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This paper,1 and its accompanying programs,2 provide a practical introduction to 

macroeconomic policy analysis methods and show how to implement in DUALI 

deterministic and stochastic simulations with standard3 and rational expectations models. 

 

The analysis of the general properties of dynamic economic systems is a complex 

task, facilitated by the application of some theoretical results and relatively simple 

simulation techniques. Dynamic optimal policy analysis is more demanding, usually 

requiring of specialized software. DUALI4  is an optimal control software which is able 

to generate sophisticated deterministic and stochastic simulation environments and to 

compute, among other things,  the optimal feedback rule and the implied optimal paths 

for target variables and policy tools. 

 

 Our general goals here are: 

 

a) to introduce the use of some concepts for the analysis of dynamic properties of 

economic systems 

 

b) to introduce the use of DUALI to perform deterministic and stochastic dynamic 

optimal policy analysis. 

 

As a practical illustration of solution concepts and computational techniques, we 

use Robert Hall and John Taylor’s  open economy-flexible exchange rate model5, and 

John Taylor’s closed economy model with rational expectations and staggered contracts.6  

 

 

 

Part A:  Policy Analysis with Standard Macroeconomic Models 

 

1) Hall and Taylor’s Open Economy Model 
  

 
1 These materials were developed at the Department of Economics, The University of Texas at Austin, as a 

part of the Project “Computational Experiments with John Taylor’s US Macroeconomic Models”. The 
Project Director was Professor David Kendrick. 
2 The programs are: htdua01.dui, htdua02.dui, htdua03.dui, taydua01.dui and taydua02.dui. They can be 

downloaded from David Kendrick’s home page at the Department of Economics, The University of Texas 
at Austin: 

http://www.eco.utexas.edu/ 

 
3 By standard macroeconomic models we mean models that can be solved, in principle, in a forward-

recursive way. That is, they do not involve two-point boundary problems as it is the case of models 

containing forward-looking variables.  For an elementary introduction to solution methods for models with 

forward variables, see Mercado and Kendrick (1997b). 
4 If you are not familiar with this software, see Amman and Kendrick (1996b) and  (1997c).  
5 See Hall and Taylor (1993). Though its building blocks are developed throughout the book, the whole 

model is presented only in MACROSOLVE, the software accompanying Hall and Taylor’s book. 
6 See Taylor (1993), Chapter 1. 
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This is a twelve-equation nonlinear dynamic model for an open economy with 

flexible exchange rates  which generates  interesting and realistic patterns of  

macroeconomic behavior. 

 

Hall and Taylor’s model contains the equations, variables and parameters listed 
below. Equations i-v and ix-x  can be seen as a standard IS-LM-Open Economy sub-

model for the aggregate demand of the economy. Equations vi-viii define an 

“expectations augmented” Phillips Curve, that is, the aggregate supply. Finally, equations 
xi and xii are definitions for the government deficit and the unemployment rate. 

 

 The model  is dynamic - all variables without subscripts correspond to time “t”,  
those with “-1”  subscript correspond to “t-1”, and so on. Also the model is nonlinear - 
nonlinearities appear in equations v, viii, ix and x. Its dynamic behavior displays the 

“natural rate” property:  nominal shocks may affect real variables in the short-run, but not 

in the long run.  

 

 

 
Equations 
 
  i)     GDP identity                 

Y     =  C +  I +  G + X 
  ii)    Disposable Income                

Yd   =  (1- t) Y 
  iii)   Consumption                               

C    =  a + b Yd 
  iv)    Investment                                  

I     =  e - d R 
  v)     Money Demand                      

M/P =  k Y -  h R  
  vi)    Expected Inflation                       

e   =   -1  +    -2                    
  vii)    Inflation Rate                              

    =  e  +  f {(Y-1 - YN) / YN} 

  viii)   Price Level                                
P   =  P-1   (1  +  ) 

  ix)     Real Exchange Rate     
E P / Pw   =  q  + v R 

  x)      Net Exports                                
X    =  g  -  m Y -  n  E P / Pw 

  xi)     Government Deficit                    
Gd  =  G  -  t Y 

  xii)    Unemployment Rate                    
U    =  UN -   {(Y - YN) / YN} 

 
Endogenous Variables                                  Policy Variables 
 
C :    Consumption            G :    Government Expenditure 
E :    Nominal Exchange Rate                       M :    Money Stock 
Gd :   Government Deficit  
I :      Investment 
P :     Domestic Price Level           Exogenous Variables 
R :    Real Interest Rate      
U :    Unemployment Rate           Pw :    Foreign Price Level 
X :    Net Exports                         UN :   “Natural” Rate of Unemployment 
Y :    GDP             YN :   Potential GDP 
Yd :   Disposable Income 
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 :     Inflation Rate  
e :    Expected Inflation 

 
 

        Parameters 
 

        a = 220;   b = 0.7754;   d = 2000;  e = 1000;   f  = 0.8;   g = 600;  h = 1000;  k = 0.1583;  
 

        m = 0.1;  n = 100;   q = 0.75;   t = 0.1875;   v = 5;   =0.4;   =0.2;    = 0.33; 
 

 To make use of theoretical results from the analysis of dynamic systems and from 

the optimal control literature, and to be able  to perform policy analysis with DUALI, we 

need to obtain the state-space representation of Hall and Taylor’s model, that is, to 

transform the model into a system of  first order difference equations. To do this, we first 

linearize the model, then obtain its reduce form representation, and finally transform the 

reduce form into the state-space form. 

 

 Detailed steps to transform Hall and Taylor’s nonlinear model into its state-space 

representation can be found elsewhere.7 The linearization technique chosen for this model 

is that known as the Johansen’s method, in which all the variables in the model are 
expressed as percent deviations from the model’s steady-state solution. Without loss of 

generality, and to make the analytical and computational work easier, the original twelve-

endogenous variables model was collapsed into a four-endogenous variables model 

involving GDP, the real interest rate, the nominal exchange rate and the price level as 

endogenous variables, the money supply and government expenditure as policy variables, 

and potential GDP and foreign prices as exogenous variables.8 

 

 The state-space representation of Hall and Taylor’s model when collapsed into a 
four-endogenous variables model in which all the variables are percent deviations from 

the steady-state is given below.9, 10 

 
 

1.1) Y*= A11Y
*
-1 + A13 plev*

-1 + A17 xlplev*
-1 + A1.11 xllplev*

-1 + B11M
*
-1 + B12 G

*
-1+ C11YN*

-1 + C12 plevw*
-

1   

 

1.2) R*= A21Y
*
-1+ A23 plev*

-1 + A27 xlplev*
-1+ A2.11 xllplev*

-1 + B21M
*
-1 + B22 G

*
-1   + C21YN*

-1 + C22 plevw*
-

1   

 
7  See Mercado and Kendrick (1997a). 
8  This variable structure is one of the most common ways in which textbook macroeconomic models are 

presented. 
9  The steady-state solution for Hall and Taylor’s original nonlinear model in levels is:  Y = 6000, R = 0.05,  
plev = 1 and E =1. These steady-state values correspond to the following values for policy and exogenous 

variables: M = 900,  G = 1200,  YN = 6000 and plevw = 1. Since in the linearized state-space 

representation all variables are in percent deviations, their steady-state values are all zeroes.    
10 In Hall and Taylor’s model, the policy variables contemporaneously affect the model’s endogenous 
variables, and this is also true for its “state-space” representation. In order to obtain a proper state-state 

representation, that is, one in which  the control variables also appear with one lag, we have to assume that 

there is one lag of delay between a policy decision and its implementation (see Kendrick (1981), p. 10). 

