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Abstract 

In this paper, we propose a correlation-based test for the evaluation of two competing forecasts. Under the null 
hypothesis of equal correlations with the target variable, we derive the asymptotic distribution of our test using 
the Delta method. This null hypothesis is not necessarily equivalent to the null of equal Mean Squared Prediction 
Errors (MSPE). Specifically, it might be the case that the forecast displaying the lowest MSPE also exhibits the 
lowest correlation with the target variable: this is known as "The MSPE paradox" (Pincheira and Hardy; 2021). In 
this sense, our approach should be seen as complementary to traditional tests of equality in MSPE. Monte Carlo 
simulations indicate that our test has good size and power. Finally, we illustrate the use of our test in an empirical 
exercise in which we compare two different inflation forecasts for a sample of OECD economies. We find more 
rejections of the null of equal correlations than rejections of the null of equality in MSPE. 

"The most basic form of mathematically connecting the dots between the known and unknown forms the foundations of the 

correlational analysis." Akoglu (2018). 
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1. Introduction 

"The usefulness of correlation in social science research cannot be overemphasized. Establishing relationships and associations 

between variables, as ordinary as it may seem, does a lot to the social science researcher." Samuel and Ethelbert (2015). 

In this paper, we propose a correlation-based test for the evaluation of two competing forecasts. Under the null 

hypothesis of equal correlations with the target variable, we derive the asymptotic distribution of our test using 

the Delta method. A recent paper by Pincheira and Hardy (2021) (henceforth PH) demonstrates that the null 

hypothesis of equal correlations is not (necessarily) equivalent to a null hypothesis of equal MSPE2. In particular, 

they show that the forecast displaying the lowest MSPE may also exhibit the lowest correlation with the target 

variable: they label this result as "The MSPE Paradox." While this is an interesting observation, they do not provide 

formal procedures to test the null hypothesis of equal correlations. This paper fills this gap.  

A crucial decision in the predictive analysis is how to compare our forecasts. Traditionally, the forecaster chooses 

some criteria, such as a loss function, to determine the best prediction. Nevertheless, the best forecast under some 

criteria might be the worst under a different criterion. For this reason, this loss function should reflect a careful 

analysis of the forecasting problem: Are we interested in bias? in accuracy? in comovements between time series? 

in a forecast-based trading rule? in something else? As pointed out by Granger and Machina (2006): "Thus, if one 

forecasting method has a lower bias but higher average squared error than a second one, clients with different goals or 

preferences may disagree on which of the two techniques is "best" – or at least, which one is best for them." Granger and 

Machina (2006), page 15. In this sense, it seems reasonable to judge forecasts under different criteria; nevertheless, 

as pointed out by Elliot and Timmermann (2013): "Despite its pivotal role, it is a common practice to simply choose off-

the-shelf loss functions." Elliot and Timmermann (2013), page 13. 

Among these off-the-shelf loss functions, it is safe to say that MSPE is the ubiquitous criterion in the forecasting 

literature: "By far the most popular loss function in empirical studies is […] mean squared error loss." Elliot and 

Timmermann (2013, page 20). Why is MSPE so popular? In our opinion, because of its simplicity and tractability: 

i) it is differentiable, ii) it meets some minimal properties of a "reasonable" loss function (see Granger (1999)), and 

iii) it is symmetric, circumventing the practical difficulty of putting weights on the relative cost of a misprediction. 

All in all, MSPE is an intuitive statistic that measures accuracy: the lower the MSPE, the closer the forecast will be 

(on average) to the target variable.  

In our understanding, MSPE is popular mainly because of its simplicity, but not necessarily because it captures 

essential features about the utility function of the forecaster. In this regard, some assumptions in MSPE, like 

symmetry, are unlikely to reflect the decision-maker preferences3. As commented by Elliot and Timmermann 

(2013): "the implicit choice of MSE loss by the majority of studies in the forecasting literature seems difficult to justify on 

 
2 The authors notice that this equivalence holds exclusively under some conditions of efficiency.  
3 "[…] an assumption of symmetry for the cost function is much less acceptable" Granger and Newbold (1986), page 125. 
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economic grounds." Elliot and Timmermann (2013), page 174. Along these lines, Leitch and Tanner (1991) report that 

professional forecasters display higher MSPE than simple time-series models; "A natural conclusion to draw from this 

is that the professional forecasters objectives are poorly approximated by the MSE loss function" Elliot and Timmermann 

(2013), page 37. 

All in all, we think there are two important lessons from the literature. First, since the decision-maker may be 

interested in different features of forecasts, it seems reasonable to evaluate our predictions using different 

complementary approaches. Second, the popularity of those criteria relies, to some extent, on its simplicity: simple 

is good. In this regard, PH suggests an alternative yet straightforward approach. They suggest looking at the 

"association" between the prediction and the predictand rather than at "accuracy." Under this criterion, the tighter 

the association is, the better the prediction is.  

A feature of the joint distribution of the forecast and the target variable is their covariance. In this context, PH use 

a simple correlation as an intuitive measure of association: "Probably the simplest association measure between two 

random variables X and Y is the correlation […] a forecast more closely related to Y would be superior to another forecast not 

as closely related to Y.  […] a forecast with higher correlation with Y should be preferable to another forecast displaying a lower 

correlation." Pincheira and Hardy (2021), page 2. One problem with this approach is that the traditional theory to 

forecast evaluation developed by Diebold and Mariano (1995) and West (1996) does not seem to fit well when 

testing the null hypothesis of equal correlations with the target variable, as they comment: "[…] an interesting avenue 

for future research is the elaboration of a simple asymptotically normal test to evaluate two competing forecasts according to 

their correlations with the target variable." Pincheira and Hardy (2021), page 22. This paper fills this gap.  

Importantly, PH argues that traditional MSPE comparisons may be somewhat misleading. When some specific 

conditions of efficiency are not met, the forecast displaying the lowest correlation with the target variable may also 

exhibit the lowest MSPE. In other words, the less associated forecast with the target variable may be simultaneously 

the most accurate. They show analytically, graphically, and empirically that a useless forecast with no relationship 

whatsoever with the target variable may be more accurate than a useful forecast displaying a positive correlation. 

They label this result as "The MSPE Paradox." While in our empirical illustration we do not find paradoxical results, 

we do report some remarkable differences between our correlation-based test and traditional tests comparing 

MSPE. In particular, we find more rejections of the null of equal correlations than rejections of the null of equality 

in MSPE. 

A note of caution: we are not arguing that the forecast with the highest correlation should always be preferred 

irrespective of its MSPE. We do think, however, that approaches looking at accuracy and correlations should be 

seen as complementary. 

 
4 Granger and Machina (2006) study the utility functions implied by different loss functions. They conclude that: "[…] utility 
functions associated with squared error loss are restricted to a very narrow set." 
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There are four additional features of our test that are worth mentioning. First, under the null hypothesis of equal 

correlations, our test is asymptotically normal. Second, our Monte Carlo simulations suggest that our test is 

reasonably well-sized, even in multi-step-ahead exercises. Third, while the computation of our test is 

straightforward, it requires the estimation of a 7x7 covariance matrix. We acknowledge that some users may find 

this procedure cumbersome. For this reason, we also propose a "friendly-user" version of our test that works 

reasonably well in large samples. Finally, we emphasize that the proper environment of this paper is one in which 

forecasts are considered primitives: we do not address here issues arising from parameter uncertainty. In this sense, 

our framework is similar to Diebold and Mariano (1995)5.  

The rest of this paper is organized as follows. For completeness, in section 2, we discuss the decomposition by PH 

along with "The MSPE Paradox." In section 3, we present our tests and their asymptotic distributions under the 

null hypothesis. Section 4 outlines our experimental design and Monte Carlo simulations. To emphasize the 

relevance of our approach, section 5 provides an empirical illustration comparing two inflation forecasts in a 

sample of OECD economies. Finally, section 6 concludes. 

2. The MSPE Paradox  

For completeness, in this section, we illustrate what PH calls "The MSPE Paradox." The authors use this name to 

label the fact that when comparing two competing forecasts for the same target variable, it might be the case that 

the forecast displaying the lowest MSPE will also exhibit the lowest correlation with the target variable.   

Let us consider {𝑌𝑡} to be a zero-mean target variable. At time 𝑡, we have two competing forecasts {𝑋𝑡−1} and {𝑍𝑡−1} 
for {𝑌𝑡}. We emphasize that both {𝑋𝑡−1} and {𝑍𝑡−1} are forecasts constructed with information previous to time t 

and that they are taken as given (e.g., we are not considering issues arising from parameter uncertainty). For clarity 

of exposition, we drop the sub-indexes t in what follows. Let us assume that the vector (𝑌, 𝑋 , 𝑍) is weakly stationary 

and ergodic. We will also assume that both forecasts have the same non-negligible variance: Var(X)=Var(Z), that X 

is a zero-mean forecast, and that 𝐸[𝑋2] > 0.  Many of these assumptions are very restrictive, but they are useful to 

illustrate the MSPE Paradox simply.   

Consider now the Mean Squared Prediction Error (MSPE) of both forecasts: 𝑀𝑆𝑃𝐸𝑋 = 𝐸(𝑌 − 𝑋)2 𝑀𝑆𝑃𝐸𝑍 = 𝐸(𝑌 − 𝑍)2 

 
5 See West (1996) for a framework considering parameter uncertainty at the population level, Clark and McCracken (2001,2005), 

McCracken (2007), Clark and West (2006,2007), Pincheira and Hardy (2021) for nested models comparisons, and Giacomini 

and White (2006) for finite-sample predictive ability and conditional predictive ability. See West (2006) and Clark and 

McCracken (2013) for great reviews on forecast evaluation. 
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And let us also define the corresponding Mean Squared Forecasts as follows: 𝑀𝑆𝐹𝑋 = 𝐸[𝑋2] 𝑀𝑆𝐹𝑍 = 𝐸[𝑍2] 
Let ∆𝑀𝑆𝑃𝐸 = 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍. Appendix A1 shows that ∆𝑀𝑆𝑃𝐸, in this example, can be decomposed as:  ∆𝑀𝑆𝑃𝐸 = [𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍] − 2√𝑉𝑎𝑟(𝑌)√𝑀𝑆𝐹𝑋{𝐶𝑜𝑟𝑟(𝑌, 𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)}      (1) 
Eq. (1) illustrates a critical result: the difference in MSPE depends not only on the correlation between the forecasts 

with the target variable but also on the Mean Squared Forecasts (MSF). This is important since MSFs are not directly 

linked to the properties of the target variable.  

The problem in this simple illustration relies on a "magnitude" effect that has a relevant implication on MSPE 

comparisons: A high MSF in a forecast could more than offset its correlation with the target variable, and therefore, 

underperform another less informational forecast simply because of this "magnitude" effect. In other words, in this 

example, traditional MSPE comparisons give a natural advantage to "small forecasts."  

Let us now drop our simplifying assumptions and consider a more general form to explore this MSPE Paradox. 

Additionally, let 𝐸𝑋 = 𝜇𝑥, 𝐸𝑍 = 𝜇𝑧 and 𝐸𝑌 = 𝜇𝑦 . In Appendix A2 we show that ∆𝑀𝑆𝑃𝐸 can be decomposed as:  

∆𝑀𝑆𝑃𝐸 = 𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍 − 2√𝑉(𝑌) {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑀𝑆𝐹𝑥 − 𝜇𝑥2 − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑀𝑆𝐹𝑧 − 𝜇𝑧2} − 2{𝜇𝑦(𝜇𝑥 − 𝜇𝑧)}  (2) 
Differing from our previous example, where the Paradox emerges entirely by the "magnitude" effect, in the more 

general case of eq.(2), the Paradox may also arise as a consequence of a complex interaction of all the terms involved 

in that expression. Interestingly, in contrast to eq.(1), the elimination of the "magnitude effect" (𝑀𝑆𝐹𝑋 = 𝑀𝑆𝐹𝑍) is 

not a sufficient condition to solve the Paradox. Even if we circumvent the "magnitude" problem, we could still find 

that the forecast with the lowest MSPE has also the lowest correlation. As an illustration, suppose  𝐶𝑜𝑟𝑟(𝑌, 𝑋) >𝐶𝑜𝑟𝑟(𝑌, 𝑍), 𝑀𝑆𝐹𝑋 = 𝑀𝑆𝐹𝑍 and 𝜇𝑧 > 𝜇𝑥, then 

 ∆𝑀𝑆𝑃𝐸 = −2√𝑉(𝑌) {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑀𝑆𝐹𝑥 − 𝜇𝑥2 − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑀𝑆𝐹𝑥 − 𝜇𝑧2} − 2{𝜇𝑦(𝜇𝑥 − 𝜇𝑧)}.  
Notice that we could still find the Paradox whenever |𝜇𝑦(𝜇𝑥 − 𝜇𝑧)| > √𝑉(𝑌) {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑀𝑆𝐹𝑥 − 𝜇𝑥2 −𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑀𝑆𝐹𝑥 − 𝜇𝑧2}.  
Propositions 1 and 2 in PH offer a characterization of "Paradox zones": they find conditions under which we may 

observe the Paradox. While these conditions depend on a complex interaction of different terms, the authors offer 

simple simulations to show that these "Paradox zones" are, in general, non-empty sets. Moreover, they show that 

we may have an extreme case in which an uncorrelated forecast with the target variable could be superior in terms 

of MSPE to an alternative forecast displaying a positive correlation with the same target variable. 
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3. Our correlation-based test for two competing forecasts 

3.1 The Correlation test 

Our test evaluates the correlation of two competing forecasts (Z and X, both with positive variance) with a target 

variable Y. For clarity of exposition, we are not using sub-indices to indicate the forecast horizon; nevertheless, we 

emphasize that our test is helpful for both one-step and multi-step ahead forecasts.  

