The macroeconomic effects of monetary policy and financial crisis

Mohamed Douch

RMC

1. May 2005

Online at http://mpra.ub.uni-muenchen.de/1120/
MPRA Paper No. 1120, posted 11. December 2006
The Macroeconomic Effects of Monetary Policy and Financial Crisis*

Mohamed Douch†
Department of Economics
CIRPÉE - UQAM
May, 2005
Preliminary, Comments Welcome

Abstract

In this paper we focus on postwar US data and incorporate new financial measures and monetary policy shocks in a vector autoregression (VAR) system in order to test whether one or the other has any real effect on the economy. We find econometric evidence that these shocks and events are exogenous, and therefore the exogenous nature of shocks to monetary policy and stock market crashes investigated in this study may help policymakers, especially regarding debates related to eventual relationships between optimal monetary policy and financial stability.

Keywords: Financial crisis, monetary policy
JEL classification: E5, G1

* I gratefully acknowledge the invaluable support of Steve Ambler and Louis Phaneuf. I would like to thank Alain Guay and the participants at the summer seminars held by the Department of Economics (UQAM) and CIRPÉE.
† Correspondence to: Mohamed Douch. E-mail: Mohamed.Douch@rmc.ca, URL: http://www.er.uqam.ca/nobel/k15000
1 Introduction

There is a vast empirical literature regarding the effects of monetary policy on output and other macroeconomic aggregates. Indeed, considerable interest has been continually sustained among both policy makers and researchers regarding the sources of business cycle fluctuations, with emphasis being placed on various supply shocks and demand changes. Also, there is a rapidly growing literature that pays special attention to monetary policy shocks. A typical finding is that monetary shocks affect output with long delays, that their effect is highly persistent, and this accounts for the movement in aggregate price levels. Inferences that can be made however regarding the quantitative effects of monetary shocks critically depend on underlying identification and estimation schemes (Christiano, Eichenbaum, and Evans, 1999).

A monetary policy shock is defined as the portion central bank policy variation not caused by systematic responses to variations in the state of the economy. With this in mind, the purpose of this study is to determine whether monetary policy shocks have any effect on a real economy, while focusing on the economy’s regular responses to shock behavior.

Furthermore, the identification of monetary shocks is not without controversy. Indeed, estimates made of the macroeconomic effects of monetary policy often differ from one study to the next with regard to both their timing and magnitude [see, for example, Christiano, Eichenbaum, and Evans (1994, 1999), Gordon and Leeper (1994) and Leeper, Sims, and Zha (1996)]. We thus examine whether major conclusions made by alternative specifications of our empirical model hold up. First, given that it is arguable whether monetary policy will respond to variables not already included in empirical work, we examine how controlling for other shocks (namely, market crashes and oil price changes) might alter the apparent real effects of monetary shocks. Second, controversy also exists as to whether monetary authorities should react to asset price movements. Similarly, we examine
the effects of stock market crashes on the real economy. We begin our study by examining the exogeneity of both types of perturbations, and then analyze their implications on macro variables.

While the exogeneity of the monetary policy shocks is well documented in the literature, nothing has yet done regarding the new Romer and Romer (2004) measure and regarding stock market crashes. Given that their exogenous nature has been questioned, our objective here is to study the effects of the shocks – to monetary policy and stock market crashes – on various macro variables, and then assess the real effects of these shocks on the economy. The accuracy of estimates made of these effects depends essentially on the measures for monetary policy and stock market collapse variables being used. For the purposes of this study and in order to construct a dummy variable, we use the new US monetary policy shocks measure recently developed by Romer and Romer (2004) along with the dates highlighted by Mishkin and White (2002).

We also use a procedure that was first used by Leeper (1997) to study the exogeneity of the monetary dummies developed by Romer and Romer (1989, 1994). This methodology combines the narrative approach with vector autoregression (VAR) in order to verify whether both shocks are contaminated by substantial endogenous components.

For this reason a logit equation for the financial dummy variable is estimated, after which we compute the probabilities that the dummy variable take the value one at the date selected by Mishkin and White (2002), using a narrative approach. Two VAR systems are then estimated, and finally the impulse response functions are analyzed.

Following Leeper (1997), the basic VAR has seven variables: industrial production (Y), consumer prices (P), the 3-month Treasury bill rate (R3), the 10-year U.S. Treasury bond yield (R10), total reserves (TR), the price of commodities (PCM) and finally monetary shocks or a market crash dummy. All variables are measured in logs except for interest rates, which are measured in percent-

1Following this methodology, Leeper (1997) argues that the Romers’ (1994) monetary dummy is not exogenous, meaning that this dummy is contaminated by a substantial endogenous component.
First, we estimate two VARs, called ‘Financial VAR’ for the one incorporating the financial crisis variable, estimated over a sample period extending from 1960M01 to 2000M12 and ’Monetary VAR’ for the new monetary policy measure built by Romer and Romer (2004), covering a period 1969M01 to 1996M12. Then, we incorporate the financial crash dummy and the monetary policy shock into the same VAR, combining them both to estimate the effects of each.

As was mentioned above, our measure of monetary shocks is the new measure developed recently by Romer and Romer (2004) which they based on their interpretation of the Federal Open Market Committee (FOMC) meeting reports, combined with information on Federal Reserve expected fund rates. See Figure 1 for the new monetary policy measure computed by the authors. For reasons of readability, the monthly values are converted into quarterly observations and display a continuous series, capturing changes in the intended movements in the fund rate around the FOMC meetings. The idea then is that this measure should be purged of the movements in the economy that are anticipated by the Fed, so that it reflects purely exogenous, unanticipated changes in monetary conditions.

Romer and Romer (2004) incorporate their monetary policy shock measure in a VAR, based on that of Christiano, Eichenbaum and Evans (1996). They estimate a three-variable VAR including output (measured by industrial production), producer price index (PPI for finished goods) and their new monetary policy measure. They find that monetary policy shocks have both strong and statistically significant effects on output. They also show that a negative monetary policy shock generates a strong, negative price response. They argue that their shock measure creates a stronger effect on output (see Christiano, Eichenbaum and Evans, 1996; Romer and Romer, 1994; Barth and Ramey, 2001 and Boivin, 2001).
As for stock market crashes, we use the dates computed by Mishkin and White (2002). In the spirit of Hamilton (1983) and Romer and Romer (1989, 1994), the authors apply a narrative approach to identify the stock market collapses in the United States over the last one hundred years.

