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Abstract. We consider a duopoly with cost asymmetry and demand uncertainty

and show that rivalry in (process) R&D can be ex-ante harmful to both firms if

they produce under supply function competition. However, if the firms produce

under Cournot competition, only the efficient firm ex-ante suffers from R&D ri-

valry. Moreover, this rivalry always narrows down the efficiency gap between the

duopolists, and more visibly so under Cournot competition. On the other hand, we

find that consumers always ex-ante benefit from R&D rivalry, both under Cournot

and supply function competitions.
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1 Introduction

In this paper, we explore the welfare effects of process (cost-reducing) R&D rivalry

in a homogeneous-product duopoly with cost asymmetry and demand uncertainty

when the firms either compete in either supply functions or compete in (fixed) quan-

tities. The welfare effects of R&D rivalry under quantity competition of Cournot

(1838) and under price competition of Bertrand (1883) have been extensively stud-

ied by many works in the oligopoly literature. A fundamental question investigated

by most of these works is whether the celebrated results of Singh and Vives (1984)

and Vives (1985) about the superiority of Bertrand competition over Cournot com-

petition in terms of efficiency (in consumer surplus and total surplus) remains to

hold when the duopolistic firms compete in process or product R&D before produc-

tion occurs. A surprising answer to this question was provided by Qiu (1997), who

showed that in a differentiated duopoly with process R&D, Cournot competition

in the output market always induces a higher R&D effort than Bertrand compe-

tition, while the outcome of Cournot competition can become more efficient than

the outcome of Bertrand competition if the duopolistic products are close substi-

tutes and if R&D productivity and spillovers in the output of R&D are sufficiently

high. In fact, the same results were later shown to also hold when the model of

Qiu (1997) is modified to involve product R&D (as in Symeonidis, 2003) instead of

process R&D or modified to involve input spillovers in R&D (as in Hinloopen and

Vandekerckhove, 2009) instead of output spillovers.

To the best of our knowledge, the investigation of welfare effects of R&D rivalry

under supply function competition is novel to our study. In fact, the theory of

supply function competition is itself relatively new in the economic literature. This

theory, which was first introduced by Grossman (1981), faced problems with inde-

terminacy/multiplicity of equilibria until they were eliminated by the extension of

Klemperer and Meyer (1989), who allowed for demand uncertainties. This extension

was applied especially to electricity markets following the pioneering work of Green

and Newbery (1992) and also to several other economic problems including airline

pricing reservation systems, spectrum access procurement auctions, management

consulting, treasury auctions, and strategic agency and trade policy.1

1See Vives (2011) and Correa et al. (2014) for more on these applications.
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In our model, where the main element of interest is supply function competi-

tion (in addition to Cournot competition) in the output market, we assume the

existence of a process R&D as in Qiu (1997) and Hinloopen and Vandekerckhove

(2009). However, unlike these two works, we allow for neither spillovers in R&D nor

differentiation in the output market. Our model (and our main problem of inter-

est) also differs from Saglam (2021), studying licensing of a cost-reducing (superior)

production technology (or innovation) in a duopolistic industry under supply func-

tion competition. Saglam (2021) is not interested in the development of superior

technology. He rather assumes that one of the duopolists has asymmetric access to

it and studies how different kinds of licensing (fixed-fee, revenue-royalty, and mixed

licensing) contracts can be ranked by the licensor, licensee, and consumers in the

equilibrium of supply function competition. On the other hand, we endogenize the

development of cost-reducing innovations, by allowing each firm in the duopoly to

engage in R&D, after taking into account the possible effects of firms’ R&D invest-

ments on the equilibrium allocations in the product market and eventually on their

profits.

To give more details, we model the R&D and production process as a two-

stage perfect-information game where the duopolists non-cooperatively choose (cost-

reducing) R&D investments in the first stage and compete either in supply func-

tions or in fixed quantities in the second stage. Computing the subgame-perfect

Nash equilibrium (Selten, 1965) of this game numerically for a wide range of initial

cost parameters and comparing it to the equilibrium with no R&D, we show that

rivalry in (process) R&D can be ex-ante harmful to both firms in the duopoly under

supply function competition. In contrast, when the firms produce under Cournot

competition, only the efficient firm suffers from R&D rivalry. Moreover, this rivalry

always narrows down the efficiency gap between the duopolists, and more visibly so

under Cournot competition.

