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Abstract

We investigate where retail stores agglomerate in a road network with radial roads and

a ring road in a two-dimensional space. Per-distance travel cost on the radial roads
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agglomeration patterns of retail stores is investigated with decreases in the travel costs.
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1. Introduction

Shopping is an indispensable daily activity in our lives. The hollowing-out of ur-

ban commercial centers has been an economic geographical progressing problem over

the past several decades. One of the factors driving the hollowing-out is a decrease

in travel costs caused by automobility and road improvements. Road improvements,

however, provide social benefits to consumers. If the hollowing-out harms social wel-

fare, it is an urban problem. Hence, it is essential to elucidate how road improvements

affect social welfare related to the agglomeration of retail stores in a downtown and

suburbs. We explore how road improvements in a two-dimensional road network affect

the agglomeration pattern and social welfare.

The location of retail stores has been studied for almost a century since Hotelling

(1929). One feature of Hotelling’s framework is a simplified urban space: a line seg-

ment where consumers are distributed uniformly. Although several studies extend this

feature to capture some unique economic mechanisms,1 urban spaces in the real world

are more complex than the spaces employed by those studies. One realistic factor in-

creasing complexity is a road network embedded in a two-dimensional space. The road

network generates geographical heterogeneity, such as a center and suburbs. In order

to explore recent urban problems (e.g., the hollowing-out of the center), it is essential

to differentiate the center from the suburbs.

Some studies focus on the differentiation of the center from the suburbs. For ex-

ample, Braid (1993) explores price competition among retail stores on the Manhattan

roadway grid. Similarly, Braid (2013) investigates the optimal locations of retail stores

in a city with a central intersection and radial roadways extending from a center to

1For example, a circle (e.g., Mulligan, 1996), a line segment where consumers are distributed non-

uniformly (Tabuchi and Thisse, 1995), a homogeneous two-dimensional space (Tabuchi, 1994), and a

homogeneous n-dimensional space (Irmen and Thisse, 1998) are employed.
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suburbs. Kishi, Kono and Nozoe (2015) analyze a spatial price model à la Capozza

and Van Order (1977) in a similar space. Guo and Lai (2015) analyze the Cournot

competition in a circle with a diameter as a main street. These studies differentiate the

center from the suburbs by embedding a two-dimensional road network. On the other

hand, Ushchev, Sloev and Thisse (2015) analyze competition between retail stores in a

downtown (i.e., a center) and a shopping mall in a suburb in a line segment.

In contrast to these previous studies, we focus on heterogeneity in road networks

observed in the real world Actually, per-distance travel cost near a center is different

from those near suburbs in a real network. Moreover, roads in a city are not simulta-

neously improved by a local government.2 Focusing on how an improvement sequence

on a road network affects the agglomeration patterns of retail stores and social welfare,

we investigate where retail stores are located in such a heterogeneous road network.

We build on the spatial price competition model proposed by Tabuchi (2009). This

model comprises a homogeneous space, monopolistic competition among retail stores,3

and a dynamical system that describes changes in the sizes of marketplaces where the

retail stores are located. Tabuchi (2009) shows that the self-organization of the retail

stores, which can be interpreted as the emergence of subcenters, occurs as a result of

their competition in the homogeneous space.

Our paper differs from Tabuchi (2009) in a space where retail stores can be located.

We employ a regular-hexagonal shape with one center and six suburbs (Figure 1), which

are potential marketplaces for retail stores. In the real world, road networks in cities are

constructed around the central business district. Most cities have radial roads and ring

roads in the network. Hence, the regular-hexagonal shape is a simplified description of

2For example, Mun (1997) shows that the asymmetry of transport cost in a road network generates

a difference in city size distribution.
3Recently, locations where firms operate under monopolistic competition have been investigated

(e.g., Ago, 2008; Ushchev et al., 2015).
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Figure 1: City shape. Black lines: the road network in the city; node 0: the center in the

city; nodes 1, . . . , 6: the suburbs.

real road networks for our theoretical analysis.4

Actually, hexagonal domains have recently been employed as a two-dimensional

spatial platform for New Economic Geography models. Ikeda, Murota, Akamatsu, Kono

and Takayama (2014), for example, explore where and how population agglomeration

takes place in a hexagonal domain by bifurcation analysis. Some theoretical properties

of the location patterns on hexagonal domains have been clarified (e.g., Ikeda et al.,

2017, 2018, 2019). Conducting bifurcation analysis introduced by Ikeda et al. (2014),

we investigate market equilibria.

Moreover, we relax the uniform per-distance travel cost assumption employed in

many spatial competition models. In our model, the per-distance travel cost on the

radial roads can be different from that on the ring road. Such a relaxation captures one

of the features of road networks in the real world. Combining the spatial platform and

this relaxation, we investigate how improvement sequences in the road network affect

the agglomeration pattern of retail stores and social welfare. In particular, we explore

where retail stores should be located from the viewpoint of social welfare.

4Since our analysis focuses on the symmetry of the location of suburbs, a different number of

suburbs would not qualitatively affect our result unless the symmetry differed.
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The contribution of our paper is twofold. First, we show that a difference in improve-

ment sequences in the road network generates a difference in agglomeration patterns in

equilibrium even for the same travel costs parameters. Conducting bifurcation analysis

to explore market equilibria, we demonstrate that all the retail stores agglomerate in

the center if the radial roads are improved first. In contrast, the stores are located in

the center as well as in several suburbs if the ring road is improved first.

Second, we show that the scale of agglomeration of retail stores in each marketplace

as well as the two-dimensional location pattern of marketplaces in which stores operate

at a market equilibrium differ from those at the first-best situation particularly when

the travel costs are low. This implies that policymakers should guide stores to form an

appropriate location pattern with policies such as land-use regulation.5

The rest of our paper is organized as follows. A spatial competition model is intro-

duced in Section 2. Agglomeration patterns of retail stores are explored in Section 3.

Our theoretical results are verified with numerical comparative statics analysis of the

distribution of retail stores in Section 4. Section 5 concludes our paper.

2. Model

2.1. City and goods

We consider a city composed of seven potential marketplaces labeled 0, 1, . . . , 6.

Marketplace 0 and marketplaces 1, . . . , 6 are in the center and suburbs, respectively.

The center is connected to the suburbs by radial roads, whereas the suburbs are located

on a ring road. We consider that the radial roads and the ring road form a regular-

hexagonal road network as shown in Figure 1. For simplicity, the length of all the line

5Land-use regulation can be practical alternatives to superior policies that are often politically

infeasible. The effect of the land-use regulation on social welfare has been theoretically investigated

by many papers (e.g., Brueckner, 2009; Kono and Joshi, 2018, 2019).
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segments between the marketplaces is assumed to be one.

We consider two types of goods: horizontally differentiated goods and an outside

good. The differentiated goods are supplied by a large number of profit-maximizing

retail stores in the marketplaces. The outside good is supplied by perfectly competitive

firms and chosen as a numéraire good.

2.2. Consumers

Consumers in the city are uniformly distributed over the road network with the

density normalized to 1. Let L denote all the positions on the road network. The

utility of consumers residing at ℓ ∈ L and visiting marketplace j is given by U(ℓ, j) =

lnMj(ℓ) + A(ℓ), where Mj(ℓ) =
(∫ nj

0
q(ℓ, k)

σ−1

σ dk
) σ

σ−1

. q(ℓ, k) is the consumption of

the kth variety, nj is the mass of varieties supplied in marketplace j, σ (> 1) is the

elasticity of substitution between any two varieties, and A(ℓ) is the consumption of the

outside good.

If consumers choose to visit marketplace j, then the budget constraint is given by
∫ nj

0
pj(k)q(ℓ, k) dk + t(ℓ, j) + A(ℓ) = W, where pj(k) is the price of the kth variety in

marketplace j, W is the income, and t(ℓ, j) is the travel cost paid by the consumers.6

Solving the utility maximization problem, we obtain demand functions:

q(ℓ, k) = pj(k)
−σR−1

j , (1)

A(ℓ) = W − t(ℓ, j)− 1, (2)

where Rj =
∫ nj

0
pj(k)

1−σ dk. We assume that income W is high so that A(ℓ) is positive

in equilibria.

