
Munich Personal RePEc Archive

Expecting Floods: Firm Entry,

Employment, and Aggregate Implications

Jia, Ruixue and Ma, Xiao and Xie, Victoria Wenxin

UCSD and LSE, Peking University, Santa Clara University

10 March 2022

Online at https://mpra.ub.uni-muenchen.de/112367/

MPRA Paper No. 112367, posted 19 Mar 2022 09:35 UTC



Expecting Floods: Firm Entry, Employment,

and Aggregate Implications∗

Ruixue Jia† Xiao Ma‡ Victoria Wenxin Xie§

March 13, 2022

Abstract

Flood events and flood risk have been increasing in the past few decades and have

important consequences on the economy. Using county-level and ZIP-code-level data

during 1998–2018 from the U.S., we document that (1) increased flood risk has large

negative impacts on firm entry, employment and output in the long run; (2) flood

events reduce output in the short run while their impact on firm entry and employment

is limited. Motivated by these findings, we construct a spatial equilibrium model to

characterize how flood risk shapes firms’ location choices and workers’ employment,

which we use to estimate the aggregate impact of increased flood risk on the economy.

We find that flood risk reduced U.S. aggregate output by 0.52 percent in 2018, 80% of

which stemmed from expectation effects and 20% from direct damages. We also apply

our model to studying the distributional consequences and forecasting the impact of

future changes in flood risk. Our results highlight the importance of considering the

adjustment of firms and workers in response to risk in evaluating the consequences of

natural disasters.
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1 Introduction

Floods are the most common natural disasters in many countries. In the past few decades,

flood events have become more common, and flood risk has been increasing. For instance,

according to the Federal Emergency Management Agency (FEMA), around 6 million Amer-

icans were living within a 100-year flood zone in the U.S. in 1998, and this number increased

to 13 million in 2018. As global warming continues, the floodplains in the United States

are expected to grow by approximately 45% by the end of this century (AECOM 2013).

How does increasing flood risk shape the economy? In this paper, we study this question

by focusing on the responses of firms and workers. Using data from the U.S., we study how

both flood risk and flood events affect firms’ location choices and workers’ employment. We

also quantify the aggregate implications of flood risk on the aggregate output.

While there exists a literature on the economic impact of floods,1 few papers have investi-

gated how the expectation of increasing flood risk shapes firm entry and employment, partly

due to the lack of suitable data. In this paper, we leverage digitized national flood risk data

over long time horizons and link them with county-level and ZIP-code-level information on

firms and other outcomes during 1998–2018.

Using a standard design that controls for county fixed effects, year fixed effects and

various confounding factors, we demonstrate two main empirical findings. First, increased

flood risk has large negative impacts on firm entry, employment, and output in the long run.

Specifically, one standard deviation increase in flood risk during the two decades studied

reduced firm entry by 1.2%, employment by 1.2%, and real GDP by 2.4%. The impact on

population size is also negative but the magnitude is smaller (0.8%) than that on employment.

In addition, firm exits also declined with increased flood risk, implying that firms become less

dynamic in a risky environment. Second, in contrast with the long-run impact of increased

flood risk, yearly flood events have little impact on firm entry and employment in the short

run, suggesting that these margins need time to adjust. Meanwhile, flood events reduced

real GDP per capita, consistent with the fact that short-run floods affect the productivity

of existing firms. Specifically, one standard deviation increase in the share of flooded areas

reduced the real GDP in the same year by 0.2%.

One important empirical challenge is that the flood risk measure provided by FEMA

likely suffers from measurement errors. Some data used in FEMA modeling were outdated

1Most of the literature has focused on actual flood events, while a couple of recent studies examine how
flood risk affects housing prices (e.g., Hino and Burke 2020). See more discussions later when we discuss the
related literature.
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or inaccurate (Kousky 2018). In addition, because these FEMA maps are used to rate

national flood insurance policies, there exist incentives for politicians and home owners to

object map updates in order to avoid higher flood insurance rates (Flavelle et al. 2020). For

our analysis, we assume that these risk measures are what have been observed by firms and

workers and thus influence their decisions, despite possible measurement errors. To partially

address the measurement concern, we employ an instrumental variable (IV) approach where

we use the interaction between the state-level risk change (excluding one’s own locality) and

local geo-climatic conditions to predict local flood risk changes. Our IV estimates are similar

in magnitude compared to those obtained from the fixed effects model. Our findings are also

robust to using ZIP-code-level data that exploits finer variations.

Motivated by these findings, we construct a spatial equilibrium model built on canonical

frameworks (McFadden 1978, Krugman 1980) to uncover the aggregate impact of flood risk.

In our model, expecting flood risk, firms choose whether to enter a locality, while workers

choose whether to relocate and how much labor to supply. For a given locality, realized floods

affect firms’ average productivity and workers’ average amenity. The equilibrium wage links

the decisions of firms and workers. In our model, flood risk affects the economy via three

channels. The first is a direct damage channel that increases with higher flood risk. The

second is an employment channel, where flood risk changes workers’ location choices and

reduces labor supply due to reduced real wages. The third is a love of variety channel,

reflected by the number of firms that is also decreased by higher flood risk. We calibrate our

model by targeting the responses of employment and population to flood risk through the

indirect inference. For the non-targeted moments (output, firm entry, firm exit), our model-

generate responses to flood risk are consistent with those based on micro data, suggesting

that our model captures important forces in the economy.

Armed with our model, we conduct three sets of counterfactual analyses. First, we

examine the aggregate impact of flood risk on the U.S. economy. We find that flood risk

in 2018 caused a 0.52% decline in the aggregate output, out of which 0.11% was driven by

the direct damage channel, 0.33% by the employment channel, and 0.08% by the variety

channel. The latter two can be considered as consequences of expectation, which is four

times more important than the direct damages. Second, we study the distributional impacts

across regions. Indeed, the average decline masks wide regional variation: the loss of output

in top 5% counties in the flood risk distribution (such as Cape May and New Jersey) was

as high as 7–14% of county-level output. Third, we apply our model to a future scenario

where the share of properties with flood risk increases by 4.5% between 2020 and 2050
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(First-Street-Foundation 2021) and find that this increase would cause a 0.12% decline in

aggregate output. Again, underlying this impact, the reduced employment in expectation of

floods plays a more important role than the direct damages, which has not been emphasized

by the existing literature.

Finally, we examine several extensions of our model, including assuming that creating a

new firm requires a combination of labor and final goods, allowing for cross-regional trade

flows, and considering both land and capital in firm production. These extensions generally

predict a slightly larger impact of flood risk on the economy, and the small differences in

magnitudes highlight the quantitative importance of the economic forces in our simplified

baseline model.

Our study contributes to a burgeoning literature exploring the quantitative effect of cli-

mate changes on spatial economies (e.g., Costinot et al. 2016, Desmet et al. 2021, Alvarez

and Rossi-Hansberg 2021).2 Ours is particularly related to three studies on the aggregate

effects of floods. Desmet et al. (2021) evaluate the economic cost of coastal flooding using

global data and emphasize the role of migration and investments in local technology. Bal-

boni (2019) studies the misallocation of infrastructure in the presence of coastal flooding

driven by the risk of sea level changes. Lin et al. (2021) quantify the importance of agglom-

eration in explaining the increased new construction near coastal flood-prone areas. Our

paper contributes to this literature in two aspects. First, whereas the previous literature has

mostly focused on inundated land due to sea level rises, we exploit the new data (historic

maps of flood zone designation) which incorporate overall flood risk, and we investigate the

production damage of floods rather than land inundations. Second, we reconcile the quan-

titative analysis with our reduced-form evidence which highlights that firms’ (and workers’)

responses to flood risk are different from the responses to actual floods.

Our micro-level evidence is built on recently digitized panel data on flood risk. Existing

research on flood risk has been focusing on price effects. For instance, using the same

data as ours, Hino and Burke (2020) show that the increased flood risk reduces property

values by 1–2%. Both using household surveys to elicit flood risk perceptions, Mulder (2021)

examines the welfare effect of improving the accuracy of the flood risk map, while Bakkensen

and Barrage (2021) study residential sorting based on flood risk beliefs and the associated

implications for coastal housing prices. Although we do not model housing explicitly, the

housing price effect can be interpreted as the change in amenity in our model.3

2There is also a large literature developing macro models to evaluate climate changes on the national
level (e.g., Nordhaus 1992, Acemoglu et al. 2012, Golosov et al. 2014, Barrage 2020).

3Our estimate is also comparable to theirs. Because housing prices can be interpreted as the present value
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Our paper is also related to a growing empirical literature evaluating the economic conse-

quences of natural disasters, especially those closely related to climate change (see Dell et al.