Then, we can substitute  M-1
* for M*, and G-1

* for G*. We will also assume that the exogenous variables 

YN* and plevw* affect the system with one lag instead of contemporaneously.  Expressing the model in this 

way, we can make use of  many results from the optimal control literature, which works with models with 

one-lag controls. Also, the DUALI software works in this way. 
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1.3) plev* = A31 Y
*
-1+ A33  plev*

-1 + A37 xlplev*
-1  + A3.11 xllplev*

-1                         +  C31 YN*
-1 

 

1.4) E*= A41Y
*
-1 + A43 plev*

-1 + A47 xlplev*
-1 + A4.11 xllplev*

-1 + B41M
*
-1 + B42 G

*
-1 + C41YN*

-1+ C42 plevw*
-

1  

 

1.5) xlY* = Y*
-1  

 

1.6) xlR* = R*
-1  

 

1.7) xlplev* = plev*
-1  

 

1.8) xlE* = E*
-1  

 

1.9) xllY* = xlY*
-1  

 

1.10) xllR* = xlR*
-1  

 

1.11) xllplev* = xlplev*
-1  

 

1.12) xllE* = xlE*
-1  

 

 

where: 
 

Endogenous Variables    Policy Variables 

 

Y*     = GDP      M*    = Money Stock 

R*     = Real Interest Rate     G*     = Government Expenditure 

plev* = Domestic Price Level  

E*     = Nominal Exchange Rate   Exogenous Variables 

 

plevw* = foreign Price Level  

YN*    =  Potential GDP  

 

where the remaining “xl…” and “xll…” variables come from the re-labeling of the 

endogenous variables with lags greater than one, and where: 

 
A11 =  -0.346,   A13  =   -0.606,    A17  =   0.087,   A1.11  =   0.087,   

A21 =   7.811,   A23  =   13.669,   A27  =   -1.953,  A2.11  =  -1.953,   

A31 =   0.800,   A33  =     1.400,   A37  =   -0.200,  A3.11  =  -0.200,   

A41 =   1.154,   A43  =     2.019,   A47  =   -0.288,  A4.11  =  -0.288,   

              

B11 =   0.433,    B12 =     0.231,    B21  =   -9.763,  B22    =   4.386,   

B41 =  -2.442,    B42 =      1.097,     

 

C11 =   0.346,    C12 =      0.000,   C21  =   -7.811,  C22    =   0.000,   

C31 =  -0.800,    C41 =    -1.154,   C42   =    1.000.   

 

 In matrix notation, the state-space representation of Hall and Taylor’s model can 
be written as: 

 

1.13)                                          x =  A x-1 + B u-1 + C z-1  
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where x is an augmented state vector defined as: 

 

1.14)     x

X

XL

XLL

=
















, 

 

where: 

 

                                                          

1.15)                          X

Y

R

plev

E

=





















*

*

*

*

,    XL = X-1 ,          XLL = XL-1 = X-2 , 

 

1.16)                                   u
M

G
=












−

−

1

1

*

*
, z

YN

plevw
=












−

−

1

1

*

*
,  

 

and where: 

 

 

1.17)                    A =

− −
− −
− −
− −













































0 346 0 0 606 0 0 0 0 087 0 0 0 0 087 0

7 811 0 13 669 0 0 0 1953 0 0 0 1953 0

0 8 0 14 0 0 0 0 2 0 0 0 0 2 0

1154 0 2 019 0 0 0 0 288 0 0 0 0 288 0

1

1

1

1

1

1

1

1

. . . .

. . . .

. . . .

. . . .

, 
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1.18)                                    B =

−

−













































0 433 0 231

9763 4 386

0 0

2 442 1097

. .

. .

. .

, C =

−
−
−













































0 346 0

7 811 0

0 8 0

1154 1

.

.

.

.

 

 

 

2) Introduction to Dynamic Analysis Methods 

 

 Before beginning to perform optimal policy experiments with a given model, it is 

important to analyze its basic dynamic behavior.  Here, we will introduce the most 

common theoretical results and simulation procedures to that end. 

 

 

2.a) eigenvalues: computation and use 

 

 The eigenvalues of matrix A convey useful information about the dynamic 

properties of the model. 11 They can be easily computed with specialized software such as  

Matlab,  Mathematica, etc.  

 

 Let’s assume that the model has a steady-state. Then, depending on the magnitude 

of those eigenvalues, the system will be stable, unstable, or it will display the saddle-

point property: 

 

.. if they all lie within the unit circle12, the model is globally stable. It will converge to its 

steady-state from any initial conditions 

 

.. if they all lie outside the unit circle, the model is dynamically unstable. Unless it starts 

from the steady-state itself, it will diverge from it for any other set of initial conditions 

 

.. if some lie within the unit circle, while others lie outside the unit circle,  the steady-

state is a saddle point. The system will converge towards the steady-state from some 

initial conditions, and will diverge  from other.  

 

 
11 For an extended treatment of the analysis of dynamic systems related to economics,  see Chiang (1984), 

and Azariadis (1993).  
12 If the eigenvalues are complex numbers, this means that their modulus is smaller than 1. If they are real 

number,  it means that their absolute value is smaller than one. 
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 The speed of convergence-divergence is also determined by the magnitude of the 

eigenvalues. For instance, a modulus smaller than one but near one will indicate a slow 

adjustment towards the steady-state, while a modulus near zero will imply a faster 

convergence.  A modulus greater than one but near one will indicate that anticipated 

changes in exogenous variables that will take place in the future can have large effects 

today. Finally, the presence of complex eigenvalues will imply cyclical behavior for 

some or all of the system variables.  

 

 For the linearized version of Hall and Taylor’s model, we have the following 
eigenvalues:13 

   
1, 2 =  0.68431+0.4042i,  3 =  -0.31663,   4 =  0.002,   5 to 12 = all near zero. 

 

 There are two complex eigenvalues, with modulus less than one, while the 

remaining ones are all real and smaller than one in absolute value. Thus, Hall and 

Taylor’s linearized model is stable and present cyclical behavior. That is, its convergence 
toward the steady-state will be in the form of damped oscillations. 

         

 

2.b) dynamic paths  

 

 The next step in the analysis of the model is to visualize its dynamic evolution for 

given changes in policy variables, as a way of detecting implausible patterns of 

behavior.14,15 The graphs below shows the results of two experiments: a 10% permanent 

increase in the money supply (M) and a 10% permanent increase in government 

expenditure (G).16 On the vertical axes are the percent deviations from steady-state values  

while on the horizontal axes are the time periods (e.g.: a value of 0.02 means “2% above 
steady-state”. It does not mean “2% increase with respect to the previous period”. Thus, a 
10% permanent increase in M means that the money stock is increased by 0.1 at the 

initial period and kept constant at the new level from then on).17 Since all variables 

(endogenous, policy and exogenous) are in percent deviations, their steady-state values 

are all zeroes. 