6We ignore commuting in order to focus on how decreases in the travel cost (i.e., road improvements)

affect the equilibrium of shopping stores.
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2.3. Retail stores

Retail stores are located in marketplaces. These stores share the same marginal

production cost c and the same fixed cost f . We assume that retail stores in the same

marketplace are under monopolistic competition. The total number of retail stores at

each marketplace is determined by free entry.

Let πi(k) be the profit of the retail store producing the kth variety at marketplace

i. πi(k) is given by

πi(k) = (pi(k)− c)Qi(k)− f, (3)

where Qi(k) is the total demand for the kth variety at marketplace i. Each retail store

has a negligible impact on the prices of other goods in the marketplace because its

supply is very small compared to the total supply of all the stores. That is, Ri does

not change, as in Dixit and Stiglitz (1977). Using (1), we obtain the profit-maximizing

prices, which are the same across all the varieties and marketplaces: pi(k) = p∗ (∀i, k),

where p∗ = cσ/(σ−1). We regard πi(k) as πi because each firm at the same marketplace

can be treated symmetrically.

2.4. Market area

Consumers are assumed to visit one marketplace where they can obtain the high-

est utility. Hence, total demand for a retail store Qi(k) is determined by consumers’

behavior. To obtain Qi(k), we introduce ‘market area’, which is all the residential loca-

tions of the consumers visiting the same marketplace. We classify the two-dimensional

agglomeration patterns of retail stores with the market area in Section 3.

Substituting p∗ into (1), we obtain demand for the kth variety (i.e., q(ℓ, k)) for

consumers at ℓ (∈ L) visiting marketplace j: q(ℓ, k) = 1/(p∗nj). Substituting this

function and (2) into the utility function, we obtain the indirect utility of the consumers:

V (ℓ, j) = σ−1lnnj − t(ℓ, j) + VD, (4)
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where σ−1 = (σ− 1)−1, VD = −ln p∗ +W − 1. We define the set of the indirect utilities

that the consumers can obtain by visiting a marketplace:

V(ℓ) = {V (ℓ, 0), V (ℓ, 1), . . . , V (ℓ, 6)}, ℓ ∈ L.

Using V(ℓ), we mathematically define the market area.

Definition 1. The market area of marketplace i (i = 0, 1, . . . , 6) is the following

set:

Mi = {ℓ ∈ L | max V(ℓ) = V (ℓ, i)}. (5)

We can obtain Qi(k) using the defined market area. Let µ(Mi) denote the total

length of market area Mi. Using demand function q(ℓ, k) and µ(Mi), we obtain the

total demand:

Qi(k) =





µ(Mi)/(p
∗ni) (ni > 0),

0 (ni = 0).
(6)

2.5. Market equilibrium

We introduce the market equilibrium condition of the size of marketplaces. Let

n = (n0, . . . , n6)
⊤ denote the distribution of the retail stores across the marketplaces

in the city. The market equilibrium condition for n is the following condition:





πi = 0 if ni > 0,

πi ≤ 0 if ni = 0,
i = 0, 1, . . . , 6. (7)

Condition (7) implies that retail stores have no incentive to locate at marketplace i if

the profit they obtain at marketplace i is not positive. Note that profit πi is a function

of n because Qi(k) in (6) depends on n.

We employ a dynamical system to investigate the stability of equilibria. We assume

8



that n gradually evolves in proportion to both profit π and state n itself as follows:7

dn

dt
= F (n), (8)

where F (n) = (F0(n), F1(n), . . . , F6(n))
⊤ and Fi(n) = niπi (i = 0, 1, . . . , 6). Since

dynamics (8) implies that the growth rate of ni per unit time is equal to profit πi, retail

stores are attracted to marketplaces where they can obtain profits. This dynamics has

an advantage shown by the following lemma.8

Lemma 1. n is the market equilibrium iff n is a stationary point of dynamics (8).

Proof. See Appendix A.

We investigate the market equilibria by finding stationary points of dynamics (8).

A stationary point is linearly-stable if every eigenvalue of Jacobian matrix ∂F /∂n has

a negative real part. We call linearly-stable stationary points stable equilibria. We also

investigate transitions from unstable equilibria under dynamics (8) in Section 4.

2.6. Travel cost

Consumers have several route choices to the marketplaces. The consumers choose

the route with the lowest travel cost. We mathematically define L to express travel

costs, which are determined by the distance between consumers and a marketplace. Let

D and S denote the radial roads and the ring road in the city, respectively. Since we

assume that the length of each road between the marketplaces is 1, we can represent L

7Such a modeling methodology is called the Boltzmann, Lotka and Volterra method, which has

been applied to statistical physics as well as regional science (e.g., Harris and Wilson (1978); Wilson

(2008); Osawa et al. (2017)).
8The dynamics assumed by Tabuchi (2009) implies that changes in the number of retail stores per

unit time depend on profits only. The dynamics assumed by Tabuchi (2009) and us are qualitatively

the same. Furthermore, the dynamics in our paper can capture corner equilibria as stationary points

of the dynamics.
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by L = A × P ×X, where A = {D,S}, P = {1, 2, . . . , 6}, and X = (0, 1). (D, i, x) ∈

{D}×P×X is equal to position x distant from the center on the radial road between the

center and suburb i (e.g., see (D, 1, x) in Figure 1). Similarly, (S, i, y) ∈ {S} × P ×X

is equal to position y distant from suburb i on the ring road between suburb i and

j (≡ i + 1 mod 6) (e.g., see (S, 1, y) in Figure 1). Therefore, {D} × P × X is all the

positions on the radial roads, whereas {S} × P ×X is that on the ring road.

For consumers residing at ℓ = (D, i, x) ∈ {D} × P × X (i.e., consumers residing

along the radial roads), the travel cost is given by

t(ℓ, j) =





φx (j = 0),

min {φ(1 + x), φ(1− x) + τLij} (j ∈ P),
(9)

where φ is the per-distance travel cost on the radial roads, τ is the per-distance travel

cost on the ring road, and Lij = min {|i − j|, 6 − |i − j|}. φx is the travel cost when

the consumers visit the center; φ(1+x) is when the consumers visit suburb j (∈ P) via

the center; φ(1− x) + τLij is when via the suburbs. On the other hand, for consumers

residing at ℓ = (S, i, x) ∈ {S} × P ×X (i.e., consumers residing along the ring road),

the travel cost is given by

t(ℓ, j) =





φ+ τ(1/2− |x− 1/2|) (j = 0),

τ ×min {|i+ x− j|, 6− |i+ x− j|} (j ∈ P).
(10)

φ+ τ(· · · ) is the travel cost when the consumers visit the center via the nearest suburb;

τ ×min {· · · } is the travel cost when the consumers visit marketplace j via the shortest

route along the ring road.

2.7. Welfare

We measure the efficiency of the distribution of retail stores. Since the retail stores’

profits are zero in the equilibria by condition (7), social welfare SW is total consumer

utility (in monetary terms).
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Figure 2: The dispersion. Black area: M0; green: M1; red: M2; sky blue: M3; pink: M4;

yellowgreen: M5; brown: M6; the size of ©: the number of retail stores.

3. Agglomeration patterns of retail stores

We focus on some agglomeration patterns of retail stores. These patterns are pos-

sible market equilibria, which are investigated in Section 4.

3.1. A simple agglomeration pattern

We focus on the agglomeration pattern of retail stores in which every marketplace

has a market area (i.e., Mi 6= ∅ (i = 0, 1, . . . , 6)). We define this market area pattern as

market pattern (D), and the equilibria that forms market pattern (D) as the dispersion

(Figure 2). See Appendix B.2 for the details of these definitions.

A symmetric assumption for an equilibrium is often employed when the change of

an agglomeration pattern with the change in an exogenous parameter is investigated

(e.g., Ikeda et al., 2014). Assuming n1 = n2 = · · · = n6, we investigate how decreases

in per-distance travel cost φ and τ affect the dispersion. For n = (n0, n1, . . . , n1), we

can obtain dynamics (8) as follows.

Lemma 2. For n = (n0, n1, . . . , n1), dynamics (8) under market pattern (D) is

F0(n) =
3

σ

(
ln (n0/n1)

φ(σ − 1)
+ 1

)
− fn0, (11)

Fi(n) =
1

2σ

(
− ln (n0/n1)

φ(σ − 1)
+ 3

)
− fn1, i = 1, 2, . . . , 6. (12)

Proof. See Appendix B.3.1.