(2014) for an overview).4 We are particularly related to Kocornik-Mina et al. (2020) who

use satellite nightlight data to evaluate the impacts of very large-scale floods spanning the

globe’s cities. Our findings on flood events are consistent with theirs: flood events reduce

output but their impact does not last long, suggesting a fast recovery. In contrast, we show

that flood risk can have long-run consequences, and the long-run impacts can be more severe

than the short-run impacts, as they change firms’ and workers’ behavior. In addition to

reduce-form evidence, our study quantifies the importance of considering both expectation

effects and direct damages in evaluating the aggregate consequences of natural disasters.

This paper is organized as follows. Section 2 describes our data and measurement, and

Section 3 demonstrates the reduced-form evidence, which leads to the model developed

in Section 4. Section 5 takes the model to the data, and Section 6 performs counterfactual

exercises to uncover the aggregate and distributional effects of flood risk. Section 7 concludes.

2 Data

Flood Risk. We collect flood risk data from FEMA’s historic and current designation maps

of Special Flood Hazard Zones. The maps for historic flood zone designations, Q3, correspond

to FEMA’s Flood Insurance Rate Map in 1998. These maps assign flood zone designation at

the polygon level and are used to determine national flood insurance premiums. The Special

Flood Hazard Zone identified from these maps represents areas that will be inundated by the

flood event with a one percent chance in any given year. In our analysis, we consider areas in

Special Flood Hazard Zones as the FEMA floodplain (areas with flood risk). From the early

2000s, with new flood data and updated modeling methods, there were many FEMA map

revisions. To exploit changes in FEMA’s flood risk designations, we also obtain the current

floodplain designation maps from FEMA’s National Flood Hazard Layer (NFHL) in 2018.

Using map layers of FEMA’s flood zone designations in 1998 and 2018, we calculate the

share of land areas in FEMA’s flood zones, separately for each county-level and ZIP-code-

of housing services and housing expenditures account for 30% of total consumers’ expenditures (Serrato and
Zidar 2016), Hino and Burke (2020)’s estimate implies that flood risks reduce workers’ utility by 0.3–0.6%
through housing damage, similar to our calibrated amenity loss of 0.2%.

4Recent studies include Gallagher (2014), Hsiang and Jina (2014), Deryugina (2017), Hsiang et al. (2017),
and Tran and Wilson (2021), among others.
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Figure 1: Change in Flood Risk, ZCTA-level, 1998-2018

Notes: white space in the map refers to the areas with either no official USPS delivery address or no flood map coverage.

level tabulation area in either year of 1998 and 2018.5 We use this share of areas within flood

zones as the flood risk measure. In Figure 1, we plot the change in flood risk from 1998 to

2018, at the ZIP code level. The figure shows that many counties experienced a significant

increase in flood risk during our sample period. On average, the share of land areas in flood

zones increased by 1.5 percentage points, with a 20-percentage-point increase in the 90th

percentile across the distribution of ZIP-code-level flood risk changes.

One main concern about this flood risk measure is measurement error. As the FEMA

maps are used to rate national flood insurance policies, there exist incentives for politicians

and home owners to object map updates in order to avoid higher flood insurance rates. In

addition, it has been long argued that some data used in FEMA modeling were outdated or

inaccurate, and thus, these flood zones may not fully reflect actual flood risk (e.g., Kousky

2018, Flavelle et al. 2020). As these flood zones are the signals directly observed by firms,

it is unclear how these measurement errors affect our findings a priori. We address this

challenge using an instrument based on geo-climatic conditions to predict flood risk changes.

Flood Events. Similar to the existing literature (e.g., Kocornik-Mina et al. 2020), our

spatial data on actual floods come from the Global Active Archive of Large Flood Events

5In our analyses, we winsorize this measure at the top and bottom to minimize measurement errors.
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collected by the Dartmouth Flood Observatory. These data record the occurrence and

severity of flood events across the globe and are available from 1985 to the present year.

Firm and Labor Outcomes. We are interested in the responses of both firms and workers.

At the county level, for each year of our interest, we obtain the county-level numbers of

establishment entrants and exits, based on data from the US Census’s Business Dynamics

Statistics. In this paper, we consider establishments as firms, as establishments are the basic

units of production in the data, and distinguishing between multi-establishment and single-

establishment firms is not the focus of our study. On the worker side, we obtain employment

data from the US Census’s Business Dynamics Statistics and prime-age population data

from the Census series. Finally, we use county-level real GDP data provided by the Bureau

for Economic Analysis. The summary statistics for these variables are presented in Panel A,

Appendix Table A.1.

At the ZIP code level, we draw on the ZIP Codes Business Patterns (ZBP) to measure

economic outcomes including the number of establishment, employment, and payrolls.6

Control Variables. County-level changes in economic performance may be driven by con-

founding factors other than flood risk. For example, changes in firm dynamics, employment

and total output could reflect local demographic and economic factors such as trade exposure.

To ensure the relationships of our interest are not driven by other county-level character-

istics, we will control a set of county-level characteristics in our empirical analysis.7 These

characteristics include the share of female labor, manufacturing share of employment, and

population density, and changes in China’s import penetration ratio (see Appendix Table A.1

for a summary of these controls). We also allow for the impact of these characteristics to

change over time in our regressions, as detailed below.

3 Reduced-form Evidence

In this section, we present reduced-form results on the impact of flood risk and those of

actual flood. We first explore the impact of flood risk on firms and employment, which is

novel to the literature, by presenting motivational evidence in Section 3.1 and performing

formal empirical analysis in Section 3.2. We then estimate the impact of actual flood events,

which allows us to discipline the model parameters that governs direct damages of floods.

6The measures for population and firm exits are not available at the ZIP code level from the ZBP.
7We follow Autor et al. (2013) in constructing these controls.
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3.1 The Impact of Flood Risk: Motivation and Research Design

As motivational evidence, we examine how flood risk changes correlate with changes in firm

entry and employment in the raw data. In Figure 2a, we plot county-level changes in the

number of firm entrants between 1998 and 2018 against county-level changes in flood risk.

The scatter plot reveals a significant negative correlation. Similarly, as shown in Figure

2b, we also observe a county-level negative correlation between flood risk and employment

changes. In the raw data, one standard deviation (7-percentage-point) increase in the share

of land within FEMA’s flood zones is associated with a decline of 2.3% in firm entry and a

decline of 1.9% in employment. These figures also reveal that the counties that experienced

the highest increases in flood risk are located close to rivers, lakes, or oceans.

Figure 2: Glance at the Raw Data

(a) Firm Entry (b) Employment

Notes: For the counties that experienced the highest increase in flood risk, we highlight them in red if they are coastal

(e.g. Marion county, FL), and in blue if they are located close to a river or lake (e.g. Sharkey county, MS).

These correlations in the raw data suggest that increased flood risk deters firm entry

and employment. However, these relationships may be confounded by other county-level

characteristics. To formally examine the casual impacts of flood risk increase on firm en-

try, employment and other outcomes, we use a fixed effect framework that controls various

confounding factors. Our baseline empirical specification is as follows:

logYi,t = α + β1FloodRiski,t + σi + γs,t +Xi,t + β2ActualF loodi,t + ǫi,t, (1)

where logYi,t is log number of firm entrants (or other outcomes of interest) in locality i
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(county or ZIP code) and year t. Our main independent variable FloodRiski,t represents the

percentage of land areas within FEMA’s special flood zones in locality i and year t. Due to

the data limits and our interest in the long-run impact of flood risk, we focus on two years’

outcomes, t = 1998 and t = 2018.

The locality (county or ZIP code) fixed effects, σi, absorb any time-invariant locality

characteristics that may correlate with flood risk and outcomes. State-by-year fixed effects,

γst, capture the statewide economic growth or business cycle fluctuations. Additionally, the

vector Xi,t contains a set of county-level demographic and economic factors as described in

Section 2, capturing other factors that may confound the relationship between flood risk and

county-level outcomes. To separate the different effects of flood risk and actual flood events,

we also control for ActualF loodi,t, which is defined as the percentage of flooded areas in

locality i in year t. Standard errors are clustered at the county level.

3.2 The Impact of Flood Risk: Empirical Findings

3.2.1 Fixed Effect Regressions

County-level Results. Panel A in Table 1 presents the county-level impact of flood risk on

firm entry, firm exit, employment, population, and real GDP, respectively. The regressions in

odd columns control for county fixed effects, state-by-year fixed effects, and control variables

interacted with year fixed effects, whereas the regressions in even columns further control

for the share of actual flooded areas in the corresponding year, given the concern that actual

floods may drive the impact of flood risk. We find that the estimated impacts of flood risk

are quite stable regardless of whether we control for the occurrence of actual floods.

We highlight three empirical findings. First, Column (2) shows that the increased flood

risk negatively affected firm entry. In terms of the magnitude, a standard deviation (7-

percentage-point) increase between 1998 and 2018 in flood risk reduced the number of firm

entrants in 2018 by 1.2%, and a county whose flood risk increase lied in the 90th percentile

among all counties would on average experience a reduction of 3.3% in firm entry. Accompa-

nying the decline in firm entry, Column (4) shows that firm exits also decreased with flood

risk, with a smaller magnitude than the effect on firm entry. Even though natural disasters

are typically associated with more closure of production facilities (as we show in Section 3.3),

the decline in firm exits likely reflects the impact of fewer firms and declined firm dynamism.