In their study, Mishkin and White (2002) argue that financial market crashes decrease aggregate demand through reducing wealth and raising the cost of capital. This may also reduce consumer spending and real investment. Thus, stock market perturbations can produce additional stress on the economy, possibly leading to intervention by the central bank. For example, the monetary authorities may react to movements in stock prices in order to stop bubbles from getting out of hand, or alternatively try to prop up the stock market following a crash through adopting an expansionary policy stronger than the one indicated by straightforward effects on aggregate macroeconomic variables (Mishkin and White, 2002). These strategies are applied only if stock market crashes have the potential to destabilize the financial system and to produce more stress on the economy.

Based on their historical analysis of all stock market crashes in the twentieth century in the United States, Mishkin and White (2002) identify major collapses of the financial market. A stock market crash is defined here as a sudden dramatic loss of share value for corporate stocks. However, as highlighted by the authors, attempting a precise definition and measurement of stock market crashes over the century is a difficult task. Key factors include the stock market index, the size of the collapse and the duration of the crash. Indeed, using three stock indices and the universally agreed stock market crashes of October 1929, and October 1987 as benchmarks, they identify 15

\(^2\)Also called financial crisis in this work.

\(^3\)Central banks, trying to conduct an optimal policy, should react to these fluctuations. The manner in which this reaction is related to the effect of stock market perturbations on aggregate demand is unclear (Mishkin and White, 2002).

\(^4\)This stress should become visible in risk premiums on interest rates. Note that crashes are not always the main cause of financial instability. Collapses of banking systems or severity of economic contractions are also possible independent factors that could lead to financial instability (Mishkin and White 2002).

\(^5\)The authors use monthly Dow Jones Industrials Index records, the Standard and Poor’s 500 Index and finally the NASDAQ Composite Index to identify nominal crashes.
major financial crises in the last century. Since we have limited our analysis to the US postwar period, we construct a dummy variable representing the dates identified by Mishkin and White (2002) and zero otherwise. These dates are: 1962:04, 1970:05, 1973:11, 1987:10, 1990:08, and finally 2000:04.

Our results show empirical evidence that both financial crises and monetary policy shocks are exogenous. These results remain relatively unchanged even when we include other exogenous shocks in the VAR or when different weights are given to financial crisis episodes. Furthermore, the logit equation for the financial crisis dummy does not provide any meaningful help in explaining this shock’s exogeneity, since it is imprecisely estimated and leads to puzzling probabilities.

These results suggest that it is important that monetary authorities take disruptions in the financial market into account when assessing monetary policy. Monetary authority responses to asset price movements is an expanded and ambitious mission for monetary policy, but it might complicate inflation targeting procedures. Indeed, monetary policy is a macroeconomic policy tool that should be used for macroeconomic purposes, not for single market, localized events, as in the financial market. However, as suggested by advocates of central bank intervention (in case of financial crisis), asset price movements may lead to sizeable debt build-ups, weakened balance sheets and financial imbalance (Saxton, 2003). Such perturbations can generate financial instability and in turn,

6 A stock market crash is defined by a 20% drop in the market combined with the speed of the collapse by looking at declines over windows of time, where depth and speed are the main features that define it.

7 With the stock market crash defined as a decline in stock prices, by construction the shocks highlighted by the authors are of the same sign. Depth and speed of collapse might be different but they have the same magnitudes.

8 Since data used in our empirical study covers the period 1960M01 - 2000M12.

9 Following the classification presented by Mishkin and White (2002), we assign different weights to financial collapses, varying from one to four, according to crash category.

10 See Saxton (2003) for a survey of the literature on cases for or against central bank intervention in financial crises cases.
The remainder of this paper is structured as follows. Section 2.2 describes the econometric methodology we use to estimate the VAR systems. Section 2.3 discusses the econometric evidence on exogeneity for two kinds of shocks and presents the results. Section 2.4 presents the concluding remarks.

2 Econometric Methodology

The methodology implemented to investigate the exogeneity of different shocks follows the work done by Leeper (1997) and Horent (2002) in their examination of the exogenous effects of shocks on monetary and fiscal policy.

In our empirical work, VAR systems have seven variables: output, consumer prices, 3-month Treasury bill rate, 10-year Treasury bond yield, price of commodities, total reserves and finally the shock considered.11 The variables are in levels rather than in first differences, even though the series may be either non-stationary or cointegrated. The estimates in this case yield consistent values for all parameters, as pointed out by Hamilton (1994) and Weise (1996), provided that the lags included in the estimation are long enough.

Enders (1995) and Lütkepohl (1991) show that in any VAR an important issue is the selection of an adequate lag length and appropriate time trend, and in this respect two main problems can be highlighted. First, if the lag length included in the system is too long, degrees of freedom are squandered. Second, the system may be mis-specified if the appropriate time trend is not included or if the lag length selected is too short; this may yield biased coefficient estimates and some autocorrelation problems.

11See appendix B for more details about the data used in this work.
2.1 Time Trend

In order to test for the presence of a time trend (linear and/or quadratic), we use the Akaike information criterion (AIC) and the Schwartz criterion (SIC). In order to establish the appropriate trend, we test both a linear and a quadratic time trend, with the most adequate specification being the one that minimizes criterion values.

We also make use of likelihood ratio (LR) statistics to test for a null for a no time trend or alternatively for a linear trend. Next we assess a restricted model with no trend, then an unrestricted model in which a linear and (or without) quadratic time trend are included in the VAR.12

The results show that including either a linear or quadratic time trend is better than not including a time trend in the VAR systems. Indeed, based on computations for the information AIC and SIC criteria, we conclude that the best choices are linear and quadratic time trends in financial and monetary VARs13 (see Tables 2.1 and 2.2). Table 2.3 shows the results of the LR test on both VARs. The null hypothesis of the ‘no trend’ against the ‘linear trend,’ and alternately the ‘linear and quadratic trend’ are tested.

Note that including linear and quadratic trends does not significantly affect the results the two systems being studied, and furthermore the results are not sensitive to the addition of quadratic time trends. It is for this reason that in our empirical study we consider a linear time trend in both VARs.

2.2 Lag Length

We establish the optimal lag length using the information criteria. In fact, the Akaike information criterion (AIC) and Schwartz criterion (SIC) are used to determine the lag length for the variables included in the VAR systems. Models with various lag lengths are estimated, and the correspond-

12See Appendix C for more technical details on the formula used to compute the different criteria.