11



Let nd ≡ (n0, n1, . . . , n1) be a symmetric equilibrium of the dispersion (i.e., Fi(nd) =

0 (i = 0, 1, . . . , 6)). First, we investigate the change in nd and the emergence of another

agglomeration pattern with a decrease in φ. This change is summarized as follows.

Lemma 3. If n0 > n1 holds in linearly-stable nd, then n0 and n1 in the equilibria

change monotonously with an increase in φ:

dn0

dφ
< 0,

dn1

dφ
> 0. (13)

On the other hand, if n0 < n1 holds in linearly-stable nd, then

dn0

dφ
> 0,

dn1

dφ
< 0. (14)

Proof. See Appendix B.3.2.

Monotonicity (13) in Lemma 3 indicates that the full agglomeration of retail stores

in the center is a possible market equilibrium.

Next, we investigate the change in nd with a decrease in τ and the emergence of

another agglomeration pattern. Since τ is not included in (11) or (12), τ does not affect

the change in n0 and n1 of nd. On the other hand, a decrease in τ can affect the linear

stability.

We briefly investigate the change in linearly-unstable nd at a certain level of τ .

Solutions starting near unstable nd under dynamics (8) are classified into 1) the solution

diverging from nd and 2) the solution converging to nd. In particular, near nd, the

motion of any solution diverging from nd is almost equal to a linear combination of the

eigenvectors for the eigenvalues of ∂F /∂n that has a positive real part.9 Hence, the

linear combination is the most likely change from nd after it is not linearly-stable.

9Such a classification can be applied to stationary points of general dynamical systems. See, e.g.,

Kuznetsov (Chapter 2.2, 2004) for the theoretical details.
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Unstable

Figure 3: The change from nd at a certain level of τ by a decrease in τ . The size of ©: the

number of retail stores.

Lemma 4. Just after stationary point nd is unstable at a certain level of τ by a

decrease in τ , the eigenvector for the eigenvalues of ∂F /∂n that has a positive real part

is w(0, 1,−1, 1,−1, 1,−1)⊤ (w ∈ R).

Proof. See Appendix B.3.3.

Lemma 4 indicates that the dispersion changes into an agglomeration pattern where

large agglomerations and small agglomerations alternately emerge on the ring road (See

Figure 3).10

3.2. Corner equilibria

We next focus on the equilibria in which some marketplaces have no market area.

We call these equilibria corner equilibria. Various symmetric corner equilibria can hold

because the geometrical symmetry of the road network generates symmetric market area

patterns. Among the corner equilibria, we investigate four corner equilibria (Figure 4):

the full agglomeration (M0 6= ∅), the period-doubling pattern (M0,M1,M3,M5 6= ∅),

the asymmetric pattern (M0,M1,M3 6= ∅), and the linear pattern (M0,M1,M4 6= ∅).

These equilibria are possible agglomeration patterns into which the dispersion changes

with decreases in φ and τ .

10This change is qualitatively the same result as the spatial period-doubling bifurcation, which is

often observed in the New Economic Geography (e.g., Ikeda et al. (2012)).
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(a) (b) (c) (d)

Figure 4: Corner equilibria under investigation. (a): the full agglomeration; (b) the period-

doubling pattern; (c) the asymmetric pattern; (d) the linear pattern. ©: the number of retail

stores. Black area: M0; green: M1; sky blue: M3; pink: M4; yellowgreen: M5.

Note that these corner equilibria hold under some inequality conditions. We investi-

gate these conditions with the definitions of market area patterns. We define a market

area pattern for the full agglomeration as market pattern (F), a market area pattern

for the period-doubling pattern as market pattern (P), a market area pattern for the

asymmetric pattern as market pattern (A), and a market area pattern for the linear

pattern as market pattern (L). See Appendix C for these detailed explanations.

It is most likely that the full agglomeration and the period-doubling pattern11 are

corner equilibria into which the dispersion changes (Lemmas 3 and 4). Moreover, we

can infer from Lemma 3 that the number of retail stores in marketplace 5 under the

period-doubling pattern decreases with a decrease in τ . Hence, the asymmetric pattern

is a possible equilibrium into which the period-doubling pattern changes.

On the other hand, the linear pattern seems to be the most efficient equilibrium

11Note that market areas M1, M3, and M5 are asymmetric in market pattern (P) (i.e., µ(M1) >

µ(M3) > µ(M5)). When µ(M1) = µ(M3) = µ(M5) holds at τ less than φ, some consumers residing

along the radial roads are indifferent to choosing one of suburbs 1, 3, and 5. If a retail store enters

one of the suburbs in such an agglomeration pattern, the suburb attracts the consumers. Hence, the

symmetry of the market areas in the suburbs breaks. We thus focus on market pattern (P) rather

than symmetric patterns where suburbs 1, 3, and 5 each have a market area.
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in the equilibria in which retail stores are located in three marketplaces. However,

the linear pattern is not a corner equilibrium pattern into which the period-doubling

pattern or the asymmetric pattern changes under dynamics (8).

Proposition 1. Neither any distribution n in market pattern (P) nor that in (A)

changes into any distribution in market pattern (L) under dynamics (8).

Proof. See Appendix D.

Proposition 1 shows that neither the period-doubling pattern nor the asymmetric

pattern changes into the linear pattern with decreases in φ and τ . In other words,

improvements in the road network do not change the period-doubling pattern (the

asymmetric pattern) into the linear pattern.

Moreover, while one may intuitively consider that the dispersion tends to change

into the linear pattern, Lemma 4 indicates that such a result does not occur. This is

verified in Section 4.

4. Two-dimensional geographical positions of retail stores

We explore how road improvements affect equilibria and social welfare. In our paper,

we regard road improvements as decreases in travel costs (φ and τ). Conducting bifur-

cation analysis to explore market equilibria, we show how road improvement sequences

affect the equilibrium.

In our model, there are two parameters that affect equilibria: elasticity of substi-

tution σ and fixed cost f . The elasticity is investigated by various empirical studies.

Referring to Bergstrand et al. (2013), we set σ = 6.0. On the other hand, we set f = 20.

4.1. Dependency of stable agglomeration patterns on travel costs

Since there are numerous road improvement sequence patterns in our model as well

as in the real world, we focus on which road improvement sequence can generate a

15



difference in equilibria and social welfare. Such a difference can occur with travel costs

parameters for which multiple stable equilibria exist. Hence, we examine whether or

not multiple stable equilibria exist with travel costs parameters.

The stability of equilibria introduced in Section 3 in the space of (φ, τ) ∈ (0, 1)×(0, 1)

was investigated and the zones in which they were stable are enclosed by solid lines in

Figure 5(a). According to the result, the dispersion tends to be stable with relatively

high φ and τ . On the other hand, the period-doubling, the asymmetric, and the linear

pattern tend to be stable with relatively higher φ than τ . The full agglomeration is

always stable in the space.12

As Figure 5(a) shows, multiple stable equilibria exist in the space. Hence, an equi-

librium forming an agglomeration pattern on specific travel costs is likely to change into

an equilibrium forming another agglomeration pattern with decreases in travel costs.

For example, the dispersion at stage α marked by ⋄ in Figure 5(a) is likely to change

into the full agglomeration or the asymmetric pattern on stage γ. This example indi-

cates that the road improvement sequence affects which agglomeration pattern emerges

on stage γ.

We investigate which agglomeration pattern is most efficient in terms of the social

welfare in the space. In Figure 5(b), the color of each zone (black, blue, orange, and

red) represents the most efficient agglomeration pattern in that zone.13 For example,

the full agglomeration is the most efficient agglomeration pattern at stage γ.

The linear pattern is the most efficient agglomeration pattern in a part of the zone

where multiple equilibria exist. This pattern, however, is predicted not to emerge from

the dispersion, the period-doubling pattern, or the asymmetric pattern with decreases

in travel costs (Lemma 4 and Proposition 1). Hence, the result indicates that roads

12The full agglomeration is always linearly stable. See Appendix C.1 for details.
13Note that the asymmetric pattern is not the most efficient in (0, 1)× (0, 1).
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improvements do not generate an efficient agglomeration pattern even in terms of the

locations of marketplaces where retail stores are located.