Second, Columns (6) and (8) together indicate that an increase in flood risk significantly

lowered employment and to a smaller magnitude reduced population. Specifically, a standard
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deviation (7-percentage-point) increase in flood risk reduced population by 0.8 percent and

employment by 1.2 percent. The population change mainly reflects households’ relocation

given that we control for actual floods and focus on prime-age population. Our finding on

the population decline in response to flood risk is natural, as people tend to move away from

the risky areas, which has been recognized as essential in understanding the long-run miti-

gation of natural disasters (e.g., Desmet et al. 2021). Furthermore, our results indicate that

adjustments of employment to flood risk are larger than population adjustments, suggesting

that the remaining population may also adjust their employment choices. Guided by these

empirical findings, we will embed migration and endogenous labor supply into our model.

Finally, along with the decline in firm dynamism and employment, Column (10) shows

that real GDP decreased by 2.4% with a standard deviation increase in flood risk.

ZIP-Code-Level Results. Next, we use the ZIP-code-level data, exploiting finer spatial

variations in the changes of flood risk status and firm-level outcomes. Because information

on firm entry, exit, and real GDP is not available on the ZIP code level, we instead focus

on two related variables, namely the number of establishments and annual payrolls. We also

omit results about population due to the lack of data at the ZIP-code level. We use similar

specification as before, where we control for ZIP-code-level fixed effects, state-by-year fixed

effects, control variables and actual floods. Panel B of Table 1 shows that focusing on a

finer geographic variations, the impact of flood risk is fairly similar in magnitude to the

county-level results: an increase in flood risk significantly decreased the number of firms,

total employment, and total payrolls.

Additional Robustness Check. It is worth noting that FEMA historic Q3 maps do not

provide information for a subset of counties. We treat the flood risk in these unreported areas

as zero, since firms and households do not observe any risk signal from FEMA. Alternatively,

Appendix Table A.2 performs our baseline regression (1), using the counties with available

FEMA flood maps for both 1998 and 2018. We find that the estimated impacts of flood

risk are qualitatively similar to our baseline results, with slightly larger magnitudes. To be

conservative, we use our baseline estimates to calibrate the quantitative model.
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Table 1: The Impact of Long Run Change in Flood Risk: Fixed Effects Estimates

Panel A: County Level

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)a

Flood risk -0.172** -0.173** -0.119* -0.119* -0.171*** -0.171*** -0.114*** -0.115*** -0.337*** -0.337***
(0.079) (0.079) (0.072) (0.072) (0.059) (0.059) (0.041) (0.041) (0.072) (0.072)

Observations 5188 5188 5174 5174 5280 5280 5282 5282 5222 5222
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
OtherControls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
ActualFlood Yes Yes Yes Yes Yes
ymean 4.080 4.080 4.022 4.022 9.03 9.03 9.914 9.914 13.73 13.73

Panel B: ZIP Code Level

(1) (2) (3) (4) (5) (6)
log(Establishment) log(Employment) log(Payroll)

Flood risk -0.233*** -0.234*** -0.240*** -0.242*** -0.221*** -0.223***
(0.040) (0.040) (0.066) (0.066) (0.072) (0.072)

Observations 43330 43330 41032 41032 41034 41034
ZCTA FE Yes Yes Yes Yes Yes Yes
State×YearFE Yes Yes Yes Yes Yes Yes
OtherControls Yes Yes Yes Yes Yes Yes
ActualFlood Yes Yes Yes
ymean 4.330 4.330 6.611 6.611 9.964 9.964

Notes: a.We use county-level GDP in 2001 instead of 1998 for columns (9) and (10) since the BEA county-level GDP data starts from 2001. The main
independent variable F loodRiski,t represents the percentage of land area within FEMA’s special flood zone in locality i and year t. We are interested
in the long-run impact of flood risk and thus focus on t being 1998 and 2018. All regressions control for locality fixed effects, state-by-year fixed
effects, and a rich set of demographic and economic controls. Firm entry, exit and population data are not available at the ZCTA level. Standard
errors are clustered at the locality level (county or ZIP code).
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3.2.2 IV Estimation

As discussed in Section 2, the flood risk measures may reflect potential political economy

factors rather than actual risk. To check whether such measurement errors lead to a sizable

bias in our estimates, we implement an instrumental variable approach. Specifically, we

construct a Bartik-type instrument, using the interaction of average changes in flood risk

in the rest of the state and a county’s own geo-climatic features (satellite-based measures

of yearly average temperature, cumulative rainfall and evaporation) to predict a county’s

risk change. Intuitively, average changes in flood risk in the rest of the state proxies general

risk change in a broad region, whereas this general change likely matters more for counties

with certain geo-climatic conditions such as heavy rainfalls. In addition, we also control for

the cumulative flooded area from all flooding events that have occurred during our sample

period for each county, in case these geo-climatic features are correlated with past floods.

Table 2 reports the results from the IV regressions. Overall, we find that the IV estimates

are comparable in magnitude to our previous fixed effects estimates. According to these

estimates, one standard deviation increase in flood risk reduced county-level firm entry by

1.2 percent, employment by 1.4 percent, and real GDP by 2.2 percent. Thus, even though

the flood risk measures are likely to reflect some unobserved potential political economy

factors, there does not seem to be a large bias in our fixed effect estimates.

To check the validity of our IV approach, we follow Goldsmith-Pinkham et al. (2020) to

perform a placebo (pre-trend) test. Instead of using the outcomes between 1998 and 2018,

we now look at the effect of flood risk changes between 1998–2018 on the changes in firm

dynamics and other county-level outcomes between 1990–1998. Intuitively, if the negative

impact of flood risk changes on economic outcomes during our sample period is driven

by other omitted local economic characteristics, these negative impacts may have already

occur in earlier periods. We find that this is not the case, as shown in Appendix Table

A.3:8 estimates from the placebo tests are much smaller in magnitude and not significant,

suggesting that our instrument does not reflect omitted county-level characteristics.

3.3 The Impacts of Flood Events

We now proceed to understand the direct damages of actual floods, examining the impact of

actual floods on the same outcomes as above. This exercise not only confirms the negative

8We do not examine real GDP in the placebo test because county-level GDP data were not available
before 1998.
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Table 2: The Impact of Long Run Change in Flood Risk: Change-on-Change Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆log(Entry) ∆log(Exit) ∆log(Employment) ∆log(Population) ∆log(Output)

∆Flood risk -0.188** -0.167** -0.134* -0.097 -0.183*** -0.193*** -0.123*** -0.136*** -0.328*** -0.308***
(0.080) (0.085) (0.073) (0.079) (0.060) (0.065) (0.042) (0.053) (0.070) (0.074)

Observations 2594 2593 2587 2586 2640 2639 2641 2640 2611 2610
KP F stat 63 66 66 65 65
State FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cum. Floods Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Specification OLS IV OLS IV OLS IV OLS IV OLS IV

Notes: Outcome variables are changes in log terms. The main independent variable D.F loodRiski,t represents changes
in the percentage of land area within FEMA’s special flood zone in locality i between years 1998 and 2018. "IV"
represents our instrumental variable approach, using the interaction of average changes in flood risk in the rest of the
state and a county’s own geo-climatic features as instruments. All regressions control for state fixed effects, cumulative
flood area and a rich set of demographic and economic controls. We also report the first-stage Standard errors are
clustered at the county level.

damage of floods as similarly shown by recent studies (Kocornik-Mina et al. 2020), but also

allows us to discipline the parameters that govern direct damages of floods in the model.

We employ yearly information on flood events using data from the Dartmouth Flood

Archives and estimate the impact of an actual flood on economic outcomes in the same

year (we will also discuss lagged effects below), similar to Kocornik-Mina et al. (2020). Our

specification is as follows:

logYi,t = α + β1Floodi,t + σi + γs,t +Xi,t ++ǫi,t (2)

where again, logYi,t is log number of firm entrants (or other outcomes of interest) in county

i and year t. Our main independent variable Floodi,t represents the percentage of county

areas being flooded in county i and year t. Similar as before, we control for county fixed

effects (σi), state-by-year fixed effects (γst), as well as the set of county-level demographic

composition and China’s import penetration ratios by year (Xit). Because county-level GDP

data, business dynamics, and flooding data are available for the period 2001–2018, we thus

use a balanced panel of county-level outcomes over these 18 years for estimation. Standard

errors are clustered at the county level.

