Cong, Rong-Gang and Caro, Dario and Thomsen, Marianne (2017): Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis. Published in: Journal of cleaner production
Preview |
PDF
MPRA_paper_112291.pdf Download (844kB) | Preview |
Abstract
Denmark is ambitious in the green transition of its transport sector. The biogas has potentials to substitute diesel as the vehicle fuel. In this paper, we examine the whole chain of biogas utilisation (biomass supply, biogas production and distribution, and fuel substitution) from both economic and environmental perspectives. We find that with low/high biomass supply potentials, the saved greenhouse gas emissions range from 0.89 to 1.66 million tons/2.19 to 4.27 million tons CO2e (carbon dioxide equivalent). The soil carbon stock could increase 52310/124770 tons with low/high biomass supply potentials (measured as remaining carbon in soil 100 years after application of digestate into soil). The biogas plant owners can obtain a return of investment ranging from 10.78% to 13.62% depending on biomass supply potentials and biogas production technologies. The farmers can save up to 717.93 and 1382.1 million DKK (Danish krone ) by substituting mineral P (phosphorus) and N (nitrogen) fertilisers in low biomass supply potential scenarios and 1.74 and 3.44 billion DKK in high biomass supply potential scenarios. Finally, the vehicle users have incentives to use biogas because of its cost advantage. However, there are also some potential barriers and uncertainties in achieving the green transition, e.g. initial investment for CO2 conversion equipment and diesel-vehicle users' sunk costs, which could require suitable policy supports. We suggest that using biogas in heavy-duty vehicles could be an effective way to reduce carbon emissions in the transport sector.
Item Type: | MPRA Paper |
---|---|
Original Title: | Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis |
Language: | English |
Keywords: | Cost-Benefit analysis; Energy conversion; Energy substitution; Greenhouse gas emission; Renewable energy; Soil carbon stock |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q56 - Environment and Development ; Environment and Trade ; Sustainability ; Environmental Accounts and Accounting ; Environmental Equity ; Population Growth Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics ; Industrial Ecology Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q58 - Government Policy |
Item ID: | 112291 |
Depositing User: | Rong-Gang Cong |
Date Deposited: | 08 Mar 2022 14:33 |
Last Modified: | 08 Mar 2022 14:33 |
References: | Birkmose, T., Hjort-Gregersen, K., Hinge, J., Hørfarter, R., 2015. Kortlægning af hensigtsmæssig lokalisering af nye biogasanlæg i Danmark. SEGES and AgroTech. Birkmose, T., Hjort-Gregersen, K., Stefanek, K., 2013. Biomasse til biogasanlæg i Danmark-på kort og langt sigt. Rapport til Energistyrelsen. Böhringer, C., Rutherford, T.F., Tol, R.S.J., 2009. THE EU 20/20/2020 targets: An overview of the EMF22 assessment. Energ. Econ. 31, Supplement 2, S268-S273. Cabral, L., Ross, T.W., 2008. Are sunk costs a barrier to entry? Journal of economics & management strategy 17, 97-112. Chandrasekar, B., Kandpal, T., 2004. Techno-economic evaluation of domestic solar water heating systems in India. Renew. Energ. 29, 319-332. Clastres, C., 2011. Smart grids: Another step towards competition, energy security and climate change objectives. Energ. Policy 39, 5399-5408. Cong, R.-G., 2013. An optimization model for renewable energy generation and its application in China: a perspective of maximum utilization. Renew. Sust. Energ. Rev. 17, 94-103. Cong, R.-G., Shen, S., 2014. How to develop renewable power in China? A cost-effective perspective. The Scientific World Journal 2014. Cong, R.-G., Termansen, M., 2016. A bio-economic analysis of a sustainable agricultural transition using green biorefinery. Science of the Total Environment 571, 153-163. Danish Energy Agency, 2014. Environment for gas till heavy road transport (RAMMEVILKÅR FOR GAS TIL TUNG VEJTRANSPORT in Danish). Danish Energy Agency, 2015. Danish Energy and Climate Outlook 2015. Danish Energy Agency, 2016a. Energy scenarios for 2020, 2035 and 2050. Danish Energy Agency, 2016b. Energy Statistics 2014. Davis, S.J., Caldeira, K., 2010. Consumption-based accounting of CO2 emissions. P. Natl. Acad. Sci. USA 107, 5687-5692. Energistyrelsen, 2014. Energy statistics 2014. Danish Energy Agency. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'hare, M., Kammen, D.M., 2006. Ethanol can contribute to energy and environmental goals. Science 311, 506-508. Foged, H.L., 2012. LIvestock manure to energy. Agro Business Park. Ghoneim, M.M., El-Desoky, H.S., El-Moselhy, K.M., Amer, A., Abou El-Naga, E.H., Mohamedein, L.I., Al-Prol, A.E., 2014. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egypt. J. Aquat. Res. 40, 235-242. Gylling, M., Jørgensen, U., Bentsen, N.S., Kristensen, I.T., Dalgaard, T., Felby, C., Johannsen, V.K., 2013. The + 10 million tonnes study: increasing the sustainable production of biomass for biorefineries. Department of Food and Resource Economics, University of Copenhagen, Frederiksberg. Hjort-Gregersen, K., 2015. Udvikling og effektivisering af biogasproduktionen i Danmark. AgroTech. Horschig, T., Adams, P.W., Röder, M., Thornley, P., Thrän, D., 2016. Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Applied Energy 184, 840-852. ICCT, 2015. Assessment of heavy-duty natural gas vehicle emissions: Implications and policy recommendations. Jensen, S.S., Jørgensen, U., Møller, H.B., Winther, M., Thomsen, M., Cong, R.-G., Brandt, J., Frederiksen, P., 2017. Biogas for transport - resources, environment and welfare economics. Department of Environmental Science, Aarhus University. Johansson, B., 1996. Transportation fuels from Swedish biomass — environmental and cost aspects. Transport. Res. D: Tr. E. 1, 47-62. Junginger, M., Van Dam, J., Zarrilli, S., Mohamed, F.A., Marchal, D., Faaij, A., 2011. Opportunities and barriers for international bioenergy trade. Energy Policy 39, 2028-2042. Jørgensen, H., 2014. IEA Bioenergy: Country Report Denmark. Technical University of Denmark. Klaassen, G., Miketa, A., Larsen, K., Sundqvist, T., 2005. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecol. Econ. 54, 227-240. Kristensen, I.T., Jørgensen, U., 2012. Baggrundsnotat. Forudsætninger for og beregning af biomassescenarier for landbruget. Institut for Agroøkologi, Aarhus Universitet. Lantz, M., Svensson, M., Björnsson, L., Börjesson, P., 2007. The prospects for an expansion of biogas systems in Sweden—incentives, barriers and potentials. Energ. policy 35, 1830-1843. Lastella, G., Testa, C., Cornacchia, G., Notornicola, M., Voltasio, F., Sharma, V.K., 2002. Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energ. Convers. Manage. 43, 63-75. Mathiesen, B.V., Lund, R.S., Connolly, D., Ridjan, I., Nielsen, S., 2015. Copenhagen Energy Vision: A sustainable vision for bringing a Capital to 100% renewable energy. Department of Development and Planning, Aalborg University. Morero, B., Groppelli, E., Campanella, E.A., 2015. Life cycle assessment of biomethane use in Argentina. Bioresource technology 182, 208-216. Murphy, J., McCarthy, K., 2005. The optimal production of biogas for use as a transport fuel in Ireland. Renew. Energ. 30, 2111-2127. Murphy, J.D., McKeogh, E., Kiely, G., 2004. Technical/economic/environmental analysis of biogas utilisation. Appl. Energ. 77, 407-427. Murphy, J.D., Power, N., 2009. Technical and economic analysis of biogas production in Ireland utilising three different crop rotations. Appl. Energ. 86, 25-36. Nielsen, O.-K., Plejdrup, M.S., Winther, M., Hjelgaard, K., Nielsen, M., Fauser, P., Mikkelsen, M.H., Albrektsen, R., Gyldenkærne, S., Thomsen, M., 2015a. Projection of greenhouse gases 2013-2035. Aarhus University, DCE–Danish Centre for Environment and Energy. Nielsen, O.K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Møller, I.S., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L., Hansen, M.G., 2015b. Emission Inventories 1990-2013 – Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE –Danish Centre for Environment and Energy. Niero, M., Pizzol, M., Bruun, H.G., Thomsen, M., 2014. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J. Clean. Prod. 68, 25-35. Patrizio, P., Leduc, S., Chinese, D., Dotzauer, E., Kraxner, F., 2015. Biomethane as transport fuel–A comparison with other biogas utilization pathways in northern Italy. Applied Energy 157, 25-34. Patterson, T., Esteves, S., Dinsdale, R., Guwy, A., 2011. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energ. Policy 39, 1806-1816. Pérez-Marín, A.B., Zapata, V.M., Ortuño, J.F., Aguilar, M., Sáez, J., Lloréns, M., 2007. Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater. 139, 122-131. Pizzol, M., Weidema, B., Brandão, M., Osset, P., 2015. Monetary valuation in life cycle assessment: a review. Journal of Cleaner Production 86, 170-179. Seghetta, M., Marchi, M., Thomsen, M., Bjerre, A.-B., Bastianoni, S., 2016a. Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Research 18, 144-155. Seghetta, M., Tørring, D., Bruhn, A., Thomsen, M., 2016b. Bioextraction potential of seaweed in Denmark—An instrument for circular nutrient management. Sci. Total Environ. 563, 513-529. Shafiee, S., Topal, E., 2009. When will fossil fuel reserves be diminished? Energ. Policy 37, 181-189. Sims, R.E., Mabee, W., Saddler, J.N., Taylor, M., 2010. An overview of second generation biofuel technologies. Bioresource technol. 101, 1570-1580. Thomsen, M., 2016. WASTEWATER TREATMENT AND DISCHARGE. Aarhus University, Department of Environmental Science. Thomsen, M., Seghetta, M., Mikkelsen, M.H., Gyldenkærne, S., Becker, T., Caro, D., Frederiksen, P., 2017. Comparative life cycle assessment of biowaste to resource management systems – A Danish case study. J. Clean. Prod. 142, Part 4, 4050-4058. Uusitalo, V., Soukka, R., Horttanainen, M., Niskanen, A., Havukainen, J., 2013. Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector. Renew. Energ. 51, 132-140. Winther, M., 2015. Danish emission inventories for road transport and other mobile sources: Inventories until the year 2013. Aarhus University, DCE–Danish Centre for Environment and Energy. Winther, M., Jensen, S.S., 2016. Greenhouse gas emissions from heavy duty vehicles using upgraded biogas as a fuel, 21st International Transport and Air Pollution Conference. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112291 |