 
13 There are many software packages capable of computing eigenvalues. These were computed with Matlab 

(see the Appendix). 
14 These simulations can be easily implemented in software with standard simulation capabilities, such as, 

for example, GAMS (see Mercado, Kendrick and Amman (1997), and Mercado and Kendrick (1997a)). 

Though DUALI is a software oriented toward deterministic and stochastic control applications, it can also 

handle standard simulations. To do so, just set to zero the weights on the state variables (W matrix)  and set 

to the maximum possible value the weights on the controls (Lambda matrix).  Then, define the desired path 

for the controls as equal to the policy change to be introduced, and solve the as a Deterministic QLP 

problem (see Amman and Kendrick (1996b), Chapter 1). Simulations of shocks to the exogenous variables 

and  to the initial values for the endogenous variables can be implemented in an analogous way. 
15 To run these simulations, use program htdua01.dui (making the appropriate changes. See the 

“description” section in the “data”  menu). 
16  To save notation,  from now on we will obviate the “ *  ” on the model’s variables, but it should be clear 
that we will still be making reference to percent deviations from baseline.  
17 See Mercado and Kendrick (1997a). 
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As expected, the increase in M causes an increase in Y during the first periods, 

together with a significant drop in R. The value of 0.04 on the vertical axes of the GDP 

graph means that Y went up by 4% in the first quarter, while the value of -1 in the grapth 

for the real interest rate means that R has fallen by 100% (i.e from, say, 6% to 3%). 

However, in the long-run, real variables (Y and R) come back to their steady-state values, 

while nominal variables experience permanent changes (plev increases 10%, the same 

amount as M, while E decreases 10%) of equal magnitude to the change in M. 

 

 The increase in G  has a  smaller effect on Y,  which is also neutral in the long-

run. However, there is a strong impact on R, which after five periods increases by more 

than 100% with respect to its previous steady-state value, due to the crowding-out effect 

of government expenditure on private expenditure.  Meanwhile, plev and E both increase 

and then stabilize on a new and higher steady-state value (around 6% higher for plev and 

almost 20% higher for E).   

 

 

 

 

 

2.c) dynamic controllability: computation and use 

 

real interest rate (R )

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14

10% incr. in M 10% incr. in G

 

GD P  (Y)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12 14

10% incr. in M 10% incr. in G

 

no minal exchange rate (E)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14

10% incr. in M 10% incr. in G

 

price level (plev)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14

10% incr. in M 10% incr. in G
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 Once we have studied the dynamic properties of our economic model, the next 

step is analyze its controllability, that is, the power of the available policy tools to drive 

the system towards pre-specified desired paths.  

 

 Jan Tinbergen18 established the conditions for static controllability. In order to hit 

a number “n” of targets, we need at least an equal number of independent policy 

instruments. However, this condition can be overcome in a dynamic context.  

 

 We may start by asking if it is possible to transfer the system from any given state 

at time “0”  to any other state at time “0 + t”  through a suitable choice of values of the 
policy tools. This is the so called condition of dynamic controllability.  For a system to be 

dynamically controllable, it has to be true that: 

 

 

2.1)                                              rank(R1, …, Rm) = m 

 

where “m” is the number of target variables, where “t” (the time horizon) is greater than 
“m”,  where: 
 

2.2)                                                  Ri = S Ai-1 B 

 

and where A and B are respectively the state and control matrices of the model, and S is a 

matrix to select, from the set of state variables, those that will be the targets of policy. 

That is: 

 

2.3)                                                     S Z = Y 

 

where Z is the vector of state variables and Y is the vector of target variables. 

 

 For the state-state representation of Hall and Taylor’s model, we know that A is a 
(12 x 12) matrix. However, 8 out of the 12 state variables are in fact lagged endogenous 

variables re-defined just for convenience. Thus,  for instance, we may just be interested in 

controlling 4 variables only (Y, R, plev and E), or even a smaller subset.  Assuming that 

we want to control all the four variables, we will have: 

 

 

2.4)                                         S =



















1 0 0

0 1 0 0

0 0 1 0 0

0 0 0 1 0 0

. . . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . .

 

 

 

 Thus, the dynamic controllability condition is: 

 

 
18 See Tinbergen (1956). 
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2.5)                                                rank(R1, …, R4) = 4 

 

which is effectively met by the linearized Hall and Taylor’s model.19 

 

 There are many more theoretical results in connection with the controllability 

properties of a system in both deterministic and stochastic settings. The one presented 

here is one of the most intuitive and relatively easy to check.20 

 

 

3) Introduction to optimal policy analysis methods with DUALI 

 

In the previous section, we presented the responses of Hall and Taylor’s model to 
changes in the policy variables. Optimal policy analysis is interested in a sort of “reverse” 
analysis. It begins by posing this question: how should  policy variables be set in order 

for the target variables to follow pre-specified paths? 21  

 

The most  popular way of stating this problem is as a Quadratic Linear Problem 

(QLP). In formal terms, the problem is expressed as one of  finding the controls ( )u
t

N

=0
 to 

minimize a quadratic “tracking” criterion function J of the form:  
 

3.1)              ( )J E x x W x x x x W x x u u u uN N N N N t t t t t t t t t t

t

N

= − − + − − + − −










=

−

1

2

1

2
0

1

# ' # # # ' # # # ' # #  

 

subject, as a constraint, to the  state-state representation of the economic model: 

 

3.2)                                              xt  =  A xt-1 + B ut-1 + C zt-1 + t-1  

 

where E is the expectation operator, x# and u# are desired paths for the state and controls 

variables respectively, W and  are weighting matrices for states and controls 

respectively,   is a vector of random disturbances, and where all the other variables were 

defined above.   

 

The quadratic nature of the criterion function implies that deviations above and 

below target are penalized equally, and that large deviations are more than proportionally 

 
19 For a program to compute this condition, see the TSP statement in the Appendix. 
20 For example, there are also uniqueness, stabilizability and instrument stability conditions for a dynamic 

system when it is put, as we will see below, within a control framework. For an introductory presentation of 

these conditions, see Turnorvsky (1977) and Holly and Hughes-Hallett (1989). For an advanced treatment, 

see Aoki (1976).   
21 For an introductory presentation of optimal control for economic models, see Turnovsky (1977). For a 

more advanced treatment, see Chow (1975), Holly and Hughes-Hallett (1989),  and Kendrick (1981).   
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penalized than small deviations.  This particular form of the criterion function is not the 

only possible one, but is the most popular.22 

 

The way in which we treat uncertainty has important implications for the solution 

methods of this problem, as well as on the simulation techniques.  If we completely 

ignore the presence of uncertainty  - which may arise, for example,  from additive noise, 

parameter uncertainty and/ or measurement error -  we are left with a deterministic 

control problem.  If we account for some or all of the possible forms of uncertainty, we 

face a stochastic control problem. 

 

The solution of deterministic and / or stochastic control problems, even when they 

are of the Quadratic Linear form,  quickly becomes very involved. Thus, to make our task 

feasible, we have to rely on computational methods and specialized software.  

