standard deviation, VaR 

and CTE and all the corresponding effectiveness ratios increase with increasing correlation and increasing 

upper tail dependency. All the risk measures and all the effectiveness ratios for CLI contracts with limit are 

lower than those for the CLI contracts without limits. For example consider Gumbel copula with 𝛿 = 3.0, 

the VaR  (USD 2.27 million)   and CTE (USD 2.47 million) of a CLI contract without limit reduces to USD 

0.75 million of VaR and CTE of a CLI contract with limit. This is a reduction of 67% and 70% respectively 

if a CLI contract with the limits were used. Table 6 below summarizes the percentage reduction in the 

effectiveness ratios if a CLI contract with limits were to be underwritten by an insurer. The reduction in the 

effectiveness ratios is lowest for uncorrelated sub-cyber risks and increases with increasing dependence in 

the sub-cyber risks except for the Gumbel copula which captures an asymmetric upper tail dependence. 
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Table 6: Reduction in VaR, CTE and effectiveness ratios for CLI contracts with Limit in 

comparison with CLI contract - No limit. 

 

 

  Parameter Set 1 Parameter Set 2 

Copulas Un-

correlated 

Risks 

Gaussian 

Copula,  𝜌𝑖𝑗 = 0.355 

t – Copula, 𝜌𝑖𝑗 = 0.355, 𝜈 = 20 

Gumbel 

Copula 

parameter

,  𝛿 = 1.3 

Gaussian 

Copula, 𝜌𝑖𝑗 = 0.866 

t – Copula, 𝜌𝑖𝑗 = 0.866, 𝜈 = 6 

Gumbel 

Copula 

parameter

,  𝛿 = 3.0 𝑉𝑎𝑅𝛼(𝑋) , 

’00,000 USD 

7% 47% 49% 62% 65% 64% 67% 

𝐶𝑇𝐸𝛼(𝑋) , 

’00,000 USD 

18% 53% 56% 68% 68% 70% 70% 𝑉𝑎𝑅𝛼(𝑋)Π(𝑡)  
8% 45% 47% 57% 56% 55% 54% 𝐶𝑇𝐸𝛼(𝑋)Π(𝑡)  

18% 51% 54% 64% 60% 62% 58% 

 

 

Figure 1, 2 and 3 compares VaR, CTE and corresponding effectiveness ratios for the CLI contracts with and 

without limits for various copulas. In the case of Gaussian and t copulas, for the CLI contracts without 

limits, the effectiveness ratios increase linearly with the increasing dependence. But in the case of Gumbel 

copula this increase does not seem to be linear; a “kink” is visible in the figure 3. Thus given limits in the 

CLI structure, if the sub-cyber risks were to exhibit even moderate correlation and upper tail dependence 

(Gumbel copula), then the effectiveness of a CLI contracts to mitigate cyber risk could deteriorate sharply. 
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Figure 1: Comparison of VaR, CTE and effectiveness ratios for the CLI contracts with and without 

limits (Gaussian Copula)9 

 

 

 

Figure 2: Comparison of VaR, CTE and effectiveness ratios for the CLI contracts with and without 

limits (t Copula) 

 

 

 

  

                                                                 

9 Note: In figures 1,2 and 3 the lines for “with Limit VaR/ Expectation” and “with Limit CTE/ Expectation” coincide hence only a single line 
is visible. 
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Figure 3: Comparison of VaR, CTE and effectiveness ratios for the CLI contracts with and without 

limits (Gumbel Copula) 

 

 

 

 

 

We first analyzed a single CLI contract to understand the impact of the limits and the sub limits on the CLI 

contract’s cyber risk mitigation effectiveness. This is important for BASEL regulators especially when a 

bank after purchasing a CLI contract claims an offset towards the operational risk capital charge. In our 

chosen case the benefit of a CLI contract in mitigating the cyber risk and consequently the operational risk 

is quite limited as the tail risks i.e. the low probability high severity risks losses, measured using VaR and 

CTE are capped by the aggregate limit (L). We acknowledge that these results are dependent on the 

parameter choices. 

