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Abstract 

Rainfall and temperature are important climatic inputs for agricultural production, 

especially in the context of climate change. However, accurate analysis and simulation of 

the joint distribution of rainfall and temperature are difficult due to possible 

interdependence between them. As one possible approach to this problem, five families 

of copula models are employed to model the interdependence between rainfall and 

temperature. Scania is a leading agricultural province in Sweden and affected by a 

maritime climate. Historical climatic data for Scania is used to demonstrate the modeling 

process. Heteroscedasticity and autocorrelation of sample data are also considered to 

eliminate the possibility of observation error. The results indicate that for Scania there are 

negative correlations between rainfall and temperature for the months from April to July 

and September. The student copula is found to be most suitable to model the bivariate 

distribution of rainfall and temperature based on the Akaike information criterion (AIC) 

and Bayesian information criterion (BIC). Using the student copula, we simulate 

temperature and rainfall simultaneously. The resulting models can be integrated with 

research on agricultural production and planning to study the effects of changing climate 

on crop yields.  
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1. Introduction 

    Weather is the key source of uncertainty affecting crop yield especially in the context 

of climate change [1-3]. For example, Vergara et al. studied the potential impact of 

catastrophic weather on the crop insurance industry and found that 93% of crop loss was 

directly related to unfavorable weather [4]. Accurate modeling of multivariate weather 

distributions would allow farmers to make better decisions for reducing their exposure to 

weather risk or take advantage of favorable climatic relationships [5]. Among variables 

relevant to weather, rainfall and temperature are two important factors which have a large 

effect on crop yield [6-9]. Typically, temperature affects the length of the growing season 

and rainfall affects plant production (leaf area and the photosynthetic efficiency) [10, 11]. 

There is a lot of literature studying the effects of temperature and rainfall on crop yield. 

Erskine and Elashkar quantified the effect of rainfall on lentil seed yield and found that 

rainfall accounted for 79.8% of the variance of seed yield [12]. Lobell et al. studied 12 

major Californian crops and found rainfall was able to explain more than 60% of the 

observed variability in yields for most crops [13]. Cooper et al. found that not only the 

seasonal rainfall totals and their season-to-season variability were important, but also the 

‘within season’ variability had a major effect on crop productivity [14], which implies 

monthly data is needed in crop production analysis.  

 Muchow et al. found that lower temperature increased the length of time that the 

maize could intercept radiation and hence grow [15]. Lobell and Asner found a roughly 

17% relative decrease in both corn and soybean yield in the USA for each degree of 

increase in growing season temperature [16]. In summary, it is well established that 



4 

 

rainfall and temperature are two important climatic factors affecting agricultural 

production [17-19].   

Since temperature and rainfall are critical determinants of crop yield, accurate 

simulation of temperature and rainfall is important not only for meteorology but also for 

agricultural economics. However, in reality it is difficult to simulate rainfall and 

temperature simultaneously due to the interdependence (correlation) between them [20-

22]. Spatially, it is generally believed that there exists significant correlation between 

rainfall and temperature over tropical oceans and land [23]. For example, Aldrian and 

Susanto examined the relationship between rainfall and sea surface temperature, and 

found that Indonesian rainfall variability revealed some sensitivity to sea-surface 

temperature variability in adjacent parts of the Indian and Pacific Oceans [24]. Black also 

studied the relationship between Indian Ocean sea surface temperature and East Africa 

rainfall, and concluded that strong East African rainfall was associated with warming in 

the Pacific and Western Indian Oceans and cooling in the Eastern Indian Ocean [25].  

Temporally, it is generally believed that the correlation between rainfall and 

temperature changes between months. For example, Rajeevan et al. examined the 

temporal relationship between land surface temperature and rainfall [26]. They found that 

temperature and rainfall were positively correlated during January and May but 

negatively correlated during July. Using annual data Huang et al. also found a negative 

correlation between rainfall and temperature in Yellow River basin of China [27]. 

To take the interdependence between rainfall and temperature into account, 

multivariate probability simulation is needed. Traditionally multivariate probability 
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density functions, however, are generally limited to the multivariate normal distribution 

or mixtures of it [28]. A possible method that provides an alternative is the Copula 

method. Copulas are advantageous because they can model joint distributions of random 

variables with greater flexibility both in terms of marginal distributions and the 

dependence structure [29]. Copulas have been used in financial economics for quite some 

time [30-32]. However, there are relatively few applications to agricultural weather 

simulation.  