Let 𝑀 = 𝑀𝑡 =
( 
    
𝑍𝑡𝑋𝑡𝑌𝑡𝑍𝑡2𝑋𝑡2𝑍𝑡𝑌𝑡𝑋𝑡𝑌𝑡) 

    =
( 
   
𝑍𝑋𝑌𝑍2𝑋2𝑍𝑌𝑋𝑌) 
   , and �̃� = 𝑀 − 𝐸(𝑀) =

( 
   
 𝑍 − 𝐸(𝑍)𝑋 − 𝐸(𝑋)𝑌 − 𝐸(𝑌)𝑍2 − 𝐸(𝑍2)𝑋2 − 𝐸(𝑋2)𝑍𝑌 − 𝐸(𝑍𝑌)𝑋𝑌 − 𝐸(𝑋𝑌)) 

   
 

 

Our main assumptions are the following:  

i) The vector �̃� is strictly stationary with mixing coefficients 𝛼(𝑙) such that, for some for some 𝑟 > 2, 

E‖�̃�‖𝑟 < ∞ and ∑ 𝛼(𝑙)1−2𝑟∞𝑙=1 < ∞ 

ii) A strictly positive variance for Y, X, and Z. 

iii) X and Z are considered as primitives (i.e., we do not address here the effects of parameter uncertainty). 

iv) Corr(Y,X) and Corr (Y,Z) are both strictly lower than 1.  

Notice that i) is sufficient conditions for the CLT to hold, see Theorem 5.20 in White (2000). See also Theorem 14.19 

in Hansen (2010). 

We emphasize that these assumptions are similar to those in Pincheira and Hardy (2021), with a crucial difference: 

both forecasts must display a strictly positive variance. This condition rules out the zero-forecast. 

Let 𝜌i be the correlation between forecast "i" and the target variable Y, with i={Z, X}. We are interested in the null 

hypothesis 𝐻0: 𝜌z = 𝜌x. Under this null, both forecasts have the same correlation with the target variable Y. We 

consider the following  t-statistic 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑡 = √𝑇𝑠𝑦2 (𝑟z − 𝑟x√�̂� )  
Where �̂� = ∇ℎ̂′∇�̂�′[∑ Ω̂j∞𝑗=−∞ ] ∇�̂�∇ℎ̂, 𝑟z and rx stands for the sample correlations of Z and X with Y, respectively. 

Notice that 𝑠𝑦2 is the sample variance of the target variable, T is the number of forecasts, ∇ℎ̂′ =[− 12 (𝑠𝑦𝑧/ 𝑠𝑧3);  12 (𝑠𝑦𝑥/𝑠𝑥3);  1/𝑠𝑧;  1/𝑠𝑥], where 𝑠𝑧, 𝑠𝑥 , 𝑠𝑦𝑥 and 𝑠𝑦𝑧 denote the sample standard deviations and 

covariances, respectively, 
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∇�̂� =
( 
   
−2𝑚𝑧 0 −𝑚𝑦 00 −2𝑚𝑥 0 −𝑚𝑦0 0 −𝑚𝑧 −𝑚𝑥1 0 0 00 1 0 00 0 1 00 0 0 1 ) 

   ,  
Where 𝑚𝑧,𝑚𝑥 and 𝑚𝑦 stand for the sample mean of Z, X, and Y respectively and Ωj = 

( 
   
  

𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗)) 
   
  

 

We show that, under the null hypothesis, our correlation-based statistic has a standard normal distribution. The 

long-run variance ∑ Ω̂j∞𝑗=−∞  can be estimated with a HAC estimator (e.g., Newey-West (1987, 1994), and Andrews 

(1991)). See Appendix A.4 for details on the formal derivation of this test. 

3.2 The "friendly-user" correlation test 

Even though our test is straightforward, it requires the estimation of a 7x7 matrix ∑ Ωj∞𝑗=−∞ . Our test could be 

further simplified if we are willing to assume 𝐸𝑌 = 𝐸𝑍 = 𝐸𝑋 = 06. In this case, we present a "friendly user" version 

of our test. Using the Delta method, we show that our correlation-based test is 

𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑡 = √𝑇𝑠𝑦2 (𝑟z − 𝑟x√�̂� ) 
Where the variance �̂� = ∇ℎ̂′[∑ Γ̂j∞𝑗=−∞ ] ∇ℎ̂ is determined by ∇ℎ′ = (− 𝑠𝑦𝑧2𝑠𝑧3 , 𝑠𝑦𝑥2𝑠𝑥3 , 1𝑠𝑧 , − 1𝑠𝑥), and 

Γj = ( 
 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗)) 

 
 

Where the long-run variance ∑ Γj∞𝑗=−∞  can be estimated with a HAC estimator. Under the null hypothesis of equal 

correlations, this statistic has a standard normal distribution. See Appendix A.4 for a formal derivation. 

3.3 The case of Auto-Efficiency and unbiasedness 

 
6 These assumptions could be reasonable if we subtract the sample mean of each forecast and the target variable.  
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One implication of the MSPE Paradox is that a null hypothesis of equal correlations may differ from a null 

hypothesis of equal MSPE. Nevertheless, Proposition 3 in PH shows that the Paradox arises as a consequence of 

inefficiencies. To illustrate, let 𝑢𝑥 = 𝑌 − 𝑋 and 𝑢𝑧 = 𝑌 − 𝑍 be the forecast errors of X and Z, respectively. Let us 

recall that X and Z are efficient à la Mincer and Zarnowitz (1969) as long as 𝐶𝑜𝑣(𝑢𝑥 , 𝑋) = 𝐶𝑜𝑣(𝑢𝑧, 𝑍) = 0 (𝐴𝑢𝑡𝑜 − 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) 
And  𝐸𝑢𝑥 = 𝐸𝑢𝑧 = 0 (𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑𝑛𝑒𝑠𝑠) 
Then, Proposition 3 in PH establishes: "If X and Z are both efficient à la Mincer and Zarnowitz, then the Paradox is 

impossible." 

Unbiasedness and Auto-Efficiency are considered to be features of a "rational" forecaster. Nevertheless, these 

conditions do not seem to hold in practice very often. For instance, for the case of exchange rates expectations, Ince 

and Molodtsova (2017) report a strong rejection of them for nine developed economies (plus the euro area), and 

most of the 23 emerging economies analyzed. Furthermore, rejections of some properties related to optimal 

forecasts are also reported by Ang, Bekaert and Wei (2007); Joutz and Stekler (2000); Bentancor and Pincheira (2010); 

Nordhaus (1987); Patton and Timmermann (2012); Pincheira and Fernández (2011); Pincheira (2012, 2010) and 

Pincheira and Álvarez (2009) just to mention a few. In this sense, MSPE and correlations should be seen as 

complementary approaches rather than interchangeable analyses. 

4 Simulations 

For our simulations, we define both a data generating process (DGP) and a forecast generating process (FGP). In 

what follows, we assume stationarity in every process. 

Let 𝑌𝑡 be our target variable. Our VAR(1) DGP is mainly inspired by Busetti and Marcucci (2013). Consider the 

target variable 𝑌𝑡 generated by an AR(1) component, and an unobservable variable 𝑋𝑡−1. 𝑌𝑡 = 𝜇𝑦 + 𝜙𝑦𝑌𝑡−1 + 𝑐𝑋𝑡−1 + 𝜀𝑡   (3) 𝑋𝑡 = 𝜇𝑥 + 𝜙𝑥𝑋𝑡−1 + 𝑢𝑡                 (4) 
By assumption 𝑋𝑡 follows a stationary AR(1) process. We also assume that the pair (𝜀𝑡 , 𝑢𝑡)' is a white noise vector 

such that   

(𝜀𝑡𝑢𝑡)~𝑁(0, ( 𝜎𝜀 𝜌𝜀,𝑢𝜎𝑢𝜌𝜀,𝑢𝜎𝑢 𝜎𝑢2 )) 
Even though 𝑋𝑡 is unobservable to the forecaster at time t, we will assume that two reasonable observable proxies 

for 𝑋𝑡 are available: 𝑍1,𝑡 and 𝑍2,𝑡. This setup is similar to what a macroeconomist will face when dealing with 

different measures of core inflation or output gap, variables that can be approximated in different alternative ways.  
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In our simulations, we generate our proxies 𝑍1,𝑡 and 𝑍2,𝑡 as follows 𝑍1,𝑡 = 𝛼1 + 𝛽1𝑋𝑡 + 𝜔𝑡      (5) 𝑍2,𝑡 = 𝛼2 + 𝛽2𝑋𝑡 + 𝑣𝑡       (6) 
where the pair (𝜔𝑡, 𝑣𝑡)' is also a Gaussian white noise vector that is totally independent from (𝜀𝑡 , 𝑢𝑡)'.  
We consider the following two competing h-steps-ahead forecasts for 𝑌𝑡+ℎ−1: 𝑌1,𝑡−1𝑓 (ℎ) = 𝜇𝑦 + 𝜙𝑦𝑌𝑡−1 + 𝑐𝑍1,𝑡−1   (𝐹𝐺𝑃1) 𝑌2,𝑡−1𝑓 (ℎ) = 𝜇𝑦 + 𝜙𝑦𝑌𝑡−1 + 𝑐𝑍2,𝑡−1   (𝐹𝐺𝑃2) 
To avoid excessive notation, here we have assumed that both forecasts are built using the same population 

parameters 𝜇𝑦 , 𝜙𝑦 and 𝑐 that define our main DGP. In the Appendix section we show simulations relaxing this 

simplifying assumption. Qualitatively speaking, results are similar. 

To evaluate the empirical size of our test, we impose the null hypothesis of equal correlation with the target variable 𝐻0: 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) by choosing specific values of the following parameters: 𝜙𝑦, 𝑐, 𝜙𝑥 , 𝜌𝜀,𝑢, 𝜎𝜀 , 𝜎𝑢, 𝛽1, 𝛽2, 𝑉(𝜔𝑡) and 𝑉(𝑣𝑡). To that end, we make use of the following straightforward results that 

stem from the definition of our DGP, 𝐹𝐺𝑃1 and 𝐹𝐺𝑃2: 

From the fact that 𝑋𝑡 is an AR(1) process, it follows that 

𝑉(𝑋𝑡) = 𝜎𝑢21 − 𝜙𝑥2 

From equations (3) and (4): 

𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡) = 𝜙𝑥𝑐𝑉(𝑋𝑡) + 𝐶𝑜𝑣(𝑢𝑡 , 𝜀𝑡)1 − 𝜙𝑥𝜙𝑦  

𝑉(𝑌𝑡) = 𝑐2𝑉(𝑋𝑡) + 2𝜙𝑦𝑐𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡) + 𝑉(𝜀𝑡)1 − 𝜙𝑦2  

Using equation (3) together with equations (5) and (6): 𝐶𝑜𝑣(𝑍1𝑡 , 𝑌𝑡) = 𝛽1𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) 𝐶𝑜𝑣(𝑍2𝑡 , 𝑌𝑡) = 𝛽2𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) 
Similarly, using equation (4) together with equations (5) and (6): 𝐶𝑜𝑣(𝑍1𝑡 , 𝑋𝑡) = 𝛽1𝑉(𝑋𝑡) 
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𝐶𝑜𝑣(𝑍2𝑡 , 𝑋𝑡) = 𝛽2𝑉(𝑋𝑡) 
Notice that the variances of FGP1 and FGP2 are given by 𝑉 (𝑌1,𝑡−1𝑓 (ℎ)) = 𝜙𝑦2𝑉(𝑌𝑡) + 𝑐2 (𝛽12𝑉(𝑋𝑡) + 𝑉(𝜔𝑡)) + 2𝜙𝑦𝑐𝐶𝑜𝑣(𝑍1,𝑡 , 𝑌𝑡) 𝑉 (𝑌2,𝑡−1𝑓 (ℎ)) = 𝜙𝑦2𝑉(𝑌𝑡) + 𝑐2 (𝛽22𝑉(𝑋𝑡) + 𝑉(𝑣𝑡)) + 2𝜙𝑦𝑐𝐶𝑜𝑣(𝑍2,𝑡 , 𝑌𝑡) 
Hence the covariances of our one-step-ahead forecasts with the target variable are given by: 𝐶𝑜𝑣(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝜙𝑦2𝑉(𝑌𝑡) + 𝑐𝜙𝑦𝐶𝑜𝑣(𝑌𝑡 , 𝑍1,𝑡) + 𝑐𝜙𝑦𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) + 𝑐2𝐶𝑜𝑣(𝑋𝑡 , 𝑍1,𝑡) 𝐶𝑜𝑣(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 𝜙𝑦2𝑉(𝑌𝑡) + 𝑐𝜙𝑦𝐶𝑜𝑣(𝑌𝑡 , 𝑍2,𝑡) + 𝑐𝜙𝑦𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) + 𝑐2𝐶𝑜𝑣(𝑋𝑡 , 𝑍2,𝑡) 
And the corresponding correlations are given by 

𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑣(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡)√𝑉 (𝑌1,𝑡−1𝑓 (1)) 𝑉(𝑌𝑡)   = 

𝜎𝑢2𝑐21 − 𝜙𝑥2 (𝛽1 + 𝜙𝑦21 − 𝜙𝑦2) + 𝜎𝑢𝑐𝜙𝑦 ( 𝜎𝑢1 − 𝜙𝑥2𝜙𝑥𝑐 + 𝜌𝜀,𝑢𝜎𝜀1 − 𝜙𝑥𝜙𝑦 )( 2𝜙𝑦21 − 𝜙𝑦2 + 𝛽1 + 1) + 𝜙𝑦2𝜎𝜀21 − 𝜙𝑦2
√(𝑐2𝜎𝑢2 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥)(1 − 𝜙𝑥2)(1 − 𝜙𝑦2) + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥) + 𝜎𝜀21 − 𝜙𝑦2) [   

 𝜎𝑢2𝑐2 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽12 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥) + 2𝜙𝑦3𝜙𝑥(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥))1 − 𝜙𝑥2 + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽1)1 − 𝜙𝑦𝜙𝑥 + 𝜙𝑦2𝜎𝜀21 − 𝜙𝑦2 + 𝑐2𝑉(𝜔𝑡)]   
    (7) 

𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑣(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡)√𝑉 (𝑌2,𝑡−1𝑓 (1)) 𝑉(𝑌𝑡) =  
𝜎𝑢2𝑐21 − 𝜙𝑥2 (𝛽2 + 𝜙𝑦21 − 𝜙𝑦2) + 𝜎𝑢𝑐𝜙𝑦 ( 𝜎𝑢1 − 𝜙𝑥2𝜙𝑥𝑐 + 𝜌𝜀,𝑢𝜎𝜀1 − 𝜙𝑥𝜙𝑦 )( 2𝜙𝑦21 − 𝜙𝑦2 + 𝛽2 + 1) + 𝜙𝑦2𝜎𝜀21 − 𝜙𝑦2

√(𝑐2𝜎𝑢2 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥)(1 − 𝜙𝑥2)(1 − 𝜙𝑦2) + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥) + 𝜎𝜀21 − 𝜙𝑦2)[   
 𝜎𝑢2𝑐2 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽22 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥) + 2𝜙𝑦3𝜙𝑥(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥))1 − 𝜙𝑥2 + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽2)1 − 𝜙𝑦𝜙𝑥 + 𝜙𝑦2𝜎𝜀21 − 𝜙𝑦2 + 𝑐2𝑉(𝑣𝑡)]   

    (8) 
For h-steps-ahead forecasts, we can iterate forward equation (3) to the following equations  𝑌𝑡 = 𝜇𝑦 + 𝜙𝑦𝑌𝑡−1 + 𝑐𝑋𝑡−1 + 𝜀𝑡 𝑌𝑡+1 = 𝜇𝑦(1 + 𝜙𝑦) + 𝑐𝜇𝑥 + 𝜙𝑦2𝑌𝑡−1 + 𝑐(𝜙𝑦 + 𝜙𝑥)𝑋𝑡−1 + 𝜀𝑡+1 + 𝜙𝑦𝜀𝑡 + 𝑐𝑢𝑡 𝑌𝑡+2 = 𝜇𝑦(1 + 𝜙𝑦 + 𝜙𝑦2) + 𝑐𝜇𝑥(1 + 𝜙𝑦 + 𝜙𝑥) + 𝜙𝑦3𝑌𝑡−1 + 𝑐[𝜙𝑦2 + (𝜙𝑦 + 𝜙𝑥)𝜙𝑥]𝑋𝑡−1 + 𝜀𝑡+2 + 𝜙𝑦𝜀𝑡+1 + 𝜙𝑦2𝜀𝑡 + 𝑐𝑢𝑡+1+ 𝑐(𝜙𝑦 + 𝜙𝑥)𝑢𝑡 
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𝑌𝑡+ℎ = 𝜇𝑦∑𝜙𝑦𝑗ℎ
𝑗=0 +∑𝜙𝑦ℎ−𝑗𝜀𝑡+𝑗ℎ

𝑗=0 + 𝜙𝑦ℎ+1𝑌𝑡−1 + (∑𝜙𝑦𝑗𝜙𝑥ℎ−𝑗ℎ
𝑗=0 )𝑐𝑋𝑡−1 + 𝑐𝜇𝑥∑∑𝜙𝑦𝑖𝜙𝑥𝑗−𝑖𝑗

𝑖=0
ℎ−1
𝑗=0+ 𝑐∑𝑢𝑡+ℎ−1−𝑗∑𝜙𝑦𝑖𝜙𝑥𝑗−𝑖𝑗

𝑖=0
ℎ−1
𝑗=0 , ∀ℎ ≥ 1 

Hence the covariances of our h-steps-ahead forecasts with the target variable are given by: 

𝐶𝑜𝑣(𝑌𝑡+ℎ−1; 𝑌1,𝑡−1𝑓 (ℎ)) = 𝜙𝑦ℎ+1𝑉(𝑌𝑡) + 𝜙𝑦𝑐 [(∑𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1
𝑗=0 )𝐶𝑜𝑣(𝑌𝑡; 𝑋𝑡) + 𝜙𝑦ℎ−1𝐶𝑜𝑣(𝑌𝑡; 𝑍1,𝑡)] + 𝑐2 (∑𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1

𝑗=0 )𝐶𝑜𝑣(𝑋𝑡; 𝑍1,𝑡) 
𝐶𝑜𝑣(𝑌𝑡+ℎ−1; 𝑌2,𝑡−1𝑓 (ℎ)) = 𝜙𝑦ℎ+1𝑉(𝑌𝑡) + 𝜙𝑦𝑐 [(∑𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1

𝑗=0 )𝐶𝑜𝑣(𝑌𝑡; 𝑋𝑡) + 𝜙𝑦ℎ−1𝐶𝑜𝑣(𝑌𝑡; 𝑍2,𝑡)] + 𝑐2 (∑𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1
𝑗=0 )𝐶𝑜𝑣(𝑋𝑡; 𝑍2,𝑡) 

And the corresponding correlations are given by 

𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) = 𝐶𝑜𝑣(𝑌1,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1)√𝑉 (𝑌1,𝑡−1𝑓 (ℎ)) 𝑉(𝑌𝑡) = 

𝜙𝑦ℎ+1 ( 𝑐2𝜎𝑢2(1 − 𝜙𝑥2)(1 − 𝜙𝑦2) (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥) + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥) + 𝜎𝜀21 − 𝜙𝑦2) + 𝜙𝑦𝑐 [𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 ((∑ 𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1𝑗=0 ) + 𝜙𝑦ℎ−1𝛽1)] + 𝑐2(∑ 𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1𝑗=0 )𝛽1 𝜎𝑢21 − 𝜙𝑥2
√(𝑐2𝜎𝑢2 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥)(1 − 𝜙𝑥2)(1 − 𝜙𝑦2) + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥) + 𝜎𝜀21 − 𝜙𝑦2) [   

 𝜎𝑢2𝑐2 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽12 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥) + 2𝜙𝑦3𝜙𝑥(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥))1 − 𝜙𝑥2 + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽1)1 − 𝜙𝑦𝜙𝑥 + 𝜙𝑦2𝜎𝜀21 − 𝜙𝑦2 + 𝑐2𝑉(𝜔𝑡)]   
     (9) 

𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) = 𝐶𝑜𝑣(𝑌2,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1)√𝑉 (𝑌2,𝑡−1𝑓 (ℎ)) 𝑉(𝑌𝑡)  = 

𝜙𝑦ℎ+1 ( 𝑐2𝜎𝑢2(1 − 𝜙𝑥2)(1 − 𝜙𝑦2) (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥) + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥) + 𝜎𝜀21 − 𝜙𝑦2) + 𝜙𝑦𝑐 [𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 ((∑ 𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1𝑗=0 ) + 𝜙𝑦ℎ−1𝛽2)] + 𝑐2(∑ 𝜙𝑦𝑗𝜙𝑥ℎ−1−𝑗ℎ−1𝑗=0 )𝛽2 𝜎𝑢21 − 𝜙𝑥2
√(𝑐2𝜎𝑢2 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥)(1 − 𝜙𝑥2)(1 − 𝜙𝑦2) + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥) + 𝜎𝜀21 − 𝜙𝑦2) [   

 𝜎𝑢2𝑐2 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽22 (1 + 2𝜙𝑦𝜙𝑥1 − 𝜙𝑦𝜙𝑥) + 2𝜙𝑦3𝜙𝑥(1 − 𝜙𝑦2)(1 − 𝜙𝑦𝜙𝑥))1 − 𝜙𝑥2 + 2𝜌𝜀,𝑢𝜎𝜀𝜎𝑢𝜙𝑦𝑐 ( 𝜙𝑦21 − 𝜙𝑦2 + 𝛽2)1 − 𝜙𝑦𝜙𝑥 + 𝜙𝑦2𝜎𝜀21 − 𝜙𝑦2 + 𝑐2𝑉(𝑣𝑡)]   
    (10) 

 

4.1 Size analysis: one-step-ahead forecasts and Gaussian innovations 

Here we impose the null hypothesis at different levels of correlations. The idea is to choose specific values for the 

parameters 𝜙𝑦 , 𝑐, 𝜙𝑥 , 𝜌𝜀,𝑢, 𝜎𝜀 , 𝜎𝑢, 𝛽1, 𝛽2, 𝑉(𝜔𝑡) and 𝑉(𝑣𝑡), to equalize expressions (7) and (8). We consider three 

scenarios: 1) A low-correlation scenario (𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.118), 2) A mid-correlation 
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scenario (𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.687) and 3) A high-correlation scenario (𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) =𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.812).  
For the low-correlation scenario, we set the following parameters: 𝜙𝑦 = 0.15, 𝑐 = 0.2, 𝜙𝑥 = 0.1, 𝜎𝜀2 = 1, 𝜎𝑢2 =1.5, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0, 𝛽1 = 0.1, 𝛽2 = 0.248, 𝜎𝜔2 = 1,𝜎𝑣2 = 2, 𝜇𝑦 = 0.2, 𝜇𝑥 = 0.3, 𝛼1 = 0.1 and 𝛼2 = 0.2. With these 

parameters both correlations 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) and 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) take the same value of 0.118 and therefore the 

null hypothesis is satisfied.  

In the mid-correlation scenario, we set: 𝜙𝑦 = 0.5, 𝑐 = 0.7, 𝜙𝑥 = 0.4, 𝜎𝑢2 = 1.5, 𝜎𝜀2 = 1, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0.5, 𝛽1 =0.6, 𝛽2 = 0.77, 𝜎𝜔2 = 2, 𝜎𝑣2 = 2.5, 𝜇𝑦 = 0.3, 𝜇𝑥 = 0.4, 𝛼1 = 0.1 and 𝛼2 = 0.2. In this case, both correlations 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) and 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) take the same value of 0.687 and again the null hypothesis is satisfied.  

Finally, in the high-correlation scenario, we set: 𝜙𝑦 = 0.65, 𝑐 = 0.65, 𝜙𝑥 = 0.65, 𝜎𝜀2 = 1, 𝜎𝑢2 = 1, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0, 𝛽1 =0.445, 𝛽2 = 0.617, 𝜎𝜔2 = 1, 𝜎𝑣2 = 1.3, 𝜇𝑦 = 0.1, 𝜇𝑥 = 0.1, 𝛼1 = 0.1 and 𝛼2 = 0.1. With these parameters, 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.812 and the null hypothesis is imposed again. 

Table 1 reports our results for these three scenarios using nominal sizes of 10% and 5%. We show results for our 

correlation test and the simplified "friendly user" version of it7. We consider 10,000 Monte Carlo simulations of 4 

different samples sizes T = 50, 100, 500 and 2000. We estimate the long-run variances using a Barlett kernel with an 

automatic selection of the lag truncation parameter following Newey and West (1987,1994). 

Table 1: Size analysis imposing the null hypothesis  𝑯𝟎: 𝑪𝒐𝒓𝒓(𝒀𝟏,𝒕−𝟏𝒇 (𝟏), 𝒀𝒕) = 𝑪𝒐𝒓𝒓(𝒀𝟐,𝒕−𝟏𝒇 (𝟏), 𝒀𝒕) for three different 

scenarios of correlations. 

