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Abstract

In economics balance identities as e.g. C+K'-Y(L,K) = 0 must always apply.
Therefore, they are called constraints. This means that variables C,K,L. cannot
change independently of each other. In the general equilibrium theory (GE) the
solution for the equilibrium is obtained as an optimisation under the above or
similar constraints. The standard method for modelling dynamics in
macroeconomics is DSGE. Dynamics in DSGE models result from the
maximisation of an intertemporal utility function that results in the Euler-
Lagrange equations. The Euler-Lagrange equations are differential equations that
determine the dynamics of the system. In Glotzl, Glotzl, und Richters (2019) we
have introduced an alternative method to model dynamics, which is a natural
extension of GE theory. It is based on the standard method in physics for
modelling dynamics under constraints. We therefore call models of this type
"General Constrained Dynamic (GCD)" models. In this paper we apply this
method to macroeconomic models of increasing complexity. The target of this
labour is primarily to show the methodology of GCD models in principle and why
and how it can be useful to analyse the macroeconomy with this method. Concrete
economic statements play only a subordinate role. All calculations, even for GCD
models of any complexity, can be easily performed with the open-source program
GCDconfigurator.
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1. Introduction

Recently, there has been a renewed interest in alternative approaches to
macroeconomics. In Zaman (2020) four different methodological principles are
presented which lie outside the framework of the conventional approach. One of
these concepts is called GCD (General Constrained Dynamics) and is based on
the standard method of physics for modelling a dynamic under constraints. It can
be seen as a natural extension of the GE theory for modelling dynamics in
economics and can be thought of as an alternative to DSGE. The method was first
introduced in Glotzl (2015) under the name Newtonian Constrained Dynamics, a
name that was later changed to General Constrained Dynamics. The principles,
many references and an application to the microeconomic Edgeworth box model
are presented in Glo6tzl, Glotzl, und Richters (2019). In Richters und Glétzl (2020)
it is shown that SFC models (stock flow consistent models (Godley und Lavoie
2012) can be understood as special GCD models. In (Richters 2021) a more
complex macroeconomic model is used to show that GCD models converge to the
classical equilibrium solution under some assumptions.

The aim of this paper is to show how macroeconomic GCD models can be built
in a systematic way and how they can be used for macroeconomic analysis. In
particular, we want to point out that all calculations for all GCD models (with
non-intertemporal utility functions) can be performed easily and conveniently
with the open-source program GCDconfigurator, which is published in GitHub
(Glotzl und Binter 2022).

As intertemporal utility functions are essential in many applications and in DSGE
models only intertemporal utility functions are used, it is essential to extend the
GCD framework to intertemporal utility functions as well. The principles, how
intertemporal utility functions can be incorporated into the framework is laid out
in Glotzl (2022c¢).
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DSGE models are typically used to analyse economic shocks. Therefore, another
paper (Glotzl 2022a) describes how any type of economic shock, e.g., demand,
supply or price shocks, can be modelled with GCD.

Non-intertemporal GCD models and intertemporal GCD models can be seen as
an essential contribution to solving problem 8 of the 18 major problems of
dynamics listed by Stephen Smale (Smale 1991; Smale Institute 2003).

In chapter 2 we give a literature review of the modelling of economic dynamics
under constraints, which is essentially based on Richters (2021). Many further
references can be found mainly in Glotzl, Gl6tzl, und Richters (2019).

In Chapter 3 we present the general structure of GCD models. A GCD model
consists of agents (households, firms, banks, government...) that produce or buy
goods. The behaviour of the different variables (stocks and flows) is described by
a differential algebraic system of equations derived from the utility functions for
each agent and the ability of each agent to influence the evolution of the variables
over time. Furthermore, a set of algebraic equations, called constraints, describes
the constraints of possible solutions in the same way as in general equilibrium
models. In particular, equilibrium identities are always an important constraint.
These guarantee that all GCD models also have the important SFC property
("Selfconsistant Stocks and Flows").

In chapter 4 we give possible utility functions for households, firms, commercial
banks, central banks and governments.

In chapter 5 we discuss what GCD models can be used for and why they are also
helpful for the theoretical understanding of economics. On the one hand, they are
suitable for many practical applications, such as the analysis of business cycles or
the influence of economic policy instruments. On the other hand, they provide the
theoretical insight that different economic theories essentially only differ in terms
of different assumptions about the economic power of agents, which are described
by the so-called "power factors". A continuous change in the power factors results
in a smooth transition from one theory to another. In this sense, GCD models can
also be understood as a meta-methodology for economic models. In this chapter
we also provide an overview of what further research tasks still need to be done
in connection with GCD models in the future.



In Chapter 5 we describe the basic structure of utility functions and give examples
of possible utility functions for the following agents: Household, Firm, Bank,
Central Bank and State.

The solutions of the system can be calculated numerically e.g. with Mathematica.
In chapter 6 we refer to the open-source program GCDconfigurator, which
facilitates the derivation of the differential algebraic equation system for any GCD
model with arbitrary agents, arbitrary (non-intertemporal) utility functions,
arbitrary power factors and arbitrary constraints. GCDconfigurator is freely
accessible via GitHub (Gl6tzl und Binter 2022) and can be downloaded under

https://github.com/lbinter/gcd

All Mathematica program codes used for calculations of the various GCD models
can be downloaded under

https://www.dropbox.com/sh/npis47xjgkeceev/AAAMzCVhmhDYIlhoB5SMfA
TFya?dl=0

In chapter 7 we present the simplest macroeconomic model A1, which consists of
I firm, 1 good and 1 household. Even this simple model shows business cycles
for a certain selection of the underlying parameters. We discuss the typical
characteristics of these business cycles.

In chapter 8 we extend the A1 model to the A2 model, which has 2 objectives.
First, we show how financial assets and their counterpart, financial liabilities, can
be modelled in GCD models. Second, we show how the main constraints of a
given model can be derived in a systematic way from the graph of the model or
from the transaction matrices for each commodity.

In chapter 9 we introduce in model B1 the banking system consisting of 1 central
bank and 1 commercial bank. We model and discuss the effects of a central bank
monetary policy compared to an interest rate policy and the difference between
exogenous and endogenous money.


https://github.com/lbinter/gcd
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=

10

In chapter 10 we model the behaviour of the central bank in terms of the Taylor
rule in model B2.

In chapter 11 we introduce the government as an agent in model C1 in order to be
able to analyse, for example, various fiscal policy measures of the government.

In chapter 12 we create model C2 by describing the behaviour of the central bank
in model C1 by means of the Taylor rule.

In chapter 13 we extend model C2 to the comprehensive model D2.

In chapter 14 we use appropriate GCD models to explain the theoretical insight
that different economic theories differ only in terms of different power factors.

In chapter 15 we describe another simple model for describing environmental
impacts.

In chapter 16 we give a summary of the main features of GCD models, their
advantages and disadvantages for describing economics, and a large list of further
research to be done.
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2. Literature review on the modelling of dynamics
under constraints

This literature review is essentially based on Richters (2021). In general, a
dynamic economic model is described by agents and variables that can correspond
to any stock or flow of goods, resources, financial liabilities or other variables or
parameters such as prices or interest rates. The behaviour of these variables is
described by equations of behaviour.