Our results allow us to investigate whether there exists a Pareto superior mode of

competition in the product market, with or without R&D. Results in the absence of

R&D were earlier provided by Saglam (2018a) and (2018b). Unlike our paper, both

of these works consider a symmetric duopoly. Saglam (2018a) shows that when the

duopolists produce a single homogeneous product supply function competition can

Pareto dominate Cournot competition if and only if the size of demand uncertainty
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is sufficiently large, whereas Saglam (2018b) finds that under product differentiation

the dominance relation in Saglam (2018a) remains to hold irrespective of the size

of demand uncertainty if the degree of product substitution is extremely low. On

the other hand, our paper shows that irrespective of the presence of R&D rivalry,

no form of competition is ex-ante Pareto superior to the other from the viewpoint

of the whole society. Whereas consumers always ex-ante prefer supply function

competition to Cournot competition, the opposite is true for the inefficient firm.

The efficient firm, on the other hand, ex-ante prefers Cournot competition if the

size of cost asymmetry is small and ex-ante prefers supply function competition

otherwise.

The rest of the paper is organized as follows: Section 2 presents basic structures,

Section 3 contains our theoretical results, and Section 4 contains our numerical

computations dealing with the output and welfare effects of R&D rivalry. Finally,

Section 5 concludes.

2 Basic Structures

We consider a duopolistic industry where a single homogeneous good is produced

under cost asymmetry. Firm i = 1, 2 faces the cost function

Ci(qi) =
ci(xi)

2
q2i (1)

where qi is the quantity produced by firm i and ci(xi) > 0 is its unitary marginal

cost that is affected by the variable xi ≥ 0, denoting the investment in process R&D

(hereafter, simply R&D) by firm i. We assume that the common R&D technology

of the firms is such that for each i = 1, 2 the unitary marginal cost of firm i satisfies

ci(xi) = ci,0 e
−xi (2)

where xi ≥ 0 and c2,0 > c1,0 > 0, i.e., before any R&D takes place in the industry,

firm 1 has a lower unitary marginal cost than firm 2. Therefore, firms 1 and 2 will

be called the efficient and inefficient firms, respectively. For simplicity, we also set

c1,0 = 1 and c2,0 = c > 1. Note that the cost asymmetry between the duopolists

becomes larger as c increases; thus we will hereafter refer to c as the size of the cost

asymmetry.
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We should notice that the technology in (2) implies no R&D spillovers, i.e.,

∂ci(xi)/∂xj = 0 for any i, j ∈ {1, 2} with j 6= i. We assume that any firm investing

in x ≥ 0 units of R&D incurs a quadratic cost (as in d’Aspremont and Jacquemin,

1988):

z(x) =
δ

2
x2 (3)

where δ is a positive parameter. Note that according to (3), the marginal cost of

R&D is increasing and independent of the output size of the firm.

Also, we assume that the demand curve faced by the duopolistic firms is given

by

D(p) = α− bp (4)

where p denotes the product price, b is a positive constant scalar denoting the slope

of the demand curve, and α is a positive-valued scalar random variable capturing

unobservable shocks to the size of demand. We denote the mean and the variance

of α by E[α] and V ar[α] respectively, and assume that they are both positive. We

assume that all equations above and the parameters b, c, δ, E[α], and V ar[α] are

common knowledge.

Finally, we let Q denote the industry output, i.e., Q = q1+q2. Given the demand

curve in (4), the consumer surplus at an industry output Q ≥ 0 can be calculated

as

CS(Q) =
Q2

2b
. (5)

We will define the profit functions of the firms in the following section.

3 Theoretical Results

For the duopolistic industry described above, we will consider a two-stage perfect-

information game where the duopolists non-cooperatively determine their R&D in-

vestments in stage one and then non-cooperatively determine their outputs, and

consequently the market price, in stage two. Using backward induction, we will

solve this game starting from the second stage where the duopolists will either

compete in supply functions or compete in fixed quantities. Using the equilibrium
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strategies calculated for the second stage, we will then solve the equilibrium of the

R&D rivalry in the first stage.