 

DUALI is a specialized software that can receive as  inputs the desired paths for 

target and control variables, weighting matrices, and the state-space representation of the 

economic model with or without its stochastic specifications, and which is able to 

generate sophisticated simulation environments and to compute, among other things,  the 

optimal feedback rule and the implied solution paths for states and controls.23 

 

In what follows, we will use DUALI to perform deterministic and stochastic 

experiments with the state-space representation of Hall and Taylor’s model. We will 
assume that the policy goal is to stabilize Y, R, plev and E around steady-state values 

(that is, around zero).  High and equal weights24 will be put on stabilizing Y and plev, 

lower and equal on R and E, and even lower and equal on the policy  variables M and G. 

Neither the desired paths nor the weighting matrices (shown below) will vary with time.   

 

 

 
22 For a discussion of the properties of different criterion functions, see Blanchard and Fischer (1989), 

Chapter 11. 
23  See Amman and Kendrick (1996b) and (1997c). 
24 There is a conceptual difference between “weights” and “priorities” which arises when the variables of 
interest are in levels and also expressed in different units of measurement. For instance,  if GDP is 

measured in dollars and prices are measured by an arbitrary price index,  equal weights on these two 

variables will probably imply different policy priorities and vice versa. Since all variables in the state-space 

representation of  Hall and Taylor’s model are in percent deviations from steady-state, weighs and priorities 

can be considered as equivalent within certain limits. However, it should be clear that, for example, an 

interest rate 50% below steady-state values is something feasible, while  a level of GDP 50% below steady-

state is not. In such a case, there is not an analogy between weights and priorities. See Park (1997).   
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3.a) deterministic control 

 

In this section, we will ignore all possible sources of uncertainty. Let’s assume, 
for example, that the economy is going through a recession provoked by a temporary 

adverse shock  to net exports which causes Y to be 4% below its steady-state value. 

Given the weight structure adopted in the previous section, what would be the optimal 

paths for government expenditure (G) and the money supply (M) in order to bring the 

economy back to its steady-state?  How do the optimal paths for the state variables 

compare against what would be the autonomous response of the system to that kind of 

shock? 

 

 To implement this experiment in DUALI, we  have to set the problem as a 

deterministic one,  set all the desired paths for states and controls equal to zero,  impose 

the corresponding weights on states and controls,  set an initial value for Y equal to -0.04, 

and chose the option “Solve: QLP”. 25 To obtain the autonomous path of the system, we 

have to proceed in an analogous way as we did in the previous section to simulate the 

effects of changes in policy variables.  That is, we have to impose zero weights on the 

state variables, very high and equal weights on the controls  and, as above, set an initial 

value for Y equal to -0.04.  The results are shown in the graphs below.26 

 

 
25 See Amman and Kendrick (1996b), Chapter 1. 
26 To run this simulations, use program htdua01.dui (making the appropriate changes. See the “description” 
section in the “data” menu). 
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The optimal solution paths for the states outperform the autonomous responses of 

the system for all the four target variables.  This comes as no surprise, though it may not  

always be the case.  Indeed, remember that the optimal solutions are obtained from the 

minimization of an overall loss function. On some occasions, depending on the weight 

structure, it may be better to do worse than the autonomous response for some targets in 

order to obtain more valuable gains from others.  

 

Why does the autonomous path of the economy display the observed behavior? 

Here is how Hall and Taylor explain it: 

 

“With real GDP below potential GDP after the drop in net exports, the price level 
will begin to fall. Firms have found that the demand for their products has fallen off and 

they will start to cut their prices (...). The lower price level causes the interest rate to 

fall.27 With a lower interest rate, investment spending and net exports will increase.28 The 

 
27 Since less money is demanded by people for transactions purposes. See Hall and Taylor (1993),  Chapter 

8.3. 
28 Since the price level  falls much less than the real interest rate during the first periods of the adjustment, 

the nominal exchange rate has to fall too, as can be derived from equation “ix” in the original Hall and 
Taylor’s model. This implies that the real exchange rate will fall, then causing net exports (see equation 
“x”) to raise.  
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increase in investment and net exports  will tend to offset the original decline in net 

exports. This process of gradual price adjustment will continue as long  as real GDP is 

below potential GDP.” 29 

 

What does explain the observed optimal path of the four variables of interest?  We 

can see that Y is brought  up very quickly, going from 4% below steady-state to a  3% 

above steady-state, to then  decay slowly to its steady-state value. This performance 

could be attributed to the more than 6% increase in G that can be observed in the policy 

variables’ graph.  Meanwhile, R experiences almost no variation when compared to the 
big drop - almost 35% - implied by the autonomous behavior of the system. Once again, 

the increase in G, which crowds out investment, puts an upward pressure on the interest 

rate, thud keeping it from falling.  Finally, the nominal exchange rate has to go up to 

compensate for the fall in prices, given that the real interest rate does not change much. 

 

We can also see that monetary policy plays a minor role when compared against 

fiscal policy.30  Even though we put the same weights on both variables, government 

expenditure appears to be more effective to bring the economy out of its recession given 

the weight structure we put on the target variables.  

 

It is interesting to analyze the different combinations of behavior of variables that 

the policy maker can achieve given a model and a criterion function. The curve showing 

those combinations is known as the policy frontier.31  

 

For instance, we may want to depict the trade-off between the standard deviations 

of Y and plev in Hall and Taylor’s model when, as above, Y is shocked by a negative 4% 
in period zero.  To obtain the corresponding policy frontier, we have to vary the relative 

weights on Y and plev, perform one simulation for each weight combination and compute 

the corresponding standard deviations. The results of six of such experiments, keeping 

the same weights on the remaining states and controls as in the above simulation,  are 

shown in the table and graph below.32  

 

 

 

 
 

29 Hall and Taylor (1993), page 232. 
30 Notice that the optimal values for the policy variables are computed for periods 0 to 14 only. Given that 

we are working with a state-space representation of the model, policy variables can only influence the next 

period state variables. That is, the controls at period 0 are chosen, with a feedback-rule,  as a function of 

period 0 states, but they determine  period 1 states, and so on. See Kendrick (1981). 
31 See Hall and Taylor (1993), Chapter 18. 
32 To run these simulations, use program htdua01.dui, changing the weights on Y and plev. 

Experiment  Weight on Y     Weigh on plev STD Y STD plev 

1 100 0 0.0479 0.0500 

2 80 20 0.0489 0.0466 

3 60 40 0.0499 0.0440 

4 40 60 0.0509 0.0419 

5 20 80 0.0520 0.0401 

6 0 100 0.0531 0.0386 
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The policy frontier for Y and plev is clearly shown in the graph above, where 

each diamond represents the result of an experiment. The higher the weight on Y relative 

to that of plev, the lower its standard deviation, and vice versa.  The flatness of the curve 

indicates that it is easier the achieve a reduction in the percent deviation from target for 

plev than for Y.  Of course, shape and location of this particular policy frontier are 

conditional to the weight structure imposed on the other model’s variables. For example, 
if we increase the weigh on the policy variables, the policy frontier will shift up and to 

the right, farther away from the origin (the (0,0) point of zero deviations for Y and plev).  

This will be due to the more restricted possibilities for actively using the policy variables 

to reach the targets for Y and plev.   