 

Now we take an insurer’s perspective and analyze a possible rationale for incorporating these limits into the 

CLI contract structure. Consider a portfolio of underwritten CLI contracts where the individual aggregate 

cyber risk losses (Y) are correlated across the CLI contract portfolio. The total cyber risk loss  (𝑋𝑇𝑂𝑇) to an 

insurer is given by: 

 𝑋𝑇𝑂𝑇(𝑡) = ∑ min(𝐿𝑘, 𝑌𝑘(𝑡))𝑞𝑘=1 = ∑ (𝐿𝑘 − 𝑚𝑎𝑥 ((𝐿𝑘 − 𝑌𝑘(𝑡)), 0)) , 𝑡 ≥ 0𝑞𝑘=1             (19) 

 

 

where q is the number of CLI contracts in the portfolio, (𝐿𝑘) is the set aggregate limit and (𝑌𝑘) is the 

aggregate cyber risk loss for a CLI contract k. If the sub limits in each CLI contract are ignored, it is easy to 

see that the maximum total cyber risk loss that could occur to an insurer is equal to the sum of the individual 

aggregate limit for each CLI contract. 
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 𝑀𝑎𝑥(𝑋𝑇𝑂𝑇(𝑡)) = ∑ 𝐿𝑘𝑞𝑘=1  ,             𝑡 > 0                   (20) 

 

Thus setting the aggregate liability limit for each CLI contract could help the insurer in capping the tail risk 

losses i.e. VaR and CTE. Extreme dependence between the aggregate cyber risk losses across the portfolio 

of the CLI contract is plausible due to the network type effects in the cyber world given the uniformity in 

the security technologies [Böhme (2005), Berthold and Böhme (2009), Böhme and Schwartz (2010)].  

Bohme and Kataria (2006) study the correlation of the cyber risk properties at both firm and global level 

and find the evidence of correlation at both the levels. Given no hedging alternatives, an insurer may set the 

limits to the liability in the CLI contract structure to limit its own probability of ruin. In the next section we 

propose a cyber risk index – an index similar to Property Claim Services (PCS) for the catastrophic risk. 

Such a cyber risk index may help insurer hedge the impact of tail cyber risks and reduce the CLI contract 

premium. 

 

4. A CASE FOR CYBER RISK INDEX 

 

In this section we assume that the cyber risk is not fully diversifyable at an insurer level using insurer’s CLI 

contract portfolio and the cyber risk is fully diversifyable at the capital market level only if a cyber risk 

index were to exist that facilitated the trading of the cyber risk10. Furthermore, we assume that the total 

cyber risk loss (𝑋𝑇𝑂𝑇) for an insurer could be separated into an independent (orthogonal) local 

systematic (𝑋𝑙𝑠𝑦𝑠) cyber risk loss and an idiosyncratic (𝑋𝑖𝑑) cyber risk loss11 [Boucher and Delpierre 

(2014)]. 

 𝑋𝑇𝑂𝑇 = 𝑋𝑙𝑠𝑦𝑠 + 𝑋𝑖𝑑                       (21) 

 

This separation of risk losses is plausible because unlike the idiosyncratic cyber risk the local systematic 

cyber risk could be low frequency and high severity event hence a tail risk. For example, in housing 

insurance policies such a local systematic risk loss is similar to a local flood or a hurricane and an 

idiosyncratic risk loss is similar to a possible damage to a single house due to a broken electricity pole (not 

caused by any common disaster such as a flood or a hurricane). Idiosyncratic cyber risk is assumed to be 

fully diversifyable at an insurer level using insurer’s CLI contract portfolio and the local systematic cyber 

risk is assumed to be diversifyable at the capital market level only if a cyber risk index were to exist that 

facilitated the trading of the cyber risk. 

 

It is simple to qualitatively demonstrate the possible benefit that could occur to the CLI contract holders in 

terms of the lower premium if a cyber loss index that facilitated the trading of the cyber risk in the capital 

market were to exist. We assume that an insurer uses the classical variance principle to arrive at a CLI 

contract premium [Venter (1991), Mikosch (2009)] and the premiums charged to cover (𝑋𝑙𝑠𝑦𝑠) and (𝑋𝑖𝑑), 

                                                                 

10 To keep the analysis simple we ignore the reinsurers 

11 The approach that we have adopted here is similar to that used by Boucher and Delpierre (2014) in analyzing the impact of the agricultural 

indices,  
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Π(𝑋𝑙𝑠𝑦𝑠) and Π(𝑋𝑖𝑑) respectively are additive. The variance principle applied to calculate the premium to 

cover (𝑋𝑇𝑂𝑇) is given below: 

 Π(𝑋𝑇𝑂𝑇) = 𝐸(𝑋𝑇𝑂𝑇) + 𝜁 𝑉𝑎𝑟(𝑋𝑇𝑂𝑇), where 𝜁 is a positive constant. 