Table 3 reports the results. Overall, we find that the impacts of actual floods are vastly

different from those of flood risk. As shown in Table 3, actual floods had a negligible impact

on firm entry, firm exit, employment, or population. However, actual floods did decrease

actual real GDP. As shown in Column (10), a standard deviation increase (0.4) in the share of

13



Table 3: The Impact of Short Run Actual Floods: Fixed Effects Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood share 0.002 0.001 0.002 0.003 -0.000 -0.001 0.001*** 0.001*** -0.005*** -0.005***
(0.004) (0.004) (0.004) (0.004) (0.001) (0.001) (0.000) (0.000) (0.002) (0.002)

Observations 51595 50782 51584 50931 53195 52666 53244 52683 52320 51816
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Initial Controls Yes Yes Yes Yes Yes
ymean 4.018 4.036 3.979 3.991 8.864 8.870 9.816 9.825 13.66 13.67

Notes: Outcome variables are changes in log terms. The main independent variable F loodsharei,t represents changes
in the percentage of land area flooded in county i, year t. We are interested in the short run impact of yearly floods
and the sample period is 2001-2018. All regressions control for county fixed effects, state-by-year fixed effects, and a
rich set of initial control by year trends. Standard errors are clustered at the county level.

flooded areas in a year significantly lowered real GDP by 0.2%. This magnitude is consistent

with that found in the recent papers (e.g., Henderson et al. 2012, Kocornik-Mina et al.

2020). Also in line with these papers, we find that the impact is primarily driven by the

current year’s flood shocks. As shown in Appendix Table A.4, lagged flood shocks from the

previous year incur negligible real GDP losses in the current year. Given these findings, in

the model developed in the next section, the impact of actual floods mainly unfolds through

the negative productivity impact.

4 Model

Our reduced-form results demonstrate that increased flood risk reduces firm dynamism in

the long run: firm entry declines significantly and firm exits follow to some extent. Increased

firm risk also reduces employment and decreases population to a lesser extent. These neg-

ative impacts of flood risk are also reflected by a decline in real GDP. The actual flood

events, in contrast, mainly affects short-run productivity and has limited impacts on firm

and employment adjustments. In light of these patterns, we construct a model where firms

and workers consider both flood risk and actual floods in their decisions.

We consider an economy with totally M regions (indexed by m). The production in each

region resembles Krugman (1980) with free entry of firms. The total amount of households

is normalized to L̄ = 1. Households choose locations and labor supply to maximize their

utility. We introduce flood risk as follows. Let S = {s1, s2, ...} be the set of possible states

of nature. Each state s is characterized by probability Pr(s) and the corresponding vector of
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flooding events, {ξ1(s), ξ2(s), ..., ξM(s)}, where binary variable ξm(s) ∈ {0, 1} indicates the

occurrence of flooding. Following macro models on climate changes (e.g., Nordhaus 1992,

Acemoglu et al. 2012, Golosov et al. 2014, Barrage 2020), we consider that actual flood

events affect firms’ average productivity and workers’ average amenities within the region.

Flood events may also destruct a portion of firms. Before the shocks are realized, households

make location and labor supply decisions, and firms make entry decisions. Once shocks are

observed, production and consumption occur. We display the timing of the model in Figure

3 and will describe each activity in detail below.

Figure 3: Timing in the Model

Households choose locations

and the amount of labor supply

Firms are established remaining firms produce

A fraction of firms exit;

Households work and

consume final goods

Before floods
are realized

After floods
are realized

Floods lower
productivity and

cause exits

amenities
Floods lower

4.1 Production

In region m, there is a composite final good, which is composed of differentiated varieties,

according to the CES technology,

Ym(s) =

(∫

ω∈Ωm(s)

y(ω, s)
σ−1
σ dω

) σ
σ−1

, (3)

where Ωm(s) is the set of varieties produced in region m and state s, and we abstract from

trade in our baseline model and consider it in our extensions. σ > 1 is the elasticity of

substitution across varieties. The final good is used for consumption. The price index is

thus:

Pm(s) =

(∫

ω∈Ωm(s)

p(ω, s)1−σdω

) 1
1−σ

, (4)

where p(ω, s) is the price level of the variety ω in state s.

15



Following Krugman (1980), establishing a firm in region m requires fm units of labor.

Each firm obtains a blueprint for producing a differentiated variety and is engaged in mo-

nopolistic competition. To produce output, each firm uses ldm(s) units of labor according to

a constant-returns-to-scale production technology:

ym(s) = Am(s)l
d
m(s). (5)

Am(s) denotes productivity level in state s. We assume Am(s) = Ām exp(−δξm(s)), where δ

determines the extent to which firm productivity levels are affected by flooding events. We

follow the growth literature (e.g., Atkeson and Burstein 2010) to assume that an exogenous

rate κ(s) = κ̄ exp(δκξm(s)) of firms exit before production. The parameter κ̄ captures various

factors (e.g., lawsuits, managerial shocks) that lead firms to cease operation, and δk governs

the extent to which a portion of firms are destructed by floods.

Under monopolistic competition, the optimal price charged by a firm in region m is

σ̃Wm(s)/Am(s), where σ̃ = σ
σ−1

is the constant mark-up, and Wm(s) is the wage rate in

region m. Hence, the total profits for a firm are:

πm(s) =
1

σ

(
σ̃
Wm(s)

Am(s)

)1−σ

Pm(s)
σYm(s) =

Wm(s)l
d
m(s)

σ − 1
. (6)

The first equality shows the total profit is a portion 1
σ

of the total revenue. The second

equality comes from that the cost-to-profit ratio is (σ − 1).

Firms are established before shocks are observed. In equilibrium, free entry implies that

the expected costs of establishing a firm equal the expected profits of a firm for each region:

∑

s

Pr(s)Wm(s)fm =
∑

s

Pr(s) (1− κ(s)) πm(s). (7)

4.2 Households

We assume that the household’s utility in region m is:

Um(s) = vmBm(s)

(
cm(s)lm − ψm

l
1+1/φL
m

1 + 1/φL

)
,

s.t. Pm(s)cm(s) ≤ Wm(s).

(8)
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Households are identical except for heterogeneous location preferences {vm}, distributed

according to a Fréchet distribution G(v) = exp(−v−φM ) and i.i.d. across regions and house-

holds. Location preferences are used in the literature (e.g., McFadden 1978) to tractably

generate labor mobility across regions as shown below. We consider amenities Bm(s) =

B̄
1/φM
m exp(−ηξm(s)) as proportional adjustments to utility from consumption and labor disu-

tility (e.g., Fajgelbaum et al. 2018, Bryan and Morten 2019). The parameter η > 0 captures

negative amenity shocks due to floods, as floods may lead to discomfort and disorder in

public services. cm(s) denotes expenditures per labor on final goods in state s.

Similar to import competition studied in Autor et al. (2013), we find that flood risk has

a larger impact on employment than on population. This finding indicates that changes in

local employment is not only due to households’ relocation, but may also reflect households’

endogenous choices of labor supply. Hence, instead of assuming one unit of labor per house-

hold, we introduce a positive labor supply elasticity φL > 0.9 For analytical tractability, we

assume that labor supply lm is decided before shocks happen, consistent with our empirical

evidence that employment responses are mainly driven by flood risk instead of actual floods.

One micro-foundation is that in the presence of labor market frictions, job search takes time

and can not be completed immediately (Mortensen and Pissarides 1994, Pissarides 2000).

Each household chooses its location and labor supply to maximize its expected utility

before shocks are observed, maxm,lm
∑

s Pr(s)Um(s). In equilibrium, the endogenous labor

supply lm and the population share Λm in region m are given by:10

lm =

(∑

s

Pr(s)
Wm(s)

ψmPm(s)

)φL

, (9)

Λm =

[∑
s Pr(s)Bm(s)ψml

1+1/φL
m

]φM

∑
m′

[∑
s Pr(s)ψm′Bm′(s)l

1+1/φL
m′

]φM . (10)

We relegate the proof to Appendix B.1. Hence, φL and φM jointly govern the responses

of labor supply per household and the number of households to changes in real wages and

9Alternatively, we can assume employment and non-employment sectors in each region and allow for
households to choose between locations and sectors. This alternative setting would lead to very similar
results, if in response to changes in real consumption, the elasticity of location choices is different from the
elasticity of sector choices (e.g., Adao et al. 2018).

10The first-order condition implies that lm =
(∑

s Pr(s) Bm(s)∑
s
Pr(s)Bm(s)

Wm(s)
ψmPm(s)

)φL

, where Bm(s)∑
s
Pr(s)Bm(s) ≈

1 as η is small. Numerically, we find that this simplification has little effect on the quantitative results.
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amenities across regions. In our quantitative analysis, we will discipline these two parameters

using our reduced-form evidence on the region-level responses of population and employment

to shifts in flood risk. The total supply of labor in region m is given by Lm = ΛmlmL̄.

4.3 Equilibrium

Let Nm be the amount of firm entrants in regionm before shocks happen, and define Nm(s) =

Nm(1 − κ(s)) as the number of actively operating firms, reflecting the effects of firm exits.