3.1 Supply Function Competition with R&D Investment

Here, we will consider the case where the duopolistic firms compete in supply func-

tions in the second-stage game.2 Under this form of competition, the two firms

specify their supply functions simultaneously, without observing the demand shock

α. Formally, a stage-two strategy for firm i = 1, 2 is a linear function mapping

prices into quantities, i.e., Si = ηip where ηi ≥ 0. Given the strategies S1 and S2,

the product market clears if

D(p) = S1(p) + S2(p) (6)

or

α− bp = η1p+ η2p, (7)

implying an equilibrium price given by

p (η1, η2, α) =
α

b+ η1 + η2
. (8)

Using this price, we can calculate the realized (ex-post) profit of firm i as

πi(ηi, ηj, α) = p (ηi, ηj, α)Si ((p(ηi, ηj, α))−
ci(xi)

2
Si(p(ηi, ηj, α))

2 − z(xi). (9)

A pair of supply functions (S∗
1
(p), S∗

2
(p)) = (η∗

1
p, η∗

2
p) form a Nash (1950) equilib-

rium if for each i, j ∈ {1, 2} with j 6= i the supply function S∗
i (p) maximizes the

expected (ex-ante) profit of firm i when firm j produces according to the supply

function S∗
j (p). That is, the profile (η∗

1
p, η∗

2
p) forms a Nash equilibrium if for each

i, j ∈ {1, 2} with j 6= i the (slope) parameter η∗i solves

max
ηi≥0

Eα

[

πi(ηi, η
∗
j , α)

]

, (10)

2The supply function competition model we consider here is an adaptation of the symmetric

oligopoly model of Klemperer and Meyer (1989) to an asymmetric duopoly, like in Green (1999).

However, we cannot borrow our related characterization result (Proposition 1) from Green (1999),

as he did not need to explicitly characterize the equilibrium supply functions.
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where Eα is the expectations operator with respect to α.

Proposition 1. Given the R&D levels x1 and x2 determined in the first stage of the

duopolistic game, the stage-two competition in linear supply functions has a unique

Nash equilibrium characterized by SSF
i (p) = ηSFi (xi, xj)p for each i, j ∈ {1, 2} with

j 6= i, where

ηSFi (xi, xj) =
2

ci(xi) +

√

ci(xi)2 +
4

b

(

ci(xi) + cj(xj) + bci(xi)cj(xj)

2 + bcj(xj)

)

. (11)

Proof. See Appendix.

Note from Proposition 1 that the equilibrium supply functions are independent

of the demand shock α (and also independent of its mean and variance). How-

ever, the equilibrium price will be different before and after α is realized. In fact,

taking the expected value of the equilibrium price in (8), we should easily ob-

serve that the expected equilibrium price depends on E[α]. Once the value of α

is realized, the equilibrium price will be completely known ex-post and equal to

pSF (x1, x2, α) ≡ p
(

ηSF
1

(x1, x2) , η
SF
2

(x2, x1) , α
)

for any x1 and x2. Consequently,

the ex-post equilibrium outputs of the firms can be calculated as qSF
1

(x1, x2, α) ≡

ηSF
1

(x1, x2) p
SF (x1, x2, α) and qSF

2
(x2, x1, α) ≡ ηSF

2
(x2, x1) p

SF (x1, x2, α).

Because firm i can perfectly anticipate –in the first stage of the strategic game–

the equilibrium supply functions that will be chosen in the second stage, it can calcu-

late, for each possible investment pair (xi, xj), its expected profit Eα

[

πSF
i (xi, xj, α)

]

≡ Eα

[

πi(η
SF
i (xi, xj) , η

SF
j (xj, xi) , α)

]