In respect to temperature and rainfall, AghaKouchak et al. applied two different 

elliptical copula families, namely, Gaussian and t-copula, to simulate the spatial 

dependence of rainfall and found that using the t-copula might have significant 

advantages over the well-known Gaussian copula particularly with respect to extremes 

[33]. Serinaldi also studied the spatial dependence of rainfall and confirmed that only 

positive contemporaneous pairs of rainfall observations correctly described the inter-site 

dependence [34]. Laux et al. highlighted the importance of pretreatment of 

meteorological data in the Copula modeling process [35]. Laux et al. used the Clayton 

copula to construct the bivariate distribution of drought duration and intensity [36]. 

Similar applications of the Clayton copula can also be found in the studies of Favre et al. 

and Shiau et al. [37, 38]. Furthermore, they raised the question as to which copula model 

best fitted the empirical data. The only literature concerning the application of Copula 

simulation to model the interdependence between temperature and rainfall up to now is 

Scholzel et al. [39]. They used a simple statistical model based on the copula approach to 

describe the phenomenon that cold periods were accompanied by small precipitation 

amounts.  
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Inspired by Dupuis’s study on hydrological random variables [40], the purpose of this 

paper is to illustrate the pretreatment process of meteorological data, demonstrate the 

application of different copulas to modeling of joint distributions of rainfall and 

temperature, select the most suitable copula function according to information criterions, 

and finally simulate rainfall and temperature simultaneously.  

2. Materials and Methods 

2.1 Study area 

    Scania is Sweden’s southernmost province and one of Northern Europe’s most fertile 

farming districts with the main crops being winter wheat, rapeseed, sugar beets and 

barley. As Scania is surrounded by water on three sides (the Baltic Sea, the Kattegat Sea 

and the Öresund Sound), it has a maritime climate, especially along the south and east 

coasts. The winters are mild (few days of snow), but the summers are similar to those in 

the rest of southern Sweden. 

2.2 Data collection and preliminary analysis 

Monthly temperature and rainfall data for Scania from 1961 to 2010 was obtained from 

the Swedish Meteorological and Hydrological Institute.  

(1) Temperature 
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FIGURE 1: Monthly average temperature in Scania, Sweden from 1961 to 2010. 

Note: The boundary of the box closest to zero indicates the 25th percentile, a line within 

the box marks the median, and the boundary of the box farthest from zero indicates the 

75th percentile. Whiskers (error bars) above and below the box indicate the 90th and 10th 

percentiles.  

Monthly average temperature in Scania shows a clear seasonal cycle from 1961 to 

2010, Figure 1. The average temperature usually reaches its peak in July and its bottom in 

February. From April to November, the average temperature is always above 0℃. The 

variability of average temperature in January and February is though relatively large. 

Some descriptive temperature statistics are listed in Table 1. 
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TABLE 1: Descriptive statistics for monthly average temperature from 1961 to 2010 

(unit: ℃). 

 Jan. Feb. Mar. Apr. May June 
Maximum 5.10 5.20 5.80 8.30 13.10 18.00 
Minimum -5.20 -5.20 -2.30 1.90 8.40 12.00 
Mean 0.83 0.54 2.21 5.68 10.58 14.78 
Standard 
deviation 

2.48 2.39 1.85 1.36 1.20 1.07 

Variation 
coefficient 

2.99 4.44 0.84 0.24 0.11 0.07 

 July Aug. Sep. Oct. Nov. Dec. 
Maximum 21.00 21.50 16.90 13.20 8.30 7.10 
Minimum 13.90 14.60 11.60 7.60 2.70 -2.80 
Mean 16.99 17.04 13.98 10.03 5.80 2.49 
Standard 
deviation 

1.59 1.45 1.20 1.33 1.27 1.88 

Variation 
coefficient 

0.09 0.09 0.09 0.13 0.22 0.76 

 

(2) Rainfall 

Compared with temperature, monthly total rainfall in Scania does not show a clear 

seasonal cycle from 1961 to 2010. From June to November, the average monthly total 

rainfall is relatively high, Figure 2. Some descriptive rainfall statistics are listed in Table 

2. 
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FIGURE 2: Monthly total rainfall in Scania, Sweden from 1961 to 2010. 