The market clearing for final goods in region m requires that households’ total consumption

equals the total production:

Pm(s)Lmcm(s) = Pm(s)Ym(s). (11)

The labor market clearing in region m requires:

Nm(s)l
d
m(s) +Nmfm = Lm. (12)

which, combined with equation (7), implies that Nm = Lm

σfm
and ldm(s) ≡

(σ−1)fm
1−κ(s)

.

Now, we define the general equilibrium of our model:

Definition 1 The general equilibrium consists of regional labor supply {Λm, lm} and the

amount of firms Nm, and in each state of nature s, households’ consumption cm(s), firms’

employees ldm(s), and aggregate price and quantity variables {Pm(s), Ym(s),Wm(s)}. These

variables satisfy:

(a) before shocks are realized, regional supply of households {Λm, lm} is determined by house-

holds’ expected utility maximization as given by equations (9)–(10);

(b) before shocks are realized, the amount of firms Nm in each region is determined by free-

entry conditions in equation (7);

(c) in state s, firms’ choices of employees ldm(s) are determined by the maximum profits given

by equations (6);

(d) in state s, the quantity Ym(s) clears the goods market for each region, as shown in equa-

tions (11), with Pm(s) being the aggregate price index given by equation (4); and

(f) in state s, wages Wm(s) clear each region’s labor market, as shown in equation (12).

Proposition 1 (Uniqueness of Equilibrium) If
∣∣∣φM (φL+1)
σ−1−φL

∣∣∣ ≤ 1, the equilibrium is unique

if it exists.
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Proof: See Appendix B.2. �

Proposition 1 specifies the condition for uniqueness of the equilibrium, and this condition is

satisfied by our calibration in the quantitative analysis.

4.4 Main Forces at Work

We now show how flood risk affects aggregate productivity. Let rm =
∑

s Pr(s)ξm(s) be the

probability of the flood shock occurring in region m. In our model, combining equations (3),

and (7), (12), aggregate output can be written as:

Ym(s) =
(
Nm(s)(Am(s)l

d
m(s))

σ−1
σ

) σ
σ−1

∝ Am(s)Nm(s)
1

σ−1Lm. (13)

Because the real wage per labor is Ym(s)
Lm

, we can rearrange labor supply in equation (9) as:

lm ∝

(∑

s

Pr(s)Am(s)Nm(s)
1

σ−1

)φL

(14)

The parameter 1
σ−1

captures the agglomeration force due to more varieties. To make progress

analytically, we focus on changes in flood risk in a region that accounts for a small share of

the national population and thus abstract from general-equilibrium responses in households’

utility in other regions. The population share in equation (10) is

Λm ∝

(∑

s

Pr(s)Bm(s)l
1+1/φL
m

)φM

. (15)

Finally, noting the firm mass Nm(s) ∝ Lm(1− κ(s)) and the total labor supply Lm ∝ Λmlm,

we can analytically characterize the responses of endogenous variables {Ym(s), lm,Λm, Nm(s), Lm}

to changes in flood risks. Denote x̂ = log(x′/x) as the proportional change in variable x.

Proposition 2 (Responses to Changes in Flood Risks) For a small region m, in re-

sponse to a change in flood risk, the changes in labor supply, population share, total employ-

ment, firm count, and average output are:

dl̂m = −φL
δ + 1

σ−1
κ̄δκ +

1
σ−1

φMη

1− 1
σ−1

(φL + (φL + 1)φM)
drm, (16)

dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
, (17)
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dL̂m = dl̂m + dΛ̂m, (18)

dÊNm = dL̂m − κ̄δkdrm, (19)

dÊY m = −δdrm + dL̂m +
1

σ − 1
dÊNm, (20)

where ENm =
∑

s Pr(s)Nm(s) and EYm =
∑

s Pr(s)Ym(s) is the average firm count and

output across states of nature.

Proof: See Appendix B.3. �

Equation (16) shows how labor supply per household responds to changes in flood risk.

When the chances of flooding are higher, the stronger damages on firms’ productivity, firm

count, and amenity reduce households’ utility. If the agglomeration force is small, 1
σ−1

(φL+

(φL + 1)φM) < 1, the labor supply would decrease with higher flood risk. In this sense, our

model captures the “immobile labor” (Autor et al. 2013), as households respond to the shock

by reducing labor supply instead of moving to other regions. Equation (17) shows how a

higher flood risk induces regional relocation, as it reduces amenities and real consumption.

The change in the region-level total labor supply in equation (18) includes both regional

relocation and the change in the labor supply per household.

Equations (19)–(20) display how the production side responds to higher flood risk. Less

labor supply and larger damages on firm count translate to fewer firms. The average ag-

gregate output changes due to three factors. First, the average direct damage of flooding

increases with higher flood risk, which we term the direct damage channel. Second, higher

flood risk induces lower employment and reduce output, which we call the employment chan-

nel. As discussed earlier, employment changes due to regional relocation and shifts in labor

supply per household. As regional relocation of population tends to offset each other on

the aggregate, the cross-county estimate on the impact of flood risk can overestimate the

aggregate productivity effects. Finally, our model incorporates the love of variety channel,

where the aggregate output also responds to changes in the amount of varieties. This channel

matters for welfare but is not captured by the GDP data (Broda and Weinstein 2006).

5 Quantification

In this section, we calibrate our model to the US counties in 2018. We first obtain some pa-

rameters directly from the literature and our data. We then simulate the model to discipline

the remaining parameters to match the targeted moments.
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5.1 Exogenously Calibrated Parameters

Panel A of Table 4 shows parameter values obtained directly from the literature and the

data. We treat each region as a county, and there are M = 2, 772 counties with available

data on population, GDP, and flood probability, and these counties combined accounted

for 96% of US aggregate GDP in 2018. We set the elasticity of substitution across varieties

σ = 5, which is the mean estimate in the trade literature (Head and Mayer 2014). We obtain

annual exit rate κ̄ = 0.08 for the U.S. firms from the County Business Patterns data in 2018.

We adjust data on the share of areas in flood zones to be consistent with the probability of

the floods used to estimate actual damages. Specifically, we regress county-year-level actual

shares of flooded area between 2015–2019 on county-level shares of areas in flood zones in

2018. We use the estimated intercept and slope to translate the share of areas in flood zones

into the probability of flood events {rm}, and by our procedure, the probability {rm} reflects

the predicted annual share of lands that experience floods. We adopt a similar procedure

to use the share of areas in flood zones in 1998 to construct the probability of flood events

{rm,1998} in 1998. We relegate the detailed results to Appendix C.1.

We use our reduced-form evidence to discipline the model parameters about damages

of flood events {δ, δκ, η}. As the probability {rm} reflects the predicted annual share of

lands that experience floods, our reduced-form evidence on how the increase in the share of

flooded land led to GDP losses11 and firm exits directly corresponds to the model parameters

{δ, δk}. We use the evidence in Table 5 and obtain productivity damage δ = 0.005 and firm

exit responses δκ = 0.003. Because we lack county-level amenity measures, we follow Barrage

(2020) who shows that in DICE models on temperature changes, the ratio of output damages

to workers’ direct utility damages is around 3. Thus, we assume that η = 0.002 is roughly

a third of output damages δ = 0.005. We find that parameter value of η has little effect on

the national-level productivity impact of floods, as it primarily affects population relocation

with offsetting effects of in- and out-migration regions, as shown below.

5.2 Internally Calibrated Parameters

We calibrate four sets of region-specific parameters {Ām, B̄m, fm, ψm} such that our model-

generated moments match data on regional GDP, population, employment, and firm count.

Even though all the parameters are jointly estimated, it is possible to isolate the moment that

drives identification of a given moment. Specifically, GDP in each region drives identification

11We note that GDP data does not capture changes in the number of varieties.
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of region-specific productivity {Ām}, while given the real wages, population in each region

drives identification of region-specific amenities {B̄m}. Similarly, the labor supply disutility

{ψm} is informed by the employment-to-population ratio in each region, and entry costs

{fm} are informed by the amount of firms in each region. As units of GDP, population, and

firm count do not affect our counterfactual results, we normalize the national total GDP,

population and firm count to 1 in our baseline calibration.

Finally, we discipline the elasticities {φM , φL}. We apply the indirect inference approach

(Gouriéroux and Monfort 1996)12 to jointly search the elasticities {φM , φL} such that our

model-generated employment and population responses to changes in flood risk between

1998–2018 match actual responses.

Procedure. We jointly choose region-specific parameters {Ām, B̄m, fm, ψm} and labor sup-

ply elasticities {φM , φL} as follows. In the inner loop, given a set of {φM , φL}, we calibrate

region-specific parameters {Ām, B̄m, fm, ψm} such that our model matches GDP, population,

firm count and the employment-to-population ratio in each region. In the outer loop, we

change the probability of flood events from {rm} to {rm,1998}. We use the model-generated

data to perform the same panel regressions in Table 1 by regressing employment and pop-

ulation on the flood risk. We choose the labor supply elasticities {φM , φL} to minimize the

absolute difference between the model-generated responses and the observed coefficients.