, which is the expected payoff of the reduced

game in stage one. The ability of the two firms to calculate these expected payoffs

allows them to enter into a rivalry where each of the firms aims to choose the best

investment strategy given its conjecture about the strategy of the other. We say

that a pair of R&D investment strategies (xSF
1

, xSF
2

) forms a Nash equilibrium of

the mentioned R&D rivalry (or reduced normal-form game) in stage one if for each

i, j ∈ {1, 2} with j 6= i, xSF
i maximizes the expected profit of firm i when firm j

invests xSF
j . That is, for each i, j ∈ {1, 2} with j 6= i, the R&D level xSF

i solves
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max
xi≥0

Eα

[

πSF
i (xi, x

SF
j , α)

]

. (12)

Consequently, the strategy profile consisting of the plans 〈(xSF
1

, ηSF
1

(x1, x2) for

any (x1, x2)〉 and 〈xSF
2

, ηSF
2

(x2, x1) for any (x2, x1)〉 constitutes a subgame-perfect

Nash equilibrium (SPNE) of the two-stage strategic game whenever the duopolists

compete in supply functions. In such an equilibrium, the expected profit obtained

by firm i will equal to Eα

[

πSF
i (xSF

i , xSF
j , α)

]

.

Let QSF (xSF
1

, xSF
2

, α) denote the equilibrium value of the realized (ex-post) in-

dustry output; i.e.

QSF (xSF
1

, xSF
2

, α) = qSF
1

(xSF
1

, xSF
2

, α) + qSF
2

(xSF
2

, xSF
1

, α). (13)

Using equation (5), we can calculate the ex-post consumer surplus in a SPNE,

i.e., CS(QSF (xSF
1

, xSF
2

, α)), and also its ex-ante value Eα

[

CS(QSF (xSF
1

, xSF
2

, α))
]

.

We leave the calculation of xSF
1

and xSF
2

as well as the corresponding equilibrium

outputs and welfares to Section 4.

3.2 Cournot Competition with R&D Investment

Here, we assume that the duopolistic firms compete in quantities à la Cournot in

the second stage of their game. A strategy for firm i = 1, 2 is a fixed quantity qi ≥ 0

that needs to be chosen without observing the demand shock α. Given strategies

qi and qj simultaneously chosen by firms i and j, the product market clears if

D(p) = qi + qj, (14)

implying an equilibrium price given by

p(qi, qj, α) =
α− qi − qj

b
. (15)

Using this price, we can calculate the realized (ex-post) profit of firm i as

πi(qi, qj, α) = p (qi, qj, α) qi −
ci(xi)

2
q2i − z(xi). (16)

A pair of quantities (q∗
1
, q∗

2
) forms a (Cournot) Nash equilibrium in the second stage

game if for each i, j ∈ {1, 2} with j 6= i the quantity q∗i maximizes the expected
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profit of firm i when firm j produces the quantity q∗j . That is, the profile (q∗
1
, q∗

2
)

forms a Nash equilibrium if for each i, j ∈ {1, 2} with j 6= i the quantity q∗i solves

max
qi≥0

Eα [πi(qi, qj, α)] . (17)

Proposition 2. Given the R&D levels x1 and x2 determined in the first stage of

the duopolistic game, the stage-two competition in quantities has a unique Nash

equilibrium characterized by 〈qC
1
(x1, x2), q

C
2
(x2, x1)〉 such that for each i, j ∈ {1, 2}

with j 6= i,

qCi (xi, xj) =
[1 + bcj(xj)]E[α]

(2 + bci(xi))(2 + bcj(xj))− 1
. (18)

Proof. See Appendix.

Notice from Proposition 2 that the equilibrium output of each firm is the same

both ex-ante and ex-post, as it is independent of the realization of the demand

shock α (while it positively depends on its mean E[α]). On the other hand, the

equilibrium price may be different in the ex-ante and ex-post states. Notice that

the ex-post price, which is known after α is realized, is equal to pC(xi, xj, α) ≡

p
(

qCi (xi, xj), q
C
j (xj, xi), α

)

, as suggested by (15) and (18).