13SIC suggests no time trend in the monetary VAR.
ing AIC and SIC values are computed. The optimal lag length is the one that minimizes the information criterion values.

The likelihood ratio (LR) is also used to validate the choice of AIC and SIC criteria. In their study Romer and Romer (2004) use 36 lags in the baseline specification for the monetary VAR. Following Leeper (1997) and Romer and Romer (2004), we consider 36 lags as the maximum lag length for both systems. The null hypothesis of 36 lags versus 35 lags is tested. Then a restricted model with 35 lagged values for the variables in VAR is then estimated, followed by an unrestricted model with 36 lags, and finally the likelihood ratio statistics are computed. If the likelihood ratio exceeds the critical value for the χ^2 distribution, at 5% significance level, the null for the 35 lags can be rejected, and the model with 36 lags would be preferred. Otherwise, the null for 34 lags against the alternative of 35 lags is tested. The same procedure is repeated until a null hypothesis is rejected.

Tables 2.4 to 2.6 display the results of the optimal lag length selection for the VAR system variables (financial and monetary), as well as an appropriate time trend. Table 2.4 lists the Likelihood Ratio (LR), AIC and SIC tests carried out. It also indicates that AIC suggests 8 lags in the financial VAR and 36 lags in the monetary VAR, while on the other hand LR suggests up to 36 and 21 lags in the financial and monetary VAR respectively, while SIC implies that including 1 lag is even better for both systems.

14Lags from 1 to 36 are included following Leeper (1997), who use 36 lags for the dummy variable and 24 lags for macro variables. Here we use the maximum lag length to test for the optimal one.

15It should be noted here that various Monte Carlo studies usually compare the lag order selection criterion to find out which one would be best able to select the true log order most often (Nickelsburg, 1985, Kilian, 2001). The lag order distribution results may be of theoretical interest, but they are of limited interest for applied users interested in VAR statistics such as forecasts or impulse responses, as shown by Kilian (2001).

16See Appendix C for technical discussion about LR, AIC and SIC

17It has an asymptotic χ^2 distribution with degrees of freedom equal to the number of restrictions (one restriction per equation, which is seven for this test).

18We consider only those models whose endogenous and dummy variables have the same lag lengths.
This statistical evidence leads to different conclusions regarding the optimal lag length for the two VARs. Based on the SIC, it seems better to include one lag for the endogenous variables in the two systems. However, the AIC suggests 8 lags for the financial VAR and 36 for the monetary system. LR found that 36 and 21 lags for financial and monetary systems is better respectively.

Empirically, Killian (2001) presents a Monte Carlo study and concludes that the AIC has better finite sample proprieties when compared to other optimal lag length selection criteria. Horent (2002) presents the same evidence by using impulse response functions to compare models where lag length order is selected based on different criteria.

This section provides evidence as to which optimal lag length and time trend specification would be best used to estimate the systems under study. In what follows, as suggested by the AIC, in Tables 2.5 and 2.6 we consider a linear trend in both VARs.¹⁹ Eight lags for macroeconomic variables and financial dummy variables are used in estimating the financial VAR. We use up to 36 lags for the monetary VAR, and include a constant term and seasonal dummy variables in our estimation.

3 Econometric Evidence

3.1 Shock Exogeneity

Previous discussions neglect an obvious question as to whether the shocks studied are exogenous, in the sense that may or may not be determined outside the system. There are various notions of exogeneity and different ways to test for it.²⁰

In our study we have two kinds of shocks: monetary shocks and financial crisis shocks. Despite the fact that the exogeneity of monetary policy can be tested using standard methods, the exogeneity

¹⁹The inclusion of a quadratic time trend in VAR systems does not significantly change results.
²⁰Indeed, exogeneity, predetermination and causality are three quite different things. Tests for causality can be used to refute or not refute strict exogeneity but not to establish it.
of any dummy variable is more problematic. Leeper (1997) suggests constructing a logit equation in order to establish a binary variable’s exogeneity.

To provide an understanding of the difference between the two methods, we consider the following VAR model with exogenous variables:

\[Y_t = a_0 + \sum_{i=1}^{p} \beta_i Y_{t-i} + \sum_{j=1}^{q} \alpha_j X_{t-j} + U_t \]

where \(X_t \) is a vector of exogenous variables, with the crucial condition being that

\[E(U_t|\{Y_{t-i}\}_{i=1}^{\infty}, \{X_{t-j}\}_{j=1}^{\infty}) = 0. \]

Next, assuming a VAR presentation for \(X_t \) itself, i.e.

\[X_t = b_0 + \sum_{i=1}^{r} \lambda_i X_{t-i} + V_t, \text{ with } E(V_t|\{Y_{t-i}\}_{i=1}^{\infty}, \{X_{t-j}\}_{j=1}^{\infty}) = 0. \]

Assuming that \(r = q = p \), the model reduces to a VAR(p) representation

\[
\begin{pmatrix} Y_t \\ X_t \end{pmatrix} = \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} + \begin{pmatrix} \beta_1 & \alpha_1 \\ \mu_1 & \lambda_1 \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \ldots + \begin{pmatrix} \beta_p & \alpha_p \\ \mu_p & \lambda_p \end{pmatrix} \begin{pmatrix} Y_{t-p} \\ X_{t-p} \end{pmatrix} + \begin{pmatrix} U_t \\ V_t \end{pmatrix}
\]

with the assumption that errors are i.i.d normally distributed

\[\begin{pmatrix} U_t \\ V_t \end{pmatrix} \sim i.i.d \ N\left(0, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right). \]

Here we impose a restriction whereby \(\mu_i = 0 \), for \(i = 1, \ldots, p \), implying that \(Y_t \) does not appear in the \(X_t \) equation or say \(Y_t \) does not Granger-cause \(X_t \), which is a weak form of exogeneity. Strong exogeneity requires in addition to weak exogeneity that \(\Sigma_{12} = 0 \) and thus \(\Sigma_{12} = \Sigma_{21} = 0 \). In other words, this means that the error vectors \(U_t \) and \(V_t \) are independent. Testing for weak exogeneity is thus the first steep along the way. The null hypothesis is then given by \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_p = 0 \). We then introduce the following variance-covariance matrix

\[
\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix}' = LL',
\]
and test the null hypothesis for strong exogeneity, as given below

$$H_0 : L_{21} = 0,$$

which completes the standard approach to testing for exogeneity.