The behaviour of these variables may be restricted by economic constraints
described by additional equations. In particular, all balance sheet identities are
subject to such constraints. However, constraints can also be relationships "which
by definition apply" (Allen 1982, 4). In material flow analysis (Brunner und
Rechberger 2004) these constraints also include laws of nature such as the
conservation of mass and energy ("first principles" of chemistry and
thermodynamics). Input-output relationships or production functions imply
certain technological constraints, while budget constraints are derived from the
behavioural assumption that no one gives money away without appropriate
remuneration. Respect for identities is "the beginning of wisdom" in economics,
but they must not be "misused to imply causes" (Tobin 1995, 11).

In general, the introduction of additional constraints to the behavioural equations
can lead to the system of equations becoming overdetermined and thus
unsolvable. The schools of economic thought differ in how they make this system
of equations solvable (Sen 1963; Taylor 1991) , a topic which is discussed in
Chapter 14

In most general equilibrium models, each agent fully controls and voluntarily
adjusts all stocks and flows directly affecting him or her (such as individual
working hours or savings), resulting in various individual first-order conditions.
The fulfilment of the systemic constraints of market exchange can only be ensured
if prices are adjusted in such a way that all individual plans are compatible with
each other (neoclassical closure). Interaction via price signals, restrictions by
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other agents or system characteristics can be fully anticipated by the agents
(Arrow und Hahn 1971).

The core of most Dynamic Stochastic General Equilibrium (DSGE) models is
based on a representative agent with rational expectations, which solves an
intertemporal optimisation problem under consideration of the constraints. The
properties of utility and production functions, the Euler equation describing the
dynamics of the system, and the transversality condition as an infinite time
boundary condition guarantee that a clear and stable equilibrium path exists.
External shocks in combination with various resistances that slow down the return
to equilibrium can cause deviations from this optimum (Christiano, Eichenbaum,
und Trabandt 2018; Lindé 2018; Becker 2008; Colander 2009; Kamihigashi
2008). While more recent DSGE models also include some heterogeneity between
households and firms (Kaplan, Moll, und Violante 2018; Christiano, Eichenbaum,
und Trabandt 2018), many aspects of heterogeneity must usually be left out in
order to apply this approach at all (Gali 2018, 101).

Each optimisation approach requires a single function to be optimised. Therefore,
the utility functions of a society of utility maximizers need to be aggregated into
a single social welfare function. Aggregation is possible if and only if demand is
independent of the distribution of income between agents (Gorman 1961; Stoker
1993; Kirman und Koch 1986; Kirman 1992), which (Rizvi 1994, 363) describes
as an "extremely special situation". These mathematical reasons limit the
admission of broader heterogeneity and social influences into DSGE models.

Keynesian disequilibrium models deviate from the assumption that price
adjustments can clean up markets sufficiently quickly. However, the deviation
from equilibrium assumptions implies that ex-ante (planned) behaviour does not
necessarily meet the economic constraints. The (actual) ex-post dynamics are
influenced both by systemic constraints and by the actions of others. Demand and
supply do not necessarily coincide, and terms such as "forced saving" or
"involuntary unemployment" (Barro und Grossman 1971) imply that agents
cannot have complete control over the variables that influence them. For example,
in some Keynesian imbalance models, demand is limited by insufficient supply
or otherwise depending on market conditions (Benassy 1975; Malinvaud 1977).
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In contrast, some post-Keynesian models consider the labour market to be purely
demand-driven, and employees have no influence on working hours: The
constraints that guarantee the consistency of stocks are satisfied by simply
omitting an equal number of behavioural equations (Godley und Lavoie 2012;
Caverzasi und Godin 2015). This method, namely simply dropping behavioural
equations ("drop closure") to make the system of equations solvable, is justified
if and only if the stocks or flows are not determined by the agents but only by the
constraints (for a criticism see Richters und Glotzl (2020).

Agent-based models (ABM) assume that individuals cannot solve infinitely
dimensional optimisation problems, but instead make use of limited rationality,
which is often modelled as a sequence of simple rules. Interactions between
heterogeneous agents are important beyond market prices, and social interaction,
social norms, power relations or institutions influence economic decisions.
Compared to selfish utility maximizers, this corresponds to a broader version of
methodological individualism (Gallegati und Richiardi 2009). ABM describe how
quantities and prices can converge to a (statistical) equilibrium, but
discontinuities, tipping points, lock-ins or path dependencies can also be
investigated (Kirman 2010). ABM lack a common core and, depending on the
economic assumptions, consistency of stocks and flows is ensured by price
adjustments, auctions, matching algorithms or quantity rationing (Tesfatsion
2006; Gintis 2007; Page 2008; Gallegati und Richiardi 2009; Ballot, Mandel, und
Vignes 2015; Riccetti, Russo, und Gallegati 2015; Haldane und Turrell 2018). In
any case, the constraints of macroeconomic accounting must be taken into
account, including in the modelling of bankruptcies or the entry and exit process
of companies (Caiani u. a. 2016; Caverzasi und Russo 2018).

In order to avoid the above-mentioned problems, we have introduced in Glotzl,
Glotzl, und Richters (2019) a different method for modelling dynamics as an
alternative to DSGE and ABM models. This method is a natural extension of GE
theory and is based on the standard method in physics for modelling dynamics
under constraints. We therefore call this method "General Constrained Dynamics
GCD". The GCD method is a "closure" method to solve an overdetermined system
of equations (due to the additional constraints) by introducing additional Lagrange
multipliers. It can also be understood as a method to transfer the concept of
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Lagrange multipliers from optimisation problems under constraints to dynamic
systems under constraints. This is done in analogy to how it is done in classical
mechanics. In contrast, if the behaviour in GE models is referred to as "total utility
maximisation", the behaviour in GCD models can best be described as "individual
utility optimisation".

In comparison to DSGE, GCD models initially go back two steps and do without
intertemporal optimisation and stochastic shocks. However, GCD models do not
require the restriction that all utility functions can be aggregated to a social
welfare function. GCD models describe the interaction of limited rational agents
that under economic constraints exert economic forces to improve their individual
situation (gradient increase). The processes of trade and price adjustment take
place simultaneously and can converge towards equilibrium. However, they do
not necessarily converge towards equilibrium in every case.

In this article we apply the GCD-Method to macroeconomic models of increasing
complexity. The aim of this article is to show how GCD models are constructed
in principle and why and how it can be useful to analyse macroeconomics with
this method.

All calculations, even for arbitrarily complex GCD models (with non-
intertemporal utility functions), can be easily performed with the open-source
program GCDconfigurator (Glotzl und Binter 2022) which can be downloaded
under

https://github.com/lbinter/gcd

All Mathematica program codes used for calculations of the various GCD models
can be downloaded under

https://www.dropbox.com/sh/npis47xjakecesv/AAAMzCVhmhDYIThoB5SMfA
TFya?dl=0

In further contributions we show how the above-mentioned limitations can be
overcome compared to DSGE models. The basic ideas of how GCD models can
be adapted to intertemporal utility functions are shown in Gl6tzl (2022c¢) and how
any kind of economic shock, e.g. demand, supply or price shocks, can be modelled
with GCD is shown in Glotzl (2022a).


https://github.com/lbinter/gcd
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=
https://www.dropbox.com/sh/npis47xjqkecggv/AAAMzCVhmhDYIIhoB5MfATFya?dl=
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3. The principle set up of GCD models

3.1. The model graph

It has proved to be extremely helpful to present each model in the form of a model
graph. This provides an immediate overview of the agents, stock variables and
flow variables. Using model A2 we also show how the constraints can be
systematically determined from the model graph (see chapter 8.2.). Another
possibility for the systematic representation of a model results from specifying the
corresponding transaction matrices. This method is often used to describe SFC
models (stock flow consistent models). Constraints can also be derived from this
in a systematic way (see Chap. 8.3). However, we prefer the description of a
model with model graphs, as long as the models are not so complex that the graphs
become unclear.