Because firm i can perfectly anticipate –in the first stage of the strategic game–

the equilibrium outputs that will be chosen in the second stage, it can calculate,

for each possible investment pair (xi, xj), its expected profit Eα

[

πC
i (xi, xj, α)

]

≡

Eα

[

πi(q
C
i (xi, xj) , qCj (xj, xi) , α)

]

. The ability of the two firms to calculate these

expected payoffs induces a rivalry (a reduced form game) in the first stage. Given

this rivalry, we say that a pair of R&D investment strategies (xC
1
, xC

2
) forms a Nash

equilibrium if for each i, j ∈ {1, 2} with j 6= i, xC
i maximizes the expected profit of

firm i when the R&D level of firm j is xC
j . That is, x

C
i solves

max
xi≥0

Eα

[

πC
i (xi, x

C
j , α)

]

. (19)

Consequently, the strategy profile consisting of the plans 〈(xC
1
, qC

1
(x1, x2) for any

(x1, x2)〉 and 〈xC
2
, qC

2
(x2, x1) for any (x2, x1)〉 constitutes a subgame-perfect Nash
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equilibrium (SPNE) of the two-stage strategic game whenever the duopolists com-

pete in quantities. In such an equilibrium, the expected profit of firm i will be equal

to Eα

[

πC
i (x

C
i , x

C
j , α)

]

.

Finally, we let QC(xC
1
, xC

2
) denote the equilibrium value of the ex-post and ex-

ante industry output; i.e.

QC(xC
1
, xC

2
) = qC

1
(xC

1
, xC

2
) + qC

2
(xC

2
, xC

1
). (20)

Using equation (5), we can calculate the ex-post consumer surplus in a SPNE as

CS(QC(xC
1
, xC

2
)). Notice that the ex-post industry output is independent of the

demand shock α; therefore the ex-post consumer surplus is equal to the ex-ante

consumer surplus, i.e., Eα

[

CS(QC(xC
1
, xC

2
))
]

= CS(QC(xC
1
, xC

2
)). We leave the

calculation of xC
1

and xC
2

as well as the corresponding equilibrium outputs and

welfares to Section 4.

4 Computational Results

Because of the functional complexity of the optimization programs in (12) and (19),

we cannot analytically calculate the subgame-perfect Nash equilibria of the two-

stage strategic game played by the duopolists. However, we will be able to compute

these equilibria numerically with the help of a computer, using the programming

package Gauss Version 3.2.34 (Aptech Systems, 1998). The source code and the

simulated data are available from the author upon request.

For our computations, we set a = 3 and b = 0.25, while we vary the cost

parameter c ≡ c2,0/c1,0 from 1.0 to 2.9 with increments 0.1 and vary the parameter

δ from 0.1 to 9.6 with increments 0.5. At each parameter set, we compute the

Nash equilibrium in R&D investments with a grid search technique. Basically,

given a competition type t ∈ {SF,C} that we have considered in Sections 3.1 and

3.2, we change both exp(−xi) and exp(−xj) from 0.005 to 0.995 with increments

of 0.005, and compute all possible πt
i(xi, xj) and πt

j(xi, xj) values. Given these

computations, we pick a pair (xt
i, x

t
j) of R&D investments to be a Nash equilibrium

for the competition type t if πt
i(x

t
i, x

t
j) ≥ πt

i(xi, x
t
j) for all xi such that exp(−xi) ∈

{0.05, 0.010, . . . , 0.995} and πt
j(x

t
j, x

t
i) ≥ πt

j(xj, x
t
i) for all xj such that exp(−xj) ∈
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{0.05, 0.010, . . . , 0.995}. If there exist multiple Nash equilibria, we pick the Nash

equilibrium (xt
i, x

t
j) with the highest xt

i + xt
j value.

In Figures 1-3 below, we compare several outcomes obtained in Sections 3.1

and 3.2. Note that all graphs in all three figures plot at each simulated value of

c the average value of a relevant model outcome, corresponding to the 20 distinct

simulation values of δ between 0.1 and 9.6.