The alternative is to use Leeper’s (1997) method, whereby a logit equation is estimated for the dummy financial crisis, in order to check for exogeneity. Let X_t represent the list of independent macro variables. The expectation of the dummy financial variable (D_t), conditional on the information set Ω_t is then

$$E(D_t|\Omega_t) = F(\eta, \beta(L)X_t), \quad (5)$$

where $F(.)$ is the logistic function, $\beta(L) = \beta_1(L) + \beta_2(L^2) + \ldots + \beta_m(L^m)$, L is the lag operator and η includes the constant and the time trend.

The methodology is as follows. First, we estimate the logit equation including all macro variables for the financial dummy variable. Then, we compute the probabilities that the logit equation has the value one at the dates selected by Mishkin and White (2002).

The logit equation being considered here includes three lagged values for the independent variable and a constant, a time trend, as well as seasonal dummy variables as dependent variables. Table 2.7 displays the coefficients estimated using the logit equation. This equation appears to be imprecisely estimated and none of the individual coefficients is significant (except for some seasonal dummy variables), even at the ten percent significance level.\(^{22}\) Table 2.8 shows the probability predicted by the logit equation, and Figure 2 plots the predicted value against the actual value for the dummy variable.

\(^{21}\)The time t information set includes variables dated $t-1$ and earlier.

\(^{22}\)Including more than 3 lagged values for the macro variables leads to non-convergence even when the seasonal variables are not included in the logit estimation. Similarly, Leeper (1997) includes 18 lags for the endogenous variables when estimating the VAR, but only 6 lags when estimating the logit equation.
The conditional expectation for the last financial crisis (2000M04) is puzzling. The predicted probability for this event is 81.77%, implying that the financial crash, which is believed to be unexpected, was predictable from the data. This result has to be taken with precaution, given that the logit equation is imprecisely estimated and the value of parameters might affect the predicted probability. We therefore conclude that the logit approach does not help in providing evidence about the financial crisis variable’s exogeneity.

Following Leeper (1997), an alternative approach is to consider two linear systems in which the dummy variable is entered in the VAR as an endogenous variable, and then identify the shocks to financial crisis by the Cholesky decomposition. For the first VAR (VARF1), the financial dummy is ordered first, output is ordered second, followed by price, interest rates (R3 and R10), price of commodities and finally total reserves plus a constant, with a time trend and seasonal variables being deterministic variables. It is assumed here that the shock to the financial dummy may have contemporaneous effects on the other variables. However, shocks to macro variables do not have the same effect on the financial dummy. This can suggest that the financial crises are independent of the current state of the economy.

In the second VAR (VARF2), output is ordered first, price is ordered second, followed by the price of commodities and total reserves, then the financial dummy is ordered fifth and the interest rates (R3 and R10) are ordered last. The assumption behind this ordering is that shocks to output, price, price of commodities and total reserves have a contemporaneous effect on shocks to the

23 Considering two lags in the logit equation decreases the conditional expectation for the last financial crisis (2000M04) to 13.09.
24 Horent (2002) presents the same evidence about this approach when studying the Ramey and Shapiro (1997) dummy variable.
25 Leeper (1997) points out some potential problems with the VAR systems including dummy variables as endogenous. Indeed, the predicted value for the dummy variable may lie outside the [0, 1] interval, and regarding the dichotomous nature of the dummy, the relation between this and other system variables may be not linear. In our empirical study, the predicted value for the financial crisis dummy variable, computed for the financial VAR, lies within the [0, 1] interval.
financial crisis variable. The shocks to the dummy variable have contemporaneous effects only on interest rate innovations.

As highlighted by Horent (2002) in analyzing the Ramey and Shapiro (1997) dummy variable, it is difficult to justify the last assumption. Indeed, assuming that shocks to the financial dummy have contemporaneous effects on some macro variables and not on others is a strong assumption. However, if the dummy variable is truly exogenous, the impulse response functions (IRF) computed using the VAR in which the dummy variable is endogenous should not be affected by the ordering of innovations in the Cholesky decomposition.

Figure 3 shows the impulse response functions (IRFs) computed from VARF1 and VARF2. IRFs are then plotted for output, price, interest rates R3 and R10, price of commodities and total reserves for shocks to the financial crisis variable, with the Cholesky decomposition. The solid lines display the IRFs when VARF1 is estimated and the dashed lines the impulses for the VARF2. The 68% confidence intervals are computed using 2500 replications of the Monte Carlo experiments, using the VARF1.

All the IRFs computed for both VARs lie within the confidence intervals from the financial VAR, and the IRFs from VARF1 and VARF2 exhibit very similar patterns. Even though the ordering in the Cholesky decomposition does not affect the IRFs computed, overall the point estimates of the IRFs computed for VARF1 are close to the corresponding point estimates reported for VARF2.

The two linear systems are estimated following the methodology used in Leeper (1997) to examine the exogeneity of the financial crisis dummy variable, where this dummy is entered as an endogenous variable, using the Cholesky decomposition with different ordering for each VAR, and then computing IRFs. This suggests that the financial collapses are exogenous, and thus we can

\[^{26}\text{As mentioned by Horent (2002), introducing a logit equation in a linear system and replacing the linear equation for a dummy variable leads to a lack of significance for the results retrieved from the non-linear system. The results of this substitution are not presented here.}\]
conclude that the results reported for the linear systems are consistent with the fact that the financial crisis episodes are exogenous.

The standard method is used to test the exogeneity of the monetary policy shock. Table 2.10 presents the results on Granger causality test, showing that apart from the interest rates (R3 and R10) and total reserves (TR), we cannot reject the null hypothesis of the no causality. According to Granger, at the 5% significance level causality in the Granger sense cannot be established between the other macro variables and the monetary shock.

As was mentioned in Subsection 2.3.1, we estimate two VARs in order to test for weak exogeneity. In this model we impose the restriction that the macroeconomic variables do not appear in the monetary shock equation, so that all the coefficients \(\mu_i \) are equal to zero.\(^{27}\) We then compute the LR statistic and the results shown in Table 2.9 show that the null hypothesis cannot be rejected at the 5% significance level (not even at the 1%). In this case the monetary policy measure would be weakly exogenous.