 

 

3.b) stochastic control 

 

 In this section, we will begin to take uncertainty into account. Indeed, 

macroeconomic models are only empirical approximations to reality.  Thus, we have to 

take into account that there are random shocks almost permanently hitting the economy  

(additive uncertainty),  that the model parameters are just estimated values with 

associates variances and covariances  (multiplicative uncertainty),  and that the actual 

values of the model’s variables and initial conditions are never known with certainty  
(measurement error). 33 

 

 
33 See Kendrick (1981). As we said above, CE presupposes additive uncertainty only, while QLP is 

deterministic (no uncertainty). However, the presence of additive uncertainty does not affect the form of the 

solution procedure for choosing the optimal controls (of course, it implies a different simulation method in 

order to generate additive uncertainty). In this sense, QLP and CE are equivalent.    
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 Stochastic control methods artificially generate a dynamic stochastic environment 

through random shocks generation. They use specific procedures for choosing the 

optimal values for each period policy variables: Certainty Equivalence (CE) when there is 

additive uncertainty only, Open Loop Feedback (OLF) when there is parameter 

uncertainty, and DUAL when there is active learning. Also there are specific mechanisms 

of projection-updating of parameters and variables. In that way, these methods allow us 

to perform sophisticated simulations.  

 

In what follows, we will perform experiments incorporating some forms of 

additive and multiplicative uncertainty into Hall and Taylor’s model. We will proceed in 

three steps. First, we will analyze the differences in qualitative behavior of the policy 

variables when some different procedures for choosing their optimal values are used 

(specifically, (CE) versus (OLF)). Second, we will compare the quantitative 

performances of CE and OLF procedures within artificially generated stochastic 

environments including passive learning mechanisms. Finally, we will compute an 

optimal policy frontier.     

 

 

3.b.1) qualitative comparison between CE and OLF: control without parameter updating  

 

Some years ago, William Brainard34 showed that, for a static model, the existence 

of parameter uncertainty causes the optimal policy variables to be used in a more 

conservative way as compared to the case of no parameter uncertainty. However, as with 

the famous Tinbergen result,  this finding can not be completely translated into a dynamic 

setting. Once again, the existence of dynamics implies considerably changes and at the 

same time opens new possibilities for policy management. 

 

The procedure for choosing the controls in the presence of parameter uncertainty 

(OLF) differs from the standard deterministic QLP procedure or its “certainty equivalent” 
(CE).35  Some analytical results have been provided by Franklin Shupp36 in connection 

with the qualitative behavior of the policy variables when the OLF procedure is used in a 

model with one state and one control. He found that when uncertainty concerns the 

control parameters only, Brainard’s result still holds: a more conservative use of the 

controls will be the optimal policy. However, he also found that the reverse is true when 

the uncertainty is in the state parameters only.  Finally, he found that when uncertainty is 

in both the control and the state parameters, no general results can be obtained.   

 

There are not straightforward theoretical results for the case of models with 

several states and controls. To illustrate some possible outcomes, and to show a first 

contrast between patterns of behavior generated by CE and OLF procedures,  we will 

perform an experiment with Hall and Taylor’s model. As in the previous section, we will 
assume that Y is 4% below its steady-state value at time zero and we will keep the same 

weight structure and desired paths. We will also assume that there is uncertainty in 

 
34 See Brainard (1969). 
35 See Kendrick (1981). 
36 See Shupp (1976). 
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connection with six out of the eight control parameters in the B matrix, and that the 

standard deviation of each of these parameters is equal to 20%. The vector of the initial 

values of uncertain parameters (TH0), the matrix that indicates which parameters in the 

model are treated as uncertain (ITHN), and the variance-covariance matrix of uncertain 

parameters (SITT0) will be as follows: 
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All three matrices will remain constant during the simulation. The elements in 

SITT0 are computed by taking 20% of the corresponding element in TH0 and then 

squaring  the result. Thus, for the b11 coefficient this is  

 

[(0.2) (0.433)]2 = 0.00749. 

 

To carry out the experiment, we will select the following DUALI options: 

complexity: stochastic without measurement error;  model size: 6 uncertain parameters, 1 

Monte Carlo run; options stochastic: read in random terms, but set them (i.e. the XSIS) 

all equal to zero.37 

 

 The graphs below show the results for both the CE38 solution obtained with 

“Solve: QLP” and the OLF solution obtained with “Solve: OLF”.39 

 
37 See Amman and Kendrick (1996b), Chapter 2. 
38 Since the only disturbance is the off-steady state initial Y value (equal to -0.04),  the CE  solution and the 

deterministic solution are completely equivalent.   
39 To run these simulations, use program htdua01.dui for the CE procedure (making the appropriate 

changes. See the “description” section in the “data” menu)  and, for the OLF procedure, use  program 
htdua02.dui.  
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Qualitatively, the patterns of behavior for both the states and policy variables 

appear quite similar, though overall results are worse in the OLF case. This is not 

surprising, since the “quasi-deterministic” environment within which we performed the 
experiment does not allow the exploitation of the knowledge of the variance-covariance 

parameter matrix through a learning process.40  In fact, the interest of this experiment 

resides in the comparison between the behavior of the policy variables across different 

procedures.  

 

 As can be seen in the graphs above, the use of government expenditure is “more 
cautious” with the OLF procedure and  for the first periods. This seems to be in line of 

 
40 This point will become more clear in the next section, when we compare CE versus OLF across Monte 

Carlo simulations with a projection-updating mechanism   
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the Brainard-Shupp results mentioned before. However, the reverse is true for the case of 

the money supply, which is used “more aggressively” with OLF. Thus, we can see how 
going from a univariate to a multivariate setting may have important consequences, as is 

also the case of a change from  static to  dynamic models.41   

It is interesting to explore the consequences of increasing the level of uncertainty 

of the model parameter’s corresponding to one of the policy variables. For example, let’s 
assume that we now double the standard deviation of the parameters corresponding to 

government expenditure (parameters b12, b22 and b42) from 20% to 40%. Then, the SITT0 

matrix becomes:    
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The graphs below contrast the behavior of the policy variables for this 

experiment42 (named OLF-B) against their behavior showed by the same variables in the 

experiment analyzed above (named, as above, OLF).  

 

 

 

 

 

 

 

 

 
41 Remember, for example, the case of the  “Tinbergen results”  that we analyzed before, when we 
presented some results of dynamic controllability. 
42 To run this experiment, use program htdua02.dui, introducing the corresponding changes in the SITT0 

matrix. 
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As one could expect, the increase in the relative uncertainty of government 

expenditure parameters induces a more cautious use of that policy variable, at least 

during the first periods. At the same time the money supply, now with a relatively lower 

associated uncertainty, is used more actively, also during the first periods. Though these 

findings seem plausible, they do not reflect any theoretical result, not yet available for 

this kind of problem.  As with the previous experiments, we could perhaps find different 

results for a different model. 