Figure 1. Investments Under the Two Forms of Competition (C & SF)

1 1.5 2 2.5 3

0.20

0.40

0.60

0.80

c (c20/c10)

(i) Investment of Efficient Firm (x1)

C with R&D SF with R&D

1 1.5 2 2.5 3

0.20

0.40

0.60

0.80

c (c20/c10)

(ii) Investment of Inefficient Firm (x2)

1 1.5 2 2.5 3

0.5

1

1.5

c (c20/c10)

(iii) Industry Investment (x1 + x2)

1 1.5 2 2.5 3

−0.1

−0.05

0

c (c20/c10)

(iv) Investment Difference (x1 − x2)
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In Figure 1, we can observe that the R&D investment of both firms, and their

sum, are higher under supply function competition than under Cournot competition

at all levels of cost asymmetry. Moreover, under supply function competition the

R&D investments of both firms become lower as the size of the cost asymmetry

(c) increases. Under Cournot competition, this dependence no longer exists for the

efficient firm whereas it is reversed for the inefficient firm. Also, panel (iv) of Figure

1 shows that the inefficient firm always invests more than the efficient firm, and

the investment gap in favor of the inefficient firm is higher (lower) under Cournot

(supply function) competition when the cost asymmetry is larger. These results

suggest that R&D rivalry narrows down the efficiency gap (the difference in the

marginal production costs of a unit output) between the duopolists, and this can

be observed more clearly under Cournot competition.

In Figure 2, we plot the expected equilibrium outputs both in the presence and

absence of R&D. (Notice that an equilibrium with no R&D arises when the firms

have no access to the R&D technology in equation (2) or when R&D is infinitely

costly, i.e. δ = ∞ in equation (3).) As shown by the first three panels, the expected

outputs of both firms, and consequently the expected industry output, are higher

when investment in R&D is present than when it is not. However, the positive ef-

fect of R&D seems to be much more significant under supply function competition

than under Cournot competition. In panels (i) and (ii) of Figure 2, we also observe

that the effect of cost asymmetry on the expected output is different for the two

firms. For both types of competition, this effect is positive for the efficient firm

and negative (and much larger in magnitude) for the inefficient firm, irrespective of

the presence of R&D possibility. In fact, the above negative effect on the expected

output of the inefficient firm is so large, especially under supply function compe-

tition, that the expected industry output is always decreasing in the level of cost

asymmetry, as we observe in panel (iii). In addition, we observe in the first three

panels that the effect of cost asymmetry becomes always more pronounced when the

firms compete in supply functions. Finally, panel (iv) shows that the efficient firm is

always expected to produce more than the inefficient firm under both types of com-

petition irrespective of whether the two firms can engage in R&D or not. Moreover,

the difference between the firms’ expected outputs is always higher under supply

function competition than under Cournot competition, while this difference is not
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affected by the possibility of R&D investment much.

Figure 2. Expected Outputs Under the Two Forms of Competition (C & SF)

1 1.5 2 2.5 3

0.50

1.00

c (c20/c10)

(i) Expected Output of Efficient Firm

C without R&D C with R&D SF without R&D SF with R&D
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c (c20/c10)

(ii) Expected Output of Inefficient Firm

1 1.5 2 2.5 3
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c (c20/c10)

(iii) Expected Industry Output

1 1.5 2 2.5 3

0.00

0.20

0.40

c (c20/c10)

(iv) Expected Output Difference

Next, in Figure 3 we plot the expected equilibrium welfares. Panel (i) shows

that rivalry in R&D is ex-ante harmful to the efficient firm, especially under supply

function competition. On the other hand, panel (ii) shows that the inefficient firm

ex-ante suffers from R&D rivalry only if the firms compete in supply functions in

the product market. If the firms compete in quantities, then R&D rivalry always
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ex-ante benefits the inefficient firm. Moreover, as expected, an increase in the cost

asymmetry has a positive effect on the expected welfare of the efficient firm and

a negative effect on the expected welfare of the inefficient firm under both types

of competition, irrespective of the presence of R&D rivalry. However, which of

these opposite effects becomes dominant on the expected industry profits is more

involved. As illustrated in panel (iii) of Figure 3, when the firms engage in Cournot

competition in the product market, the expected industry profits are decreasing at

all levels of cost asymmetry irrespective of the presence of R&D rivalry. On the

other hand, when the firms compete in supply functions in the product market, the

expected industry profits are always increasing with respect to the cost asymmetry

both in the presence and absence of R&D rivalry. Also, we observe in panel (iv)

that the firm that has an initial cost advantage in production can always obtain

higher expected profit than the other firm; whereas the expected profit gap is higher

under supply function competition, and especially so if the size of cost asymmetry

is sufficiently large.