5.3 Estimation Results

Panel B of Table 4 reports the internally calibrated parameter values. Our parameter values

are reasonable. For example, the implied elasticity of regional population to real wages is

φM(1 + φL) ≈ 2.1, within the range of 1.1–2.5 surveyed by Fajgelbaum et al. (2018).13

Although the parameter values of productivity, amenity, labor disutility, and entry costs

rely on the normalization and geographic levels and thus are not directly comparable across

papers, Appendix Table C.1 shows that the match of our model is good: across counties, the

correlation of regional GDP, population, employment-to-population ratio, and firm count

between the model and the data is almost unity.

Table 5 presents the comparison of actual and model-generated regression results. Columns

(1)–(2) present the targeted regression coefficients, and with the calibrated structural elastic-

12The indirect inference approach is a simulated method of moments procedure, where the econometrican
seeks the structural parameters to minimize the distance between the estimates from econometric models on
the real data and the estimates from the same econometric models estimated on the simulated data.

13See Table A.17 in Fajgelbaum et al. (2018).
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Table 4: Parameter Values and Sources

Parameter Value Sources/Targeted Moments

Panel A: Exogenously Calibrated Parameters

M—Number of counties 2,772 data
σ—Elasticity of substitution across varieties 5 Head and Mayer (2014)
κ̄—Constant in firm exit rates 0.08 data
rm—Region-specific probability of flooding 0.18 (0.10) data
δ—GDP loss due to flooding events 0.005 see regression table
δk—Firm exits due to flooding events 0.003 see regression table
η—Utility loss due to flooding events 0.002 Barrage (2020)

Panel B: Internally Calibrated Parameters (Match Targeted Moments)

Ām—Region-specific productivity 2.40 (2.53) regional real GDP
B̄m—Region-specific amenity 0.41 (0.66) regional population
ψm—Region-specific labor supply disutility 0.35 (0.34) regional emp-to-pop ratio
fm—Region-specific firm entry costs 0.09 (0.03) regional firm count
φL—Convexity of labor supply disutility 1.55

{
Employment and population

responses to flood risksφM—Shape parameter of location preferences 0.83

Notes: Parameter values for {Hm, rm, Ām, B̄m, ψm, fm} are averages across all M counties. The standard
deviations are in parentheses.

ities {φM , φL}, our model generates similar employment and population responses to changes

in the share of areas in flood zones between 1998–2018 as in the observed data. Columns (3)–

(5) present the non-targeted responses. Column (3) presents the output response to changes

in flood risk, for which our model-generated estimate is smaller than the county-level data

estimate but not far away from the ZIP-code-level estimates (see Table 5). Column (4)

displays the responses of firm entry, and our model-generated response is close to the data

estimate. In our model, the number of entrants is proportional to employment and thus, the

model-generated response of firm entry mimics the employment response in Column (1). In

Section 6.3.1, we discuss how changes in the model assumption on entry costs may generate

different entry responses. Finally, Column (5) shows that even though higher flood risk in-

creases the chances of firm exits conditional on firm entry, our model is able to generate the

(empirically observed) negative response of the average number of firm exits to changes in

flood risk because higher risk leads to fewer firms.
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Table 5: Comparison of Actual and Model-generated Regression Results

(1) (2) (3) (4) (5)
Targeted Non-targeted

∆log(Employment) ∆log(Population) ∆log(Output) ∆log(Entry) ∆log(Exit)

Actual Data:

flood risk
-0.171*** -0.114*** -0.337*** -0.173** -0.119*
(0.059) (0.041) (0.072) (0.079) (0.072)

Model-generated Data:

flood risk
-0.176*** -0.103*** -0.182*** -0.176*** -0.174***
(0.003) (0.002) (0.003) (0.003) (0.003)

Note: We perform the panel regression using the observed and model-generated data in 1998 and 2018, following the same
way as in even columns of Table 1.

6 Counterfactual Exercises

In this section, we apply our calibrated model to study the aggregate and distributional ef-

fects of flood risk. We also display how our quantitative results are sensitive to our parameter

values and model assumptions.

6.1 Aggregate Productivity Effects of Flood Risks

Panel A of Table 6 reports the aggregate effects of flood risk in 2018, setting flood risk {rm}

from the baseline levels to 0. We find that on the aggregate, flood risk caused a 0.52% decline

in the aggregate output, as well as a 0.31% reduction in employment, a 0.30% decline in the

number of firm entrants, and a 0.24% decline in the number of firm exits.

Panel B of Table 6 further decomposes the output loss into three channels—direct dam-

ages, employment, and varieties—by separately allowing population shares, labor supply

and the number of varieties to respond to flood risk.14 We further decompose employment

changes into both changes in population shares (labor relocation across localities with no

changes in labor supply per household in each locality), referenced as “labor relocation”, and

changes in labor supply per household, referenced as “labor supply”.

14First, to separate the effects of direct damages, we simulate the effects of changes in flood risk, while
keeping labor supply and population shares in each region as constant. We next allow population shares to
change to single out the effects of labor relocation, and then allow labor supply to respond to further single
out the effects of labor supply, while keeping the number of varieties as constant. Finally, we compute how
changes in the number of varieties in each region further alter the aggregate output.
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Table 6: Aggregate Effects of Flood Risk in 2018

Panel A: Aggregate Effects

Output Employment Firm Entry Firm Exits

Overall risks in 2018 -0.52% -0.31% -0.30% -0.24%

Panel B: Decomposition of Output Losses

Decomposition of Output Losses

Direct Damage Labor Relocation Labor Supply Variety Effects

Overall risks in 2018 -0.11% 0% -0.33% -0.08%

The decomposition shows that direct damages of flood risk caused a 0.11% decline in out-

put. This magnitude is similar to the estimate by Federal Emergency Management Agency

(Grimm 2020), which shows that the cost of flood damage was approximately $17 billion

annually between 2010 and 2018, representing roughly 0.1% of annual GDP. Direct damages

only made up 21% of the overall output loss. In other words, ignoring adjustments of work-

ers and firms largely underestimates the aggregate productivity loss, as illustrated by the

last three columns of Panel B in Table 6. Labor relocation had little impact on aggregate

output, mostly due to offsetting effects of workers’ relocation across regions. The output

losses due to less labor supply accounted for 63% of aggregate output losses, reflecting large

amplification effects of workers’ endogenous labor supply, and fewer varieties due to less firm

entry accounted for another 15% of the aggregate output losses.

6.2 Distributional Effects of Flood Risk

Flood risk varies greatly across locations. Whereas the output loss was 0.52% on the national

level, the upper 5% and the upper 1% counties (ranked by output losses) experienced 7.9%

and 13.9% loss in output, respectively. This suggests large heterogeneity in the impact of

flood risk across U.S. localities.

Following the analytical result in Proposition 2, in Figure 4, we plot the county-level out-

put changes decomposed into the main channels—direct damages, employment (population

multiplied by labor supply per household), and firm entry. In terms of direct damages, we

find most counties experienced negative damages, particularly those counties in the south

and eastern regions (especially along the coastline), in line with the geography of flood risk

25



shown in Figure 1. These mostly affected counties lost population to other counties, accom-

panied by less labor supply per household and firm entry. In line with the large drops in

output, the upper 1% counties (ranked by corresponding losses in 2018) experienced a 6.1%

reduction in population, a 4.7% reduction in labor supply per household, and a 10.8% loss in

the amount of firms, respectively. However, for counties that were mildly affected by flood

risk (e.g., some Middle Western counties), these counties were in fact “winners” from the

flood risk. They benefited from labor relocation from risky coastal areas and thus enjoyed

more firm entry and labor supply per worker (as more varieties increased workers’ utility).

Figure 4: Distributional Effects of Flood Risks in 2018

(a) Direct damages (b) Population

(c) Labor Supply Per Worker (d) Firm Entry

6.3 Model Extensions

6.3.1 Alternative Assumptions about Firm Entry

In our baseline model, because entry costs are paid in terms of a fixed amount of labor,

changes in firm entry mimic changes in employment. We now experiment with an alternative

assumption on firm entry costs. Following the recent literature showing that creating new

firms also requires material costs (Atkeson and Burstein 2010, Acemoglu and Cao 2015), we

consider entry costs as fmWm(s)
1−αPm(s)

α, where α is the fraction of entry costs spent on

final goods. Figure 5 illustrates the aggregate impact of flood risk in 2018 under different
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parameter values of α. The responses of firm entry to changes in flood risk increased with

the share of entry costs spent on final goods, as final-good prices were more responsive to

flood risk compared with wages (final-good prices were affected not only by wages, but also

by firm productivity and the amount of varieties). As a result of fewer firms, the output

losses of the flood risk also slightly increased with the share of entry costs spent on final

goods. As shown in Table 7, when entry costs were fully paid by final goods (α = 1), the

aggregate output loss of the flood risk was -0.57%, larger than the baseline result -0.52%.