Furthermore, using the Cholesky decomposition we conclude that the new monetary policy shock measure is exogenous, even when including more macro variables than those used by Romer and Romer (2004)\(^{28}\) to assess this view. Indeed for the two VARs, Figure 4 shows the IRFs for output, price, interest rates R3 and R10, price of commodities, and total reserves. In the first one (VARM1, a solid line in Figure 4), the monetary policy shock is ordered first, followed by the macro variables. These suggest independence between monetary policy measures and the current state of nature innovations on macro variables.

In the second VAR (VARM2, long dashed lines in Figure 4), output is ordered first for the

\(^{27}\)In the monetary shock equation (in the restricted VAR) only this variable’s lags are entered as explanatory variables, along with constant term, time trend and seasonal variables.

\(^{28}\)The specification used by the authors includes industrial production, the PPI for finished goods and the new monetary policy measure.
Cholesky decomposition, and then prices, commodity prices, total reserves, the monetary shock, and finally the interest rates R3 and R10. The same assumptions used for the financial crisis are applied here. Then the innovations to output, price, commodities and total reserves have a contemporaneous effect on innovations to monetary policy, but the monetary shocks have contemporaneous effects only on interest rates innovations.

The IRF for output (in Figure 4) computed for VARM2 lies slightly above the 68% confidence interval from monetary VAR29 (VARM1) for 8 periods. Then it lies very slightly below the lower bound for the next 18 periods after the shock. After that it lies within the confidence interval. The IRF for consumer prices lies below the confidence interval after 19 months.

The response of R3 computed for VARM2 lies above the upper bound for 7 months and then lies within the confidence interval until period 16, and then it lies within the confidence interval. The same response is displayed by R10. The IRF for PC and TR lies slightly below the confidence interval for almost all periods.

However, the point estimates of the IRFs computed for the second linear system are close to the corresponding point estimates reported for the first linear system and the patterns for the two VARs (with different Cholesky ordering) are quite similar to each other for all variables.

Overall, the IRFs reported for the monetary policy shock are consistent with the new monetary measure being exogenous. Thus, as mentioned by Romer and Romer (2004), the monetary policy shock is relatively free of both the endogenous and anticipatory actions of the monetary authorities.

3.2 Impulse Response Functions

The implications of financial crisis shocks and monetary policy measures in VAR systems, and the isolation of macroeconomic effects of both shocks pass through the impulse response functions

292500 Monte Carlo replications of VARM1 are used to compute the 68% confidence interval.
(IRFs) analysis. This process focuses on financial and monetary VAR systems estimation and then the IRFs -showing the effects of a unit shock to each variable of interest on macro variables- are computed.

Results from financial VAR estimates are shown in Figure 5. The responses to a unit shock on financial crisis innovations are plotted, along with their standard error bounds, computed using 2500 Monte Carlo replications using financial VAR. The output response is characterized by a decline, reaching its maximum (-5.8%) at month 16 after the shock and then returning to its initial level. This response is similar to that found by Leeper (1997), Sims (1980), Litterman and Weiss (1985) and others regarding the impact of monetary policy contractions on production. They argue that there is evidence that these perturbations can reduce nominal aggregate demand and lower output when prices adjust sluggishly (Bernanke and Blinder, 1992). However, there is only one direct link between stock market collapses and monetary policy through the financial instability as pointed out in Mishkin (1997) and not all crashes are followed by signs of financial instability (Mishkin and White, 2002).

The impulse response to consumer prices implied by the financial VAR is small and insignificant for the first 10 months, and then becomes more significant, although modestly positive. The responses to interest rates are negative for almost all periods. The Treasury Bill rate (R3) rises for the 3 first periods, falls rapidly to reach its maximum decline (-2.2 points) at month 25 and then returns slowly to its initial value. The response to the Treasury bond yield (R10) is negative with a maximum effect of -1.3 points at period 24. The IRF for commodity prices rises by 55% for the first 2 months and then begins to fall, reaching its maximum decline (-2%) at month 8 and then becoming positive after period 10. After period 12 the IRF for total reserves shows a small positive value but a consistent response.

Plotted in Figure 6 are macro variable responses to a unit shock to the monetary policy variable.
Solid lines show point estimates and short dashed lines are standard error bands, computed with 2500 Monte Carlo experiment replications using monetary VAR.

The output response increases for three periods then it falls. The maximum decline is about 3.5%, and is attained at month 15, and then it returns back to its initial level. Romer and Romer (2004) found that the output response has its peak effect at about -2.9%, relatively the same thing as we get here. However, the inclusion of more macro variables leads to a change in the output response function, increasing to a positive value through month 37 after the shock. Output returns to its initial value, as in the Romer study.

The response of consumer prices is similar to that reported in the Romer study. Indeed, the IRF of price is small, irregular for 12 periods and then negative. The IRF computed for interest rates responding to a unit shock for the monetary policy variable are quite standard. They are positive for the first 12 periods, they reach 1 point at a maximum increase for R3, and after that become negative. The IRF for R10 is similar to the R3 response for the 14 first periods, then they become negative and fairly flat.

The commodity prices show an irregular response until period 22 when they become negative, while reserves rise for the first 2 periods, then become negative and irregular until month 23, and finally fall sharply to become negative and slowly return toward their initial level.

Figure 7 shows impulse responses to a one unit shock to the innovations of a financial dummy variable when treated as exogenous in estimating a financial VAR. The responses are generally similar to those reported for the VAR when the dummy variable is treated as endogenous, apart from the magnitudes which are more important when financial collapses are estimated exogenously in the VAR system.

The same conclusion applies when the monetary policy variable is treated as exogenous. Figure 8 displays the IRFs for the variables in the monetary VAR. The responses are relatively similar to
those reported early (Figure 6), confirming the view that both of these variables (monetary policy and stock market crisis dummy) are exogenous.

In conclusion, the effect of monetary policy and stock market crisis variables on real economic activity is extensive and statistically significant. About the same results are obtained at Romer and Romer (2004) in their VAR analysis, including only 3 macro variables. This is somehow consistent with the idea that monetary policy shock has a temporary negative and persistent effect on output, as implied by the impulse responses of structural VAR systems.

The hump-shaped short-run output dynamics following monetary policy contractions and stock market collapses suggest that both shocks have real effects on economic activity. As such, monetary authorities have to take these facts into account when developing an optimal policy.