4.2. Dependency of agglomeration patterns on improvement sequences in the road net-

work

Conducting the numerical comparative statics analysis of equilibria, we verify that

road improvement sequences generate differences in the agglomeration patterns and

the social welfare in equilibrium. We show two main findings through the numerical

comparative statics analysis of the equilibrium for the travel costs:

• main finding 1: a difference in improvement sequences in the road network finally

generates a difference in the equilibria.

• main finding 2: the welfare of the linear pattern is higher than that of the asym-

metric pattern while the market system does not produce the linear pattern.

We investigate the transition of the stable dispersion from stage α to stage γ shown

in Figure 5. Among various road improvement sequence patterns to stage γ, we focus

on two simple improvement sequence patterns: (1) the radial roads are improved first

and (2) the ring road is improved first.14

We investigate the following two cases of changes in the travel costs:

• The radial-roads first case:

(φ, τ) = (1.0, 1.0)︸ ︷︷ ︸
Stage α

Transition 1−−−−−−−→ (0.35, 1.0)︸ ︷︷ ︸
Stage β1

Transition 2−−−−−−−→ (0.35, 0.17)︸ ︷︷ ︸
Stage γ

.

14One may think that radial roads are improved first in the real world. Figure 5 (a) indicates that

even if the road improvement sequence is initial radial roads, ring road, and additional radial roads,

the equilibrium generated by the sequence is the same as that by the ring-road first case.
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• The ring-road first case:

(φ, τ) = (1.0, 1.0)︸ ︷︷ ︸
Stage α

Transition 1−−−−−−−→ (1.0, 0.17)︸ ︷︷ ︸
Stage β2

Transition 2−−−−−−−→ (0.35, 0.17)︸ ︷︷ ︸
Stage γ

.

The radial-roads first case is that the radial roads are improved first, and the ring road

is improved next.15 On the other hand, the ring-road first case is that the ring road is

improved first.

First, we focus on the result of the radial-roads first case shown in Figure 6. Figure

6(a-1) is the comparative statics analysis with a decrease in φ, which is equal to Stage 1.

Solid lines A1B1 and A2B2 are the stable dispersion and the stable full agglomeration,

respectively. Both the dispersion and the full agglomeration exist for large φ (> 0.37).

In the dispersion, number of retail stores in the center n0 increases and market area of

the center M0 expands with a decrease in φ (Lemma 3). For small φ (= 0.37), M0

entirely covers the radial roads.

We investigate how a point in a neighborhood of B1 changes under dynamics (8).

Let B̂1 denote the point.
16 The solution starting at B̂1 under dynamics (8) is shown in

Figure 6(c-1).17 This solution converges at the square marker (�). The point marked

by the square marker shows the full agglomeration. In summary, the dispersion changes

into the full agglomeration when the radial roads are improved.18

The full agglomeration is always stable (Figure 6(a-1)). The red point in Figure 6(a-

15With lower travel costs, other agglomeration patterns not shown in the previous section can emerge

(e.g., one downtown and a marketplace in the suburbs). To accomplish our aim, we have only to focus

on the agglomeration patterns shown in the previous section.
16In this case, at B1, (φ, n0, n1) = (0.366, 4.88 × 10−2, 0.853 × 10−2). On the other hand, at B̂1,

(φ, n0, n1) = (0.365, 4.89× 10−2, 0.852× 10−2). We obtained the solution from B̂1 with dynamics (8)

in market pattern (D) because the market area at B̂1 have this pattern (Lemma 7 in Appendix C.1).
17We obtained the solution with the Runge-Kutta 4th order method.
18This change is called boundary equilibrium bifurcation in the dynamical systems theory (see e.g.,

Bernardo, Budd, Champneys and Kowalczyk, 2008).
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1) is equal to the agglomeration pattern at stage β1 (i.e., the full agglomeration).

We focus on stage γ of the radial-roads first case. Figure 6(a-2) is the comparative

statics analysis with a decrease in τ , which is equal to Transition 2. The green point in

Figure 6(a-2) shows the agglomeration pattern of the final stage (i.e., the full agglom-

eration). Hence, the radial-roads first case results in the full agglomeration emerging

from the dispersion.

Next, we focus on the result of the ring-road first case shown in Figure 7. Figure 7(a-

1) is the comparative statics analysis with a decrease in τ , which is equal to Stage 1.

Solid line A1B1 is the stable dispersion; A3B3 is the period-doubling pattern; A4B4 is

the linear pattern; A5B5 is the asymmetric pattern. The dispersion becomes unstable

at point B1, which is a bifurcation point. Three unstable equilibria emerge at this

point. When the dispersion is unstable, a small perturbation to this state generates an

agglomeration pattern where large agglomerations and small agglomerations alternately

emerge on the ring road, as shown in Figure 3 (Lemma 4).

To investigate the change from the unstable equilibrium, we investigate how a point

in a neighborhood of bifurcation point B1 changes under dynamics (8). The solution

starting at this point under dynamics (8) is shown in Figure 7(c-1).19 The solutions

shown with the blue line and the pink line in Figure 7(c-1) are obtained under mar-

ket areas (D) and (P), respectively.20 The solution converges at the point marked

by the square marker (�). This result shows that the dispersion changes into the

period-doubling pattern. Moreover, in the period-doubling pattern, n1 increases with

19In this case, at B1, (τ, n1) = (0.306, 1.17× 10−2). At B̂1, (τ, n1) = (0.305, 1.18× 10−2).
20In this numerical analysis, the path-following of the solution stopped at the point at which the

color of the line changes. This point is at the boundary between market area conditions (D) and (P)

(See Lemmas 5 in Appendix B and 9 in Appendix C). We obtained the solution to the square marker

by following the solution starting at a point satisfying market area condition (P) in the neighborhood

of this boundary.
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a decrease in τ . This pattern disappears at point B3 (Figure 7(a-1)).

To elucidate the change from point B3, we investigate how a point in the neigh-

borhood of point B3 changes under dynamics (8). The solution starting at this point

is shown in Figure 7(d-1).21 Near B̂3, we obtained this solution with dynamics (8) in

market pattern (P). On the other hand, for small n5, the solution was obtained un-

der that in market pattern (A).22 This result shows that the period-doubling pattern

changes into the asymmetric pattern. Hence, the asymmetric pattern emergin at stage

β2 is the red point in Figure 7(a-1).

We focus on stage γ. Figure 7(a-2) is the comparative statics analysis with a decrease

in φ, which is equal to Stage 2. In both the asymmetric pattern and the linear pattern,

n1 decreases with a decrease in φ. The green point in Figure 7(a-2) is equal to the

agglomeration pattern of stage γ (i.e., the asymmetric pattern). This pattern is not

the agglomeration pattern that emerges in the radial-roads first case. In summary,

the improvement sequences in the road network finally generate the difference in the

agglomeration pattern. This observation is main finding 1.

4.3. Welfare analysis

We discuss the welfare analysis results shown in Figures 6 and 7. First, we compare

the welfare of stage γ of the radial-roads first case and that of the ring-road first case.

The welfare is 11.7 in the radial-roads first case (Figure 6(b-2)), whereas the welfare

is 10.8 in the ring-road first case (Figure 7(b-2)). These demonstrations show that the

radial-roads first case is more effective than the ring-road first case.

Next, we focus on the welfare of the linear pattern shown in the ring-road first case.

In the ranges of travel costs (0.01 < τ < 0.34 in Figure 7(b-1) and 0.35 < φ ≤ 1.00 in

Figure 7(b-2)), the welfare in the linear pattern is higher than that in the other patterns

21B3 is (τ, n1) = (0.188, 3.36× 10−2). On the other hand, B̂3 is (τ, n1) = (0.187, 3.36× 10−2).
22We obtained this result by the same procedure as we did for Figure 7(c-1).
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in the ring-road first case. In particular, the social welfare of the linear pattern is higher

than that of the asymmetric pattern at the same travel costs. However, not the linear

pattern but the asymmetric pattern emerges from the dispersion in the market system.

That is, the two-dimensional shape of the location in the market system is not that of

the first-best location. This result is main finding 2, which indicates that policies that

change the locations of marketplaces are needed (e.g., land-use regulations).

5. Conclusion

We have investigated how improvement sequences on a two-dimensional road net-

work affect the agglomeration patterns of retail stores and social welfare. We have two

main findings: (1) the improvement sequence in the road network finally generates the

difference in agglomeration patterns and (2) the two-dimensional shape of the locations

in the market system differs from that in the first-best location. In particular, the asym-

metric pattern emerges if the ring road is improved first. This result contrasts with the

main result of Tabuchi (2009), which is the emergence of the Christaller-Lösch system

of hexagonal market area in a two-dimensional homogeneous space. The improvement

sequence in the road network generates this contrast.

