Bambino-Contreras, Carlos and Morales-Oñate, Víctor (2021): Exposición al default: estimación para un portafolio de tarjeta de crédito.
Preview |
PDF
MPRA_paper_112333.pdf Download (391kB) | Preview |
Abstract
This work estimates the exposure at default of a credit card portfolio of an Ecuadorian bank without using the credit conversion factor, a common mechanism used in the expected loss distribution estimation literature and suggested by the Basel Committee. To achieve this goal, the probability distribution of this variable (exposure at default) has been identified so that it can be used in the context of generalized linear models. The results show that the model can be used to make predictions based on assumptions closer to the reality of customer behavior based on the variables used in the regression.
Item Type: | MPRA Paper |
---|---|
Original Title: | Exposición al default: estimación para un portafolio de tarjeta de crédito |
English Title: | Exposure to default: estimation for a credit card portfolio |
Language: | Spanish |
Keywords: | Expected loss, Credit risk, Exposure at default, Generalized linear models, Gamma Distribution, Machine Learning |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General G - Financial Economics > G3 - Corporate Finance and Governance > G32 - Financing Policy ; Financial Risk and Risk Management ; Capital and Ownership Structure ; Value of Firms ; Goodwill |
Item ID: | 112333 |
Depositing User: | Victor Morales-Oñate |
Date Deposited: | 10 Mar 2022 14:17 |
Last Modified: | 10 Mar 2022 14:17 |
References: | Arias-Serna, M. A., Guzmán-Aguilar, D. S., and Valdez-Betancur, D. (2021). Sistema de información para la cuantificación de pérdidas esperadas: Una aplicación en las entidades del sector solidario colombiano. Revista Ibérica de Sistemas y Tecnologías de Información, (E39), 444-460. Burges, C., Ragno, R., and Le, Q. (2006). Learning to rank with nonsmooth cost functions. Advances in neural information processing systems, 193-200. Dobson, A. J., and Barnett, A. G. (2018). An introduction to generalized linear models. Nueva York: CRC press. Elizondo, A., and Altman, E. I. (2004). Medición integral del riesgo de crédito. México: Limusa. Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2011). Statistical distributions. Nueva York: John Wiley & Sons. Friedman, J. H. (1991). Estimating functions of mixed ordinal and categorical variables using adaptive splines. Stanford Univ CA Lab for Computational Statistics. García Sánchez, M., and Sánchez Barradas, C. (2005). Riesgo de crédito en México: aplicación del modelo CreditMetrics. México: Departamento de Contaduría y Finanzas. Escuela de Negocios, Universidad de las Américas Puebla. Recuperado el, 17. Gujarati, D. (2012). Econometrics by example. Nueva York: Macmillan. Joseph, M. P. (2005). A PD validation framework for Basel II internal ratings-based systems. Credit Scoring and Credit Control IV. Shabri Abd Majid, M. and Hj Kassim, S. (2009), Impact of the 2007 US financial crisis on the emerging equity markets, International Journal of Emerging Markets, Vol. 4 No. 4, pp. 341-357. https://doi.org/10.1108/17468800910991241 Stephen Milborrow. Derived from mda:mars by Trevor Hastie and Rob Tibshirani. Uses Alan Miller's Fortran utilities with Thomas Lumley's leaps wrapper. (2021). earth: Multivariate Adaptive Regression Splines. R package version 5.3.1. https://CRAN.R-project.org/package=earth Phelan, M. J. (1997). Probability and statistics applied to the practice of financial risk management: The case of JP Morgan's RiskMetrics. Journal of Financial Services Research, 12(2), 175-200. Ricci, V. (2005). Fitting distributions with R. Contributed Documentation available on CRAN, 96. Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American statistical Association, 69(347), 730-737. Tanoue, Y., Yamashita, S., and Nagahata, H. (2020). Comparison study of two-step LGD estimation model with probability machines. Risk Management, 22, (3), 155-177. Taplin, R., To, H. M., and Hee, J. (2007). Modeling exposure at default, credit conversion factors and the Basel II accord. Journal of Credit Risk, 3(2), 75-84. Thomas, L., Crook, J., and Edelman, D. (2017). Credit scoring and its applications. Society for industrial and Applied Mathematics. Tong, E. N., Mues, C., and Thomas, L. (2013). A zero-adjusted gamma model for mortgage loan loss given default. International Journal of Forecasting, 29(4), 548-562. Tong, E. N., Mues, C., Brown, I., and Thomas, L. C. (2016). Exposure at default models with and without the credit conversion factor. European Journal of Operational Research, 252(3), 910-920. Vytautas, V. (2008). Estimating EAD for retail exposures for Basel II purposes. Journal of Credit Risk, 4(1), 79-110. Yadav, S., and Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. 2016 IEEE 6th International conference on advanced computing (IACC), 78-83. Yaseen, Z. M., Deo, R. C., Hilal, A., Abd, A. M., Bueno, L. C., Salcedo-Sanz, S., and Nehdi, M. L. (2018). Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Advances in Engineering Software, 115, 112-125. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112333 |