3.3 Extended Model

The monetary policy and the financial crisis episodes may be characterized not only by a shock to monetary policy or financial sector collapse, but also by non-systematic changes in other sectors of the economy, say by other exogenous shocks. We therefore examine the effects that other shocks may have on the results reported for the two main shocks considered here (monetary and financial crisis shocks).

The model constructed includes Hamilton’s oil price shocks. Using the dates identified by Hamilton (1983), updated by Hoover and Perez (1994) and also Ramey and Shapiro (1997), we construct a dummy variable that has the value one at the shock dates: 1969M01, 1970M04, 1974M01,

30 The Romer's basic VAR includes only output, price and the monetary policy measure as endogenous variables.
32 The Ramey and Shapiro (1997) dummy variable is not included in the system because of data limitation (the Romer's monetary measure begin 1969M01). Indeed, the Korean War which was known to have important effects on macro variables cannot be included in our sample period. This loss of information can significantly affect the results obtained.
1979M03, 1981M01 and 1990M03, and takes the value zero otherwise.

The VAR constructed includes the macro variables and three shocks (monetary, financial crisis and oil price shocks). Optimal lag length and an adequate time trend are also included. Thus, to examine the effects that exogenous shocks may have on the results reported for shocks to the financial crisis variable, a VAR including these perturbations as exogenous variables is estimated.

Figure 9 shows point estimates of responses for output, consumer prices, interest rates (R3 and R10), commodity prices and total reserves. The solid lines display point estimates for the IRFs and dashed lines display the 68% confidence interval.

The IRFs presented when other exogenous shocks are included to estimate the financial VAR indicate that results reported for price, interest rates and relative commodity prices are not very affected. The output response falls persistently and then becomes flat, reaching -12% declines 3 years after the shock. The IRF for total reserves is negative for a whole period.

Additionally, estimating a financial VAR with only two shocks, say the Hamilton oil price dummy and the financial crisis variable, suggests that macro variables responses remain relatively unchanged. Indeed, Figure 10 shows that the output responses are the same as in the standard financial VAR until month 27, when it became insignificant. The price IRF is weakly negative, and then significantly positive through period 32. The responses for the other variables are relatively the same as in standard financial VAR.

Furthermore, the magnitude of the effect of a shock to financial crisis is significantly similar to that reported for the standard financial VAR, and the pattern of the effect is very similar. Thus, it does not appear that the inclusion of other exogenous shocks substantially alters the results reported earlier. Figure 11 shows evidence of the effect of the Romer monetary policy variable in a model that alternatively includes financial crisis and oil price shocks as exogenous variables. The IRFs computed for output, price, interest rates, commodity prices and reserves are responses to a one
unit shock on monetary policy variable. The solid lines display the point estimate and dashed lines display the 68% confidence interval. Figure 12 shows the IRFs from monetary VAR, including only the Hamilton oil price dummy, which was used in order to isolate the effects of this variable on the responses given by the monetary policy variable. All the IRFs computed for the monetary system including other exogenous shocks are relatively similar to those reported earlier for the standard monetary VAR, apart from the total reserves variable (for the system including all shocks), which becomes negative for a whole period. Thus it appears that this last variable is affected by the inclusion of all shocks in VAR estimates. Therefore, it is concluded that the results reported for the monetary policy system variable are not sensitive to the addition of other shocks, confirming the view that this shock is exogenous.

Furthermore, to investigate the impact of the size given to the financial crisis episodes, we construct a weighted financial variable to which we assign a different weight to each crash, following the classification given by Mishkin and White (2002). Indeed, the authors place them into four categories depending on whether or not the episodes appear to place (or not) stress on the financial system. Figure 13 shows the IRFs computed for output, price, interest rates, commodity prices and reserves as responses to a one unit shock on a weighted financial variable. The patterns for the IRFs are relatively the same, thus it does not appear that the size attributed to financial episodes alters results reported early in any substantial way.

\[33\] The classification is as follows:
- Category 1: episodes 1962 and 2000 (weight = 1),
- Category 2: episode 1987 (weight = 2),
- Category 3: episode 1974 (weight = 4),
4 Conclusion

Many previous studies on the effects of monetary policy shocks on macroeconomic aggregates have used alternative methods of identifying these policy shocks and have employed different VAR systems and sample periods in their analyses. Moreover, recently there has been considerable discussion regarding the appropriate monetary policy selected during the aftermath of a financial crisis. This suggests that there is a relation between monetary policy and financial stability, but there is still no clear consensus on how one affects the other. As pointed out in Mishkin and White (2002), the key problem facing monetary policymakers is not stock market crashes, but rather financial instability. Indeed, not all stock market collapses are associated with financial instability, for they also arise from other sources such as a banking system crisis.

In this paper we study the new monetary policy measure constructed by Romer and Romer (2004) in combination with a stock market crash measure based on dates highlighted by Mishkin and White (2002), in order to test whether these shocks are exogenous. The impulse response functions for the monetary and financial model reveal that monetary policy and financial shocks considered in this study have significant effects respectively on output, price level and on other variables.

Our results also show that even when including more macro variables than those used by Romers’ study, we found the new measure to be exogenous. Then, by applying the statistical methodology used by Leeper (1997), we conclude that both shocks are truly exogenous. This suggests that the central bank has to take the effects of financial collapses into account when conducting monetary policy, even when targeting price stability. The link between both targets is unclear to some extent, and more research in this direction has to be conducted.
References

5 Data Appendix

Data sources and definitions of variables

All macro data series are monthly and cover the period 1960:01 to 2000:12. The new measure of monetary shock is monthly and covers the period 1969:01 to 1996:12 (retrieved from Romer and Romer, 2004).

To avoid the complications introduced by the seasonal adjustment methods, the data we use here are in their non seasonally adjusted forms and we include monthly seasonal dummy in our VARs.

- The industrial production data, used as output series (Y), are from the Board of Governors Web site (series B50001).

- Consumer price index, all urban consumers are used as our price (P), from the Bureau of Labor Statistics Web site (series CUUR0000SA0).

- The three-month Treasury bill rate used as short term interest rate (R3), quoted on discount basis, secondary market, average of business day, from Federal Reserve Board (Bank of St-Louis Web site), (series tbsm3m).

- Ten-year U.S Treasury bond yield used as long term interest rate (R10), constant maturity, average of business day figure, from Federal Reserve Board (Bank of St-Louis Web site), (series tcm10y).