Our model is specific, but more realistic assumptions can be considered with this

model. We would like to review our three assumptions one by one in the following.

First, we assume so-called one-stop shopping, in contrast to two-stop shopping mod-

els which have been developed in recent years (Kim and Serfes, 2006; Brandão et al.,

2014; Ushchev et al., 2015; Anderson et al., 2017). The assumption of two-stop shop-

ping, however, makes the analysis more complex. Moreover, the results of the agglom-

eration of retail stores are similar to that of one-stopping shopping. One-stop shopping

thus has a benefit to simply investigate the agglomeration patterns of retail stores,

which is suitable for accomplishing our objective.

Second, we assume a uniform consumers-distribution in our model. This distribu-
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tion is observed in local cities in the real world. Our model mainly targets the store-

agglomeration mechanism in these cities. On the other hand, non-uniform distribution

or endogenous consumer distribution has been considered in spatial competition models

(e.g., Tabuchi and Thisse, 1995; Fujita and Thisse, 1986). Our analysis focuses on the

symmetry of the road network. The assumption of the non-uniform distribution would

not qualitatively affect our result unless the symmetry of the distribution differed. The

assumption of exogenous consumers-distribution thus has a benefit to simply investi-

gate the agglomeration mechanism of retail stores in a city. However, if we particularly

investigate the interaction between consumers distribution and the location of shopping

centers, it is necessary to consider endogenous consumer distribution.

Third, our model does not consider online shopping which prevails nowadays (e.g.,

Amazon). However, so-called brick-and-mortar retailers have at least one advantage

over online retailers; consumers can identify the quality of a good (e.g., clothing) well.

On the other hand, the assumption of online shopping has been introduced to the

framework of spatial competition models (e.g., Guo and Lai, 2017). It is also essential to

investigate the agglomeration mechanism regarding competition between online retailers

and brick-and-mortar retailers (e.g., book stores) in a road network in the future.
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(a)

(b)

Figure 5: (a) Zones of stable equilibria in (φ, τ) ∈ (0, 1) × (0, 1). The zone bounded by

black lines: the dispersion; blue: the period doubling pattern; green: the asymmetric pattern;

orange: the linear pattern; red: the full agglomeration. (b) The most efficient agglomeration

pattern in terms of the social welfare. Black zone: the dispersion; blue zone: the period-

doubling pattern; orange zone: the linear pattern; red zone: the full agglomeration.
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Figure 6: The radial-roads first case. (a) The market equilibria with decreases in the travel

costs. Solid line: stable equilibria. (b) Social welfare of stable equilibria in (a). (c-1) The

solution starting at a point in the neighborhood of point B1. Dashed-dotted line: the solution

under market pattern (F).
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Figure 7: The ring-road first case. (a) The market equilibria with decreases in the travel

costs. Solid line: stable equilibria; dashed line: unstable equilibria (b) Social welfare of stable

equilibria in (a). (c-1) The solution of the dynamics starting at a point in a neighborhood of

B1. Blue dashed-dotted line: the solution under market pattern (D); pink: market pattern

(P). (d-1) The solution starting at a point in a neighborhood of B3. Pink: market pattern

(P); brown: market pattern (A).
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A. Proof of Lemma 1

(⇒) It is obvious. (⇐) Let n∗ = (n∗
0, n

∗
1, . . . , n

∗
6) be the stationary point of dynamics

(8). Using n
∗ and dynamics (8), we obtain n∗

iπi(n
∗) = 0 (i = 0, 1, . . . , 6). n∗

iπi(n
∗) = 0

holds if and only if

n∗
i = 0 or πi(n

∗) = 0. (A1)

We check that market equilibria condition (7) holds at n∗. If n∗
i > 0, then we obtain

πi(n
∗) = 0 by condition (A1). On the other hand, if n∗

i = 0, Qi = 0 holds by Eq. (6).

Therefore, πi(n
∗) = −f < 0 holds.

B. Theoretical properties of the dispersion

B.1. Market boundary

We focus on market boundaries. A market boundary is a position at which con-

sumers obtain the same indirect utility across multiple marketplaces.23 Let ti denote

the market boundary between the center and suburb i and Ti denote the market bound-

ary between suburb i and j (≡ i+ 1 mod 6). Since the length of all the roads between

the marketplaces is one, ti, Ti ∈ (0, 1) (i = 0, 1, . . . , 6) hold.

Using the market boundaries, we express the market areas. To express the market

areas as subsets of all the positions on the road network L, we define the following

sets: Di(Y ) = {(D, i, x) ∈ L | x ∈ Y }, Si(Y ) = {(S, i, x) ∈ L | x ∈ Y } (i ∈ P).

Di(Y ) denotes an area on the radial road between the center and suburb i, whereas

Si(Y ) denotes an area on the ring road between suburb i and j (≡ i+1 mod 6). These

subsets are employed in Appendix B.2 and C.

23Market boundaries between marketplaces i and j (i 6= j), for example, are Mi ∩Mj .
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B.2. The definitions of market pattern (D) and the dispersion

We define market pattern (D) with the market boundaries.

Definition 2. Market pattern (D) is market areas given by

M0 = ∪m∈P Dm( (0, tm] ), (B1)

Mi = Di( [ti, 1) ) ∪ Si( (0, Ti] ) ∪ Sj( [Tj, 1) ), i, j ∈ P , j ≡ i− 1 mod 6. (B2)

The definition of market pattern (D) implies that every marketplace has a market

area nearby. We can obtain the market boundaries as follows.

Lemma 5. In market pattern (D), market boundaries ti, Ti (i ∈ P) are given by

ti =
1

2

(
ln (n0/ni)

φ(σ − 1)
+ 1

)
, (B3)

Ti =
1

2

(
ln (ni/nj)

τ(σ − 1)
+ 1

)
, j ≡ i+ 1 mod 6. (B4)

Proof. See Supplement SA.1.

We can obtain dynamics (8) with ti and Ti in market pattern (D).

Lemma 6. Dynamics (8) in market pattern (D) is given by

F0(n) = n0

(
1

σn0

6∑

m=1

tm − f

)
, (B5)

Fi(n) = ni

(
1

σni

((1− ti) + Ti + (1− Tj))− f

)
, i, j ∈ P , j ≡ i− 1 mod 6. (B6)

Proof. See Supplement SA.2.

The dispersion is the stationary points of dynamics (8) given by (B5) and (B6).

B.3. Proofs of Lemmas in Section 3.1

B.3.1. Proof of Lemma 2

Substituting n = (n0, n1, . . . , n1) into (B5) and (B6), we can obtain (11) and (12).
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B.3.2. Brief proof of Lemma 3

We use the implicit function theorem. Using the Jacobian matrix of F̃ = (F0, F1)
⊤

with respect to ñ = (n0, n1) and the linearly-stable condition of the dispersion, we can

prove the Lemma. See Supplement SA.4 for details.

B.3.3. Brief proof of Lemma 4

We can analytically obtain the eigenvalues of ∂F /∂n at nd. Obtaining the eigen-

vector for the largest of these eigenvalues, we can prove the Lemma. See Supplement

SA.5 for details.

C. Mathematical explanation of the corner equilibria in Section 3.2

In this appendix, we show the definitions of market area patterns and corner equi-

libria shown in Section 3.2. To express F (n) as a matrix, we appropriately permute

the components of F (n) as follows:

F̂ (n) =




F
+(n)

F
0(n)


 , (C1)

where

F
+(n) = (Fi1(n), . . . , Fim(n))

⊤, (i1 < · · · < im, Mi1 , . . . ,Mim 6= φ),

F
0(n) = (Fj1(n), . . . , Fjk(n))

⊤, (j1 < · · · < jk, Mj1 = · · · = Mjk = φ).

ir (r = 1, . . . ,m) denotes an index assigned to a marketplace with a market area,

whereas jr (r = 1, . . . , k) denotes an index assigned to one with no market area.

C.1. The full agglomeration

We focus on market pattern (F) and the full agglomeration.

Definition 3. Market pattern (F) is market areas given by M0 = L,Mi = ∅ (i ∈

P).
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The definition of market pattern (F) implies that the center has the market area

entirely covering the entire city. We can obtain inequality conditions in this market

pattern.