In detail a GCD model consists of the following elements:

3.2. Agents

In principle, any number of any agents is possible, e.g:

- One or more households
- One or more companies
- One or more banks

- A central bank

- One State

- Any other agents

3.3. Goods
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Agents exchange goods (flows) and/or store them (stocks) or create or destroy
them. In GCD models it is useful to consider not only money but also all other
goods that are usually exchanged for money at a certain price.

In principle any number of any goods is possible, e.g:

- Money

- Goods

- Services

- Labour

- debt notes (promissory notes)
(receivables = positive stock of debt notes, liabilities = negative stock of
debt notes). The immediate price of a debt note is usually 1 (e.g.: for lending
100 € you get 100 debt notes). However, debt notes usually trigger
corresponding interest payments.

- Energy
- Raw materials

- etc.

3.4. Variables

All stocks, all flows and all creation and destruction processes are represented by
time-dependent variables.

It is important to distinguish between 2 types of variables: Differentially defined
variables and algebraically defined variables.

We first assume that only differentially defined variables occur. This means that
the behavioural equations of all variables that appear in the utility functions are
given by the differential equations of the general GCD model equations in the
form Fehler! Verweisquelle konnte nicht gefunden werden.. We therefore
refer to these variables as differentially defined variables. However, in the models
variables are also possible for which the behavioural equations are not given by a
differential equation but by an algebraic equation, e.g. by assuming a certain
production function

Y(t)= LYK
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or a specific rule for determining the amount of household income tax
T (t) = 0.3wL

In chapter 3.11 the algebraically defined variables are explained in more detail.

3.5. Constraint conditions

For every agent and every good, the following conservation equation, which is
called a constraint, must necessarily apply:

Incoming goods - outgoing goods + production of goods - destruction of goods -

- change in stock of goods =0

E.g. for a company that produces a number Y(r) of machines, designate

C(r) the part of the machines which are sold,

S(t) the stock in the warehouse,

K(¢t) the number of machines used for production, i.e. the real capital stock and
I(t) the investment, i.e the part of production used for its own further production,

the following constraint holds

YO)-Ct)-S')-11t)=Y(@)—C(@t)—S't)—K'(t)=0
We avoid the formulation of this constraint by valuation at market prices p
pY(®) - pC1)—pS'(®)—pl(t) =0

because only the term pC(#) corresponds to areal flow, namely the flow of money
when machines are sold, whereas the other terms correspond to a flow of values.
However, since valuations can change very easily, the conservation equation for
values generally applies only to a very limited extent and must be applied with
great caution.

In addition to the above-mentioned constraints, which are derived from the
conservation equations for each good for each agent, there are also other
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constraints imposed by model assumptions, such as the assumption that all
consumer goods are consumed immediately and not stored.

Model graphs in the form of flow charts and/or transaction matrices for all goods
are very helpful in establishing the constraints. We show model graphs in the form
of flow charts for each model. We explain the use of the corresponding transaction
matrices with an example in chapter 8.3.

Note: The conservation equations for GCD models are closely related to the
conservation equations of physics and chemistry, e.g:

Ist law of thermodynamics (conservation of energy)
1*' law of chemistry (conservation of mass)

Since debts (liabilities) and accounts (receivables) always arise simultaneously
and in the same amount, it applies that in a closed system the sum of debts
(liabilities) must always be the same as the sum of accounts (receivables). This
analogy to the conservation laws of physics makes it reasonable to call this
fundamental relationship for a monetary economy "1st law of economics" (Glotzl
1999; 2009)

3.6. Ultility functions for each agent

The behaviour of an agent is described by its utility function. These utility
functions are not subject to any restrictions and can basically depend on all
variables (stocks and flows) and any parameters.

3.7. Power factors for each agent for each variable

An agent's interest in changing variables does not per se lead to actual change,
because the agent must also have the power or opportunity to actually implement
its desire for change. This is described by the so-called power factor

w2, which can assume values between 0 and oo . A high-power factor leads to a

rapid temporal adjustment of the variables. The power factors in some sense can
therefore also be interpreted as speed adjustment factors.
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3.8. GCD model equations for the simple case (utility
functions and constraints depend only on (x.x,))

3.8.1.  Ex-ante equations of motion

We explain the principle for 2 agents A,B and 2 variables x,,x,.

The utility functions of A,B are U"(x,x,),U"(x,x,). The interest of A is to
change x,,x, so that the increase of his utility function is maximal. This is given,
if the change of x,x, is done in the direction of the gradient of U"(x,x,)

U”(x,x,), 1.€.

ou”
ox,

ou’
ox,

X .
, proportional
X

2

The interest of A in a change of the variables does not lead alone to an actual
change, because the household must have also the power and/or possibility of
actually implementing its change desire. For example, a household cannot or can
only partially enforce its additional consumption desire, e.g., to go to the cinema
or go on vacation, because it is possibly quarantined or the borders are closed.
This limitation of the possibility to enforce his consumption change requests is
described by a (possibly time-dependent and endogenously determined) "power
factor" 1/ . In general, the change request for each of the variables is described by

"power factors" u,pl,u, . . Considering the power factors, the following
applies to the change of x,x, (due to the interest of A and the power of A to
enforce this interest)

A oU”

" ox,

, ou”?

" ox,

(x{ ] ,
. proportional
X

2

Justas A has an interest, to change x,,x, , also B has an interest to change these

two variables. The actual change is therefore the result of the two individual
efforts to change, weighted with the power factors. We therefore refer to this
behaviour as "'individual utility optimisation".
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Lou?t 5 0U”

x H ox Ha ox
( }J = L+ 1 <3.1>

x2 A 6UA B aUB

‘o) e

In case there is a "master utility function" MU such that

L ou? , 0U” oMU
Ha Ox Ha Ox ox
Loy (. 1 <3.2>
, out , oU” oMU
H ox, = ox, ox,

the two utility functions can be aggregated. Then

oMU
x| _ Ox, 33>
X, oMU '
ox,

Equation <3.3> describes the temporal change of the variable along the gradient
of MU . If MU is convex, (x,x,) converges to the maximum value of MU , i.e.

lim(x,(t), x,(t)) = (x™, x,"") with MU (x™*,x;""") = maximal

Define the overall utility function GU =U" +U”. If the overall utility function
equals the master utility function, i.e. GU = MU , we therefore refer to

L, out , 0U* oMU oGU oUt+U?)
! ’uxl 'uxl
(xlj _ Oox, N ox, _ ox, _ ox, _ ox, 34>
X, L, ou”t s OU® oMU oGU oUt+U"
s ox, Ha ox, ox, ox, ox,

as "'overall utility maximisation''.

These equations of motion <3.1> resp. <3.4> describe the dynamics of (x,,x,)

under the condition that there are no constraints that restrict the dynamics. It is
therefore referred to as the ex-ante equation of motion.
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3.8.2.  Ex-post equations of motion

3.8.2.1. Vertical constraint forces

If a constraint

Z(x,x,)=0

has to be fulfilled, an additional constraint force f* has to be added to the ex-ante

force

J
x'=3 @+ f* i=12,.,1 <3.5>
j=1

to ensure the constraint Z to be fulfilled at all times. In physics, this constraint
force f”1is perpendicular to the constraint at all times due to the so-called

d'Alembert principle, i.e.