- For Total reserves (TR), we use Board of Governors Monetary Base, Not Adjusted for Changes in Reserve Requirements, from Board of Governors of the Federal Reserve System (series BOGUMBNS).

- Producer Price Index-Commodities, crude materials is used as commodity prices (PCM), from the Bureau of Labor Statistics Web site (series WPUSOP1000).
6 Technical Appendix

Statistic Tests Computation

LR test:

The likelihood ratio has an asymptotic χ^2 distribution with degrees of freedom equal to the number of restrictions. The formula used to compute the LR test is:

$$LR = (T - m)(\log(|\hat{\Omega}_r|) - \log(|\hat{\Omega}_u|)) \sim \chi^2(n),$$

with T is the number of observations, m is the number of parameters estimated (per equation) in the unrestricted model, $|\hat{\Omega}|$ is the natural logarithm of the residual covariance’s determinant (computed for the restricted and unrestricted models), and n the number of restrictions in the VAR.

The determinant of the residual covariance is computed as:

$$|\hat{\Omega}| = \det\left(\frac{1}{T - m} \sum_t \hat{\epsilon}_t\hat{\epsilon}_t'\right).$$

When the log likelihood value is computed assuming a multivariate normal (Gaussian) distribution as:

$$l = -\frac{T}{2}\{k(1 + \log 2\pi) + \log(|\hat{\Omega}|)\}.$$

Information criteria:

The two information criteria are computed as follow:

$$AIC = -2\frac{l}{T} + 2\frac{m}{T},$$

$$SIC = -2\frac{l}{T} + m\log(T)/T,$$

where m is the number of parameters estimated using T observations.

34This Formula employs Sims’ (1980) small sample modifications which uses (T-m) rather than T (see Lutkepohl, 1991).
Tab. 2.1: AIC and SIC for Time Trend in Financial VAR

Financial VAR (1960M01-2000M12)

<table>
<thead>
<tr>
<th>Type of Trend</th>
<th>Akaike Criterion</th>
<th>Schwarz Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time trend</td>
<td>-28.07880</td>
<td>-26.94209</td>
</tr>
<tr>
<td>Linear time trend</td>
<td>-28.13752</td>
<td>-26.94098</td>
</tr>
<tr>
<td>Linear and quadratic time trend</td>
<td>-28.21531**</td>
<td>-26.95894**</td>
</tr>
</tbody>
</table>

** indicates selection of the criterion.

Tab. 2.2: AIC and SIC for Time Trend in Monetary VAR

Monetary VAR (1969M01-1996M12)

<table>
<thead>
<tr>
<th>Type of Trend</th>
<th>Akaike Criterion</th>
<th>Schwarz Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time trend</td>
<td>-26.09796</td>
<td>-24.58702**</td>
</tr>
<tr>
<td>Linear time trend</td>
<td>-26.14461</td>
<td>-24.55414</td>
</tr>
<tr>
<td>Linear and quadratic time trend</td>
<td>-26.17300**</td>
<td>-24.50302</td>
</tr>
</tbody>
</table>

** indicates selection of the criterion.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Hypothesis</td>
<td>Alternative</td>
<td>LR value</td>
</tr>
<tr>
<td>No time trend</td>
<td>Linear time trend</td>
<td>40.954*</td>
</tr>
<tr>
<td>No time trend</td>
<td>Linear and quadratic trend</td>
<td>82.616**</td>
</tr>
<tr>
<td>Linear time trend</td>
<td>Linear and quadratic trend</td>
<td>41.662*</td>
</tr>
</tbody>
</table>

* We impose 7 restrictions in this case, and the $\chi^2(7)$ at 5% significance level is 14.10.

** Up to 14 restrictions imposed, and $\chi^2(14)$ at 5% significance level is 23.70.
Tab. 2.4: AIC, SIC and LR Statistics for Various Lag Lengths

<table>
<thead>
<tr>
<th>Number of lag</th>
<th>AIC</th>
<th>SIC</th>
<th>LR</th>
<th>AIC</th>
<th>SIC</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-7.406757</td>
<td>-6.582698</td>
<td>NA</td>
<td>-6.188355</td>
<td>-5.154554</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>-28.48635</td>
<td>-25.88740</td>
<td>82.96758</td>
<td>-26.26854</td>
<td>-23.00809</td>
<td>65.82591</td>
</tr>
<tr>
<td>5</td>
<td>-28.52532</td>
<td>-25.48264</td>
<td>103.5194</td>
<td>-26.28649</td>
<td>-22.46938</td>
<td>89.17110</td>
</tr>
</tbody>
</table>

* indicates selection of the criterion.
Tab. 2.5: AIC Values for Various Lag Lengths and Trend Specifications (FV)
Financial VAR (1960M01-2000M12)

<table>
<thead>
<tr>
<th>Number of lag</th>
<th>No trend</th>
<th>Linear trend</th>
<th>Linear and quadratic trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001422</td>
<td>-7.406757</td>
<td>-8.871593</td>
</tr>
</tbody>
</table>

** indicates selection of the criterion.

Tab. 2.6: AIC Values for Various Lag Lengths and Trend Specifications (MV)
Monetary VAR (1969M01-1996M12)

<table>
<thead>
<tr>
<th>Number of lag</th>
<th>No trend</th>
<th>Linear trend</th>
<th>Linear and quadratic trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001422</td>
<td>-7.406757</td>
<td>-8.871593</td>
</tr>
</tbody>
</table>