Finally, panels (v) and (vi) of Figure 3 illustrate that the effects of R&D ri-

valry on the expected consumer surplus and the expected social welfare (which we

define to be the sum of expected consumer surplus and the expected industry prof-

its) are significant and positive under supply function competition and extremely

small, yet positive, under Cournot competition. Moreover, irrespective of the pres-

ence or absence of R&D rivalry, the expected welfares of both consumers and the

society as a whole are always higher under supply function competition. We can

also observe that the size of cost asymmetry has, in general, negative effects on

the expected consumer surplus and expected social welfare, especially under supply

function competition. Interestingly, panels (i), (ii), and (v) together show that there

exists no ex-ante Pareto superior mode of competition from the viewpoint of the

society. Whereas consumers always ex-ante prefer supply competition (with or with-

out R&D) to Cournot competition, the opposite is true for the inefficient firm. On

the other hand, the efficient firm has mixed preferences: it ex-ante prefers Cournot

competition (with or without R&D) if the size of the cost asymmetry is small and

ex-ante prefers supply function competition otherwise. Thus, the duopolists can

agree on the name of an ex-ante superior mode of competition only if the size of

the cost asymmetry is small.
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Figure 3. Expected Welfares Under the Two Forms of Competition (C & SF)
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5 Conclusion

In this paper, we have considered a duopolistic model with cost asymmetry and

demand uncertainty and studied how rivalry in process R&D may affect the welfares

of producers, consumers, and the society as a whole when firms either compete in

supply functions or compete in quantities in the product market. To this end, we

have constructed a two-stage perfect-information game where the duopolistic firms

non-cooperatively choose in the first stage their R&D investments and in the second

stage their productions (according to supply function or quantity competition).

Solving the subgame-perfect Nash equilibrium of this game numerically for a wide

range of model parameters, we have found that under both types of competition

the outputs of both firms, and resultingly the industry output, are always higher

when they both invest in R&D than when neither of them makes any investment.

We have also observed that the output expansion due to the aggressive R&D

investment under supply function competition occurs at such a level that the direct

cost of this expansion on the profits of the firms and the whole industry outweighs

the benefit of R&D channeling through a reduction in the unitary marginal costs of

the firms. Consequently, under supply function competition with process R&D the

duopolistic firms find themselves trapped in a situation like the Prisoners’ Dilemma.

Even though R&D can be ex-ante beneficial to any firm when the rival firm has no

access to R&D, it becomes ex-ante harmful to each firm under supply function

competition when both firms non-cooperatively engage in R&D. In contrast, R&D

rivalry before Cournot competition in the product market has asymmetric welfare

effects: R&D rivalry is always ex-ante beneficial to the inefficient firm, while it is

always ex-ante harmful to the efficient firm. Regarding the welfares of consumers

and the society as a whole, we have found that R&D rivalry has always a positive

effect under both types of competition, whereas this effect is incomparably larger

under supply function.

Our simulations have also shown that no mode of competition is ex-ante Pareto

superior to the other from the viewpoint of the whole society. The efficient firm ex-

ante prefers Cournot competition if the size of cost asymmetry is small and ex-ante

prefers supply function competition otherwise. On the other hand, the inefficient

firm always ex-ante prefers Cournot competition to supply function competition. In
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contrast, for consumers the opposite is true.

Our main result that the rivalry in R&D can be harmful to duopolists under

supply function competition certainly calls for the need of public intervention. Pub-

lic authorities may use subsidies for incentivizing firms, especially those in power

industries, to make them invest in the socially optimal level of R&D under supply

function competition. Very recently, Chen and Lee (2022) study the welfare im-

plications of government subsidies for R&D investment (and output) in a duopoly

(with differentiated products) under Cournot and Bertrand competition. Future

research can fruitfully integrate our model with their work to explore the effects

of R&D subsidies under supply function competition and how these effects change

with the degree of product substitutability (or complementarity).
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Appendix.