0Z(x,,x,)
z le (x;,%,) ox,
X)) = -y <3.6>
f (-xl xz) [fZZ(x]’xz)] 8Z(X1,X2)
ox,

We therefore refer to this type of constraint forces as ''vertical constraint
forces'. The time-dependent factor A =A(r) is called Lagrange multiplier, as in

the case of optimisation under constraints.

Vertical constraint forces can also be characterised by the following equivalent
principles. This is because the theorem (Glotzl 2018) holds that the following
principles are equivalent:

(1) d'Alembert's principle (constraint forces do no work)

(2) vertical constraint forces (constraint forces are perpendicular to the manifold
of constraint conditions)

(3) Gaussian principle of least constraint (those constraint forces f“ occur for
p p

which Hfz’ H — minimal )

(4) unnamed principle
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If x 1s a solution of

X=f+ 1)
0=2Z(x)

dlx| _(x./)

i ¥

then f” satisfies the unnamed principle =

Note: If one of the equivalent principles is satisfied, then the constraint force has

no effect on ||x'| but only on the direction of x'. Note, however, that the inverse

does not hold.

It is therefore plausible in many cases to model constraint forces in economics in
an analogous way to physics in terms of d'Alembert's principle respectively as
vertical constraint forces.

From <3.1> and <3.6> results the "equation of motion considering the constraint
condition"”, called ex-post equation of motion:

A OU" (x,x,) 3 OU%x,,x, 0Z(x,,x,)
' /ux - < /ux _— -~ 7 -7
X ] ox ! ox ox
o= l + 1 + !
% /uA M ,UB GUB(xl,xz) 0Z(x,,x,) <3.7>
" ox, t o, ox,
0=2Z(x,,x,)

If U*,U" can be aggregated to a master utility function MU , the equation of

motion is as follows

oMU (x,,x,) 0Z(x,,x,)
(xl'j Ox, Ox,
. = + A
X, oMU (x,,x,) 0Z(x,,x,) <3.8>
Oox, 0ox,
0=2(x,x,)

and if the master utility function MU is convex, (x,,x,) converge to the maximum

value of MU under the constraint Z , 1.e.
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lzm(x1 (1), x,(1)) = (xX™%, xI™%) with MU (x™% , x}***) = maximal under constraint Z

and it holds that the dynamics at (x™**,xy*?)1s stationary, 1.e.

aMU(xmaXZ, maxZ) az(xmaxz, maxZ)
! 0. 0.
(xf]— K +2 X -0 <3.9>
xz 6MU (xmax VA X ;nax Z) aZ(xmax zZ X ;nax Z)
Ox, Ox,

or equivalently

aMU(xmax Z , ;nax Z) aZ(xmax VA , ;nax Z)
0. 0.
- —-2 N <3.10>
aMU(xmde’ mde) aZ(xmde’ mde)
ox, ox,

In general, for

J agents with the designations i=12,..,J
I Variables with the designations X, i=12,,0  x=(x,%.... X,)
K Constraints with the designations z¢ k=12,...K Z, k=12,.,K

the I general GCD model equations for vertical constraint forces are obtained
analogously

J 8U’ 82"
-y

X; k=1 Ox,

L

i=12,..1 <3.11>

If there is a "master utility function" MU such that

J i
> ;’aU _ MY i=12,..,1 <3.12>
J

:oﬂ Loox, Ox.

1 L
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the utility functions U’, j=1,2,...,J are called aggregable.

J
If MU =) U’ , the master utility function is called the total utility function. If the

j=1
master utility function MU is convex, x converges to the maximum value of
MU under the constraint conditions Z*, k=1,2,...K .

3.8.2.2. Other constraint forces

Another type of constraint force that can occur, especially in the case of a
constraint force describing a limited resource, is a constraint force that is centrally
directed to the origin. We therefore refer to this as a "central constraint force".

VA ﬁz(xl(t)axz(t)) x1(t)
(1), x%,(1)) = = (1t <3.13>
S (x5, (0), x, (1)) (ff(xl(t),xz(t))J o( )(xz(t)j

A model for this are constraint forces such as occur in theoretical biology in the
derivation of the so-called replicator equation (Glotzl 2022b). In biology, this
model assumption of a central constraint force is equivalent to the assumption that
in the struggle for limited resources, equally high death rates are triggered for all
species.

Let us illustrate this with an example. A typical dynamic in biology is the initially
independent exponential growth of 2 species A and B with birth rates b,.b, .
n,=b,n b, "growth rate"
A ATCA A g <3.14>
n, =b,n, b, "growth rate"
A constraint typical for biology is, for example, the assumption of limited
resources. This can be given, for example, by a limitation of the food supply or
also by a limitation of the habitat. This results in the sum of the number of absolute
frequencies of the different species remaining constant. This is formally described
by the constraint condition
Z(n,,n,,...)= 211[ —constant =0

1
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Assuming that the constraint condition triggers equally high death rates in both
species, the differential algebraic equation system is obtained

ny=b;n,—on,

ny =byn, —pny <3.15>

Z(n,,ng)=n,+n,—n=0 n constant

Assuming that A is twice as successful ("powerful") in the struggle for resources,
the death rate for A would be half as high and thus the system of equations would
be

n,=bn, - (DEHA

ny =byn, —pn,

Zng,ny)=n,+n,—n=0 n constant

When applied to economic constraints, this can be interpreted as follows. Agents
can have different powers to oppose constraints. For example, if raw materials are

limited in total, it may be easier for some countries to obtain the necessary raw
materials than for others.

In the most general case, different types of constraint forces can occur. Essential
for the modeling is only that the constraint forces used must be linearly
independent and multiplied by the respective Lagrange multiplier.

Note: In the case where not all constraint forces are vertical, x typically does not
converge to the maximum value of MU under the constraints Z*, k=1,2,..K,

even if the master utility function is convex.

As arule, it is sufficient to use purely vertical constraint forces. In the following,
we will therefore always restrict ourselves to vertical constraint forces.

3.9. GCD model equations for the general case (utility
functions and constraints also depend on
antiderivatives and/or derivatives of (x,x,))

3.9.1.  Constraints depend on antiderivatives and/or
derivatives
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So far, we have assumed that the constraints depend only on x. However, the
constraints can also depend on the antiderivatives X =(X, X,,...,X,) . This means,

X, 1s antiderivative of x,, iff X/=x,. The constraints can depend in principle,
however, also on the time derivatives x'=(x,x,,....x;) . In physics it is valid

(Flannery 2011), that the constraint force always results from derivative with
respect to the highest time derivative of x , 1.e.

oZ
If z(..X.,..) th Z =" and
( ».-.) then f, oX| an

J J k
,:Z i oU” ngw i=12...1 <3.16>
axi k=1 8XI
If z( ) then f“=— and
J k
x = ul Z}tk FZ (oo X Xp) i=12,..1 <3.17>
j=0 ’Xi
If Z(..X,,x,x,..) then f* :% and
J J K k ’
x,f:zﬂ){_ai+z}t" OZ (s X %o Xpp-) i=12,...1 <3.18>
i—0 ' 8)6[ k=1 8)6['

We assume that this approach is also plausible in economics in the case of vertical
constraints.

3.9.2.  Utility functions depend on antiderivatives
and/or derivatives

So far, we have assumed that utility functions only depend on x. But also, the
utility functions can additionally depend on antiderivatives and derivatives of x.
In these cases, both the antiderivatives X =(X,,X,,...X,) and the derivatives

x'=(x,x},...,x;) are to be considered as additional variables in their own right, i.e.
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X =(X,X,,.. X;) = (X, 13X, gsee0s X))

X' = (XX 0005 X)) = (X1 Xy s X3y )

In that case, the following additional constraints must be used

3.10. Market forces

The behaviour of x, is given by the general GCD model equation (for vertical

constraint forces) for x, <3.11>

i K k
ou N Z T oZ
ox. o Ox

1 l

i=12,.1 <3.19>

J .