 Π(𝑋𝑇𝑂𝑇) = Π(𝑋𝑙𝑠𝑦𝑠 + 𝑋𝑖𝑑) = Π(𝑋𝑙𝑠𝑦𝑠) + Π(𝑋𝑖𝑑)                    (22) 

 

The premium charged for a CLI contract portfolio to cover the total cyber risk loss (𝑋𝑇𝑂𝑇) given that there 

were no cyber index to trade the local systematic cyber risk (Π𝑁𝐼(𝑡), "𝑁𝑜 𝐼𝑛𝑑𝑒𝑥" 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 − 𝑁𝐼) is given by: 

 

 Π𝑁𝐼(𝑡) = [𝐸(𝑋𝑙𝑠𝑦𝑠(𝑇)) + 𝐸(𝑋𝑖𝑑(𝑇)) + 𝜁 (𝑉𝑎𝑟(𝑋𝑙𝑠𝑦𝑠(𝑇)) + 𝑉𝑎𝑟(𝑋𝑖𝑑(𝑇)))]            (23) 

 

 

Here t = 1 year and the interest rate is assumed to be zero. As idosyncratic cyber risk is assumed to be fully 

diversifyable at an insurer level we get: 

 Π𝑁𝐼(𝑡) = [𝐸(𝑋𝑙𝑠𝑦𝑠(𝑇)) + 𝐸(𝑋𝑖𝑑(𝑇)) + 𝜁 (𝑉𝑎𝑟(𝑋𝑙𝑠𝑦𝑠(𝑇)))]                 (24) 

 

 

Given a cyber risk index to trade the local systematic cyber risk, an insurer could buy a suitable derivative 

contract from the market by paying a premium (𝑃𝐼). As the local systematic cyber risk loss is assumed to 

be fully diversifyable in the capital markets given a cyber risk index, the corresponding premium is simply 

equal to the expectation of the local systematic cyber risk loss under a P measure. 

 

 𝑃𝐼(𝑡) = 𝐸𝑡𝑃(𝑋𝑙𝑠𝑦𝑠(𝑇))                   (25) 

 

 

Thus the premium (Π𝐼(𝑡), 𝐼 − 𝐼𝑛𝑑𝑒𝑥) charged to the portfolio given a cyber risk index is given as:  

 

 Π𝐼(𝑡) = [𝐸(𝑋𝑖𝑑(𝑇))] + 𝑃𝐼(𝑡)                  (26) 

 

  Π𝐼(𝑡) = [𝐸(𝑋𝑖𝑑(𝑇)) + 𝐸(𝑋𝑙𝑠𝑦𝑠(𝑇))]                    (27) 

 

 

Hence the total savings that could occur to all CLI contract holders given a cyber risk index is given as: 
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Π𝑁𝐼(t) − Π𝐼(𝑡) = 𝜁 (𝑉𝑎𝑟(𝑋𝑙𝑠𝑦𝑠(𝑇))) > 0                 (28) 

 

We leave the ponderous question of the exact constitution of the cyber risk index and the corresponding 

hedging methodology to the future work but propose a hedging outline based on the common approaches 

found in the catastrophic insurance literature. A possible model for cyber risk loss index I(t) could be 

[Gerber and Shiu (1994, 1995), Christensen (1999), Abdessalem and Ohnishi (2014)]: 

 𝐼(𝑡) = 𝐼(0)𝑒𝑥𝑝(𝑋(𝑡)) and 

 𝑋(𝑡) = ∑ 𝑆𝑖𝑁(𝑡)𝑖=1 , 𝑡 ≥ 0                   (29) 

 

Where (X(t)) is the index cyber risk loss process based on the gathered cyber risk claim data by an agency,  

(N(t)) is the cyber loss frequency (homogenous Poisson process) and (𝑆𝑖) is the reported cyber loss severity. 