 

 
7 As commented above, to implement the “friendly-user” test, we substract the sample means in each iteration. 

(1) (2) (3) (4) (5) (6) (7)

Correlation scenario

Nominal Size 10% 5% 10% 5% 10% 5%

Correlation test 9.91 5.11 10.05 4.99 10.28 5.27
Friendly-user test 10.36 5.56 10.32 5.25 10.30 5.35

Correlation test 10.06 5.04 10.34 5.19 10.55 5.30
Friendly-user test 10.95 5.80 10.94 5.70 10.70 5.42

Correlation test 10.32 4.84 10.78 5.23 11.49 6.07
Friendly-user test 12.83 7.09 12.71 7.05 12.25 6.62

Correlation test 10.37 4.52 10.53 4.97 12.45 6.28
Friendly-user test 14.90 9.01 14.77 8.49 14.27 7.84

Low-Correlation Mid-Correlation High-Correlation

Sample Size=2000

Sample Size=500

Sample Size=100

Sample Size=50
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Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. Columns (2), (4) and (6) consider a 
nominal size of 10%, while columns (3), (5) and (7) consider a nominal size of 5%. As both versions of our test are asymptotically normal, we 
reject the null hypothesis using standard normal critical values. We consider 10,000 Monte Carlo simulations for each exercise. The "friendly 
user" version of our test requires subtracting the mean of both forecasts and the target variable. Long-run variances are estimated using 
Newey and West (1987, 1994). Source: Author's elaboration. 

Table 1 exhibits some interesting features. First, both versions of our test are reasonably well-sized for large samples 

(T≥ 500): notably, the size of our test does not deteriorate with a higher correlation under the null hypothesis. In 

large samples, the empirical size of our "Correlation test" ranges from 9.91% (4.99%) to 10.55% (5.30%) for a nominal 

size of 10% (5%), with a large-sample average size of 10.22% (5.15%). Similarly, for our "friendly-user test" the 

empirical size ranges from 10.30% (5.25%) to 10.95 (5.80%), with an average size across these six exercises of 10.60% 

(5.51%). 

Second, our test becomes somewhat oversized in small samples (T≤ 100). The rejections rates for our "Correlation 

test" range from 10.32% (4.52%) to 12.45% (6.28%). While these empirical sizes may be reasonable for a small 

sample, the "friendly-user test" results are less encouraging. In particular, rejections rates range from 12.25% 

(6.62%) to 14.90% (9.01%). 

Third, we do not see a clear pattern that relates size distortions and the level of correlations under the null 

hypothesis. While the best (worst) results for our "Correlation test" are found in the low (high)-correlation scenario, 

these differences tend to be negligible: Even in the high-correlations scenario, the average size of our "Correlation 

test" is 11.19% (5.73%), with excellent results in large samples, as expected. Of course, the persistence of the DGP 

may explain some of these minor distortions: the high-correlation scenario coincides with a higher persistence of 

our DGP. Interestingly, in the "friendly-user test," we observe cases in which the low-correlation scenario exhibits 

the worsts results (although with tiny differences).  

All in all, our simulations suggest that: i) Our "Correlation test" is correctly sized in almost every scenario, albeit a 

little oversized on average, ii) our "friendly-user test" is reasonably well-sized in large samples and iii) the "friendly-

user test" becomes oversized in small samples. 

Figure 1 shows the kernel density of our correlation-based test. We consider the mid-correlation scenario under the 

null hypothesis, using 10,000 simulations and sample sizes of T=50, 500, 1000, and 2000. Each density stands for a 

different sample size. The long-run variances are estimated following Newey and West (1987, 1994). The figure is 

consistent with the results in Table 1: while small-sample distributions tend to exhibit some distortions and heavier 

tails, our kernel densities become closer to Gaussian as the sample size increases. In general, for large sample sizes, 

Figure 1 exhibits well-behaved distributions. 
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Figure 1: Kernel density of our correlation test with different sample sizes. 

 

Notes: T stands for the sample size. We consider 10,000 Monte Carlo simulations for our "Correlation test" for the mid-correlation scenario 

under the null hypothesis. Long-run variances are estimated using Newey and West (1987,1994). Source: Author's elaboration. 

4.2 Size analysis: one-step-ahead forecasts and heavy-tailed innovations 

Here we report simulations using heavy-tailed innovations. Akin to Table 1, we consider three scenarios of 

correlations under the null hypothesis. In this case, 𝑢𝑡 is generated by a 𝑡(5) distribution and 𝜀𝑡 by a 𝑡(6) 
distribution; hence, 𝜎𝑢2 = 5/3 and 𝜎𝜀2 = 3/2. This is important since we use both parameters to impose the null 

hypothesis. 

For the low-correlation scenario, we set the following parameters: 𝜙𝑦 = 0.1, 𝑐 = 0.1, 𝜙𝑥 = 0.15, 𝜎𝜀2 = 32 , 𝜎𝑢2 = 53 ,𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0, 𝛽1 = 0.021, 𝛽2 = 0.2, 𝜎𝜔2 = 1, 𝜎𝑣2 = 2, 𝜇𝑦 = 0.1, 𝜇𝑥 = 0.1, 𝛼1 = 0.1 and 𝛼2 = 0.1. With these 

parameters, we have that 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.08 and therefore, the null hypothesis is 

imposed.  

In the mid-correlation scenario, we set: 𝜙𝑦 = 0.4, 𝑐 = 0.4,  𝜙𝑥 = 0.45,  𝜎𝜀2 = 32 ,  𝜎𝑢2 = 53 , 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0, 𝛽1 = 0.2,𝛽2 = 0.46,  𝜎𝜔2 = 1, 𝜎𝑣2 = 2,  𝜇𝑦 = 0.1,  𝜇𝑥 = 0.1,  𝛼1 = 0.1 and 𝛼2 = 0.1. With these parameters, 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) =𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.455 and again the null of equality in correlations is satisfied.  

Finally, in the high-correlation scenario, we set the following parameters: 𝜙𝑦 = 0.65, 𝑐 = 0.65, 𝜙𝑥 = 0.65, 𝜎𝜀2 =32 , 𝜎𝑢2 = 53 , 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0, 𝛽1 = −0.09, 𝛽2 = 0.1, 𝜎𝜔2 = 1, 𝜎𝑣2 = 2, 𝜇𝑦 = 0.1, 𝜇𝑥 = 0.1, 𝛼1 = 0.1 and 𝛼2 = 0.1. With 

these parameters,  𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.76 and the null is satisfied.  

Tables 2 summarizes our results with fat-tailed innovations. First, akin to Table 1, both tests are reasonably well-

sized for large samples (𝑇 ≥ 500). In these cases, the rejections rates of our "Correlation test" range between 9.99% 

(5.04%) to 11.32% (5.77%) for a nominal size of 10% (5%), with an average size across these six exercises of 10.57% 
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(5.39%). The "friendly-user test" performs similarly well, with a large sample average size of 10.66% (5.54%). Similar 

to Table 1, our tests seem to be correctly sized despite the level of correlations under the null hypothesis. 

Nevertheless, in contrast to Table 1, some size distortions in small-samples (T≤ 100) become apparent not only for 

the "friendly-user test", but also for the "Correlation test." The empirical size of the "Correlation test" ranges from 

11.48% (5.83%) to 14.51% (8.23%), with a small-sample average size of 12.9% (6.87%). These distortions are even 

more critical with the "friendly user test": the size ranges from 12.48% (6.90%) to 15.33% (8.90%), with a small-

sample average size of 13.93% (7.85%).  

Table 2: Size analysis imposing the null hypothesis  𝑯𝟎: 𝑪𝒐𝒓𝒓(𝒀𝟏,𝒕−𝟏𝒇 (𝟏), 𝒀𝒕) = 𝑪𝒐𝒓𝒓(𝒀𝟐,𝒕−𝟏𝒇 (𝟏), 𝒀𝒕) for three different 

scenarios of correlations under the null. Simulations with heavy-tailed innovations. 

 

Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations using heavy-tailed innovations. 
Columns (2), (4) and (6) consider a nominal size of 10%, while columns (3), (5) and (7) consider a nominal size of 5%. As both versions of our 
test are asymptotically normal, we reject the null hypothesis using standard normal critical values. We consider 10,000 Monte Carlo 
simulations for each exercise. The "friendly user version" of our test requires subtracting the mean of both forecasts and the target variable. 
Long-run variances are estimated using Newey and West (1987, 1994). Source: Author's elaboration. 

4.3 Size analysis: multi-step-ahead forecasts  

In this section, we study the size of our tests using multi-step-ahead forecasts. To this end, we impose the null 

hypothesis at a given forecast horizon h where h = 2, 3, 6 or 12. To impose the null hypothesis, we choose different 

values for our parameters so that equation (9) is equal to equation (10). From these equations we see that the set of 

parameters required to satisfy the null hypothesis depends on the horizon h. To keep things as simple as possible, 

we use as a basic setup the set of parameters used in the mid-correlations scenario of Table 1. The only difference 

is that now we choose different values of 𝛽2 to impose the null hypothesis at different forecasting horizons h. Table 

3 exhibits size results for our tests in multi-step-ahead forecasts. Table 4 is akin to Table 3, but this time we base 

(1) (2) (3) (4) (5) (6) (7)

Correlation scenario
Nominal Size 10% 5% 10% 5% 10% 5%

Correlation test 10.04 5.12 10.37 5.33 9.99 5.04
Friendly-user test 10.14 5.28 10.38 5.37 10.01 5.09

Correlation test 10.72 5.42 10.99 5.77 11.32 5.67
Friendly-user test 11.00 5.86 11.09 5.88 11.34 5.75

Correlation test 11.48 5.83 12.69 6.73 12.10 6.47
Friendly-user test 12.79 6.92 12.98 7.05 12.48 6.90

Correlation test 13.05 6.52 14.51 8.23 13.64 7.44
Friendly-user test 15.33 8.90 15.17 8.85 14.84 8.49

Sample Size=50

Low-Correlation Mid-Correlation High-Correlation

Sample Size=2000

Sample Size=500

Sample Size=100
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our parameters on the high-correlations scenario of Table 1. Finally, simulations in Table 5 are based on the mid-

correlation scenario of Table 2 with fat-tail innovations. 

Table 3: Size analysis imposing the null hypothesis 𝐇𝟎: 𝐂𝐨𝐫𝐫(𝐘𝟏,𝐭−𝟏𝐟 (𝐡), 𝐘𝐭+𝐡−𝟏) = 𝐂𝐨𝐫𝐫(𝐘𝟐,𝐭−𝟏𝐟 (𝐡), 𝐘𝐭+𝐡−𝟏) for the mid-

correlation scenario.  

                      

(1) (2) (3)   (4) (5)   (6) (7)   (8) (9) 

Correlation 
scenario 

h=2, 𝜌1 = 𝜌2 = 0.467   h=3, 𝜌1 = 𝜌2 = 0.283   h=6, 𝜌1 = 𝜌2 = 0.050   h=12, 𝜌1 = 𝜌2 = 0.002 

Nominal Size 10% 5%   10% 5%   10% 5%   10% 5% 

  Sample Size=2000 
Correlation test 9.30 4.76   9.66 5.06   9.68 4.90   10.54 5.58 

Friendly-user test 9.50 4.90   9.86 5.26   9.92 5.20   11.00 5.86 

  Sample Size=500 
Correlation test 9.78 4.62   10.44 5.28   9.48 5.06   9.82 4.88 

Friendly-user test 10.58 5.26   11.20 5.66   10.28 5.60   10.56 5.44 

  Sample Size=100 
Correlation test 10.80 5.14   10.44 5.14   9.70 4.54   9.82 4.66 

Friendly-user test 12.80 7.58   13.04 7.04   12.94 6.56   13.00 6.50 

  Sample Size=50 
Correlation test 11.84 6.40   10.70 5.16   10.38 4.72   9.48 4.56 

Friendly-user test 15.78 9.30   15.04 8.46   15.38 8.14   14.74 7.70 

Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. h stands for the forecasting horizon. 
Columns (2), (4), (6), and (8) consider a nominal size of 10%, while columns (3), (5), (7), and (9) consider a nominal size of 5%. As both 
versions of our test are asymptotically normal, we reject the null hypothesis using standard normal critical values. We consider 10,000 Monte 
Carlo simulations for each exercise. The "friendly user" version of our test requires subtracting the mean of both forecasts and the target 
variable. Long-run variances are estimated using Newey and West (1987, 1994). Source: Author's elaboration. 

Table 4: Size analysis imposing the null hypothesis 𝐇𝟎: 𝐂𝐨𝐫𝐫(𝐘𝟏,𝐭−𝟏𝐟 (𝐡), 𝐘𝐭+𝐡−𝟏) = 𝐂𝐨𝐫𝐫(𝐘𝟐,𝐭−𝟏𝐟 (𝐡), 𝐘𝐭+𝐡−𝟏) for the high-

correlation scenario.  