Note: The boundary of the box closest to zero indicates the 25th percentile, a line within 

the box marks the median, and the boundary of the box farthest from zero indicates the 

75th percentile. Whiskers (error bars) above and below the box indicate the 90th and 10th 

percentiles. 

TABLE 2: Descriptive statistics for monthly total rainfall from 1961 to 2010 (unit: 

mm). 

 Jan. Feb. Mar. Apr. May June 
Maximum 70.00 50.00 73.50 87.90 90.60 123.3 
Minimum 1.00 5.00 3.30 3.80 6.30 0.1 
Mean 35.19 25.14 30.07 32.20 39.74 46.28 
Standard 17.07 11.38 16.25 18.86 20.46 26.82 
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deviation 
Variation 
coefficient 

0.49 0.45 0.54 0.59 0.51 0.58 

 July Aug. Sep. Oct. Nov. Dec. 
Maximum 147.60 189.90 161.90 106.30 95.00 106.00 
Minimum 7.40 5.70 7.30 4.50 17.00 4.80 
Mean 51.15 58.33 49.20 45.90 45.73 40.80 
Standard 
deviation 

30.76 39.97 31.48 24.26 19.65 19.03 

Variation 
coefficient 

0.60 0.69 0.64 0.53 0.43 0.47 

 

(3) The relationship between rainfall and temperature 

The physical rationale behind the relationship between rainfall and temperature is that 

rainfall may affect soil moisture which may in turn affect surface temperature by 

controlling the partitioning between the sensible and latent heat fluxes [41]. Because the 

sample data is non-Gaussian distributed and skewed, the Kendall correlation coefficient 

is employed to calculate the correlation between monthly rainfall and temperature. It is 

found that there are negative correlations between rainfall and temperature from April to 

July and in September (at the 10% confidence level) (Table 3). 

Table 3 Correlation analysis for monthly temperature and rainfall from 1961 to 2010 

 Jan. Feb. Mar. Apr. May June 

Kendall 
correlation 
coefficients 

0.12 0.13 0.07 -0.27 -0.3 -0.17 

P value 0.22 0.19 0.49 0.007 0.002 0.08 

 July Aug. Sep. Oct. Nov. Dec. 

Kendall 
correlation 
coefficients 

-0.3 -0.02 -0.19 -0.13 -0.02 0.09 

P value 0.002 0.84 0.06 0.19 0.85 0.37 
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2.3 Methods 

    Here we use the Copula functions to model the interdependence between the 

probability distributions of a certain month’s temperature and rainfall. Let X and Y be 

continuous random variables representing temperature and rainfall, with cumulative 

distribution functions ( ) Pr( )
X

F x X x=  and ( ) Pr( )
Y

G y Y y=  , respectively. Following 

Sklar [42], there is a unique function C such that: 

Pr( , ) ( ( ), ( ))X x Y y C F x G y  =                                              (1) 

where ( , ) Pr( , )C u v U u V v=    is the distribution of the pair ( , ) ( ( ), ( ))U V F X G Y=  

whose margins are uniform on [0, 1]. The function C is called a copula. As argued by Joe 

[43] or Nelsen [44] among others, C characterizes the dependence in the pair (X, Y). 

There are many parametric copula families available, which usually have parameters that 

control the strength of dependence. Among these, five families of commonly used 

copulas are considered. They are listed in table 4, along with their parameter range. The 

first three are Archimedean [43] and the last two are meta-elliptical [45]. 

Table 4: Five families of copulas 

Family C(u,v) Range of   
Normal 1 1( ( ), ( ))N u v

− −   [-1,1] 

Student 1 1
, ( ( ), ( ))T T u T v   

− −  [-1,1] 

Clayton 1/( +v 1)u
  − − −−  (0, )  

Frank 1 ln{1 ( 1)( 1) / ( 1)}u v
e e e

   − − − −− + − − −  ( ),−   

Gumbel  1/exp [( ln ) ( ln ) ]u v
  − − + −  [1, )  

 : Cumulative distribution function (cdf) of a N(0,1) 

N : Cdf of a standard bivariate Normal distribution with Pearson correlation θ 

T : Cdf of a Student distribution with γ degrees of freedom 
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,T  : Cdf of a bivariate Student distribution with γ degrees of freedom  

Source: [46] 

After calculating the parameters of each copula, it is necessary to decide which family 

is the best representation of the dependence structure between the variables of interest. 