X =M
j=0

The right-hand side of <3.19>

Looul & ozt
/ +y A
2.4 ox Z‘ ox,

j=0 i

thus describes the market forces that lead to a change in x, and is composed of
2 parts. The market forces that agents exert on x,

Zjlﬂ ;oU’
=" ox

i

and the market forces that the constraints Z* exert on x, . These are just the
constraint forces

oz*
ox

i

A=t

oU " (x)

ox,

2

If for a particular ; it holds that =0, i.e. that the utility functions do not

depend on ], or that the power factors u/ =0 , the general GCD model equation

(for vertical constraint forces) reduces for x;, , to
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In this case, the behaviour of x; is determined exclusively by the constraint

forces. Therefore, the constraint forces can also be called ''pure'' market forces,

3.11. Algebraically defined variables

So far we have assumed that the behavioural equations for all variables are given
by differential equations in the form <3.11> to <3.18>. We therefore call these
variables differentially determined variables. In the models, however, also
variables are possible, with which the behavioural equations are not determined
by a differential equation, but by an algebraic equation, e.g. by the assumption of
a certain production function

Y@t)=pL K"
or a specific rule for determining the amount of household income tax.
T"(t)=0.3wL

We call these variables algebraically defined variables. These algebraic
behavioural equations can often be seen as limit values of differential equations
with infinitely large power factors. For example, the behaviour of the government
in collecting income tax could be described by the following behaviour. It aims
to collect 30% of the wage income of the household as a tax. If the tax paid is less
than this, e.g. through tax evasion, the government will try to increase the
collection of the tax. This behaviour can be modeled in the following way, for
example:

Let u%aT™) =—%(0.3—T”)2 be the utility function of the Government G and Z
any constraint, then results the behavioural equation

o0z

G
T"'= 4 ou oz :,LJ;IH(O.3WL—TH)+16TH

=, —+A
Moo ™ o

If the government has infinite power to prevent tax evasion, this results in
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oZ
T =, O3wL=T")+ A=
H\
=3 TH =(03wL-T")+ ’Z aZH
/’lTH ll’lTH aT

Jor pl, — oo results
0=03wL-T") =
T" =03wL

The algebraic behavioural equation 7" =0.3wL can thus be interpreted as a
differential behavioural equation with infinite power of the government.

In case of occurrence of algebraically defined variables, when forming partial
derivatives of utility functions and constraints with respect to the differentially
defined variables, it must be taken into account that the algebraic variables
occurring in utility functions and constraints may also depend on differentially
defined variables. It is best to insert the algebraically defined variables into the
utility functions and constraints before the differential equations are formed.

3.12. Numerical solutions

In most cases, the differential algebraic systems of equations cannot be solved
analytically, but only numerically.

3.12.1. Initial values

In ordinary differential equation systems of the 1st order, the initial values for all
variables are freely selectable. In contrast to ordinary differential equation
systems, not all initial values of the variables are freely selectable in differential
algebraic equation systems. The reason for this is that the initial values must
satisfy the differential equations and also the constraints.

If there are no time derivatives in the constraints and there are K linearly
independent constraints, only 7 — K initial values can be chosen freely. The other
initial values result from the solution of the system of equations of the constraints.
However, if the constraints are nonlinear an analytical solution is often not
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possible. In many practical applications, however, the situation is much more
complex, especially if time derivatives of variables also occur in the constraints.

In the usual numerical programs for solving differential-algebraic equations, an
algorithm is therefore built in, which calculates from a sufficiently large number
of initial values, other possible initial values, which approximately fulfill the
system of equations up to a certain tolerance. One therefore needs an
understanding of the model and a certain amount of experience to determine
suitable initial values.

3.12.2. Parameter selection

The parameters of a GCD model cannot be chosen arbitrarily either. For the
system of equations, a solution does not have to exist for every combination of
parameters or be stable over a longer period of time. Therefore, one also needs an
understanding of the model and a certain experience for the selection of the values
for the individual parameters.

3.12.3. Numerical solution methods

We make use of two solution methods within the framework of MATHEMTICA,
namely NDSolve and Modelica. Since differential algebraic systems of equations
have a much higher overall complexity than ordinary differential systems of
equations, many different methods of numerical procedures are available in

NDSolve.

By default, it is usually sufficient to use:

Method— Automatic
Sometimes you need:

Method— {"EquationSimplification"->"Residual " }
Sometimes one needs:

Method— {IndexReduction— Automatic }
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Sometimes one needs:
Method— {IndexReduction— {True, ConstraintMethod—Projection} }

May be in special cases also other methods must be used

For the stability of the solutions, one has to distinguish 2 cases:

- The model itself may become unstable after a certain time because, for
example, certain variables become O.

- The model is basically stable, but the numerical errors can lead to instabilities
after a longer runtime.
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4. Examples of possible utility functions

4.1. Household

For example, a household may have the following targets:

- Consumption target: he would like to consume. His desire to consume more is
greater the less he is currently consuming or can consume, and his desire to
consume even more is smaller the more he is already consuming.

- Labour target: he would like to work, but not too much and not too little.

- Money management target (cash management target): he always wants to have
liquid funds, not too little, so that he can buy everything he wants to buy at the
moment and not too much, because he does not get any interest for it and it would
be more advantageous to lend the money to the bank against interest on savings.
Therefore, the higher the interest on savings, the lower his money-holding target.

- Receivables holding target (savings target): he would like to hold assets in the
form of receivables from the bank, the more the higher the savings interest.

The stated targets of the household can be expressed, for example, in the following
utility function:

2

UH(CH’LH’MH’AH):(CH):/_(l':H _LH) _(MH _MH)2+AH

Variable : c” consumption
L labour
M"™  money holding (liquid assets)

AY claims on bank (savings)

Parameter: y 0<y<1

L’ targeted labour

M"  targeted money holding, possibly depending on the interest rate
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4.2. Firm

A firm can have the following targets, for example:
- Profit target: The greater the profit, the greater the utility.

- Warehousing target: Warehousing causes costs and should therefore be as low
as possible; on the other hand, it must not be too low, otherwise fluctuations in
demand cannot be compensated.

- Investment target: The interest in investing depends (also!) on the level of
interest rates on loans. If lending rates are O (or even negative due to possible
investment incentives), as much is invested as is organisationally feasible. If
lending rates rise, correspondingly less is invested.

The stated targets of the firm can be expressed, for example, in the following
utility function.

U™ = profit”™ -(S - S)* - (invmax(]— Or+r,))- inv)2
whereby the following "algebraically" defined variables are used :

Y:= LK™
profit" := pY -wL-(r+r, )N-D" )-DP= ppL'K"* -wL-(r+r, )(-D" )- DP

invmax := inv K
this gives the dependence of the utility function on the "differentially" defined variable,
U"(p,L,K,w,D" ,DP,S,inv)= profit” -(S - S)? -(invmax(] -0(r,,, + 1, ))—inv)2 =

A 2
= pBLK" -wL-(r,, +1, )(-D" )-DP-(S - S) - ( inv K (1-0(r,,, +1,))- inv)

"differentially" defined variable : p price
L labour
K capital
w wages
D" loans payable

DP  depreciation
S inventories

inv Net investment
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"algebraically" defined variable - Y total output,Cobb-Douglas function
profit” profit
invmax maximum net investment,when credit interest rates=0
Parameter: « Cobb — Douglas parameter
p technology factor
Froir central bank prime rate
Ty ending rate premium on central bank base rate
S stock-keeping target
v maximal net investment factor
0 factor for the interest rate dependency of the investments

Note: Note that the constraint 0= K'-inv must apply to the variables K, inv in the
sense of chapter 3.9.2.