                      

(1) (2) (3)   (4) (5)   (6) (7)   (8) (9) 

Correlation 
scenario 

h=2, 𝜌1 = 𝜌2 = 0.673   h=3, 𝜌1 = 𝜌2 = 0.531   h=6, 𝜌1 = 𝜌2 = 0.223   h=12, 𝜌1 = 𝜌2 = 0.028 

Nominal Size 10% 5%   10% 5%   10% 5%   10% 5% 

  Sample Size=2000 
Correlation test 9.96 5.22   9.76 5.16   10.62 5.78   10.36 5.36 

Friendly-user test 10.01 5.24   9.80 5.16   10.66 5.80   10.38 5.40 

  Sample Size=500 
Correlation test 10.36 5.26   10.66 5.82   9.98 5.06   9.68 5.32 

Friendly-user test 10.54 5.32   10.76 5.98   10.14 5.14   9.74 5.54 

  Sample Size=100 
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Correlation test 12.16 5.90   11.60 6.40   11.26 5.62   10.92 5.40 
Friendly-user test 12.82 6.70   12.30 6.86   12.50 6.46   12.00 6.14 

  Sample Size=50 
Correlation test 12.64 6.90   12.44 6.66   12.52 6.06   11.60 5.66 

Friendly-user test 14.46 8.30   14.44 8.34   14.98 7.92   14.80 7.56 

Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. h stands for the forecasting horizon. 
Columns (2), (4), (6), and (8) consider a nominal size of 10%, while columns (3), (5), (7), and (9) consider a nominal size of 5%. As both 
versions of our test are asymptotically normal, we reject the null hypothesis using standard normal critical values. We consider 10,000 Monte 
Carlo simulations for each exercise. The "friendly user" version of our test requires subtracting the mean of both forecasts and the target 
variable. Long-run variances are estimated using Newey and West (1987, 1994). Source: Author's elaboration. 

Table 5: Size analysis imposing the null hypothesis 𝐇𝟎: 𝐂𝐨𝐫𝐫(𝐘𝟏,𝐭−𝟏𝐟 (𝐡), 𝐘𝐭+𝐡−𝟏) = 𝐂𝐨𝐫𝐫(𝐘𝟐,𝐭−𝟏𝐟 (𝐡), 𝐘𝐭+𝐡−𝟏) for the mid-

correlations scenario. Simulations with heavy-tail innovations. 

                      

(1) (2) (3)   (4) (5)   (6) (7)   (8) (9) 

Correlation 
scenario h=2, 𝜌1 = 𝜌2 = 0.236   h=3, 𝜌1 = 𝜌2 = 0.119   h=6, 𝜌1 = 𝜌2 = 0.014   h=12, 𝜌1 = 𝜌2 = 0.000 

Nominal Size 10% 5%   10% 5%   10% 5%   10% 5% 

  Sample Size=2000 
Correlation test 10.46 5.56   10.90 5.96   10.16 5.50   9.98 5.34 

Friendly-user test 10.48 5.58   10.90 5.96   10.24 5.58   10.04 5.38 

  Sample Size=500 
Correlation test 11.06 5.54   10.40 5.58   10.56 5.42   10.44 5.08 

Friendly-user test 11.06 5.54   10.48 5.68   10.68 5.58   10.46 5.24 

  Sample Size=100 
Correlation test 12.38 6.88   12.22 6.76   12.14 6.90   11.60 5.84 

Friendly-user test 12.80 7.16   12.64 7.06   12.48 7.04   12.22 6.34 

  Sample Size=50 
Correlation test 14.72 7.92   14.50 7.74   13.12 6.88   14.20 7.64 

Friendly-user test 15.36 8.86   15.36 8.30   14.16 7.90   15.58 8.46 
Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. h stands for the forecasting horizon. 
Columns (2), (4), (6), and (8) consider a nominal size of 10%, while columns (3), (5), (7), and (9) consider a nominal size of 5%. As both 
versions of our test are asymptotically normal, we reject the null hypothesis using standard normal critical values. We consider 10,000 Monte 
Carlo simulations for each exercise. The "friendly user" version of our test requires subtracting the mean of both forecasts and the target 
variable. Long-run variances are estimated using Newey and West (1987, 1994). Source: Author's elaboration. 

There are some features in Tables 3 through 5 worth mentioning. First, both tests perform remarkably well in large 

samples (T≥500): considering the three tables, the empirical size of the "Correlation test" ranges from 9.30% (4.62%) 

to 11.02% (5.96%). The "friendly user" version of our test reports almost the same size as the main "Correlation test" 

in large samples. These results are interesting since our tables consider different levels of correlations under the 

null and different forecasting horizons. Second, contrary to the expected, we do not see a clear pattern of size 

distortions with the forecasting horizon h. Third, similar to our previous simulations, the "friendly-user test" 

becomes significantly oversized in small samples (T=50). Fourth, the "Correlation test" is reasonably well-sized 
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even in small samples, except for the case with fat-tail innovations in Table 5. For instance, the empirical size of our 

test in Table 3 ranges from 9.48% (4.56%) through 11.84% (6.40%). In contrast, Table 5 exhibits rejections ranging 

from 13.12% (6.88%) to 14.72% (7.92%). 

4.4 Power analysis one-step-ahead 

Here we explore the power of our tests using one-step-ahead forecasts. To this end, we consider as a start point the 

following parameters of our mid-correlations scenario: 𝜙𝑦 = 0.5, 𝑐 = 0.7, 𝜙𝑥 = 0.4, 𝜎𝑢2 = 1.5, 𝜎𝜀2 = 1, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) =0.5, 𝛽1 = 0.6, 𝛽2 = 0.77, 𝜎𝜔2 = 2, 𝜎𝑣2 = 2.5, 𝜇𝑦 = 0.3, 𝜇𝑥 = 0.4, 𝛼1 = 0.1 and 𝛼2 = 0.2. Recall that, under these 

parameters, we impose the null hypothesis at 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.687. To impose the 

alternative hypothesis, we shrink the coefficient 𝛽2 to four different values: 0.562, 0.369, 0.269, and 0.12. With these 

new values of 𝛽2, the differences in correlations become 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) − 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 𝜌1 − 𝜌2 =0.035, 0.077, 0.102 and 0.15 respectively. We consider four different sample sizes: 50, 100, 500, 1000, and 2000. 

Finally, we run 10,000 Monte Carlo replications with nominal sizes of 10% and 5%.  

 

 

 

 

 

 

 

 

 

Table 6: Power analysis imposing the alternative hypothesis for a mid-correlations scenario. 
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Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. The alternative hypothesis is set at four 
different levels: 𝜌1 − 𝜌2 = 0.035, 0.077, 0.102 and 0.15 respectively.  Columns (2), (4), (6) and (8) consider a nominal size of 10%, while 
columns (3), (5), (7)  and (9) consider a nominal size of 5%. As both versions of our test are asymptotically normal, we reject the null 
hypothesis using standard normal critical values. We consider 10,000 Monte Carlo simulations for each exercise. The "friendly user" version 
of our test requires subtracting the mean of both forecasts and the target variable. Long-run variances are estimated using Newey and West 
(1987, 1994). Source: Author's elaboration. 

Table 6 exhibits power results. First, for large samples (T ≥ 500) and 𝜌1 − 𝜌2 ≥ 0.077, our test has an outstanding 

ability to detect differences in correlations. For instance, columns (4) through (9) show rejections rates ranging from 

75.68% to 100%. Notably, for a sample size of 1000, rejections range between 96.62% and 100%. These results are 

particularly interesting since the largest difference considered in these simulations is just 𝜌1 − 𝜌2 = 0.15; hence, in 

large samples, even small differences in correlations are frequently detected by our test.  

Second, and naturally, the power of our test drops with the sample size (particularly for T=50). For instance, the 

outstanding 100% rejection in column (8) for large samples reduces to (about) 40% in small samples. Of course, 

these results are even worst for smaller differences in correlations under the alternative: For 𝜌1 − 𝜌2 = 0.035, the 

rejection rate in small samples is just above nominal size. Finally, we do not observe significant differences between 

both versions of our test, although the "friendly-user" version tends to be slightly more powerful, most likely due 

to the bigger size distortions associated with it. All in all, our test has a reasonable power with large samples, or 

with sufficiently large differences in correlations under the alternative. 

4.5 Power analysis multi-steps-ahead 

Here we explore the power of our tests using multi-step-ahead forecasts. We consider four different forecasting 

horizons h=2, 3, 6, and 12. Based on the high-correlation scenario, we consider as a start point the following 

parameters: 𝜙𝑦 = 0.8, 𝑐 = 0.8, 𝜙𝑥 = 0.8, 𝜎𝑢2 = 1, 𝜎𝜀2 = 1, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0, 𝛽1 = 0.6, 𝛽2 = 0.807, 𝜎𝜔2 = 1, 𝜎𝑣2 = 1.3, 𝜇𝑦 =0.1, 𝜇𝑥 = 0.1, 𝛼1 = 0.1 and 𝛼2 = 0.1. Under these parameters, we impose the null hypothesis at 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) =

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Under the alternative hypothesis: 
Nominal Size 10% 5% 10% 5% 10% 5% 10% 5%

Correlation test 83.73 74.39 100.00 99.97 100.00 100.00 100.00 100.00
Friendly-user test 84.12 75.00 100.00 99.97 100.00 100.00 100.00 100.00

Correlation test 58.04 45.19 98.46 96.62 99.92 99.80 100.00 100.00
Friendly-user test 58.62 46.62 98.53 96.82 99.94 99.81 100.00 100.00

Correlation test 36.97 25.52 84.64 75.68 96.19 92.73 99.91 99.67
Friendly-user test 37.98 27.02 85.28 76.98 96.40 93.11 99.91 99.67

Correlation test 16.17 8.85 31.9 19.91 45.06 31.54 64.87 50.38
Friendly-user test 18.96 11.62 35.22 24.57 48.55 36.97 67.70 55.61

Correlation test 13.85 6.72 21.85 12.04 27.19 16.09 40.14 25.97
Friendly-user test 18.55 10.86 27.28 17.75 32.53 22.27 46.52 33.86

Sample Size = 2000

Sample Size = 1000

Sample Size = 500

Sample Size = 100

Sample Size = 50

𝜌1 − 𝜌2 = 0.035 𝜌1 − 𝜌2 = 0.077 𝜌1 − 𝜌2 = 0.102 𝜌1 − 𝜌2 = 0.150
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𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.96. We impose the alternative hypothesis 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) − 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) =0.1, ∀ℎ ∈ {2,3,6,12}. To impose the alternative hypothesis for each forecasting horizon, we change the coefficient 𝛽2 

to -0.427 (h=2), -0.326 (h=3), -0.324 (h=6), and -0.889 (h=12). We consider four different sample sizes: 50, 100, 500, 

1000, and 2000. Finally, we run 10,000 Monte Carlo replications with nominal sizes of 10% and 5%.  

Each entry in Table 7 reports the rate of rejections of the null hypothesis of equal correlations. Two features of this 

table are worth mentioning. First, consistent with Table 6, our test has an outstanding ability to recognize 

differences in correlations for large samples: For T≥ 1,000, the rate of rejection of our test is above 99% for all the 

forecasting horizons and nominal sizes. Second, we observe a deterioration of power for longer forecasting 

horizons in small samples (T≤ 100): While the rate of rejection of our test ranges from 82.12% to 99.98% for h=2 

steps-ahead-forecasts, it dramatically drops to range between 10.81 to 32.24 in our h=12 steps-ahead exercises. 

However, we emphasize that this pattern of power deterioration with the forecasting horizon disappears rapidly 

with a larger sample size. 

Table 7: Power analysis imposing the alternative hypothesis 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) − 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) = 0.1 in 

multi-step-ahead forecasts 

 

Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. The alternative hypothesis is set at 𝜌1 −𝜌2 = 0.1. h stands for the forecasting horizon. Columns (2), (4), (6) and (8) consider a nominal size of 10%, while columns (3), (5), (7)  and (9) 
consider a nominal size of 5%. As both versions of our test are asymptotically normal, we reject the null hypothesis using standard normal 
critical values. We consider 10,000 Monte Carlo simulations for each exercise. The "friendly user" version of our test requires subtracting the 
mean of both forecasts and the target variable. Long-run variances are estimated using Newey and West (1987, 1994). Source: Author's 
elaboration. 

 

5. Empirical illustration 
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Here we illustrate the relevance of our test when forecasting headline inflation. To this end, we consider two 

competing forecasts for monthly consumer price indices (CPI) in 35 OECD economies (see Table 8). Our first 

forecasting model considers an international factor as a predictor of local inflation.  As pointed out by Pincheira 

and Gatty (2016): "a few relatively recent articles report an important pass-through from some measures of industrialized 

international inflation to local inflation. In particular, Ciccareli and Mojon (2010) and West (2008) find that local inflation 

in OECD countries is importantly driven by a common inflation factor." Pincheira and Gatty (2016) page 2. See Medel, 

Pedersen and Pincheira (2016) for a comprehensive analysis of 31 OECD economies. Other interesting articles 

supporting this view are Duncan and Martínez-García (2015), Kabukcuoglu and Martínez-García (2018), Morales-

Arias and Moura (2013), Hakkio (2009), Pincheira and Gatty (2016), Medel, Pedersen and Pincheira (2016) and 

Pincheira (2022).  

Our second forecasting model considers core inflation as a predictor of headline inflation. As commented by 

Pincheira, Selaive and Nolazco (2019): "[…] the 'core predicts headline' argument is fairly popular. In a context in which 

inflation is not easy to forecast (Stock and Watson, 2008) the idea that core inflation may be a useful predictor in principle is 

very appealing, especially for central banks that are responsible for maintaining overall price stability and need to know where 

inflation is heading." Pincheira, Selaive and Nolazco (2019), page 1060.  