Lemma 7. Market pattern (F) holds if and only if the following inequality holds.

φ ≤ σ−1ln (n0/ni) , i ∈ P , (C2)

where σ−1 = (σ − 1)−1.

Proof. See Supplement SB.1.

In market pattern (F), i1 = 0 and (j1, . . . , j6) = (1, . . . , 6). We can obtain F̂ (n) in

this market pattern as follows.

Lemma 8. In market pattern (F), F+(n) and F
0(n) are given by

F
+(n) =

12

σ
− fn0, F

0(n) = −fn0, (C3)

where n
0 = (n1, . . . , n6)

⊤.

Proof. The proof is similar to that of Lemma 6.

The full agglomeration is the stationary points of dynamics (8) given by (C3). Note

that the full agglomeration is always linearly-stable because the eigenvalues are −f ,

which is negative.

C.2. The period-doubling pattern

We focus on market pattern (P) and the period-doubling pattern.

Definition 4. Market pattern (P) is market areas given by

M0 = ∪m∈P Dm( (0, tm] ), (C4)

M1 = (∪m∈{1,2,6} Dm( [tm, 1) )) ∪ (∪m∈{1,6} Sm(X)) ∪ S2( (0, T2] ) ∪ S5( [T5, 1) ), (C5)
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M3 = (∪m∈{3,4} Dm( [tm, 1) )) ∪ S3(X) ∪ S2( [T2, 1) ) ∪ S4( (0, T4] ), (C6)

M5 = D5( [t5, 1) ) ∪ S4( [T4, 1) ) ∪ S5( (0, T5] ), (C7)

M2 = M4 = M6 = ∅. (C8)

The definition of market pattern (P) has three features: (1) the center has a market

area only on the radial roads, (2) suburbs 1, 3, and 5 have a market area on both the

radial roads and the ring road, and (3) µ(M5) < µ(M3) < µ(M1) always holds. We

can obtain inequality conditions in this market pattern.

Lemma 9. Market pattern (P) holds if and only if the following inequalities hold.

−φ < σ−1ln (ni/nj) < φ− τ, (i, j) = (0, 1), (0, 3), (C9)

−φ < σ−1ln (n0/n5) < φ, (C10)

0 < σ−1ln (ni/nj) < 2τ, (i, j) = (1, 3), (3, 5), (1, 5), (C11)

τ < σ−1ln (ni/nj) , (i, j) = (1, 2), (3, 4), (1, 6). (C12)

Proof. See Supplement SB.2.

In market pattern (P), (i1, i2, i3, i4) = (0, 1, 3, 5) and (j1, j2, j3) = (2, 4, 6). We can

obtain F̂ (n) in this market pattern as follows.

Lemma 10. In market pattern (P), F+(n) and F
0(n) are given by

F
+(n) =

1

2σ
(APz

+
P + bP )− fn+

P , F
0(n) = −fn0

P , (C13)

where

AP =
1

σ − 1


 6φ−1 −φ−1

c
⊤
P

−φ−1
cP φ−1BP + τ−1CP


 ,

z
+
P = (lnn0, lnn1, lnn3, lnn5)

⊤, cP = (3, 2, 1)⊤, BP = diag (3, 2, 1),

CP =




2 −1 −1

−1 2 −1

−1 −1 2


 , bP =

(
3τφ−1 + 6

bP1

)
,

bP1 = (−2τφ−1 + 7,−τφ−1 + 6, 5)⊤,

n
0
P = (n2, n4, n6)

⊤.
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Proof. The proof is similar to that of Lemma 6.

The period-doubling pattern is the stationary points of dynamics (8) given by (C13).

C.3. The asymmetric pattern

We focus on market pattern (A) and the asymmetric pattern.

Definition 5. Market pattern (A) is market areas given by

M0 = ∪m∈P Dm( (0, tm] ), (C14)

M1 = (∪m∈{1,2,5,6}Dm([tm, 1))) ∪ (∪m∈{1,5,6}Sm(X)) ∪ S2((0, T2]) ∪ S4( [T4, 1) ), (C15)

M3 = (∪m∈{3,4} Dm( [tm, 1) )) ∪ S3(X) ∪ S2( [T2, 1) ) ∪ S4( (0, T4] ), (C16)

M2 = M4 = M5 = M6 = ∅. (C17)

The definition of market pattern (A) has three features: (1) the center has a market

area only on the radial roads, (2) suburbs 1 and 3 each have a market area on both the

radial roads and the ring road, and (3) µ(M3) < µ(M1) always holds. We can obtain

inequality conditions as follows.

Lemma 11. Market pattern (A) holds if and only if the following inequalities hold.

−φ < σ−1ln (n0/n1) < φ− 2τ, (C18)

−φ < σ−1ln (n0/n3) < φ− τ, (C19)

0 < σ−1ln (n1/n3) < 2τ, (C20)

τ < σ−1ln (ni/nj) , (i, j) = (1, 2), (1, 6), (3, 4), (C21)

2τ < σ−1ln (n1/n5) . (C22)

Proof. The proof is similar to that of Lemma 9.

In market pattern (A), (i1, i2, i3) = (0, 1, 3) and (j1, j2, j3, j4) = (2, 4, 5, 6). We can

obtain F̂ (n) in this market pattern as follows.
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Lemma 12. In market pattern (A), F+(n) and F
0(n) are given by

F
+(n) =

1

2σ
(AAz

+
A + bA)− fn+

A, F
0(n) = −fn0

A, (C23)

where

AA =
1

σ − 1


 6φ−1 −φ−1

c
⊤
A

−φ−1
cA φ−1BA + τ−1CA


 ,

z
+
A = (lnn0, lnn1, lnn3)

⊤, cA = (4, 2)⊤, BA = diag (4, 2),

CA = 2

(
1 −1

−1 1

)
, bA =

(
5τφ−1 + 6

bA1

)
,

bA1 = (−4τφ−1 + 10,−τφ−1 + 8)⊤,

n
0
A = (n2, n4, n5, n6)

⊤.

Proof. The proof is similar to that of Lemma 6.

The asymmetric pattern is the stationary points of dynamics (8) given by (C23).

C.4. The linear pattern

We focus on market pattern (L) and the linear pattern.

Definition 6. Market pattern (L) is market areas given by

M0 = ∪6
i=1 Di( (0, ti] ), (C24)

M1 = (∪i∈{1,2,6} Di( [ti, 1) )) ∪ (∪i∈{1,6} Si(X)) ∪ S2( (0, T2] ) ∪ S5( [T5, 1) ), (C25)

M4 = (∪i∈{3,4,5} Di( [ti, 1) )) ∪ (∪i∈{3,4} Si(X)) ∪ S2([T2, 1)) ∪ S5( (0, T5] ), (C26)

M2 = M3 = M5 = M6 = ∅. (C27)

The definition of market pattern (L) has two features: (1) the center has a market

area only on the radial roads, (2) suburbs 1 and 4 each have a market area on both the

radial roads and the ring road. We can obtain inequality conditions as follows.

Lemma 13. Market pattern (L) holds if and only if the following inequalities hold.

−φ < σ−1ln (n0/nj) < φ− τ, j = 1, 4, (C28)

−τ < σ−1ln (n1/n4) < τ, (C29)

τ < σ−1ln (ni/nj) , (i, j) = (1, 2), (1, 6), (4, 3), (4, 5). (C30)
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Proof. The proof is similar to that of Lemma 9.

In market pattern (L), (i1, i2, i3) = (0, 1, 4) and (j1, j2, j3, j4) = (2, 3, 5, 6). We can

obtain F̂ (n) in this pattern as follows.

Lemma 14. In market pattern (L), F+(n) and F
0(n) are given by

F
+(n) =

1

2σ
(ALz

+
L + bL)− fn+

L , F
0(n) = −fn0

L, (C31)

where

AL =
1

σ − 1


 6φ−1 −φ−1

3
⊤
2

−φ−1
32 3φ−1I2 + τ−1CL


 , z

+
L = (lnn0, lnn1, lnn4)

⊤,

CL = 2

(
1 −1

−1 1

)
, bL =

(
4τφ−1 + 6

bL1

)
,

bL1 = (−2τφ−1 + 9,−2τφ−1 + 9)⊤,

n
0
L = (n2, n3, n5, n6)

⊤.