There are a few techniques to select the best copula. One of them is based on distance 

measures pertaining to the distributions of the candidate models (copulas) and the 

empirical distribution of the data [46, 47]. Alternative methods include Likelihood Ratio 

tests and approaches related to information criteria [31], such as Akaike [48] and 

Schwarz's Bayesian [49] Information Criteria.  Information criteria are adopted here 

because they can describe the tradeoff between bias (or accuracy) and variance 

(complexity) in model construction. The Akaike information criterion (AIC) is a measure 

of the relative goodness of fit of a statistical model. Its definition is: 

2 2ln( )AIC k L= −                                                               (2) 

    where k is the number of parameters in the copula, and L is the maximized value of the 

likelihood function for the copula. The Bayesian information criterion (BIC) was 

developed by Schwarz using Bayesian formalism. Its definition is: 

 =-2ln( )+ ln( )BIC L k N                                                           (3) 

where N is the sample size. 

3. Results and Discussion 

Temperature and rainfall data in April from 1961 to 2010 is employed as an example to 

demonstrate the modeling process (Figure 3). There is a significant negative relationship 
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(Kendall correlation coefficient is -0.27, P-value=0.007) between temperature and rainfall 

in April. Temperature has negative skewness (-0.35) and rainfall has positive skewness 

(1.07), which may cause a heteroscedasticity problem when fitting the model [50]. 

Following Kim and Ahn [51], the temperature and rainfall data are log-transformed to 

remove this effect. The logarithmic transformation for the data is invertible, which will 

not affect the fitting results. 

 

FIGURE 3: Temperature and rainfall in April from 1961 to 2010 

Following Benth and Saltyte-Benth’s instructions [52], the time series of temperature 

and rainfall are tested for autocorrelation using the Q-statistics (Figure 4). 

Autocorrelation describes the correlation between values of temperature (or rainfall) at 

different points in time, as a function of the time difference. The presence of 

autocorrelation increases the variances of residuals and estimated coefficients, which 
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reduces the model’s efficiency. The Ljung–Box Q test is a type of statistical test of 

whether autocorrelations of a time series are different from zero [53]. The Q-statistics is 

defined as follows: 

2

1

ˆ
= (N+2)

h
a

a

p
Q N

N a= −                                                                (4) 

where 2ˆ
a

p is the sample autocorrelation at lag a, and h is the number of lags being 

tested. The first order autocorrelations are found to be strong both for temperature (Q-

stat=6.32, P-value=0.01) and rainfall (Q-stat=4.52, P-value=0.03), as shown in Figure 4.  

 

FIGURE 4: Sample autocorrelation function (ACF) of temperature and rainfall in April 

from 1961 to 2010 

Therefore, an AR(1) model is used to eliminate the autocorrelation in the series as 

follows: 
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1

** **

1

** **

0.48 0.35

(4.7 ) (2.56 )

1.85 0.29

(9.06 ) ( 2.1 )

t t t

t t t

tempe tempe

rain rain





−

−

= +  +

= −  +

−                                          

(5) 

Note: The numbers in the bracket are t-values. ** stands for the statistical significance at 

the 95% confidence level.  

Residuals 
t
 and 

t
 are tested where only weak autocorrelations are found (Figure 5).  

 

FIGURE 5: Sample autocorrelation function (ACF) of AR adjusted temperature and 

rainfall in April 

In addition to autocorrelation, time trends are also found in the series of 
t
 and 

t
 . 

Based on Manton et al.’s research [54], the time trends should be removed from the series 

to obtain a stationary process. The functions used to detrend the time series are: 
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** **

** **

0.08 0.0032

( 2.65 ) (3.04 )

0.17 0.007

(2.3 ) ( 2.65 )

t t

t t

t

t

 

 

= − +  +

−
= −  +

−                                                 

(6) 

We find that temperature has an increasing trend and rainfall a decreasing trend in 

April from 1961 to 2010 (Figure 6). The annual rate of increase in temperature in April is 

0.0032℃ and decrease in rainfall is 0.007 mm per year. The trend adjusted data are 

shown in Figure 7 where 
t

rtempe and 
t

rrain are used to represent the corrected values of 

t
 and 

t
 respectively. 