Following Robalo, Duarte and Morais (2003), we consider core inflation as CPI excluding "food" and "energy" 

components. The rationale for using core inflation is that "food" and "energy" tend to be highly volatile components 

and removing them may improve the predictive performance of many models. While there is some evidence 

supporting the predictive ability of core inflation (e.g., Bermingham (2007) and Song (2005), among many others), 

it is our reading of the literature that the usefulness of core inflation as a predictor of headline inflation is not equal 

across countries, and more generally, is still an open debate (see Bullard (2011), Le Bihan and Sédillot (2000) and 

Freeman (1998) for detractors). See Pincheira, Selaive and Nolazco (2019) for an interesting discussion. 

Our data is collected from the OECD database from January 2000 through December 2021 at the monthly frequency 

for all the economies under analysis8. Let 𝜋𝑡 be the year-on-year headline inflation rate for a given economy at 

month "t", 𝜋𝑡𝐶𝑜𝑟𝑒  the corresponding year-on-year core inflation, and 𝜋𝑡𝐼𝑛𝑡 the OECD year-on-year headline inflation 

(as a proxy of the international factor). Our competing forecasting models are: 𝜋𝑡+1 − 𝜋𝑡 = 𝑐1 + 𝜌1(𝜋𝑡 − 𝜋𝑡−1) + 𝛽1(𝜋𝑡𝐼𝑛𝑡 − 𝜋𝑡−1𝐼𝑛𝑡 ) + 𝜀1,𝑡+1       (𝑀𝑜𝑑𝑒𝑙 1) 𝜋𝑡+1 − 𝜋𝑡 = 𝑐2 + 𝜌2(𝜋𝑡 − 𝜋𝑡−1) + 𝛽2(𝜋𝑡𝐶𝑜𝑟𝑒 − 𝜋𝑡−1𝐶𝑜𝑟𝑒) + 𝜀2,𝑡+1    (𝑀𝑜𝑑𝑒𝑙 2) 
Where 𝜀1,𝑡+1 and 𝜀2,𝑡+1 are error terms. 

To conduct our out-of-sample analysis, we split our sample into two parts: an initial estimation window of size R 

and a prediction window of size P (note that P+R=T, where T is the total number of observations and P is the 

number of one-step-ahead forecasts). We update our OLS estimators using rolling windows of R=50 observations. 

 
8 https://stats.oecd.org/ 
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Let Δ𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 2 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 1, where 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 𝑖 is simply the correlation 

between our forecast constructed with model 𝑖 ∈ {1,2} and the target variable. Let 𝑅𝑎𝑡𝑖𝑜 𝑀𝑆𝑃𝐸 = 𝑀𝑆𝑃𝐸𝑀𝑜𝑑𝑒𝑙 1𝑀𝑆𝑃𝐸𝑀𝑜𝑑𝑒𝑙 2, where 𝑀𝑆𝑃𝐸𝑀𝑜𝑑𝑒𝑙 𝑖 is simply the MSPE of model 𝑖 ∈ {1,2}. In order to evaluate the null hypothesis of equal MSPE, we 

conduct the Diebold and Mariano (1995) and West (1996) (DMW) test, using a HAC estimator following Newey 

and West (1987, 1994). 

Table 8 next reports Δ𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑅𝑎𝑡𝑖𝑜 𝑀𝑆𝑃𝐸 for each country. Bold entries highlight rejections of the null 

hypothesis. Three features in Table 8 are worth mentioning. First, the DMW test rejects the null hypothesis in 6 out 

of 35 exercises at usual significance levels. Notably, these 6 exercises suggest that Model 1 outperforms Model 2 in 

terms of MSPE. In sharp contrast, our test rejects the null hypothesis of equal correlations in 14 out of 35 exercises. 

Among these 14 rejections, 86% of them suggest that Model 1 outperforms Model 2 in terms of correlations. In sum, 

our test is able to detect differences between the two forecasts, even when the differences in MSPE are not 

encouraging. Second, in 60% of our exercises, we do not observe significant differences for MSPE nor correlations; 

in this sense, there are several countries in which we do not find significant differences between predicting with 

core inflation or with the OECD international factor. Finally, for the 6 cases in which both tests reject the null 

hypothesis, our test tends to reject at a tighter significance level relative to DMW: half of the times both tests reject 

the null at the same significance level, and half of the times our test rejects at a tighter significance level. All in all, 

our test tends to reject the null hypothesis more frequently than DMW, and in many cases at a tighter significance 

level. 

Table 8. Forecasting headline inflation: Comparing a test of equal MSPE with our correlation-based test. 

                

  Austria Belgium Canada Chile Colombia 
 

Costa Rica Czech Republic 
Δ Correlations -0.171** 0.009 0.153* -0.082** -0.058** -0.231*** -0.133* 

Ratio MSPE 0.884* 0.985 1.082 0.905** 0.929** 0.808** 0.965 

  Denmark Estonia Finland France Germany Greece Hungary 
Δ Correlations 0.064 -0.130* -0.067* 0.023 -0.013 -0.087 0.000 
Ratio MSPE 1.027 0.901* 0.957 1.017 1.003 0.956 1.015 

  Iceland Ireland Israel Italy Japan Korea Latvia 
Δ Correlations -0.006 -0.007 -0.137* -0.044 -0.065 -0.136 0.019 
Ratio MSPE 1.014 0.990 0.891 0.971 0.958 0.921 1.028 

  Lithuania Luxembourg Mexico Netherlands Norway Poland Portugal 
Δ Correlations 0.000 -0.102 0.050 0.160* -0.056 -0.070** -0.051 
Ratio MSPE 1.001 0.922 1.057 1.049 0.977 0.948 0.964 

  Slovak Republic Slovenia Spain Sweden Switzerland Turkey UK 
Δ Correlations -0.078 0.091 0.031 -0.132* -0.374*** -0.045* -0.113 

Ratio MSPE 0.961 1.078 1.018 0.938 0.812** 0.953 0.910 

Notes: 𝛥𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 is defined as 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 2 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 1, where 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 𝑖 is the correlation between our forecast 
constructed with model 𝑖 ∈ {1,2} and the target variable. 𝑅𝑎𝑡𝑖𝑜 𝑀𝑆𝑃𝐸 is defined as 𝑀𝑆𝑃𝐸𝑀𝑜𝑑𝑒𝑙 1𝑀𝑆𝑃𝐸𝑀𝑜𝑑𝑒𝑙 2, where 𝑀𝑆𝑃𝐸𝑀𝑜𝑑𝑒𝑙 𝑖 is the MSPE  of model 𝑖 ∈
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{1,2}.  We consider the Diebold and Mariano (1995) and West (1996) test to evaluate the null hypothesis of equal MSPE, and our test to 
evaluate the null of equal correlations. *p<0.1, **p<0.05,***p<0.01. 

6. Concluding remarks 

In this paper, we propose a correlation-based test for the evaluation of two competing forecasts. Under the null 

hypothesis of equal correlations with the target variable, we derive the asymptotic distribution of our test using 

the delta method. A recent paper by Pincheira and Hardy (2021) (henceforth PH) demonstrates that the null 

hypothesis of equal correlations is not (necessarily) equivalent to a null hypothesis of equal MSPE. In particular, 

they show that the forecast displaying the lowest MSPE may also exhibit the lowest correlation with the target 

variable. They label this result as "The MSPE Paradox." While this is an interesting observation, they do not provide 

formal procedures to test the null hypothesis of equal correlations. This paper fills this gap.  

We provide a correlation-based test and a simpler "friendly-user" version of it. Monte Carlo simulations suggest 

that both tests are reasonably well-sized in large samples. Our tests seem to be correctly sized even considering 

different levels of correlations under the null hypothesis and different forecasting horizons. In small samples, 

however, some distortions become apparent for the "friendly-user" test.  

Our empirical application, in which we compare two forecasts for headline inflation, clearly illustrates the benefits 

of our correlation-based test: sometimes, traditional tests comparing MSPE cannot detect differences between two 

competing forecasts, despite one of them having significantly higher correlations. In this sense, our test can be 

viewed as a complement to the traditional tests of Diebold and Mariano (1995) and West (1996) (DMW). Our 

illustration reveals that the DMW test of equal MSPE rejects the null hypothesis only for 17% of our exercises; in 

sharp contrast, our correlation-based test rejects the null hypothesis in 40% of our exercises. Notably, our test not 

only detects differences more frequently but also at equal or tighter significance levels.  

There are two interesting avenues for future research. First, even though our test is useful in many applications, it 

relies on the assumption that the correlation of both forecasts exists. One important caveat of this assumption is 

that it rules out comparisons with a forecast with zero variance. One leading example is the zero-forecast, which is 

a common benchmark in the literature. Hence, an extension of our test to the zero variance case is warranted. 

Second, our approach considers forecasts as primitives. Consequently, we are silent about the effects of parameter 

uncertainty when models are used to generate the forecasts under analysis. Another natural extension of our paper 

could incorporate these effects along the lines of West (1996). 
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Appendix A1. Our decomposition of MSPE assuming Var(X)=Var(Z), E(X)=0 and 𝐸[𝑋2] > 0 ∆𝑀𝑆𝑃𝐸 = 𝑀𝑆𝑃𝐸𝑋 −𝑀𝑆𝑃𝐸𝑍 =  𝐸(𝑌 − 𝑋)2 − 𝐸(𝑌 − 𝑍)2 = (𝐸𝑋2 − 𝐸𝑍2) − 2(𝐸𝑌𝑋 − 𝐸𝑌𝑍)         = (𝐸𝑋2 − 𝐸𝑍2) − 2{𝐶𝑜𝑣(𝑌, 𝑋) − 𝐶𝑜𝑣(𝑌, 𝑍)}  = ⌈𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍⌉ − 2{𝐶𝑜𝑣(𝑌, 𝑋) − 𝐶𝑜𝑣(𝑌, 𝑍)}   = ⌈𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍⌉ − 2√𝑉𝑎𝑟(𝑌) {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑉𝑎𝑟(𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑉𝑎𝑟(𝑍)}   
 = ⌈𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍⌉ − 2√𝑉𝑎𝑟(𝑌)√𝑉𝑎𝑟(𝑋){𝐶𝑜𝑟𝑟(𝑌, 𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍) }   ⌈𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍⌉ − 2√𝑉𝑎𝑟(𝑌)√𝑀𝑆𝐹𝑋 − (𝐸𝑋)2{𝐶𝑜𝑟𝑟(𝑌, 𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍) }  ⌈𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍⌉ − 2√𝑉𝑎𝑟(𝑌)√𝑀𝑆𝐹𝑋{𝐶𝑜𝑟𝑟(𝑌, 𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍) }∎ 

Appendix A2. Our general decomposition of MSPE (dropping our previous assumptions). ∆𝑀𝑆𝑃𝐸 = 𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍 − 2 {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑉(𝑌)𝑉(𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑉(𝑌)𝑉(𝑍) + 𝐸𝑌(𝐸𝑋 − 𝐸𝑍)} 
= 𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍 − 2√𝑉(𝑌) {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑉(𝑋) − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑉(𝑍)} − 2{𝐸𝑌(𝐸𝑋 − 𝐸𝑍)} 

= 𝑀𝑆𝐹𝑋 −𝑀𝑆𝐹𝑍 − 2√𝑉(𝑌) {𝐶𝑜𝑟𝑟(𝑌, 𝑋)√𝑀𝑆𝐹𝑥 − 𝜇𝑥2 − 𝐶𝑜𝑟𝑟(𝑌, 𝑍)√𝑀𝑆𝐹𝑧 − 𝜇𝑧2} − 2{𝐸𝑌(𝐸𝑋 − 𝐸𝑍)}∎ 

Appendix A3. Additional simulations 

Recall from Section 4 that our VAR(1) DGP is given by 𝑌𝑡 = 𝜇𝑦 + 𝜙𝑦𝑌𝑡−1 + 𝑐𝑋𝑡−1 + 𝜀𝑡    (𝐴1) 𝑋𝑡 = 𝜇𝑥 + 𝜙𝑥𝑋𝑡−1 + 𝑢𝑡                 (𝐴2) 
 (𝜀𝑡𝑢𝑡)~𝑁 (0, ( 1 𝜌𝜀,𝑢𝜎𝑢𝜌𝜀,𝑢𝜎𝑢 𝜎𝑢2 )) 

Akin to Section 4, let us consider 𝑍1,𝑡 and 𝑍2,𝑡 as two proxies of the unobservable variable 𝑋𝑡, generated as 𝑍1,𝑡 = 𝛼1 + 𝛽1𝑋𝑡 + 𝜔𝑡       (𝐴3) 𝑍2,𝑡 = 𝛼2 + 𝛽2𝑋𝑡 + 𝑣𝑡       (𝐴4) 
where the pair the pair (𝜔𝑡, 𝑣𝑡)' is a Gaussian white noise vector that is totally independent from pair (𝜀𝑡 , 𝑢𝑡)'.  
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Now let us consider our FGP with the following two competing one-step-ahead forecasts for 𝑌𝑡: 𝑌1,𝑡−1𝑓 (1) = 𝜇1 + 𝜙1𝑌𝑡−1 + 𝑐1𝑍1,𝑡−1   (𝐴5) 𝑌2,𝑡−1𝑓 (1) = 𝜇2 + 𝜙2𝑌𝑡−1 + 𝑐2𝑍2,𝑡−1    (𝐴6) 
In contrast to Section 4, these FGP (A5) and (A6) allow 𝜇1  and 𝜇2 to be different from 𝜇𝑦, 𝜙1 and 𝜙2 to be different 

from 𝜙𝑦, and 𝑐1 and 𝑐2 to be different from c.  