Figure 5: Entry Costs and Aggregate Impact of Flood Risks

Table 7: The Aggregate Impact of Flood Risks in 2018 under Different Model Extensions

Output Employment Firm Entry Firm Exits

(1) Baseline model -0.52% -0.31% -0.30% -0.24%

(2) Entry costs paid in goods -0.57% -0.31% -0.56% -0.51%

(3) Allowing for interregional trade -0.62% -0.47% -0.41% -0.35%

(4) Allowing for capital & intermediate inputs -0.67% -0.38% -0.36% -0.31%

6.3.2 Interregional Trade Networks

In the baseline model, we abstract from good flows across regions. In Appendix B.4, we

extend the model to consider two sectors—traded and nontraded sectors—in each county. In
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the environment with cross-regional trade flows, workers’ real wages tend to be less responsive

to changes in local flood risk than in the autarkic economies. One reason is that in contrast

with the baseline model, workers’ demand is diversified across locations in the traded sector

and thus are less affected by changes in the prices of local traded goods. Thus, we find that

in the recalibration, we require a larger value of labor supply elasticity (φL = 1.72) to match

the observed employment changes in response to changes in local flood risk. As a result of a

larger labor supply elasticity, the aggregate output loss due to overall flood risk was 0.62%

in 2018, slightly larger than 0.52% in our baseline model.

6.3.3 Capital and Land

Our baseline model assumes labor to be the only input in the firm production. In Appendix

B.5, we extend the model to consider both capital and land in the firm production. Capital

is mobile across regions and can be rented at a constant real rate from the global market,

whereas land is supplied at a fixed amount and thus generates the congestion force in the

regional production. We recalibrate the model to the data. As shown in Table 7, in this

alternative model, the output losses due to flood risk were 0.67% in 2018, larger than 0.52%

in our baseline model. The main reason is that flood risk not only lowered employment, but

also lowered the capital-to-labor ratio,15 as capital usage became relatively more expensive

relative to labor in the presence of the flood risk.16 This force outweighs the congestion effect

caused by land, as the land share in production is small (Caselli and Coleman 2001).

All together, these extensions imply a larger impacts of flood risk on the economy when

we allow for more forces. Meanwhile, they reveal the quantitative importance of the economic

forces in our simplified baseline model.

6.4 Future Changes in Flood Risk

Flood risk is likely to increase as a result of greenhouse gas emissions. To gauge how such

future changes in flood risk affect the US economy, we use the First Street Foundation’s

county-level predictions on proportional changes in flood risk between 2020–2050 to adjust

the flood risk {rm} in our baseline model. On average, the share of properties with flood

risk increases by 4.5% between 2020 and 2050.

15Quantitatively, flood risk in 2018 lowered the US aggregate capital-to-labor ratio by 0.34%.
16The real return of capital remained constant, whereas in the presence of the flood risk, workers’ real

wages declined.
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Table 8: Aggregate Effects of Future Changes in Flood Risks, 2020–2050

Panel A: Aggregate Effects

Output Employment Firm Entry Firm Exits

Changes in risks, 2020–2050 -0.12% -0.05% -0.05% -0.04%

Panel B: Decomposition of Output Losses

Decomposition of Output Losses

Direct Damage Labor Relocation Labor Supply Variety Effects

Changes in risks, 2020–2050 -0.014% 0% -0.086% -0.024%

Table 8 shows that the predicted increase in flood risk between 2020–2050 will cause a

0.12% decline in aggregate output, of which the magnitude is comparable to Desmet et al.

(2021) who show that sea level rises due to climate changes will lead to a 0.11% loss in

global real GDP in 2200. As before, we find that only 12% of the output losses arise from

direct damages.17 The rest of output losses come from reduced labor supply and firm entry,

suggesting the importance of incorporating long-run adjustments of workers and firms.

7 Conclusion

Using recently available data, we demonstrate that increased flood risk has large negative

impacts on firm entry, employment and output in the long run, whereas flood events reduce

output in the short run. Motivated by these findings, we develop and quantify a spatial

equilibrium model to estimate the aggregate impact of increasing flood risk. In our model,

expecting flood risk, firms choose whether to enter a locality, while workers choose whether

to relocate and how much labor to supply. For a given locality, realized floods affect firms’

average productivity and worker’s average amenity. Quantitatively, we find that flood risk

reduced U.S. aggregate output by 0.52% in 2018, 80% of which stemmed from expectation

of floods and 20% from direct damages.

Our results highlight that only accounting for direct damages largely underestimates the

17Here the role of direct damages in output losses is smaller than what we found in Table 6 for the effect
of the flood risk in 2018. This is because compared with the flood risk in 2018, the predicted increase in the
flood risk is more positively correlated with regional productivity levels. In our model, higher risk in more
productive regions would result in larger aggregate amplification effects (for example, more people would
leave highly productive regions, which in turn lowers firm entry and affects labor supply in these regions).
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actual losses of natural disasters, as firms and workers will rationally change their economic

activities in expectation of risk of these natural disasters. Thus, any policy aiming to alleviate

the climate damages needs to take into account firms’ and workers’ long-run adjustments.
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A Reduced-form Evidence: Additional Results

Table A.1: Summary Statistics

Panel A: Outcome Variables

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Real GDP)a

Year = 1998 4.07 3.96 8.79 9.72 13.47

(1.46) (1.42) (1.75) (1.33) (1.60)

Year = 2018 3.83 3.82 8.89 9.80 13.79

(1.53) (1.48) (1.78) (1.53) (1.61)

Panel B: Demographic and Economic Controls

(1) (2) (3) (4) (5)

Manufa. share Female share ∆China import Pop per sqkm Cum. flood share

Year = 1998 0.21 0.51 40 0.31

(0.15) (0.02) (160) (0.44)

Year = 2018 0.16 0.50 25.92 60 5.04

(0.13) (0.02) (10.78) (300) (3.13)

Panel C: Independent Variables

(1) (2)

Flood risk Flood share

Year = Initial_Yearb 0.06 0.07

(0.13) (0.23)

Year = 2018 0.12 0.23

(0.14) (0.40)

Notes: a,b: The initial year is 2001 instead of 1998 for the short run regressions using actual flood share as the

key independent variable, since the BEA county-level GDP data starts from 2001. Sources: Autor et al. (2013),

Bureau of Economic Analysis and US Census data series. The standard deviations are in parentheses.
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Table A.2: The Impact of Long Run Change in Flood Risk: Fixed Effects Estimates, Q3

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood risk -0.357** -0.217 -0.333*** -0.240** -0.226*
(0.150) (0.159) (0.115) (0.104) (0.130)

Observations 2304 2298 2326 2326 2300
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Cumulative Yes Yes Yes Yes Yes

Notes: The sample is limited to counties where Q3 maps are available in 1998. Outcome variables are changes in log terms. The main independent
variable D.F loodRiski,t represents changes in the percentage of land area within FEMA’s special flood zone in locality i between years 1998 and 2018.
"IV" represents our instrumental variable approach, using the interaction of average changes in flood risk in the rest of the state and a county’s own
geo-climatic features as instruments. All regressions control for state fixed effects, cumulative flood area and a rich set of demographic and economic
controls. Standard errors are clustered at the county level.
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Table A.3: The Impact of Long Run Change in Flood Risk: Change-on-Change Estimates, Placebo

(1) (2) (3) (4) (5) (6) (7) (8)

∆log(Entry) ∆log(Exit) ∆log(Employment) ∆log(Population)

∆Flood risk 0.001 0.088 0.063 0.072 -0.049 -0.026 0.079* 0.031
(0.060) (0.120) (0.063) (0.147) (0.039) (0.111) (0.043) (0.151)

Observations 2607 1154 2613 1155 2643 1163 2644 1163
State FE Yes Yes Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes Yes Yes
Flood Cumulative Yes Yes Yes Yes Yes Yes Yes Yes
Sample Q3 Q3 Q3 Q3

Notes: The sample uses placebo outcome data in 1990 and 1998. Outcome variables are changes in log terms. The main independent
variable D.F loodRiski,t represents changes in the percentage of land area within FEMA’s special flood zone in locality i between years
1998 and 2018. "IV" represents our instrumental variable approach, using the interaction of average changes in flood risk in the rest
of the state and a county’s own geo-climatic features as instruments. All regressions control for state fixed effects, cumulative flood
area and a rich set of demographic and economic controls. Standard errors are clustered at the county level.
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Table A.4: The Impact of Short Run Actual Floods: Fixed Effects Estimates, Lagged Shocks

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood share 0.000 0.003 -0.001 0.001*** -0.005***
(0.004) (0.004) (0.001) (0.000) (0.002)

L.Flood share -0.004 0.004 -0.000 0.000 -0.000
(0.004) (0.004) (0.001) (0.000) (0.002)

Observations 50782 50931 52666 52683 51816
County FE Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes
Initial Controls Trends Yes Yes Yes Yes Yes
ymean 4.036 3.991 8.870 9.825 13.67