Proof. The proof is similar to that of Lemma 6.

The linear pattern is the stationary points of dynamics (8) given by (C31).

D. Proof of Proposition 1

Let Ap be the closure of the set of n satisfying the inequality conditions for market

pattern (P), Aa be the closure for market pattern (A), and Al be the closure for market

pattern (L). Ap,Aa, and Al are given by

Ap = cl {n ∈ R
7
+ | (C9)–(C12)}, (D1)

Aa = cl {n ∈ R
7
+ | (C18)–(C22)}, (D2)

Al = cl {n ∈ R
7
+ | (C28)–(C30)}, (D3)

where cl {·} is the closure of {·}. Since the closure of (C12) and the closure of (C30)

are disjoint sets. Ap ∩ Al = ∅ thus holds. Similarly, Aa ∩ Al = ∅ holds. Therefore,

the solution starting at any point in market pattern (P) (or market pattern (A)) under

dynamics (8) does not go to any state in market pattern (L).
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Supplement: This part is not printed but shown on the authors’ website.

SA. Proofs in Appendix B

SA.1. Proof of Lemma 5

For any i ∈ P , the following conditions hold in market pattern (D):

ℓ = (D, i, ti) ⇒ V (ℓ, 0) = V (ℓ, i), (SA1)

ℓ = (S, i, Ti), j ≡ i+ 1 mod 6 ⇒ V (ℓ, i) = V (ℓ, j). (SA2)

Using (4) and (SA1), we can obtain (B3). On the other hand, using (4) and (SA2), we

can obtain (B4).

SA.2. Proof of Lemma 6

Using market boundaries ti and Ti (i ∈ P), we obtain µ(M0) and µ(Mi) in market

pattern (D):

µ(M0) =
6∑

m=1

tm, (SA3)

µ(Mi) = (1− ti) + Ti + (1− Tj), i ∈ P , j ≡ i− 1 mod 6. (SA4)

Substituting (SA3) (or (SA4)) into (6), we obtain Qj (j = 0, 1, . . . , 6) in market pattern

(F). Since πj in (3) is determined by Qj, we can obtain njπj in dynamics (8), which is

equal to (B5) (or (B6)).

SA.3. The eigenvalues of the Jacobian matrix of F (n) for nd

To obtain the eigenvalues of the Jacobian matrix ∂F /∂n in market pattern (D), we

rewrite F (n) as a matrix:

F (n) =
1

2σ
(Az + b)− fn, (SA5)
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where

A =
1

σ − 1




6a1 −a11
⊤
6

−a116 a1I6 + a2B


 , a1 = 1/φ, a2 = 1/τ,

B =




2 −1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 −1 2




,
z = (ln (n0) , ln (n1) , . . . , ln (n6))

⊤,

b = (6, 3, 3, 3, 3, 3, 3)⊤.

k6 is all-k 6-dimensional column vector whereas Ik is k × k identity matrix.

The following Lemma is employed for proofs of Lemmas 3 and 4.

Lemma 15. For n = nd, the eigenvalues of Jacobian matrix ∂F /∂n are given by





λ1 = −f,

λ2 =
1

2φσ(σ−1)

(
6
n0

+ 1
n1

)
− f,

λ3 =
1

2n1σ(σ−1)

(
1
φ
+ 4

τ

)
− f,

λ4 =
1

2n1σ(σ−1)

(
1
φ
+ 3

τ

)
− f (repeated twice),

λ5 =
1

2n1σ(σ−1)

(
1
φ
+ 1

τ

)
− f (repeated twice).

(SA6)

Proof. Let J(n) denote Jacobian matrix ∂F /∂n. Using (SA5), we obtain J(nd) as

follows:

J(nd) =
1

2σ

(
A
∂z

∂n
(nd)

)
− fI7 =


 6d1 − f −d21

⊤
6

−d116 (d2 − f)I6 + d3B


 , (SA7)

where d1 = d0/φn0, d2 = d0/φn1, d3 = d0/τn1, d0 = 1/2σ(σ − 1). Let λ be an eigen-

value of J(nd). Using elementary transformation of matrices, we obtain the determinant

of J − λI7:

det(J(nd)− λI7) = det


 6d1 − f − λ −d21

⊤
6

−d116 (d2 − f − λ)I6 + d3B



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= det


 −f − λ 0

⊤
6

−d116 J1




= (−f − λ) det J1,

where J1 = d1161
⊤
6 + (d2 − f − λ)I6 + d3B.

Next, we calculate det J1 with the property of orthogonal matrices. We consider the

following orthogonal matrix:

Q =




1/
√
6 1/

√
6 −1/

√
12 1/

√
4 1/

√
12 1/

√
4

1/
√
6 −1/

√
6 −1/

√
12 −1/

√
4 2/

√
12 0

1/
√
6 1/

√
6 2/

√
12 0 1/

√
12 −1/

√
4

1/
√
6 −1/

√
6 −1/

√
12 1/

√
4 −1/

√
12 −1/

√
4

1/
√
6 1/

√
6 −1/

√
12 −1/

√
4 −2/

√
12 0

1/
√
6 −1/

√
6 2/

√
12 0 −1/

√
12 1/

√
4




. (SA8)

Since Q is an orthogonal matrix, det(J1) = det(Q⊤J1Q) holds. We carry out or-

thogonal transformation to matrices in J1: Q⊤161
⊤
6 Q = diag(6, 0, 0, 0, 0, 0), Q⊤I6Q =

I6, Q
⊤BQ = diag(0, 4, 3, 3, 1, 1). Using these matrices, we obtain det(J(nd) − λI7) =

(−f − λ)e1e2e
2
3e

2
4, where e1 = 6d1 + d2 − f − λ, e2 = d2 + 4d3 − f − λ, e3 = d2 + 3d3 −

f − λ, e4 = d2 + d3 − f − λ. Therefore, the eigenvalues of Jacobian matrix J(nd) are

given by (SA6).

SA.4. Detailed proof of Lemma 3

Let J̃ denote ∂F̃ /∂ñ. Using (11) and (12), we can obtain J̃ :

J̃ =

(
6α1 − f −6α2

−α1 α2 − f

)
, (SA9)

where α1 = α/n0, α2 = α/n1, α = 1/2φσ(σ − 1). We can obtain det J̃ with one of

eigenvalues (SA6):

det J̃ = f(f − 6α1 − α2) = −fλ2.
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Since we assume that nd is linearly-stable, λ2 < 0 (i.e., λ2 6= 0) holds. Hence, we can

apply the implicit function theorem:

(∂n0/∂φ ∂n1/∂φ)
⊤ = λ−1

2 γ (6 − 1)⊤ . (SA10)

where γ = (2φ2σ(σ − 1))−1ln (n0/n1). Since the sign of ∂n0/∂φ and ∂n1/∂φ are deter-

mined by that of ln (n0/n1), we can obtain (13) and (14).

SA.5. Detailed proof of Lemma 4

We focus on the signs of the eigenvalues in (SA6). λ1 is negative because f is

positive. Moreover, if an equilibrium is stable, λ2 is always negative regardless of τ .

It is obvious that λ4, λ5 < λ3. Therefore, if the equilibrium becomes unstable with a

decrease in τ , λ3 becomes positive.

We define ξ = 1√
6
(0, 1,−1, 1,−1, 1,−1)⊤. Since J(nd)ξ = λ3ξ holds, ξ is the eigen-

vector for λ3.

SB. Proofs in Appendix C

SB.1. Proof of Lemma 7

V (ℓ, 0) > V (ℓ, i) (∀ℓ ∈ L, ∀i ∈ P) holds if and only if market pattern (F) holds. By

Eq. (4), this inequality is equivalent to the following inequalities:





σ−1ln (n0/nj) > t((D, 0, x), 0)− t((D, i, x), j)

σ−1ln (n0/nj) > t((S, 0, x), 0)− t((S, i, x), j)
∀i, j ∈ P , ∀x ∈ X. (SB1)

By Eq. (9), one of the inequalities in (SB1) is equivalent to the following inequalities:

σ−1ln (n0/nj) > t((D, 0, x), 0)− t((D, i, x), j) ∀i, j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) > φ(2x− 1) ∀j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) ≥ φ ∀j ∈ P . (SB2)
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On the other hand, by Eq. (10), the other inequality is equivalent to the followings:

σ−1ln (n0/nj) > t((S, 0, x), 0)− t((S, i, x), j) ∀i, j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) > φ+ τ

(
1

2
−
∣∣∣∣x− 1

2

∣∣∣∣−min {x, 1− x}
)

∀j ∈ P , ∀x ∈ X

⇔ σ−1ln (n0/nj) > φ ∀j ∈ P . (SB3)

By (SB2) and (SB3), (SB1) is equivalent to (C2).