Proof of Proposition 1. If the pair of supply functions 〈ηSF
1

(x1, x2)p, η
SF
2

(x2, x1)p〉

forms a Nash equilibrium, then the price p
(

ηSF
1

(x1, x2) , η
SF
2

(x2, x1)
)

must solve

max
p≥0

Eα

[

p
(

α− bp− SSF
j (p)

)

−
ci(xi)

2

(

α− bp− SSF
j (p)

)2

− z(xi)

]

(21)

for each i, j ∈ {1, 2} with j 6= i. The first-order necessary condition for the above

maximization implies

0 = Eα

[

SSF
i (p) +

(

p− ci(xi)S
SF
i (p)

) (

−b− ηSFj (xj, xi)
)]

= Eα

[

ηSFi (xi, xj)p+
(

p− ci(xi)η
SF
i (xi, xj)p

) (

−b− ηSFj (xj, xi)
)]

, (22)

implying

ηSFi (xi, xj) =
b+ ηSFj (xj, xi)

1 + ci(xi)(b+ ηSFj (xj, xi))
. (23)

Let ηSFi ≡ ηSFi (xi, xj) and ηSFj ≡ ηSFj (xj, xi). Then, equation (23) implies

1

ηSFi

=
1

b+ ηSFj

+ ci(xi) (24)

and

1

ηSFj

=
1

b+ ηSFi

+ cj(xj). (25)

Define ϕi = 1/ηSFi and ϕj = 1/(b+ ηSFj ). Then, (24) and (25) can be rewritten as

ϕi = ϕj + ci(xi) (26)

and

1
1

ϕj

− b
=

1
1

ϕi

+ b
+ cj(xj). (27)
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Inserting (27) into (26) and with the help of some arrangements we obtain

ϕj

1− bj
=

(1 + bcj(xj))ϕj + ci(xi) + cj(xi) + bci(xi)cj(xj)

1 + bϕj + bci(xi)
. (28)

It follows from (28) that

ϕ2

j + ci(xi)ϕj −
ci(xi) + cj(xj) + bci(xi)cj(xj)

b(2 + bcj(xj))
= 0. (29)

The positive-valued solution to the above quadratic equation can be calculated as

ϕj =

−ci(xi) +

√

ci(xi)2 +
4

b

(

ci(xi) + cj(xj) + bci(xi)cj(xj)

2 + bcj(xj)

)

2
. (30)

Then using (26) and ϕi = 1/ηSFi , we obtain (11). To check the second-order suf-

ficiency condition, we differentiate the right-hand side of (22) with respect to p to

obtain (−b − ηSFj (xj, xi)) + (1 + ci(xi)(b + ηSFj (xj, xi)))(−b − ηSFj (xj, xi)) < 0 for

all p ≥ 0. So, p(ηSF
1

(x1, x2), η
SF
2

(x2, x1)) solves the problem in (21), implying that

the supply functions ηSF
1

(x1, x2)p and ηSF
2

(x2, x1)p form a Nash equilibrium in the

second-stage game. �

Proof of Proposition 2. The first-order necessary condition associated with the

maximization problem in (17) is given by

−
1

b
qi +

E[α]− qi − q∗j
b

− ci(xi)qi = 0. (31)

If (q∗
1
, q∗

2
) = (qC

1
, qC

2
) forms a Nash equilibrium, then for each i, j ∈ {1, 2} with j 6= i

the quantity qi = qCi must satisfy the above first-order condition when q∗j = qCj ,

implying

qCi =
E[α]− qCj
2 + bci(xi)

. (32)

Changing the role of i and j in (31), we can also get

qCj =
E[α]− qCi
2 + bcj(xj)

. (33)
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Then, solving (32) and (33) together, we can obtain qCi (x1, x2) as in (18). To check

the second-order sufficiency condition, we differentiate the left-hand side of (31)

with respect to qi to obtain −(2/b) − ci(xi) < 0 for all qi ≥ 0. So, the quantity

qCi (xi, xj) solves the problem in (17), implying that the strategies qC
1
(x1, x2) and

qC
2
(x2, x1) form a Nash equilibrium in the second-stage game. �
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