 

 

3.b.2) quantitative performance comparison between CE and OLF: control with 

parameter updating 

 

We will now move towards a more complex stochastic environment. As in the 

previous section, we will assume that that some of the model parameters are uncertain, 

but now we will also assume that the model is constantly shocked by additive noise, that 

the true model is not known to the policy maker, and also that a passive-learning process 

takes place.  We will perform several Monte Carlo runs for each of the procedures (CE 

and OLF).43 

 

 The general structure of each Monte Carlo run will be as follows. At time zero, a 

vector of model parameters will be drawn from a normal distribution whose mean and 

variances are those of matrices TH0 and SITT0. Then, at each time “t”, we will have: 
 

 1) random generation of a vector of an additive shocks 

 2) computation  the optimal controls for periods t to N (terminal period) 

3) propagation of the system one period forward (from period t to period t+1)                                                

applying the vector of controls (for period t only) computed in step 2. 

4) projection-updating of  next period parameters and variance-covariance matrix 

 

For choosing the optimal control at each period (step 2) we will use either a 

Certainty Equivalence (CE) procedure or, alternatively,  an Open Loop Feedback 

procedure (OLF). For the projection-updating mechanism (step 4) we will use a Kalman 

filter.  

 

Thus, each Monte Carlo run begins with a vector of parameter estimates which is 

different from their “true” value. Using this parameter vector, the policy maker computes 
(with a CE or an OLF procedure) the optimal values of the controls, and then she 

“applies” those values corresponding to time “t” only. However, the response of the 
economic system (its forward movement from time “t “to time “t+1”) will be generated 
by “the computer” using the “true” parameter values which are unknown to the policy 

maker.  Then, at period “t+1” a new observation is made of the state vector, which is used 
to compute updated parameter estimates with a Kalman filter. After a number of time 

periods, the sequence of updated estimates should begin to converge to their “true” value. 
 

 
43 See Amman and Kendrick (1996b), Chapter 4. 
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As in the previous section, we will  assume that there is uncertainty in connection 

with six out of the eight control parameters in the B matrix, and that the standard 

deviation of each of these parameters is equal to 20%. Then, matrices TH0, SITT0 and 

ITHN will be the same as in 3.5.  We will also assume that GDP (Y) and the price level 

(plev) are hit by additive shocks of 2% standard deviation, while the real interest rate (R) 

and the nominal exchange rate (E) experience shocks of 5% standard deviation. Thus, the 

variance-covariance matrix of additive noises (Q), will be as follows:44 
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The results of 100 Monte Carlo runs are shown in the table below.45 

 

 

 

  

 The Open Loop Feedback procedure does slightly better than the Certainty 

Equivalence, not only in connection with the average criterion value, but also in terms of 

the number of Monte Carlo runs with the lowest criterion. As can be appreciated in the 

graph below, where each diamond represents the value of the criterion function for one 

Monte Carlo run, most of the diamonds are close to the 45 degree line, indicating a 

similar performance for both procedures.  There are not significant outliers that could be 

introducing a bias in the computed average criterion values.  

 

 

 
44 We want the shocks to affect contemporaneous variables only, and not their lagged values. However, if 

we set to zero the elements of the Q matrix corresponding to lagged variables,  DUALI will give us an error 

message. That is why we set those elements equal to the minimum possible value (0.000000001). 
45 To run this simulation, use program htdua03.dui (see the “description” section in the “data”  menu). 

 CE OLF 

Average Criterion Value  5.60 5.59 

Runs with Lowest Criterion 47 53 
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These results are against what one would intuitively expect, since in the presence 

of parameter uncertainty  OLF should do much better than CE. However, we have to 

mention that there are not theoretical results yet developed in connection with the relative 

performance of CE versus OLF. This experiment results are conditioned on the model 

structure, its parameter and parameter variances values, and may well change (in any 

direction) in a different context.46   

 

 

 

Part B:  Policy Analysis with Rational Expectations Macroeconomic Models 

 

4) John Taylor’s Closed Economy Model 
 

John Taylor’s closed economy model is a small prototype model with staggered 
contracts and rational expectations variables which generates a rich pattern of dynamic 

behavior.47 It contains the equations, variables and parameters listed below.48 

 

 

Equations 
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46 See Amman and Kendrick (1997b). Working with a different model, they find a better performance of 

OLF with respect to CE. 
47  See Taylor (1993), Chapter 1. Earlier versions of this model can be found in Carlozzi and Taylor (1985), 

which contains extended explanations of its inner workings, and in Taylor (1985), which also contains 

policy coordination experiments in a difference games framework. 
48  For a detailed presentation of each of the equations you are referred to Taylor (1993).   
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Variables (all except pt,  it and rt, are logarithms and are deviations from means or secular  

trends) 49 

 

xt = contract wage 

wt = average wage 

pt = price level   (the expected inflation rate is defined as   t t tp p= −+1 ) 

yt = output 

it = nominal interest rate 

rt = real interest rate 

mt = money stock 

 

where “ ^ ” means “expectation through period t”. 
 

Parameters 

   =  0.5;      =  1;      =  1;   a =  1;   b =  4;    d =  1.2; 

 

 Equation 1A is a staggered-wage setting equation. A wage decision lasts three 

years, with one third of the wages being negotiated each year. The contract wage at time 

“t” depends on expectations of future wages paid to other workers, expectations of prices, 
and expectations of real output as a proxy for future demand conditions. Equation 2A 

gives the average wage in the economy, while equation 3A reflects mark-up pricing 

behavior from the part of firms. Equations 4A and 5A define, respectively, standard IS 

and LM schedules. Finally, equation 6A gives the real interest rate as the nominal interest 

rate deflated by the rationally expected inflation rate. 

 

 The model has  6 equations, 6 endogenous variables, 1 “explicit” policy variable 
(m = money stock)  and  1 “implicit” (Government expenditure) which will be appended  
to equation 4A as a shift factor. This model is dynamic, linear, and  has the “natural rate” 
property:  nominal shocks may affect real variables in the short-run, but not in the long 

run.   

 

As a rational expectations model, Taylor’s model requires of  specific solution 

methods different from those applied to standard models.50  Also, the analysis of its 

 
49 For a basic introduction to this way of expressing a model’s variables, see Mercado and Kendrick 
(1997a). For an extended  treatment of this topic, see Amman and Kendrick (1996a); Dixon et al. (1992), 

Chapter 3; and Kendrick (1990), Chapter 4. 
50  For a practical introduction to these solution methods, with applications to John Taylor’s closed 
economy model and its extension to a two-country model, see Mercado and Kendrick (1997b).   
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dynamic properties such as the computation of eigenvalues and the condition of dynamic 

controllability become more involved. We will not deal with these issues here.51  In what 

follows, we will focus on the implementation of Taylor’s model in DUALI to perform 
simulations and optimal policy analysis.  

 

In matrix notation, Taylor’s model can be written as:52 

 

4.1)              x A x A x B u C z D x D x D xt t t t t t t
e

t t
e

t t
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51 To learn more about these computations, see Holly and Hughes-Hallett (1989), Chapter 7.  
52 This particular matrix notation is known as “Pindyck Form” or “I-A” form (see Amman and Kendrick 
(1996), Chapter 1. In Amman and Kendrick (1996b), expectations are conditioned on the information 

available at “t-1”, while in Taylor’s model they are conditioned at “t”.  
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
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and where xt
cw is the contract wage in Taylor’s model, which we re-labeled here to avoid 

notational confusion with xt , which is the vector of stacked variables of the  model. xlt
cw 

is equal to lagged xt
cw, that is, xt

cw

−1
.    