** indicates selection of the criterion.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients Estimate</th>
<th>Standard Error</th>
<th>T-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>8.94</td>
<td>198.96</td>
<td>0.04494</td>
</tr>
<tr>
<td>CRISIS{1}</td>
<td>-28.45</td>
<td>117.63</td>
<td>-2.42533e-06</td>
</tr>
<tr>
<td>CRISIS{2}</td>
<td>-22.04</td>
<td>916.97</td>
<td>-2.40463e-06</td>
</tr>
<tr>
<td>CRISIS{3}</td>
<td>-26.81</td>
<td>104.67</td>
<td>-2.56014e-06</td>
</tr>
<tr>
<td>Y{1}</td>
<td>24.75</td>
<td>72.86</td>
<td>0.33966</td>
</tr>
<tr>
<td>Y{2}</td>
<td>151.48</td>
<td>134.47</td>
<td>1.12650</td>
</tr>
<tr>
<td>Y{3}</td>
<td>-181.72</td>
<td>103.62</td>
<td>-1.75373</td>
</tr>
<tr>
<td>P{1}</td>
<td>387.46</td>
<td>347.54</td>
<td>1.11486</td>
</tr>
<tr>
<td>P{2}</td>
<td>30.74</td>
<td>505.52</td>
<td>0.06081</td>
</tr>
<tr>
<td>P{3}</td>
<td>-401.77</td>
<td>393.09</td>
<td>-1.02208</td>
</tr>
<tr>
<td>PC{1}</td>
<td>-32.78</td>
<td>43.86</td>
<td>-0.74730</td>
</tr>
<tr>
<td>PC{2}</td>
<td>-19.32</td>
<td>71.39</td>
<td>-0.27057</td>
</tr>
<tr>
<td>PC{3}</td>
<td>42.28</td>
<td>38.22</td>
<td>1.10627</td>
</tr>
<tr>
<td>R3{1}</td>
<td>-5.78</td>
<td>3.76</td>
<td>-1.53638</td>
</tr>
<tr>
<td>R3{2}</td>
<td>6.79</td>
<td>4.49</td>
<td>1.51061</td>
</tr>
<tr>
<td>R3{3}</td>
<td>-1.58</td>
<td>2.33</td>
<td>-0.67912</td>
</tr>
<tr>
<td>R10{1}</td>
<td>6.91</td>
<td>4.26</td>
<td>1.62379</td>
</tr>
<tr>
<td>R10{2}</td>
<td>-11.32</td>
<td>7.00</td>
<td>-1.61837</td>
</tr>
<tr>
<td>R10{3}</td>
<td>4.54</td>
<td>4.25</td>
<td>1.06788</td>
</tr>
<tr>
<td>TR{1}</td>
<td>104.54</td>
<td>175.57</td>
<td>0.59543</td>
</tr>
<tr>
<td>TR{2}</td>
<td>-532.80</td>
<td>261.65</td>
<td>-2.03631</td>
</tr>
<tr>
<td>TR{3}</td>
<td>417.46</td>
<td>180.61</td>
<td>2.31139</td>
</tr>
</tbody>
</table>
Tab. 2.8: Conditional Expectation Computed from the Logit Equation
(Data: 1960M01-2000M12)

<table>
<thead>
<tr>
<th>Date Episodes</th>
<th>Predicted Probability (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962M04</td>
<td>10.02</td>
</tr>
<tr>
<td>1970M05</td>
<td>23.59</td>
</tr>
<tr>
<td>1973M11</td>
<td>51.55</td>
</tr>
<tr>
<td>1987M10</td>
<td>11.52</td>
</tr>
<tr>
<td>1990M08</td>
<td>2.57</td>
</tr>
<tr>
<td>2000M04</td>
<td>81.77</td>
</tr>
</tbody>
</table>

Tab. 2.9: LR Test for Weak Exogeneity of Monetary Shocks
Joint Weak Exogeneity Test

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Likelihood For restricted VAR</td>
<td>-786.4347</td>
</tr>
<tr>
<td>Log Likelihood For unrestricted VAR</td>
<td>-786.4344</td>
</tr>
<tr>
<td>LR Statistic</td>
<td>0.0006</td>
</tr>
<tr>
<td>Critical Value at 5% level ($\chi^2(90)$)</td>
<td>113.1</td>
</tr>
<tr>
<td>Null Hypothesis</td>
<td>F-Statistic</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Monetary Shock does not Granger Cause Y</td>
<td>2.99482</td>
</tr>
<tr>
<td>Y does not Granger Cause Monetary Shock</td>
<td>1.35341</td>
</tr>
<tr>
<td>Monetary Shock does not Granger Cause P</td>
<td>1.40780</td>
</tr>
<tr>
<td>P does not Granger Cause Monetary Shock</td>
<td>1.62567</td>
</tr>
<tr>
<td>Monetary Shock does not Granger Cause R3</td>
<td>5.40863</td>
</tr>
<tr>
<td>R3 does not Granger Cause Monetary Shock</td>
<td>1.82960</td>
</tr>
<tr>
<td>Monetary Shock does not Granger Cause R10</td>
<td>2.57655</td>
</tr>
<tr>
<td>R10 does not Granger Cause Monetary Shock</td>
<td>2.80366</td>
</tr>
<tr>
<td>Monetary Shock does not Granger Cause PC</td>
<td>0.39860</td>
</tr>
<tr>
<td>PC does not Granger Cause Monetary Shock</td>
<td>1.07133</td>
</tr>
<tr>
<td>Monetary Shock does not Granger Cause TR</td>
<td>2.12530</td>
</tr>
<tr>
<td>TR does not Granger Cause Monetary Shock</td>
<td>1.99577</td>
</tr>
</tbody>
</table>
Figure 1: Romer and Romer (2004) New Measure of Monetary Policy Shocks

Figure 2: Predicted Values from Logit Equation Vs. Actual Dummy
Figure 3: Responses to Unit Shock in Stock Market Crisis with Cholesky Decompositions
Figure 4: Responses to Monetary Shock with Cholesky Decompositions
Figure 5: Responses to a Unit Shock on Stock Market Crisis Innovations

OUTPUT

CONSUMER PRICES

TREASURY BILL RATE

TREASURY BOUND YIELD

COMMODITY PRICES

TOTAL RESERVES

38
Figure 6: Responses to a Unit Shock on Monetary Policy Innovations
Figure 7: Responses to a Unit Shock on Stock Market Crisis Dummy (Dummy Variable Treated as Exogenous)
Figure 8: Responses to a Unit Shock on Monetary Policy Variable (Monetary Variable Treated as Exogenous)
Figure 9: Responses to a Unit Shock on Stock Market Crisis Dummy (Financial VAR with Other Exogenous Shocks)
Figure 10: Responses to a Unit Shock on Stock Market Crisis Dummy (Financial VAR with Hamilton Oil Price Exogenous Shocks)
Figure 11: Responses to a Unit Shock on Monetary Policy Variable (Monetary VAR with Other Exogenous Shocks)
Figure 12: Responses to a Unit Shock on Monetary Policy Variable (Monetary VAR with Hamilton Oil Price Exogenous Shocks)
Figure 13: Responses to a Unit Shock on Weighted Stock Market Crisis Variable Innovations (Extended Financial VAR)