But this model has a tendency to exhibit increasing severity after each loss event and therefore we propose 

the following simple model and ignore any index re-estimation issues at this juncture [Biagini, Bregman 

and Meyer-Brandis (2008)]. In this model the index cyber risk loss process is a sum of the cyber loss 

severities. 

 𝐿(𝑡) = 𝑋(𝑡) = ∑ 𝑆𝑖𝑁(𝑡)𝑖=1 , 𝑡 ≥ 0                   (30) 

 

Insurers could hedge on such a cyber risk loss index using a stop loss type insurance contract (C(t, X)) which 

is similar to a European call option [Mikosch (2009)] or a contract similar to PCS type option (CP (t, X)) 

which has the flexibility of a selecting a cap (𝐿𝑢𝑝) on the losses [Christensen (1998)]. We had assumed 

earlier in this section that the local systematic cyber risk was fully diversifyable in the capital markets given 

a cyber risk index. This may not be the case and hence the pricing of these derivative contracts could occur 

under a market chosen Q measure. Thus value of these contracts at time t for strike K would be: 

 𝐶(𝑡, 𝑋) = 𝑒−𝑟(𝑇−𝑡)𝐸𝑡𝑄[𝑚𝑎𝑥(𝑋(𝑇) − 𝐾, 0)]                 (31) 

 𝐶𝑃(𝑡, 𝑋) = 𝑒−𝑟(𝑇−𝑡)𝐸𝑡𝑄[𝑚𝑖𝑛(𝑚𝑎𝑥(𝑋(𝑇) − 𝐾, 0), 𝐿𝑢𝑝 − 𝐾)],      𝐿𝑢𝑝 > 𝐾             (32) 

 

We assume that the index cyber risk loss process X(t) retains compound Poisson form under the Q measure 

and the distribution parameters could be estimated under the observed prices of traded derivative securities.  

[Christensen (2001), Lane and Movchan (1998)]. We assume that the severities (𝑆𝑖), 𝑖 = 1,2,3 are 

independent and identically Gamma distributed and N, frequency is independent of severity and follows a 

homogenous Poisson process. 

 𝑆 ~ 𝐺𝐴𝑀(𝜃, 𝜅) , 𝑠 > 0, 𝜃 > 0, 𝜅 > 0 
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𝑤ℎ𝑒𝑟𝑒  𝑖𝑠 𝜃 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝜅 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
 𝑁(𝑡) ~ 𝑃𝑂𝐼(𝜆𝑡),          𝜆 > 0   𝑤ℎ𝑒𝑟𝑒 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑁(𝑡) 

 

It is easy to show that the ideal price of such contracts under the implied parameters (Q measure) would be 

[Embrechts and Meister (1997), Lane and Movchan (1998), Muermann (2003)]: 

 𝐹𝑜𝑟 𝜏 = 𝑇 − 𝑡 
 𝐶(𝑡, 𝑋) = 𝑒−𝑟(𝜏) ∑ (𝜆𝜏)𝑛𝑒−𝜆𝜏𝑛! [𝑛𝜅𝜃(1 − 𝐹(𝐾;  𝜃, 𝑛𝜅 + 1)) − 𝐾(1 − 𝐹(𝐾;  𝜃, 𝑛𝜅))]∞𝑛=1            (33) 

 𝐶𝑃(𝑡, 𝑋) = 𝑒−𝑟(𝜏) ∑ (𝜆𝜏)𝑛𝑒−𝜆𝜏𝑛! [𝑛𝜅𝜃 (𝐹(𝐿𝑢𝑝;  𝜃, 𝑛𝜅 + 1) − 𝐹(𝐾;  𝜃, 𝑛𝜅 + 1)) − 𝐾(1 − 𝐹(𝐾;  𝜃, 𝑛𝜅)) +∞𝑛=1𝐿𝑢𝑝 (1 − 𝐹(𝐿𝑢𝑝;  𝜃, 𝑛𝜅))]                  (34) 

 

 

An insurer could take a position in the derivatives to hedge the extent of cyber risk loss that constitutes tail 

risk for the insurer. In the earlier section we showed that a maximum total cyber risk loss (𝑚𝑎𝑥(𝑋𝑇𝑂𝑇)) for 

a CLI contract portfolio was equal to the sum of the set aggregate limit of each underwritten CLI contract (∑ 𝐿𝑘)𝑞𝑘=1 . Thus an insurer could now select the strike price (K) based on the sum of set aggregate limits 

and thus ameliorate the need for setting the conservative limits in the CLI contract structure. If the total 

cyber risk loss of an underwritten CLI contract portfolio crosses the total of the aggregate limit of each CLI 

contract, the insurer would be compensated by a positive payoff from the long call position that the insurer 

has taken on the cyber index. Thus an insurer now has less impetus to set conservative limits in the CLI 

contract structure as the cyber risk losses above an insurer’s risk appetite are hedged on a cyber risk index 

using the derivative contracts. 