 

xt t

e

/
 is the expectation of xt  conditional on the information available at time “t”, 

and so on. Notice that D1  is set equal to zero, since in Taylor’s model expectations are 
conditional on the information available at time “t”.  Thus,  
 

4.3)                                                           x xt t

e

t/ = . 

 

zt-1 is a vector of exogenous variables, while C1 is a matrix. For Taylor’s model, 
they are both equal to zero. In the model, m and g appear (this one implicitly, as a shift 

factor in equation 4A) as contemporaneous to the endogenous variables. By assuming 

that there is one lag between a policy decision and its implementation, we can redefine 

them as mt-1 and gt-1, since DUALI, as well as the optimal control literature, works with 

one-lag policy variables. Finally, t is a vector of additive noise. 

5)  Dynamic analysis 

 

 As we did above in section 2.b with Hall and Taylor’s model, here we will 
analyze the dynamic evolution of John Taylor’s closed economy model for given changes 
in its policy variables. The graphs below show the results of two experiments: a 1% 

unanticipated permanent increase in the money supply (m) and a 1% unanticipated 

permanent increase in government expenditure (g).53  That is, m and g increase by 0.01 at 

the first period of each of the two experiments, and stay at their new value from the 

second period onwards.  

 

On the horizontal axes are the time periods. For y and p,  the vertical axes 

correspond to percent deviations from steady-state values, while for i and r the vertical 

axes show percent points.54 This is, a value of 0.01 in the GDP graph means that GDP is 

 
53 To learn how to implement these simulations, see note 14. To run the simulations, use program 

taydua01.dui. 
54 Remember that in Taylor’s model, y and p are in logs, which is equivalent to percent deviations from 
steady-state (see Mercado and Kendrick (1997a)), while i and r are not.  
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goes from, for example, 600 to 606 trillion dollars, while a value of 0.01 in the nominal 

interest rate graph means that that rate goes from, for example, a 5% to a 6% level.55 

  

 

 

 

 

 

Here is how John Taylor explains the observed behavior of the model for the two 

experiments: 

 

“Monetary policy has an expected positive effect on output that dies out as prices 
rise and real-money balances fall back to where they were at the start. Note that the real 

interest rate drops more than the nominal rate because of the increase in expected 

inflation that occurs at the time of the monetary stimulus. For this set of parameters the 

nominal interest hardly drops at all; all the effect of monetary policy shows up in the real 

interest rate. 

Fiscal policy creates a similar dynamic pattern for real output and for the price 

level. Note, however, that there is a surprising “crowding-in” effect of fiscal policy in the 
short run as the increase in the expectation of inflation causes a drop in the real interest 

rate. Eventually the expected rate of inflation declines and the real interest rate rises; in 

the long run, private spending in completely crowded out by government spending.”56  

 

 

 
55 Taylor (1993), Chapter 1, present graphs conveying the same information as the ones we show here. 

However, he presents the results in levels. 
56 Taylor (1993), page 25. 
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6)  A primer on rational expectations and optimal policy analysis with DUALI 

 

We will now extend the analysis of section 3 to models with rational expectations. 

The problem is to find the optimal paths for the policy variables given desired paths for 

the target variables, and it can be stated in the same form as we did before. That is, the 

problem is expressed as one of  finding the controls ( )u
t

N

=0
 to minimize a quadratic 

“tracking” criterion function J of the form:  
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subject, as a constraint, to the  state-state or, as we did with Taylor’s model, to the “Pindyck 

form”  representation of the economic model: 

 

4.1)                x A x A x B u C z D x D x D xt t t t t t t
e

t t
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t t
e

t= + + + + + + +− − − + +0 1 1 1 1 1 1 1 2 1 3 2
  

/ / /   

 

where E is the expectation operator, x# and u# are desired paths for the state and controls 

variables respectively, W and  are weighting matrices for states and controls 

respectively, and where all the other variables were defined above.   

 

 We will assume that the policy goal is to stabilize y, p, i and r around steady-state 

values (that is, around zero). We will put high and equal weights on stabilizing y and p, 

lower and equal on i and r, and even lower on the policy variables m and g. The 

corresponding weighting matrices, shown below, will remain constant through time. 
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 To perform a deterministic experiment, we will assume that the economy is going 

through a recession provoked by a temporary adverse shock to y which brings it 4% 

below its steady-state value.  What would be, in this situation, the optimal paths for m 

and g ? What would be the optimal path for the state variables as compared against the 

autonomous response of the system? 
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 To implement this experiment in DUALI57, we have to select the following 

DUALI options:  complexity: deterministic; model size: 7 states, 2 controls, 1 exogenous 

variable,  with a maximum lead of 3 for the forward variables and an arbitrary iteration 

limit.58 In options-deterministic we select criterion function: quadratic tracking; system 

equations: Pindyck form;  forward variables: yes;  time-varying elements-z exog. var.: 

time varying, while all the remaining elements are set to constant (no time varying). 

 

 Notice that we introduced an artificial time-varying exogenous variable. We need 

to do so in order to implement the shock to y in the first simulation period. That is, that 

shock will be defined as a first-period change in an arbitrary exogenous variable affecting 

the state variable y only.  To do so, in the system equations option we set equal  to 1 the 

fourth element of the matrix C1, and set equal to -0.04 the first element of z.  

 

Notice also that this procedure is different from the one we use to implement an 

analogous shock in Hall and Taylor’s model in section 3.a. There, we applied the shock 
to the initial value of the shocked variable, that is, we defined the shock in the DUALI 

option system equations-x0. We can not do that here, since the variable of interest (y) 

does not appear with lagged values in Taylor’s model.59  

 

Finally, to complete the specification of the problem,  we have to set  all the 

desired paths for states and controls equal to zero and impose the corresponding weights 

on states and controls.  

 

 The graphs below show the autonomous response of the system to a -0.04  

unanticipated transitory shock to y, and the behavior obtained when applying 

deterministic optimal control (QLP) to face the same shock, that is, when actively using 

m and g as controls.60   

 

 

 
57 See program taydua02.dui. 
58 To solve optimal control problems involving rational expectations models, DUALI uses an adaptation of 

the iterative Fair-Taylor’s method. To learn about the way this method is implemented to solve 

deterministic problems,  see Amman and Kendrick (1996a). There are other methods that can be applied to 

the same kind of problems. See, for example, Amman and Kendrick (1997a),  where they apply Sims  

“generalized eigenvalue”  method.  
59 We could use the option “system equations-x0” if, instead of shocking the variable “y”, we decide to 
shock the contract wage, since the contract wage is the only variable with lagged values in Taylor’s model. 
60 To run these experiments, use program taydua02.dui (making the  appropriate changes. See the 