 

FIGURE 6: Residuals for AR adjusted temperature and rainfall in April 
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    FIGURE 7: Scatters of residuals for trend adjusted temperature and rainfall in April 

The residuals for the trend adjusted variables have negative skewness: temperature (-1) 

and rainfall (-0.7). Based on the inference for the margins (IFM) [55], the parameter 

estimates and model evaluation indices for each Copula for 
t

rtempe and 
t

rrain are 

presented in Table 5. 

Table 5 Results of different copula models for temperature and rainfall in April 

 Normal Student Clayton Frank Gumbel 

  -0.34 -0.31 0.001 0.001 1.1 

log-likelihood 3.05 4.11 -0.0007 -0.0002 -1.86 

AIC -6.06 -8.15 0.042 0.041 3.75 

BIC -6.02 -8.07 0.081 0.08 3.79 

 

The log-likelihood ratio is largest and the AIC and BIC are smallest for the Student 

Copula, which means that the Student Copula is the most suitable model.  
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A comparison of the real and simulated residuals of temperature and rainfall is shown 

in Figure 8. 

 

FIGURE 8: Scatter plots of real residuals (above) and Student-based Copula simulated 

residuals (below)  

    Since the purpose of this paper is to develop a copula model of the bivariate 

distribution of rainfall and temperature that can be used in simulation studies, the 

accuracy of the resulting model is of utmost importance. Although Table 5 has provided 

some statistical support for the model and Figure 8 has given some visual evidence, the 

contours of the cumulative distribution functions can best show the difference between 

the real and simulated data. 
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In Figures 9-13 the contours of the cumulative distribution functions (CDF) for the real 

and simulated data from the five copula models are plotted to visualize the difference or 

similarity in the distributions as the case may be. It is found that the Student copula 

model fits the real data best according to the similarity of the contour lines. Consequently 

the Student copula is the best choice of model according to all our criteria. 

 

FIGURE 9: Real vs Gauss Fitted CDF 

 

FIGURE 10: Real vs Student Fitted CDF 
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FIGURE 11: Real vs Clayton Fitted CDF 

 

FIGURE 12: Real vs Frank Fitted CDF 

 

FIGURE 13: Real vs Gumbel Fitted CDF 

Note: The dashed lines are the real CDFs while the solid lines are the simulated CDFs 
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Based on the estimated parameters, 1,000 draws are made from the Student copula 

model. The simulated data is then transformed to the original scale and compared with 

the real data in Figure 14. 

 

 

FIGURE 14: Real (left) and Student-based Copula simulated (right) temperature and 

rainfall data for Scania in April 

4. Conclusions 

    This paper presents a copula-based methodology for modeling the joint distribution of 

temperature and rainfall, which are of utmost importance for agricultural production 

especially in the context of climate change. Copulas have been used extensively in the 

financial literature, but have not been widely used in weather simulation. The copula 

approach provides a powerful and flexible method to model multivariate distributions and 

thus goes beyond joint normality, regressibility, and mean-variance criterion. Accurate 

simulation of weather events may help to improve risk management in agricultural 

planning. 
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    A shortcoming of the copula method is the arbitrariness of the selection of a particular 

copula. The main purpose of this paper is to present a complete copula modeling 

framework to model the interdependence of rainfall and temperature. In contrast to 

Schoelzel et al. [39], we compare different copulas and show how to select the optimal 

copula based on information criterion (AIC and BIC). The advantage of this approach is 

that it does not require any assumptions and is primarily data driven thus minimizing the 

subjectivity introduced by the researcher. The model selection criteria indicate that the 

Student copula produces the best model to simulate the dependence structure between 

rainfall and temperature in Scania, Sweden. 

    Although the month of April was chosen as our working example, we have also tested 

the data for other months with similar results. The study is only based on meteorological 

data for a single region. The most suitable copula family for rainfall and temperature 

might change from one region to another due to differences in geographical and 

geophysical conditions. Our approach however can be applied in studies of other parts of 

the world to select the most appropriate copula model. A potentially valuable extension 

of this research is to connect the analysis with crop production planning and agricultural 

economics.  If the relationship among temperature, rainfall and crop yield can be 

determined then it could be used in developing risk reducing strategies for farmers, 

something which will become increasingly important in the face of climate change. This 

is the focus of our ongoing research. 
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