4.3. Bank

For example, a bank may have the following target:
- Profit target: The greater the profit, the greater the utility.

The stated target of the bank can be expressed, for example, in the following utility
function.

U* = profit®
algebraicly defined variable

profitB =+(h + rD)'(_DF) + (1 + rD)‘(_DG) - r/enAZB = (T + rA)AH

. . B
msert in U

U?(D",D°, A A")y=+(r,, +1,).(-D")+ (1, +1,).(-D°) =1, A” — (1, +1r)A"

differentially defined variable D" loans payable of firm
D° loans payable of government
A”  loans receivable of central bank

A" loans receivable of household (Savings deposits)

Parameter: 1, central bank prime rate
1 lending rate premium on central bank interest rates

r, Savings interest surcharge on central bank interest rates
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4.4. Central bank

The FED (Federal Reserve) has 3 targets:
- Inflation target: Inflation should be as close as possible to 2%.

- Full employment target: i.e., there should be neither unemployment nor
overemployment due to overheating of the economy.

- Target for the long-term interest rate: moderate long-term interest rate. For
the sake of simplicity, we will not consider this target any further in the following.

The first two targets can be modelled within the framework of the GCD models
in the following two ways: by means of corresponding utility functions or by
prescribing the setting of the prime interest rate by means of the so-called Taylor
rule.

4.4.1.  Utility function of a central bank

The full employment target can be expressed analogously to the utility function
of the household by the term

—(i—L)z

in the utility function of the central bank. In contrast to the household, however,
the central bank has no direct influence on employment, but only an indirect
influence through its interest rate policy or its money supply policy. This means

u’ =0 in contrast to u; #0

,ur,ZB >0 Influence on the central bank base rate 7,
ZB . ZB

My >0 Influence on money creation N

A central bank can try to achieve the target of inflation in 2 different ways.
Through interest rate policy (we characterise this by 6=1) or through money
creation policy (we characterise this by 6 =0). This behaviour of the central bank
can be described by the following term in the utility function
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(=61, +A-EN™)(p —%)

with 0<6<1
0 =1 (pure interest rate policy)

0 =0 (pure money creation policy)

By central bank base rate

N7 money creation ( flow variable!)

D inflation target

p price

ps temporal price change (due to constraint 0 = ps - p')

because of chapter 3.9.2

It should be noted that the central bank has no direct influence on the price p, but
can again only influence p and ps indirectly via the central bank base rate and

money creation. This means

' =0 Influence on the price p

,ulff =0 Influence on the change of the price ps
,ufli >0 Influence on the central bank base rate 7,
Moo >0 Influence on money creation N

The utility function

A 2
U” =(-5r+1-ON*)(p-L)-(L-1) with constraint 0 = ps — p'
p

because of chapter 3.9.2

leads (in addition to the other terms from the utility functions of other agents and
the  constraints) in the general GCD - model equations
Fehler! Verweisquelle konnte nicht gefunden werden. to
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oUu” .
r’=,urZBU—+ ....... =—,u,235(p—ﬁ)
or p
, ou”? .~ DS
T A =2 (1-8)(p-L2)
0 p
aUZB
p'= ﬂ§36—+ ....... =0+...... because of ,ujB =0
P
aUZB
ps'zuif P o =0+...... because of ,uff =0
DS
aUZB
L'=u” oL Foe =0+...... because of " =0

The term —u” 5(p - P2y means: If the central bank pursues an interest rate policy
p

(6=1bzw. 5§ >0 ), it exerts a force on the interest rate r such that » grows (i.e.

r'>0), if the actual inflation is greater than the targeted inflation P The same is
p

true in reverse.

The term +,uf]§,, A-85)(p —ﬁ) means: If the central bank pursues an interest rate
P

policy (5 =0 bzw. 5 <1 ), it exerts a force on the interest rate r such that » grows

(i.e. r'>0), if the actual inflation is smaller than the targeted inflation PY  The
p

same 1S true in reverse.

4.4.2.  Taylor rule

The Taylor rule is a monetary policy rule for setting the central bank base rate
by a central bank. It reads:

base rate = real equilibrium interest rate + inflation + @1

+o, inflation gap + o, growth rate gap

Thereby, the weighting factors o,,0, are derived from the actual behaviour of the

central bank. If both gaps are equal to 0, the Taylor rule is equivalent to Fisher's
rule
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base rate = real equilibrium interest rate + inflation <4.2>

We make the following simplifying assumptions:

Assumption 1: The economy is in equilibrium; therefore, it is reasonable to

assume that the real equilibrium interest rate is equal to the real growth rate Y7

Assumption 2: Full employment of the economy prevails exactly when the actual
labour L is equal to the targeted labour L, i.e.

Production at full employment ¥ = BK[”
v
Y

growth rate at full employment

If p denotes the targeted inflation rate, this results in

YI p 1 ' YV YAV

P .
==+ —+0,(—-p)to(—-= 4.3
rlelt Y p O-I( p p) O-Z( Y Y ) ( )
Interpretation: The interest rate is higher if the inflation rate £ is higher than
p

’

A

the target inflation rate p and/or the growth rate % is higher than the (target)
growth rate at full employment.

If one inserts and simplifies one obtains

rlm.t:£'+01(£'—]3)+(1—0{)£+(1+(72)05£ 4.4)

p p K L
In terms of the GCD methodology, the Taylor rule sets the value of the policy rate
as an algebraically defined variable. If the central bank acts only according to the
Taylor rule, it does not act in the sense of optimising a utility function, but
according to empirical values that have proven themselves in the past. In this case,

one can therefore set the utility function of the central bank equal to 0.
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4.4.3.  Modified Taylor rule: Consideration of the
interest rate premium on the key interest rate

The Fischer rule does not actually refer to the central bank's base interest rate, but
to the lending rate. This consists of the base interest rate plus a premium. In
economic equilibrium, this results in

Loan interest rate = base rate + premium = growth rate + inflation <4.5>

Under these assumptions, this results in the modified Taylor rule

base rate =
<4.6>

= growth rate — premium + inflation + o, inflation gap + o, growth gap

4.5. Government

The government pursues the following targets, for example.

- Government expenditure target: Government expenditure serves to fulfil
government tasks and is often also referred to as government consumption. For
simplicity's sake, we assume that the government behaves like a household. Its
desire to consume even more is smaller the more it consumes anyway.

- Government debt target: e.g., target government debt in the sense of the
Maastricht criteria (60% of GDP).

- Employment target: The government has the target of full employment, as does
the Fed in the USA.

- Tax ratio target: for the sake of simplicity, we will not discuss this further
below.

- Growth target: for the sake of simplicity, we will not discuss this further below.

The stated targets of the government can be expressed, for example, in the
following utility function.
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U% =% —(D°Y - D®)? - (L- L)

where the "algebraicly" defined variable is used :

Y := pL'K"™
insert and you getthe dependence of the "differentialy"
defined variables, i.e the variables defined by equation (3.7) :

U°(C%,LK,D°) =(C°Y° —(D° BL'K"" — D)’ —(L— L)*

with parameters Ve Cobb — Douglas parameter fiir governmental consumption

D°=-06 Maastricht factor

L targeted labour
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5. What insights can be gained from the modeling of
GCD macro models

5.1. Practical insights: Causes and pattern of business
cycles, analysis of measures to achieve economic
policy targets

The simplest macroeconomic model imaginable consists of 2 agents: 1 company
that produces 1 good and 1 household that works for the company and buys or
consumes this good.