“description” section in the “data” menu). Both experiments are run with the option “Solve:QLP”. 
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We can observe how the behavior of the state variables under the optimal control 

solution outperforms notoriously the autonomous response of the system, reducing by 

any measure the costs of getting the economy out of the recession. In order to generate 

that behavior, as can be seen in the policy variables graph, the optimal policy mix relies 

on a 2.5% transitory expansion in government expenditure during the first period, at the 

same time that is also requires a small transitory increase (0.5%) of the money supply 

also during the first period. 
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 It may be surprising to find such a positive active role in the presence of rational 

expectations, being these usually identified with the idea of “policy neutrality”. However, 
we have to remember that Taylor’s model contains a built-in “rigidity” (a staggered 
contracts mechanism) which breaks down the neutrality of policy in the short-run.61 

 

 More generally, rational expectations will tend to increase the degree of 

controllability of an economic system, unless the particular structure and/or parameter 

values of the model implies a complete neutralization of the policy variables effects.62 

Indeed, not only can the policy-maker influence the economy through past and current 

controls, but she can also affect the economic system through the pre-announcement of 

future control values. However, for these announcements to have a positive effect on the 

economic performance,  they have to be credible, that is, the policy-maker has to be 

committed to carry them on.63  

 

 In this section, we have presented a deterministic (QLP) experiment with Taylor’s 
rational expectations-staggered contracts model. The next natural steps in the analysis of 

its dynamic performance would be to move on towards stochastic experiments of 

increasing complexity. These experiments can be also be implemented in DUALI, in an 

analogous way to what we did in part 1 of this paper with Hall and Taylor’s model.64    

 

 

[[ DR. KENDRICK: in connection with the previous-to-the-last paragraph above, I have 

a doubt. There is a difference between solving a rational expectations model in a “stacked 

way” or by using dynamic programming. (The best explanations of this issue are, in my 

opinion, Holly and Hughes-Hallett (1989), Ch. 8,  and Blanchard and Fisher (1989), Ch. 

11). The stacking method yields the optimal solution though, if the policy-maker is not 

committed to  carry that solution out without revisions, it will be time-inconsistent (at 

time t, there will be a temptation to revise the solution path computed at t-1 even with no 

arrival of new information in the form of shocks, etc.). On the other hand, the dynamic 

programming method yields a time-consistent solution (since it solves backwards, 

previous decisions are always optimal even from a future point of view), though it is sub-

optimal when compared against the stacking method.  

I am not sure how to label the solution obtained with DUALI, since it appears to be a 

combination of a stacking procedure (the Fair-Taylor’s method, I think,  falls within this 

category, since it solves iterative but simultaneously for the whole path) and a dynamic 

programming procedure to get each period solution. ]] 

 
61 To learn about the role of nominal and real “rigidities” in macroeconomic models, see Blanchard and 
Fischer (1989). 
62 See Holly and Hughes-Hallett (1989), Chapter 7. 
63 Lack of credibility may lead to problems of “time inconsistency”. See Holly and Hughes-Hallett (1989), 

Chapter 8; and Blanchard and Fischer (1989), Chapter 11. For a recent critical appraisal of the practical 

importance of this issue,  see Blinder (1997). 
64 To learn about the solution method for stochastic control problems involving forward-looking variables 

which is implemented in DUALI (an adaptation of the Fair-Taylor method)  see Amman and Kendrick 

(1993). For an alternative solution method using the Blanchard and Khan approach, see Amman and 

Kendrick (1995). For an application of this method to an early econometric version of Taylor’s model, see 

Achath, Amman and Kendrick (1994). 
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Appendix 

 

A.1) Matlab Program to Compute Eigenvalues 
 

 

% Computes the eigenvalues for the A matrix for 

% the linearized version of Hall and Taylor's (1993) 

% macroeconomic model. 

 

echo on; 

clear; 

 

A = [ -0.346 0  -0.606  0   0  0  0.087  0   0  0  0.087 0 ; ... 

      7.811  0  13.669  0   0  0 -1.953  0   0  0 -1.953 0 ; ... 

      0.8    0   1.4    0   0  0 -0.2    0   0  0 -0.2   0 ; ... 

      1.154  0   2.019  0   0  0 -0.288  0   0  0 -0.288 0 ; ... 

      1      0   0      0   0  0  0      0   0  0  0     0 ; ... 

      0      1   0      0   0  0  0      0   0  0  0     0 ; ... 

      0      0   1      0   0  0  0      0   0  0  0     0 ; ... 

      0      0   0      1   0  0  0      0   0  0  0     0 ; ... 

      0      0   0      0   1  0  0      0   0  0  0     0 ; ... 

      0      0   0      0   0  1  0      0   0  0  0     0 ; ... 

      0      0   0      0   0  0  1      0   0  0  0     0 ; ... 

      0      0   0      0   0  0  0      1   0  0  0     0 ] 

      

lambda = eig(A) 

 

 

A.2) TSP Program to Compute Dynamic Controllabity Conditions 
 

? Computes dynamic controllability for both the full 

? state vector and a subset of target variables for  

? the linearized version of Hall and Taylor's (1993) 

?  macroeconomic model. 

 

load (nrow=12, ncol=12,  type=general) A; 

-0.346     0  -0.606     0     0     0 0.087     0     0     0 0.087     0 

 7.811     0  13.669     0     0     0 -1.953     0     0     0 -1.953     0 

   0.8     0   1.4     0     0     0  -0.2     0     0     0  -0.2     0 

 1.154     0 2.019     0     0     0 -0.288     0     0     0 -0.288     0 

     1     0     0     0     0     0     0     0     0     0     0     0 

     0     1     0     0     0     0     0     0     0     0     0     0 

     0     0     1     0     0     0     0     0     0     0     0     0 

     0     0     0     1     0     0     0     0     0     0     0     0 

     0     0     0     0     1     0     0     0     0     0     0     0 

     0     0     0     0     0     1     0     0     0     0     0     0 

     0     0     0     0     0     0     1     0     0     0     0     0 

     0     0     0     0     0     0     0     1     0     0     0     0 

; 

 

 

 

load (nrow=12, ncol=2,type=general) B; 
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 0.433 0.231 

-9.763 4.386 

     0     0 

-2.442 1.097 

     0     0 

     0     0 

     0     0 

     0     0 

     0     0 

     0     0 

     0     0 

     0     0 

; 

 

load (nrow=4, ncol=12, type=general) S; 

     1     0     0     0     0     0     0     0     0     0     0     0 

     0     1     0     0     0     0     0     0     0     0     0     0 

     0     0     1     0     0     0     0     0     0     0     0     0 

     0     0     0     1     0     0     0     0     0     0     0     0 

      

print A, B, S;    

 

mat AB = A*B; 

mat A2B = (A**2)*B; 

mat A3B = (A**3)*B; 

mat A4B = (A**4)*B; 

mat A5B = (A**5)*B; 

mat A6B = (A**6)*B; 

mat A7B = (A**7)*B; 

mat A8B = (A**8)*B; 

mat A9B = (A**9)*B; 

mat A10B = (A**10)*B; 

mat A11B = (A**11)*B; 

 

mmake  P  B, AB, A2B, A3B, A4B,A5B,A6B,A7B,A8B,A9B,A10B, A11B;  

 

mat G = rank(P); print G; 

 

mat R1 = S*B; 

mat R2 = S*A*B; 

mat R3 = S*(A**2)*B; 

mat R4 = S*(A**3)*B; 

 

mmake  R   R1, R2, R3, R4; 

 

mat M = rank(R); print M; 

 

end; 
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