SB.2. Proof of Lemma 9

We rewrite inequalities (C9)–(C12) to concisely show our proof:

−φ < σ−1ln (n0/n1) < φ− τ, (SB4)

−φ < σ−1ln (n0/n3) < φ− τ, (SB5)

−φ < σ−1ln (n0/n5) < φ, (SB6)

0 < σ−1ln (n1/n3) < 2τ, (SB7)

0 < σ−1ln (n3/n5) < 2τ, (SB8)

0 < σ−1ln (n1/n5) < 2τ, (SB9)

τ < σ−1ln (n1/n2) , (SB10)

τ < σ−1ln (n3/n4) , (SB11)

τ < σ−1ln (n1/n6) . (SB12)

(⇒) We check that (SB4)–(SB12) hold when market pattern (P) holds. In other

words, using (C4)–(C8), we prove that inequalities (SB4)–(SB12) hold. First, since

M0 ∩ M1 = {(D, 1, t1), (D, 2, t2), (D, 6, t6)} holds by (C4) and (C5), we can obtain

t1, t2 and t6:

t1 =
1

2

[
ln (n0/n1)

φ(σ − 1)
+ 1

]
, t2 =

1

2

[
ln (n0/n1)

φ(σ − 1)
+ 1 +

τ

φ

]
, t6 =

1

2

[
ln (n0/n1)

φ(σ − 1)
+ 1 +

τ

φ

]
.

Since 0 < t1, t2, t6 < 1, we obtain (SB4). Similarly, using (C4), (C6) and (C7), we

obtain (SB5) and (SB6).
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On the other hand, since M1 ∩M3 = {(S, 2, T2)} holds by (C5) and (C6), we can

obtain T2 = σ−1(2τ)
−1ln (n1/n3). Since 0 < T2 < 1, we obtain (SB7). Similarly, using

(C5)–(C7), we obtain (SB8) and (SB9).

Next, since S2( (0, T2] ) ⊂ M1 holds by (C5), we obtain the following inequality:

V ((S, 2, x), 1) > V ((S, 2, x), 2) ∀x ∈ (0, T2]. (SB13)

Using (SB13), we can obtain (SB10):

(SB13) ⇔ σ−1lnn2 − τx < σ−1lnn1 − τ(x+ 1) ∀x ∈ (0, T2]

⇒ τ < σ−1ln (n1/n2) .

Similarly, using (C5)–(C7), we can obtain (SB11) and (SB12).

(⇐) We check that market pattern (P) holds when (SB4)–(SB12) hold. We first

prove M2 = M4 = M6 = ∅ (i.e., (C8)). We prove M2 = ∅. The following holds by

Eq. (10):

t(ℓ, 1)− t(ℓ, 2) ≤ τ ∀ℓ ∈ ∪m∈P Sm(X). (SB14)

Using (4), (SB10) and (SB14), we obtain

V (ℓ, 1)− V (ℓ, 2) ≥ σ−1ln (n1/n2)− τ > τ − τ = 0 ∀ℓ ∈ ∪m∈P Sm(X). (SB15)

On the other hand, for any i ∈ P , the following holds by Eqs. (4) and (9):

V (ℓ, 2) ∈ {va1, va2} ∀ℓ ∈ Di(X), (SB16)

where va1 = σ−1lnn2 − φ(1 + x) + VD, va2 = σ−1lnn2 − φ(1− x)− τLi2 + VD. By (SB4)

and (SB10), the following holds:

V (ℓ, 0)− va1 = σ−1ln (n0/n2) + φ > τ > 0 ∀ℓ ∈ Di(X). (SB17)

Moreover, since V (ℓ, 1) ≥ σ−1 lnn1 − φ(1− x)− τLi1 + VD (∀ℓ ∈ Di(X)) holds by (9),

the following holds by (SB10):

V (ℓ, 1)− va2 ≥ σ−1ln (n1/n2) + τLi2 − τLi1 > 0 ∀ℓ ∈ Di(X). (SB18)
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Table SB1: The list of the indirect utilities for ℓ ∈ ∪m∈PSm(X).

V (ℓ, 1) V (ℓ, 3) V (ℓ, 5)

ℓ ∈ S1(X) β1 − τx β2 − τ(2− x) β3 − τ(2 + x)

ℓ ∈ S2(X) β1 − τ(1 + x) β2 − τ(1− x) β3 − τ(3− x)

ℓ ∈ S3(X) β1 − τ(2 + x) β2 − τx β3 − τ(2− x)

ℓ ∈ S4(X) β1 − τ(3− x) β2 − τ(1 + x) β3 − τ(1− x)

ℓ ∈ S5(X) β1 − τ(2− x) β2 − τ(2 + x) β3 − τx

ℓ ∈ S6(X) β1 − τ(1− x) β2 − τ(3− x) β3 − τ(1 + x)

Notes: β1 = σ−1lnn1 + VD; β2 = σ−1lnn3 + VD; β3 = σ−1lnn5 + VD.

By (SB15)–(SB18), either V (ℓ, 2) < V (ℓ, 0) or V (ℓ, 2) < V (ℓ, 1) holds (∀ℓ ∈ L), which

implies M2 = ∅. Similarly, by (SB4), (SB5), (SB11) and (SB12), M4 = M6 = ∅ holds.

Next, we prove (C4)–(C7). Note that M0,M1,M3,M5 are determined by the

relationship only among V (ℓ, 0), V (ℓ, 1), V (ℓ, 3) and V (ℓ, 5) becauseM2 = M4 = M6 =

∅.

We focus on the market areas on the ring road (i.e., ℓ ∈ ∪m∈PSm(X)). Using (4),

(10), and (SB4), we can obtain the following inequality:

V (ℓ, 0) < V (ℓ, 1) ∀ ℓ ∈ S1(X) ∪ S2( (0, 1/2] ) ∪ S5( [1/2, 1) ) ∪ S6(X). (SB19)

Similarly, by (SB5) and (SB6), the followings hold:

V (ℓ, 0) < V (ℓ, 3) ∀ ℓ ∈ S2( [1/2, 1) ) ∪ S3(X) ∪ S4( (0, 1/2] ), (SB20)

V (ℓ, 0) < V (ℓ, 5) ∀ ℓ ∈ S4( [1/2, 1) ) ∪ S5( (0, 1/2] ). (SB21)

By (SB19)–(SB21), M0∩ (∪m∈P Sm(X)) = ∅ and ∪m∈P Sm(X) ⊂ M1∪M3∪M5 hold.

We compare V (ℓ, 1), V (ℓ, 3) and V (ℓ, 5) for ℓ ∈ ∪m∈PSm(X). These functions

are shown in Table SB1. By the results in Table SB1 and (SB7)–(SB9), there exist

T2, T4, T5 ∈ X such that

S1(X) ∪ S2( (0, T2] ) ∪ S5( (T5, 1) ) ∪ S6(X) ⊂ M1, (SB22)
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S2( (T2, 1) ) ∪ S3(X) ∪ S4( (0, T4) ) ⊂ M3, (SB23)

S4 × ( (T4, 1) ) ∪ S5( (0, T5) ) ⊂ M5. (SB24)

Next, we focus on the market areas on the radial roads (i.e., ℓ ∈ ∪m∈PDm(X)).

By (SB4)–(SB6) and (SB22)–(SB24), a similar argument to the derivation of (SB16)–

(SB18) shows that there exist ti ∈ X (∀i ∈ P) such that

∪6
m=1 Dm( (0, ti] ) ⊂ M0, (SB25)

D1( [t1, 1) ) ∪ D2( [t2, 1) ) ∪ D6( [t6, 1) ) ⊂ M1, (SB26)

D3( [t3, 1) ) ∪ D4( [t4, 1) ) ⊂ M3, (SB27)

D5( [t5, 1) ) ⊂ M5. (SB28)

(SB22)–(SB28) are equal to (C4)–(C7) .
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