To assess the empirical size of our test with this new parameterization, we impose the null hypothesis of equal 

correlation with the target variable 𝐻0: 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (ℎ), 𝑌𝑡+ℎ−1) by choosing specific values 

of the following parameters: 𝜙1, 𝜙2, 𝑐1, 𝑐2, 𝜙𝑦 , 𝑐, 𝜙𝑥 , 𝜌𝜀,𝑢, 𝜎𝜀 , 𝜎𝑢, 𝛽1, 𝛽2, 𝑉(𝜔𝑡) and 𝑉(𝑣𝑡). To that end, we make use of 

the following straightforward results that stem from the definition of our DGP and FGP: 

Since 𝑋𝑡 is an AR(1) process, it follows from equation (A2) that 

𝑉(𝑋𝑡) = 𝜎𝑢21 − 𝜙𝑥2 

From equations (A1) and (A2) 

𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡) = 𝜙𝑥𝑐𝑉(𝑋𝑡) + 𝐶𝑜𝑣(𝑢𝑡 , 𝜀𝑡)1 − 𝜙𝑥𝜙𝑦  

𝑉(𝑌𝑡) = 𝑐2𝑉(𝑋𝑡) + 2𝜙𝑦𝑐𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡) + 𝜎𝜀21 − 𝜙𝑦2  

Taking (A1) together with (A3) and (A4) 𝐶𝑜𝑣(𝑍1𝑡 , 𝑌𝑡) = 𝛽1𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) 𝐶𝑜𝑣(𝑍2𝑡 , 𝑌𝑡) = 𝛽2𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) 
Taking (A2) together with (A3) and (A4) 𝐶𝑜𝑣(𝑍1𝑡 , 𝑋𝑡) = 𝛽1𝑉(𝑋𝑡) 𝐶𝑜𝑣(𝑍2𝑡 , 𝑋𝑡) = 𝛽2𝑉(𝑋𝑡) 
The variances of equations (A5) and (A6) are given by 𝑉 (𝑌1,𝑡−1𝑓 (1)) = 𝜙12𝑉(𝑌𝑡) + 𝑐12 (𝛽12𝑉(𝑋𝑡) + 𝑉(𝜔𝑡)) + 2𝜙1𝑐1𝐶𝑜𝑣(𝑍1,𝑡 , 𝑌𝑡) 𝑉 (𝑌2,𝑡−1𝑓 (1)) = 𝜙22𝑉(𝑌𝑡) + 𝑐22 (𝛽22𝑉(𝑋𝑡) + 𝑉(𝑣𝑡)) + 2𝜙2𝑐2𝐶𝑜𝑣(𝑍2,𝑡 , 𝑌𝑡) 
Hence, using equation (A1) together with equations (A5) and (A6) 
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𝐶𝑜𝑣(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝜙𝑦𝜙1𝑉(𝑌𝑡) + 𝑐1𝜙𝑦𝐶𝑜𝑣(𝑌𝑡 , 𝑍1,𝑡) + 𝑐𝜙1𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) + 𝑐𝑐1𝐶𝑜𝑣(𝑋𝑡 , 𝑍1,𝑡) 𝐶𝑜𝑣(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 𝜙𝑦𝜙2𝑉(𝑌𝑡) + 𝑐2𝜙𝑦𝐶𝑜𝑣(𝑌𝑡 , 𝑍2,𝑡) + 𝑐𝜙2𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡) + 𝑐𝑐2𝐶𝑜𝑣(𝑋𝑡 , 𝑍2,𝑡) 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 

𝜙𝑦𝜙1 𝑐2 𝜎𝑢21 − 𝜙𝑥2 + 2𝜙𝑦𝑐 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 + 𝜎𝜀21 − 𝜙𝑦2 + 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 (𝑐1𝜙𝑦𝛽1 + 𝑐𝜙1) + 𝑐𝑐1𝛽1 𝜎𝑢21 − 𝜙𝑥2

√    
      
 
( 
  𝑐2 𝜎𝑢21 − 𝜙𝑥2 + 2𝜙𝑦𝑐 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 + 𝜎𝜀21 − 𝜙𝑦2 ) 

  
( 
  𝜙12 𝑐2 𝜎𝑢21 − 𝜙𝑥2 + 2𝜙𝑦𝑐 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 + 𝜎𝜀21 − 𝜙𝑦2 + 𝑐12 (𝛽12 𝜎𝑢21 − 𝜙𝑥2 + 𝑉(𝜔𝑡)) + 2𝜙1𝑐1𝛽1𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 ) 

  
 (𝐴7) 

𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 

𝜙𝑦𝜙2 𝑐2 𝜎𝑢21 − 𝜙𝑥2 + 2𝜙𝑦𝑐 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 + 𝜎𝜀21 − 𝜙𝑦2 + 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 (𝑐2𝜙𝑦𝛽2 + 𝑐𝜙2) + 𝑐𝑐2𝛽2 𝜎𝑢21 − 𝜙𝑥2

√    
      
 
( 
  𝑐2 𝜎𝑢21 − 𝜙𝑥2 + 2𝜙𝑦𝑐 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 + 𝜎𝜀21 − 𝜙𝑦2 ) 

  
( 
  𝜙22 𝑐2 𝜎𝑢21 − 𝜙𝑥2 + 2𝜙𝑦𝑐 𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 + 𝜎𝜀21 − 𝜙𝑦2 + 𝑐22 (𝛽22 𝜎𝑢21 − 𝜙𝑥2 + 𝑉(𝑣𝑡)) + 2𝜙2𝑐2𝛽2𝜙𝑥𝑐 𝜎𝑢21 − 𝜙𝑥2 + 𝜌𝜀,𝑢𝜎𝜀𝜎𝑢1 − 𝜙𝑥𝜙𝑦 ) 

  
  (𝐴8) 

Now we impose the null hypothesis at different levels of correlations. The idea is to choose specific values for the 

parameters 𝜙1, 𝜙2, 𝑐1, 𝑐2, 𝜙𝑦, 𝑐, 𝜙𝑥 , 𝜌𝜀,𝑢, 𝜎𝜀 , 𝜎𝑢, 𝛽1, 𝛽2, 𝑉(𝜔𝑡) and 𝑉(𝑣𝑡), so that equation (A7) is equal to equation (A8). 

Akin to Section 4, we consider three scenarios: 1) A low-correlation scenario (𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) =𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.152), 2) A mid-correlation scenario (𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.424) and 3) A 

high-correlation scenario (𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.770).  
For the low-correlation scenario, we set the following parameters: 𝜙𝑦 = 0.1, 𝑐 = 0.2, 𝜙𝑥 = 0.3, 𝜎𝜀2 = 1, 𝜎𝑢2 =2, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0.1, 𝛽1 = 0.1, 𝛽2 = 0.237, 𝜎𝜔2 = 1.5,𝜎𝑣2 = 1, 𝜇𝑦 = 0.15, 𝜇𝑥 = 0.2, 𝛼1 = 0.1, 𝛼2 = 0.2, 𝜙1 = 0.3, 𝜙2 =0.1, 𝑐1 = 0.1, 𝑐2 = 0.2, 𝜇1 = 0.2 and 𝜇2 = 0.1. With these parameters both correlations 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) and 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) take the same value of 0.152 and therefore the null hypothesis is satisfied.  

In the mid-correlation scenario, we set: : 𝜙𝑦 = 0.3, 𝑐 = 0.5, 𝜙𝑥 = 0.2, 𝜎𝜀2 = 3, 𝜎𝑢2 = 2, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0.3, 𝛽1 = 0.3, 𝛽2 =0.476, 𝜎𝜔2 = 3, 𝜎𝑣2 = 2, 𝜇𝑦 = 0.1, 𝜇𝑥 = 0.5, 𝛼1 = 0.3, 𝛼2 = 0.1, 𝜙1 = 0.6, 𝜙2 = 0.3, 𝑐1 = 0.2, 𝑐2 = 0.3, 𝜇1 = 0.3 and 𝜇2 =0.1. In this case, both correlations 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) and 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) take the same value of 0.424 and again the 

null hypothesis is satisfied.  

Finally, in the high-correlation scenario, we set: : 𝜙𝑦 = 0.5, 𝑐 = 0.7, 𝜙𝑥 = 0.4, 𝜎𝜀2 = 1, 𝜎𝑢2 = 1.5, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0.5, 𝛽1 =0.6, 𝛽2 = 0.77, 𝜎𝜔2 = 2,𝜎𝑣2 = 2.5, 𝜇𝑦 = 0.3, 𝜇𝑥 = 0.4, 𝛼1 = 0.1, 𝛼2 = 0.2, 𝜙1 = 0.4, 𝜙2 = 0.6, 𝑐1 = 0.4, 𝑐2 = 0.6, 𝜇1 = 0.2 
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and 𝜇2 = 0.4. With these parameters, 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.770 and the null hypothesis is 

imposed again. 

Table A1 next exhibit our results. Qualitatively speaking, Table A1 delivers similar conclusions than Table 1: i) both 

versions of our test are nicely sized for large samples, ii) the friendly user version tends to be more oversized than 

the complete test for small samples, and iii) our test performs similarly well for the three scenarios of correlations 

in the null hypothesis. 

Table A1: Size analysis imposing the null hypothesis  𝑯𝟎: 𝑪𝒐𝒓𝒓(𝒀𝟏,𝒕−𝟏𝒇 (𝟏), 𝒀𝒕) = 𝑪𝒐𝒓𝒓(𝒀𝟐,𝒕−𝟏𝒇 (𝟏), 𝒀𝒕) for three different 

scenarios of correlations. 

                 
(1) (2) (3)   (4) (5)   (6) (7) 

Correlation scenario Low Correlation   Mid Correlation   High Correlation 
Nominal Size 10% 5%   10% 5%   10% 5% 

  Sample Size=2000 
Correlation test 9.58 4.66   9.40 4.58   9.76 4.98 

Friendly-user test 9.88 4.84   9.44 4.66   10.04 5.32 

  Sample Size=500 
Correlation test 10.58 5.28   10.54 4.94   9.94 4.96 
Friendly-user test 11.04 5.66   10.68 5.12   10.56 5.46 

  Sample Size=100 
Correlation test 12.02 5.66   12.16 6.74   11.16 5.42 
Friendly-user test 13.32 7.04   12.74 7.58   13.20 7.64 

  Sample Size=50  
Correlation test 12.00 5.78   14.26 7.88   10.20 4.58 
Friendly-user test 14.86 8.46   15.8 9.26   14.64 8.16 

Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. Columns (2), (4) and (6) consider a 
nominal size of 10%, while columns (3), (5) and (7) consider a nominal size of 5%. As both versions of our test are asymptotically normal, we 
reject the null hypothesis using standard normal critical values. We consider 10,000 Monte Carlo simulations for each exercise. The "friendly 
user" version of our test requires subtracting the mean of both forecasts and the target variable. Long-run variances are estimated using 
Newey and West (1987, 1994). Source: Author's elaboration. 

Power analysis 

Finally, we explore the power of our test in this parameterization using one-step-ahead forecasts. To this end, we 

consider as a start point the following parameters of our mid-correlations scenario from Table A1: 𝜙𝑦 = 0.3, 𝑐 =0.5, 𝜙𝑥 = 0.2, 𝜎𝜀2 = 3, 𝜎𝑢2 = 2, 𝐶𝑜𝑟𝑟(𝜀𝑡 , 𝑢𝑡) = 0.3, 𝛽1 = 0.3, 𝛽2 = 0.476, 𝜎𝜔2 = 3, 𝜎𝑣2 = 2, 𝜇𝑦 = 0.1, 𝜇𝑥 = 0.5, 𝛼1 =0.3, 𝛼2 = 0.1, 𝜙1 = 0.6, 𝜙2 = 0.3, 𝑐1 = 0.2, 𝑐2 = 0.3, 𝜇1 = 0.3 and 𝜇2 = 0.1. Recall that, under these parameters, we 

impose the null hypothesis at 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) = 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 0.424. To impose the alternative 

hypothesis, we shrink the coefficient 𝛽2 to four different values: 0.1, -0.1, -0.25, and -0.4. With these new values of 
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𝛽2, the differences in correlations become 𝐶𝑜𝑟𝑟(𝑌1,𝑡−1𝑓 (1), 𝑌𝑡) − 𝐶𝑜𝑟𝑟(𝑌2,𝑡−1𝑓 (1), 𝑌𝑡) = 𝜌1 − 𝜌2 = 0.059, 0.101, 0.136 

and 0.175 respectively. We consider four different sample sizes: 50, 100, 500, 1000, and 2000. Finally, we run 10,000 

Monte Carlo replications with nominal sizes of 10% and 5%.  