Notes: Outcome variables are changes in log terms. The main independent variable F loodsharei,t represents changes in the percentage of land area
flooded in county i, year t. We are interested in the short run impact of yearly floods and the sample period is 2001-2018. All regressions control for
county fixed effects, state-by-year fixed effects, and a rich set of initial controls by year trends. Standard errors are clustered at the county level.
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B Proofs

B.1 Labor Supply and Location Choices

We first obtain the optimal labor supply lm for households that stay in m. Households’

utility can be written as:

∑

s

Pr(s)Um(s) =
∑

s

Pr(s)vmBm(s)

[
Wm(s)

Pm(s)
lm − ψm

l
1+1/φL
m

1 + 1/φL

]
. (B.1)

Taking the first-order condition with regard to labor supply lm, we obtain:

∑

s

Pr(s)vmBm(s)
Wm(s)

Pm(s)
=
∑

s

Pr(s)vmBm(s)ψml
1/φL
m . (B.2)

After some arrangement of the equation, we can obtain labor supply in equation (9). By

plugging equation (B.2) into equation (B.1), we obtain:

∑

s

Pr(s)Um(s) =
∑

s

Pr(s)vmBm(s)ψm
l
1+1/φL
m /φL
1 + 1/φL

. (B.3)

For ease of notation, denote xm =
∑

s Pr(s)Bm(s)ψm
l
1+1/φL
m /φL
1+1/φL

. Thus, a worker would choose

location m if vmxm ≥ vnxn ∀ n. Note that location preference vm follows Fréchet distribution

Gm(vm) = exp(−v−φMm ) and is i.i.d. across locations. Therefore,

Λm =

∫ ∞

0

∏

n 6=m

Gn

(
vmxm
xn

)
gm(vm)dvm

=

∫ ∞

0

exp

(
−
∑

n

(
xm
xn

)−φM

v−φMm

)
φMv

−φM−1
m dvm

=
xφMm∑
n x

φM
n

.

(B.4)

The first equality defines the probability of choosing location m, which is a weighted average

of the probability to choose location m under location preference vm,
∏

n 6=mGn

(
vmxm
xn

)
,18

over the distribution of location preference vm. The second equality uses the cumulative and

18Under location preference vm, the probability of vn such that vmxm ≥ vnxn is Gn

(
vmxm

xn

)
.
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density probability of Gm. The third equality computes the integral of the equation. After

plugging xm =
∑

s Pr(s)Bm(s)ψm
l
1+1/φL
m /φL
1+1/φL

into the equation, we obtain equation (10).

B.2 Proof of Proposition 1

Note from equation (9), Lm ∝ Λmlm, and Nm(s) ∝ Lm(1 − κ(s)), we can solve lm as a

function of Λm up to a constant.

lm ∝ (Λm)

φL
σ−1

1−
φL
σ−1 (B.5)

Plugging lm into equation (10), we obtain:

Λm =
Cm (Λm)

φM (1+φL)

σ−1−φL

∑
m′ Cm′ (Λm′)

φM (1+φL)

σ−1−φL

(B.6)

where Cm is a region-specific constant and also captures damages of floods. For ease of

notation, let δ = φM (1+φL)
σ−1−φL

.

We are interested in whether equation (B.6) yields a unique solution of {Λm}. To make

progress, define xm,1 = Λm and xm,2 =
∑

m′ Cm′ (Λm′)δ. Then equation (B.6) can be refor-

mulated by a system of equations:

xm,1 = Cmx
δ
m,1x

−1
m,2, (B.7)

xm,2 =
∑

m′

Cm′xδm′,1. (B.8)

Then we can apply Theorem 1 in Allen et al. (2015) to show the unique of the equilibrium.

Specifically, define:

Γ =

[
1 0

0 1

]

B =

[
δ −1

0 δ

]

Theorem 1 in Allen et al. (2015) shows that if the largest eigenvalue of |BΓ−1| is smaller or

equal to 1, which means that |δ| ≤ 1, there is at most one strictly positive solution. After

solving {Λm}, all other variables are uniquely pinned down. In particular, lm is uniquely

determined by equation (B.5), and aggregate output is determined by equation (13).
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B.3 Proof of Proposition 2

We first log-linear equation (15) and take the full derivative.

dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
(B.9)

Thus, we obtain equation (17). Noting that Lm ∝ Λmlm and Nm(s) ∝ Lm(1− κ(s)), we can

also easily obtain dL̂m = dΛ̂m + dl̂m and dÊNm = dL̂m − κ̄δκdrm as in equations (18)–(19).

We then log-linear equation (14) and take the full derivative around rm = 0:

dl̂m = −φL

(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

dN̂m

= −φL

(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

(
dΛ̂m + dl̂m

)

= −φL

(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

(
(φM(1 + 1/φL) + 1) dl̂m − φMηdrm

)
.

(B.10)

The first equality is the result of log-linearization and full derivation. The second equality

uses dN̂m = dL̂m and dL̂m = dΛ̂m+dl̂m. The third equality uses dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
.

Noting that there is only one unknown dl̂m in equation B.10, we can solve dl̂m as an equation

of drm in equation (16).

Finally, from equation (13) and the damage equation of flooding, we obtain the average

output:

EYm ∝
∑

s

Pr(s)Am(s)Nm(s)
1

σ−1Lm. (B.11)

Taking the log-linearization and full derivation around rm = 0, we obtain:

dÊY m = −δdrm + dL̂m +
1

σ − 1
dÊNm. (B.12)

Therefore, we obtain equation (20).

B.4 Two-sector Model

We now extend the model to consider two sectors—traded and non-traded sectors j ∈

{T,NT}. For each sector in region m, there is a composite good composed of differenti-
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ated varieties (firms) sourced from different origins, according to the CES technology,

Y j
m(s) =

(∑

n

∫

Ωj
nm(s)

y(v, s)
σ−1
σ dv

) σ
σ−1

(B.13)

where Ωj
nm(s) is the set of firms that trade from origin n in state s. For the nontradable

sector that does not source from other regions, ΩNT
nm (s) = ∅ ∀ n 6= m. For the traded sector,

the iceberg trade costs from n to m are assumed to be τnm = (distnm)
γ ≥ 1 ∀n 6= m and

τnm = 1 ∀n = m, where γ is the elastcity of trade costs with regard to physical distance,

and there are no fixed marketing costs (Krugman 1980). The free-entry conditions of firms

in both sectors are identical as in Section 6.3.1. Workers in each region consume traded and

non-traded goods with expenditure shares β and (1− β) respectively.

We calibrate β = 0.3 to match the share of employment in the non-traded sector from

the Population Census in 2000.19 We calibrate γ to match the elasticity of good flows with

regard to distance estimated from the Commodity Flow Survey (Allen and Arkolakis 2014).20

We recalibrate all internally calibrated parameters following the procedure in Section 5.2.

B.5 Capital and Land

We now extend the production function in region m to allow for capital and land:

ym(s) = Am(s)
[
(ldm(s))

β(kdm(s))
1−β
]1−θ

hdm(s)
θ (B.14)

where θ is the share of costs spent on land. The parameters β(1− θ) and (1− β)(1− θ) are

the cost shares of labor and capital in the production, respectively.

We consider that capital can be rented at the real return R from the global market,

whereas land is supplied at a fixed amount Hm in each region. To close the model, we

assume that both capital income and labor income are spent on final goods in the local area.

In the recalibration, we obtain the land share in the US production θ = 0.06 from Caselli

and Coleman (2001) and the region-specific land area {Hm} directly from the data. We

consider β = 2/3 such that the labor share in the total income is roughly two thirds. We set

R = 0.08 according to the real internal rate of return in the US from the Penn World Table.

19Following Fajgelbaum (2020), the following sectors are included in the non-traded sector: construction,
retailer, hotels and restaurants, real estate, education, health and social work.

20In the traded sector, the elasticity of trade flows with regard to distance is (σ − 1)γ.
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C Quantitative Analyses: Additional Results

C.1 Special Flood Zones and Actual Flood Risks

Figure C.1: Relationship between Annual Share of Flooding Areas and Share of Special
Flood Zones, across Counties

(a) Relationship in 1998 (b) Relationship in 2018

Note: We group counties into 20 bins (fewer with fewer discrete numbers) ranked by the share of properties in flood zones.

Table C.1: Targeted Moments in the Data and Model

Targeted Moments Data Model Corr.

Regional real GDP (national total normalized to 1) 4e-4 (2e-3) 4e-4 (2e-3) 1.00

Regional population (national total normalized to 1) 4e-4 (1e-3) 4e-4 (1e-3) 1.00

Regional employment-to-population ratio 0.45 (0.20) 0.45 (0.20) 1.00

Regional firm count (national total normalized to 1) 4e-4 (1e-3) 4e-4 (1e-3) 1.00

Notes: For each moment, we present the averages across all M counties using the actual data and the model-

generated data. The standard deviations are in parentheses. The last column presents the cross-county corre-

lation between actual moments and model-generated moments.
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