Even this simplest macroeconomic model shows that under certain assumptions
about the power relations between household and firm and assumptions about the
other parameters of the model, business cycles occur. This means that the
individual variables show an approximately cyclical behaviour and the phase
shifts between the individual variables remain approximately the same.

In chapter 7 we present and analyse this simple model and present some basic
results.

As an example for measures to achieve economic policy targets in model B1, B2
and C1,C2 we analyse in a simple way the different effects for possible central
bank policies: monetary supply policy, interest policy or behaviour in the sense
of the Taylor rule.

The most important tasks that need to be done in the future to be able to use
GCD models for practical problems in economics are:

a) Adjustment of parameters to describe real circumstances and comparison of
model results with real business cycle trends.

b) Extend GCD models to multiple households, firms, and goods, and in particular
to commodity and financial markets. For a first approach see Richters (2021)

c) In the long run, develop a more complex, real-world model to enable better
economic forecasting and test measures to achieve economic policy targets.

d) Elaborate GCD models with economic shocks in detail.

e) Elaborate GCD models with intertemporal utility functions in detail.
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5.2. Theoretical insight: Different macroeconomic
theories differ in their assumptions of different power
factors

A. Sen has shown in (Sen 1963) that

- the basic neoclassical model of macroeconomics
- the macroeconomic model of Kaldor

- the macroeconomic model of Johansen

- and the Keynesian model

differ only in their assumptions about which variables are exogenous and which
variables are endogenous.

In the methodology of the GCD models it holds:

The variable x is exogenously determined < There is an agent A with x4 =

The variable x is endogenously determined < For all agents x =0

This means that the economic models described by Sen always assume one-sided
power relations. Since in the GCD models the power factors can assume all values
between 0 and «, i.e. that also not one-sided power relations are possible, all
hybrid forms of economic theories can also be modeled within the framework of
GCD models. This means that a continuous transition from one economic theory
to another economic theory can be represented by the continuous transition of the
various power factors from 0-— o or. o — 0. Since one-sided power relations
hardly ever occur in reality, reality can therefore be better described with GCD
models. In chapter 14 we describe in detail examples of corresponding theories
and the corresponding models.

We show, for example, that even the theoretical assumptions about the causal
relationship between "saving" and "investing", which differ from a neoclassical
and a Keynesian perspective, can be understood as assumptions about one-sided
power relations from the perspective of GCD models:
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Investing = Saving

Keynes: Neoclassical, mainstream:

* Investing — Saving * Saving — Investing

* Investing exogenous variable * Saving exogenous variable

* Saving endogenous variable * Investing endogenous variable
GCD interpretation: GCD interpretation:

* Investing = Saving * Investing = Saving

* Power of the investor = oo * Power of the investor =0

* Power of the saver = () * Power of the saver = oo

| GCD maodels in general: not one-sided power relations

In Chapter 14.2 we describe the corresponding models and their interpretation as
GCD models in detail.
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6. The open source programme ''GCDconfigurator”

In order to facilitate the concrete application to any complex GCD models (with
non-intertemporal utility functions), we have written the open-source program
"GCDconfigurator", with which any GCD model can be programmed very
comfortably and solved numerically with the help of MATHEMATICA.

Essentially, it is sufficient to enter the following:

- The algebraically defined variables
- The utility functions for each agent
- The constraints

The output is the time evolution of all variables depending on the freely variable
size of the power factors, the other parameters and the initial conditions.

The programme requires the installation of JAVA and MATHEMATICA. It can
be downloaded from GitHub with the corresponding instructions (Glotzl und
Binter 2022).
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7.Model Al, (1 household, 1 firm, 1 good, without
interest)

7.1.

Overview of the setup

Model A1: 1 household, 1 firm, 1good

Passiva

HS_\J ME
x

5

DP

Activa
—
F
P—
C >
- -
Yy | &
L _ﬂffﬁ '
&L E -
E— L —

Passiva

L iabor

L=wL wage

W wage (per hour)

I targeied labour

K capital

5 starage

DP depreciation

C consumption

C = pC consumption expenditure
D price gf good

M* money stock jirm

M" money stock household
Y production

EK equity

—> money
—> labor
—> good
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Model A1: basic equations

algebraically defined variables
Y(L.K)= BLIK® " production function"
DP(K)= @K " depreciation”

utility functions
U¥(C.L.MH) = Cr - [f. -L ]‘ —(MZ —MFY "utility function household"

U (Y.L.S)= pY—-wL— (5 —5) "utility function firm"

constraints

Z8 =0=wL-pC-M"" for money of household H
ZF=0=pC—-wL-M"" for money of firm F
Z=0=Y(L.K)-C—-K'-S-DP for good lof firmF 3

With the aid of the GCDconfigurator programme, the differential-algebraic
equation system of the A1 model is calculated as follows:



47

Model Al: diff.-alg. equationsystem

UF[t) = - (sdach-s[t])?-1[t]) w([t] +p[t) y[t]
uUH[t] = cH[t]" - (1dach - 1[t])? - (mHdach - mH[t])?

dp[t] = dpdachk[t]
inv[t] == k'[t]
y[t] = Bk[t]*1[t]°

cH [t] = Yy uHcHcH[t] 27 4 p[t] A1 [t] - p[t] A2 [t] - A3[t]

K'[t] == (1-a) BuFkk[t] “1[t]%p[t] - A3[t]

1'[t) = 2 uHl (1dach - 1[t]) + uF1 (@ Bk[t])*1[t] 2" p[t] -w[t]) -w[t] 2, [t] +
wit] A2[t] +aBk[t]1*1[t] " a;[t]

mF’ [t] = -2;[t]

mH’ [t] = 2 uHmH (mHdach - mH[t]) - 2;[t]

P t] == BuFpk[t]¥ T 1[t]% + cH[t] A;[t] - cH[t] A;[t]

s’ [t] == 2 uFs (sdach-s[t]) - A3[t]

Wt] == —pFwl[t] =1[t] A3[t] +1[t] Aa[t]

© = cH[t] p[t] - 1[t] w[t] - mF [t]
@ == ~cH[t] p[t] +1[t] wW[t] -mH [t]
© = -cH[t] -dpdachk[t] + BK[t]* " 1[t]% - k' [t] - s'[t]

cH[@] = ke'-* 10”8

k[@] == k@
1[@] == 10
mF [@] = mF@
mH[@] == mHe
p[@] == p@
s[@] == s@
w[O] = we

7.2.  Description of the A1 model in detail

The one good serves as both a consumption good and an investment good. We
assume that vertical constraint forces occur.

Since the target is first to show the principle, we choose the production function
and the utility functions as simple as possible.