Table A2 exhibit our results. Qualitatively speaking, Table A2 delivers similar conclusions than Table 6: i) both 

versions of our test reject more than 90% in large samples (specially for T=2000), ii) obviously the power of our test 

increases with a greater difference between both correlations, iii) the power of our test tends to deteriorate with 

small samples, specially when the differences between both correlations are small, and iv) in small samples, the 

Friendly-user test has an edge in terms of power; this result should be seen with caution, since our simulations 

indicates that the Friendly-user test tends to be more oversized, specially in small samples. 

Table A2: Power analysis imposing the alternative hypothesis for a mid-correlations scenario. 

 

Notes: Each entry represents the percentage of rejections of the null hypothesis of equal correlations. The alternative hypothesis is set at four 
different levels: 𝜌1 − 𝜌2 = 0.059, 0.101, 0.136 and 0.175 respectively.  Columns (2), (4), (6) and (8) consider a nominal size of 10%, while 
columns (3), (5), (7)  and (9) consider a nominal size of 5%. As both versions of our test are asymptotically normal, we reject the null 
hypothesis using standard normal critical values. We consider 5,000 Monte Carlo simulations for each exercise. The "friendly user" version 
of our test requires subtracting the mean of both forecasts and the target variable. Long-run variances are estimated using Newey and West 
(1987, 1994). Source: Author's elaboration. 

Appendix A4. Derivations using the Delta Method. 

Our test. 

Define the following sample moments vector: 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Under the alternative hypothesis: 
Nominal Size 10% 5% 10% 5% 10% 5% 10% 5%

Correlation test 99.84 99.52 100.00 100.00 100.00 100.00 100.00 100.00
Friendly-user test 99.84 99.52 100.00 100.00 100.00 100.00 100.00 100.00

Correlation test 94.67 90.07 99.98 99.94 100.00 100.00 100.00 100.00
Friendly-user test 94.63 89.92 99.98 99.94 100.00 100.00 100.00 100.00

Correlation test 73.44 62.86 97.94 96.13 99.93 99.76 100.00 100.00
Friendly-user test 73.26 62.56 97.91 96.01 99.91 99.75 100.00 100.00

Correlation test 28.31 19.00 51.12 38.90 68.74 57.09 81.01 71.61
Friendly-user test 28.48 19.23 51.02 38.60 68.52 56.64 80.77 71.13

Correlation test 20.95 13.16 33.29 23.06 45.24 34.13 57.70 45.18
Friendly-user test 21.76 13.75 33.72 23.37 45.37 34.07 57.69 44.79

Sample Size = 2000

Sample Size = 1000

Sample Size = 500

Sample Size = 100

Sample Size = 50

𝜌1 − 𝜌2 = 0.059 𝜌1 − 𝜌2 = 0.101 𝜌1 − 𝜌2 = 0.136 𝜌1 − 𝜌2 = 0.175
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[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 = 1𝑇∑

[  
   
  𝑍𝑡𝑋𝑡𝑌𝑡𝑍𝑡2𝑋𝑡2𝑍𝑡𝑌𝑡𝑋𝑡𝑌𝑡]  

   
  𝑇

𝑡=1  

 

Let [𝜇𝑍, 𝜇𝑋 , 𝜇𝑌 , 𝜇𝑍𝑍 , 𝜇𝑋𝑋 , 𝜇𝑍𝑌, 𝜇𝑋𝑌]𝑇 be the population counterpart. Additionally, let 𝑠𝑦2 = 𝑚𝑌𝑌 −𝑚𝑌2 , 𝑠𝑍2 = 𝑚𝑍𝑍 −𝑚𝑍2 , 𝑠𝑋2 = 𝑚𝑋𝑋 −𝑚𝑋2 , 𝑠𝑌𝑍 = 𝑚𝑌𝑍 −𝑚𝑧𝑚𝑦 , 𝑠𝑌𝑋 = 𝑚𝑌𝑋 −𝑚𝑋𝑚𝑌. 

By the Central Limit Theorem (CLT): 

 

√𝑇
( 
   
[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 −

[  
   
 𝜇𝑍𝜇𝑋𝜇𝑌𝜇𝑍𝑍𝜇𝑋𝑋𝜇𝑍𝑌𝜇𝑋𝑌]  

   
 
) 
   𝑑→𝑁7(07𝑥1, ∑ Ωj∞

𝑗=−∞ ) 
Where Ωj = 

( 
   
  

𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗)) 
   
  

 

 

Now let us define the function 𝑔: 𝑅7 → 𝑅4 such that  

 

𝑔
[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 = [  

 𝑠𝑍2𝑠𝑋2𝑠𝑌𝑍𝑠𝑌𝑋]  
 = [  

 𝑚𝑍𝑍 −𝑚𝑍2𝑚𝑋𝑋 −𝑚𝑋2𝑚𝑌𝑍 −𝑚𝑌𝑚𝑍𝑚𝑌𝑋 −𝑚𝑌𝑚𝑋]  
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Let Δ𝑔 be the first derivative of 𝑔, then: 

Δ𝑔
[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 =

[  
   
 −2𝑚𝑍 0 −𝑚𝑌 00 −2𝑚𝑋 0 −𝑚𝑌0 0 −𝑚𝑍 −𝑚𝑋1 0 0 00 1 0 00 0 1 00 0 0 1 ]  

   
 
 

Or applied to our population moments: 

 

Δ𝑔
[  
   
 𝜇𝑍𝜇𝑋𝜇𝑌𝜇𝑍𝑍𝜇𝑋𝑋𝜇𝑍𝑌𝜇𝑋𝑌]  

   
 =

[  
   
 −2𝜇𝑍 0 −𝜇𝑌 00 −2𝜇𝑋 0 −𝜇𝑌0 0 −𝜇𝑍 −𝜇𝑋1 0 0 00 1 0 00 0 1 00 0 0 1 ]  

   
 
 

Hence by the Delta method 

√𝑇( [  
 𝑠𝑍2𝑠𝑋2𝑠𝑌𝑍𝑠𝑌𝑋]  

 − [  
 𝜎𝑍2𝜎𝑋2𝜎𝑌𝑍𝜎𝑌𝑋]  

 
) 𝑑→𝑁4(04𝑥1, Δ𝑔𝑇 [ ∑ Ωj∞

𝑗=−∞ ] Δ𝑔) 
Now let ℎ: 𝑅4 → 𝑅 such that 

 

ℎ [  
 𝑠𝑍2𝑠𝑋2𝑠𝑌𝑍𝑠𝑌𝑋]  

 = 𝑠𝑌𝑍𝑠𝑍 − 𝑆𝑌𝑋𝑠𝑋  

Hence the first derivative of h evaluated at our population moments: 

Δℎ [  
 𝜎𝑍2𝜎𝑋2𝜎𝑌𝑍𝜎𝑌𝑋]  

 =
[  
   
   −

𝜎𝑌𝑍2𝜎𝑍3𝜎𝑌𝑋2𝜎𝑋31𝜎𝑍− 1𝜎𝑋 ]  
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And the desired result follows from using the Delta method once more: 

√𝑇𝑠𝑌([𝑟1 − 𝑟2] − [𝜌1 − 𝜌2]) 𝑑→𝑁(0, Δℎ𝑇Δ𝑔𝑇 [ ∑ Ωj∞
𝑗=−∞ ] Δ𝑔Δℎ)  ∎ 

Our friendly-user test. 

Define the following sample moments vector: 

[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 = 1𝑇∑

[  
   
  𝑍𝑡𝑋𝑡𝑌𝑡𝑍𝑡2𝑋𝑡2𝑍𝑡𝑌𝑡𝑋𝑡𝑌𝑡]  

   
  𝑇

𝑡=1  

 

Let [𝜇𝑍, 𝜇𝑋 , 𝜇𝑌 , 𝜇𝑍𝑍 , 𝜇𝑋𝑋 , 𝜇𝑍𝑌, 𝜇𝑋𝑌]𝑇 be the population counterpart. Additionally, let 𝑠𝑦2 = 𝑚𝑌𝑌 −𝑚𝑌2 , 𝑠𝑍2 = 𝑚𝑍𝑍 −𝑚𝑍2 , 𝑠𝑋2 = 𝑚𝑋𝑋 −𝑚𝑋2 , 𝑠𝑌𝑍 = 𝑚𝑌𝑍 −𝑚𝑧𝑚𝑦 , 𝑠𝑌𝑋 = 𝑚𝑌𝑋 −𝑚𝑋𝑚𝑌. 

By the Central Limit Theorem (CLT): 

 

√𝑇
( 
   
[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 −

[  
   
 𝜇𝑍𝜇𝑋𝜇𝑌𝜇𝑍𝑍𝜇𝑋𝑋𝜇𝑍𝑌𝜇𝑋𝑌]  

   
 
) 
   𝑑→𝑁7(07𝑥1, ∑ Ωj∞

𝑗=−∞ ) 
Where Ωj = 

( 
   
  

𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑍𝑡−𝑗𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡 , 𝑋𝑡−𝑗𝑌𝑡−𝑗)) 
   
  

 

 

Now let us define the function 𝑔: 𝑅7 → 𝑅4 such that  
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𝑔
[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 = [  

 𝑠𝑍2𝑠𝑋2𝑠𝑌𝑍𝑠𝑌𝑋]  
 = [  

 𝑚𝑍𝑍 −𝑚𝑍2𝑚𝑋𝑋 −𝑚𝑋2𝑚𝑌𝑍 −𝑚𝑌𝑚𝑍𝑚𝑌𝑋 −𝑚𝑌𝑚𝑋]  
 
 

Let Δ𝑔 be the first derivative of 𝑔, then: 

Δ𝑔
[  
   
 𝑚𝑍𝑚𝑋𝑚𝑌𝑚𝑍𝑍𝑚𝑋𝑋𝑚𝑍𝑌𝑚𝑋𝑌]  

   
 =

[  
   
 −2𝑚𝑍 0 −𝑚𝑌 00 −2𝑚𝑋 0 −𝑚𝑌0 0 −𝑚𝑍 −𝑚𝑋1 0 0 00 1 0 00 0 1 00 0 0 1 ]  

   
 
 

Or applied to our population moments: 

 

Δ𝑔
[  
   
 𝜇𝑍𝜇𝑋𝜇𝑌𝜇𝑍𝑍𝜇𝑋𝑋𝜇𝑍𝑌𝜇𝑋𝑌]  

   
 =

[  
   
 −2𝜇𝑍 0 −𝜇𝑌 00 −2𝜇𝑋 0 −𝜇𝑌0 0 −𝜇𝑍 −𝜇𝑋1 0 0 00 1 0 00 0 1 00 0 0 1 ]  

   
 
 

But in this case, we have assumed that 𝜇𝑍 = 𝜇𝑋 = 𝜇𝑌 = 0, hence 

Δ𝑔
[  
   
 000𝜇𝑍𝑍𝜇𝑋𝑋𝜇𝑍𝑌𝜇𝑋𝑌]  

   
 
=
[  
   
 0 0 0 00 0 0 00 0 0 01 0 0 00 1 0 00 0 1 00 0 0 1]  

   
 
 

And by the Delta method 

√𝑇( [  
 𝑠𝑍2𝑠𝑋2𝑠𝑌𝑍𝑠𝑌𝑋]  

 − [  
 𝜎𝑍2𝜎𝑋2𝜎𝑌𝑍𝜎𝑌𝑋]  

 
) 𝑑→𝑁4(04𝑥1, ∑ Γj∞

𝑗=−∞  ) 
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∑ Γj∞
𝑗=−∞ = Δ𝑔𝑇 [∑ Ωj∞

𝑗=−∞ ] Δ𝑔 = 

∑ [  
  𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑍𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑍𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑋𝑡−𝑗2 ) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗2 )𝐶𝑜𝑣(𝑍𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑍𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑍𝑡−𝑗𝑌𝑡−𝑗)𝐶𝑜𝑣(𝑍𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡2, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑍𝑡𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗) 𝐶𝑜𝑣(𝑋𝑡𝑌𝑡, 𝑋𝑡−𝑗𝑌𝑡−𝑗)]  

  ∞
𝑗=−∞  

Now let ℎ: 𝑅4 → 𝑅 such that 

 

ℎ [  
 𝑠𝑍2𝑠𝑋2𝑠𝑌𝑍𝑠𝑌𝑋]  

 = 𝑠𝑌𝑍𝑠𝑍 − 𝑆𝑌𝑋𝑠𝑋  

Hence the first derivative of h evaluated at our population moments: 

Δℎ [  
 𝜎𝑍2𝜎𝑋2𝜎𝑌𝑍𝜎𝑌𝑋]  

 =
[  
   
   −

𝜎𝑌𝑍2𝜎𝑍3𝜎𝑌𝑋2𝜎𝑋31𝜎𝑍− 1𝜎𝑋 ]  
   
   
 

And the desired result follows from using the Delta method once more: 

√𝑇𝑠𝑌([𝑟1 − 𝑟2] − [𝜌1 − 𝜌2]) 𝑑→𝑁(0, ∇ℎ̂′[ ∑ Γ̂j∞
𝑗=−∞ ] ∇ℎ̂)  ∎ 

 