 

 

5. CONCLUSION 

 

In this work we price a CLI contract using Gaussian, t and Gumbel copulas. When we analyze the structure 

of a CLI contracts for its cyber risk mitigation effectiveness, we find that the effectiveness is dependent on 

the limits and the sub limits set in the CLI contract structure especially if the sub-cyber risk losses were 

correlated and showed upper tail dependency. The limits in the CLI contract could help minimize the 

extreme payouts, thus setting up of the limits could be detrimental to the popularity of the CLI contract. The 

BASEL regulators under the supervisory review process (Pillar 2) may find it difficult to evaluate the impact 

of these limits on the effectiveness of the CLI contract and the pertinence of the offsets granted towards the 

operational risk capital. It is plausible that these limits guard the insurer against the systematic cyber risks. 

We contend that if a cyber risk index were constituted, it could help in pricing the cyber risk by the capital 

markets and lowering the CLI contract premiums. The derivatives with such an index as an underlying could 

offer wider risk hedging alternatives to the insurers, thus ameliorating the need for setting conservative 

limits in the CLI contract structure. Questions on the utility and the effectiveness of a cyber risk index are 

surely valid, but adhering to the classic tradition of financial economists we suggest that the final judgment 

be best left to the capital markets. 
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APPENDIX 

 

Given a (𝑋𝑖, 𝑋𝑗)𝑇
vector of continuous random variables with marginal distribution functions 𝐹𝑖  𝑎𝑛𝑑 𝐹𝑗 

respectively, the coefficient of upper tail dependence of (𝑋𝑖, 𝑋𝑗)𝑇
is defined as below [Embrechts, 

Lindskog and McNeil (2001)]: 

 lim𝑢→1 ℙ{𝑋𝑖 > 𝐹𝑖−1(𝑢)|𝑋𝑗 > 𝐹𝑗−1(𝑢)} = 𝜆𝑈      𝜆𝑈 ∈ [0,1] 
 𝜆𝑈 could be thought of as a conditional probability that 𝑋𝑖 takes a value on the upper tail given that 𝑋𝑗 

takes a value in the upper tail. Lower tail dependence is defined in an analogous way. 

 

Figure 4 below depicts ten thousand simulated points from each of the six distributions with standard 

normal margins. The distributions are constructed using Gaussian, t and Gumbel copulas with the 

parameters that are used in this work. 

 

For 𝜌 < 1, the Gaussian copula does not have tail dependence asymptotically, regardless of how high the 

correlation. In the corresponding part of the figure 4 for Gaussian copula -  𝜌 = 0.866 there seems to be 

no change in the correlation between 𝑋𝑖 and 𝑋𝑗 as any of the variables reaches large or small values. This 

can be seen in the upper right and lower left corners of the figure respectively. 

 

t Copula exhibits both upper and lower tail dependence; consider a t copula with the parameters 𝜌 =0.866, 𝜐 = 6, we can see that when both the variables 𝑋𝑖 and 𝑋𝑗 attain very high or very low values (seen 

in the upper right and lower left corners in the figure respectively) the correlation between 𝑋𝑖 and 𝑋𝑗 seem 

to increase. 

 

While a t copula is symmetric i.e. its upper and lower tail dependence are equal, a Gumbel copula exhibits 

upper tail dependence. Consider Gumbel copula with 𝛿 = 3.0, in the figure below, as both the variables 𝑋𝑖 and 𝑋𝑗 attain very high values (seen in the upper right corner), the correlation between the two variables 

tends to increase. 
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Figure 4 Ten thousand simulated points from the six distributions with standard normal margins, 

constructed using Gaussian, t and Gumbel copulas. 
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