We choose a simple Cobb-Douglas production function as the production
function, and the goods excreted per year (depreciation) are proportional to the
capital stock. This results in the 2 necessary algebraically defined variables. They
are necessary because they occur in the utility functions or constraints.
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Y(L,K)=pBL'K"™* B>0, 0<a<l
DP(K)=dpK 0<dp<l

<7.1>

In addition, one can be interested, for example, in net investment, for which one
defines as a further algebraically defined variable

inv(K) =K' <7.2>

Households want to consume with decreasing marginal utility. Consumption of
consumer goods C leads to a utility for households in the amount of ¢” with
0<y <1 . They strive for a desired working time L. Deviations from the desired
working time £ lead to a reduction of utility by (L—L)* . In addition, households
aim to keep cash in the amount of M " . Deviations from the desired cash position
M" lead to a reduction in utility by (M" —M™)*. This leads to the utility function
for the household

Ul=C"=(L-L>*-M"=M")? 0<y<l <7.3>

For the company, in the simplest case, the utility initially consists of the goods
produced, which are valued at the selling price, i.e. pY. The produced goods are

used for:
C Sales = Consumption
S’ change in inventory
K' changes in productive capital stock

In principle, it would be possible to weight the utility of these uses differently.
For the sake of simplicity, we will refrain from doing so. Therefore, this utility is
reduced by the cost of labor and the cost of storage, which we evaluate through
the deviations from the planned inventory. For simplicity, we assume that holding
money in cash has no influence on the utility. This leads to the utility function
for the firm

U'=pY(LLK)-wL—-(S—5)*=pBLK"™“—wL—(S-S5) <7.4>

From the model graph, it can be seen that the following constraints must be
satisfied:

Z,=0=wL-pC-M" for money of household H

Z,=0=pC-wL-M"" for money of firm F <7.5>
Z,=0=Y(L,K)-C—-K'-S§' for good 1 of firm F
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According to the methodology of GCD models, the interest or desire of

households to change consumption is the greater the more the utility changes
H

when consumption changes, i.e., the interest is proportional to . However,

the interest in changing consumption does not in itself lead to an actual change in
consumption, because the household must also have the power or opportunity to
actually implement its desire to change consumption. For example, a household
cannot or can only partially enforce its additional consumption wish, e.g., to go to
the cinema or on holiday, because it is in quarantine or the borders are closed.
This restriction of the possibility to enforce his or her consumption change wishes
is described by a (possibly time-dependent) "power factor" x” . Analogously, the

F

firm could have an interest and power u/ to influence consumption. In the

F
specific case

=0. This results in the following behavioural equation for the
ex-ante planned change in consumption

ou” ou”
+pe ——=ulyC"
oC oC <7.6>

C'=u

The same considerations apply to labour L as to consumption. Even the
household's wish to increase or reduce working time does not in itself lead to an
actual change in working time, because the household must also have the power
or possibility to actually implement its wish to change. For example, a household
might not be able to enforce its wish to increase working time, or only partially,
because it is on short-time working or unemployed, or it might not be able to
enforce its wish to reduce working time because it is contractually obliged to work
overtime. This restriction of the possibility to enforce his wishes for a change in
working time is also described by a (possibly time-dependent) power factor,
which we denote with x,". The same applies to the firm's ability to influence

working time.

Therefore, the behavioural equation for the ex-ante planned change in working
time is as follows

ou"  ,oU" g F |l
+ =2 L-0L)+ alm " K™% —w
oL H oL :uL( ) My (pB )

L'=y

The ex-ante behavioural equations for the other variables result analogously.
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However, the plans of the 2 agents household and firm to change consumption C,
labour L and the other variables cannot be enforced independently of each other,
because the constraints

Z,=0=wL-pC-M"" fiir Geld von Haushalt H
Z,=0=pC-wL-M"" fiir Geld von Firma F <7.7>
Z,=0=Y(L,K)-C—-K'-S'-DP fiir Gut 1von Firma F

lead to constraint forces, which we assume are vertical constraint forces. The

constraint force for the change in consumption therefore results in

oz,
+
aoC

/4 /4
A —=+ l=-Ap+Ap-—
4 Py ﬂgaC Ap+A4p—14,

The behavioural equation for the actual ex-post change in consumption is
therefore

L, oUu”

| 67, oz
€= e o

+ = _ Cy_l— +Ap—A <78>
aC ﬂsac HcV Ap+A4p—4

0Z,
+ A4 —+1
Ascth

Analogously, the actual ex-post change in labour is as follows

ou” ou* oZ o0z 0z
le H + F + _1+/1 _2+ —3:
Mot YA R A

=2u" (L—L)+ uf (pBa L’ 'K —w)+ Aw—Aw+ Laf “ K™

This also applies analogously to the company's investments. In the case of the
company, too, the actual implementation of ex-ante planned investment increases
can be prevented by real restrictions, e.g. by interruptions in supply chains. In the
same way, a desired reduction in investment may not be possible to the desired
extent because the project is a large-scale project of many years' duration. These
restrictions can in turn be described by a (possibly time-dependent) power factor
uy . This results in the following behavioural equation for the actual ex-post

change in capital

~oU” oz, 0z, 0Z, I
t At Ay =2t Ay = l-a) 'K - <7.9>
K oK ﬂ“aK AQOK ﬂ“aK' #xppl-a) &

K'=u

07
Note that we have to use Z 3

. oZ )
instead of 8_K3 because the constraint forces are

always derived from the highest time derivative of the variables (see chapter 3.9.2
and (Flannery 2011)).
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The equations of behaviour for mM*, M", S, p, w are derived analogously. In sum,

this results in the model equations

differentiell behavioural equations

ou” 8UF 6Z oz

Cv: H + et 8 _2

Hc ac /uc /11 aC
=ﬂé’7C7'l—ﬂqp+/12p—ﬂg

ou” s oU” 8Z GZ

L'=u' + AL+, —2

Y “e oL A aL oL

i,

=+

0z,
oL

=" (L- L)+ Aw—Aw+ Laf LK™

oz,
oC

ou" L oU" oz, oz oz
K'=u! + —L 4, =2+ A=
Hx "ok Hi oK A ) ﬂ“aK'
=ug ppA-a) 'K - 4,
L, ou™ . Ut oz, oz, oz,
"=, +u”, + + A + =
Pt op™ ™ opg ™ 21aM”' oM AG@MH
=oull, (M" —M" )= 2"
ou” oU* oz" o0z"° oZ
MFv: HF + FF +/1H B + 1 —
Hu oM - Hu oM* oM*" oM - Z“aMF
=1,
ou" 6UF oz, A o7
S'=pul + —+ 24 2=
H g s g A s T
= Hg (§ S) ﬂ“&
, ou” out oz, oz, oz
p'=u + 4, A S A=
op op op op op
=y BK'OL" = Ae + Ayc
, ou” aUF oz, oz, oz
P

:—ij+ﬂ1L—12L

Or written in a clearer way



differentiell behavioural equations
C'=ulyC’"' = Ap+A,p— A,
L'=2u"(L—L)+u" (aﬂKl_“L_”“p - w) + Aw—Aw+ LaBK' L

K'=pp(l1-a) 'K “p -1,

MH

=opl, (M -M")- ),

M"'=-2,

S'=u (S-5)-4
p':,u;ﬂK]_“L“ —Ac+ ¢
w'=—ul L+ AL- AL

Depending on the choice of parameters, the system converges to a stationary state
(see figure 1) or the system describes the occurrence of business cycles (see figure
2). A change in the parameters usually only changes the frequency and amplitude
of the business cycle fluctuations. This means that the qualitative sequence of
business cycles over a wide range of parameters is independent of the specific
choice of parameters. For example, it can be seen that the minima or maxima of

7.3.

Calculation results of model A1l

the variables typically occur in the following order (see figure 2):

Minima Maxima
1 | Profit Price
2 | Price Profit
3 | Investment Employment
4 | Employment Investment
5 | BIP BIP
6 | Capital Money stock of the company
7 | Money stock of the company | Storage goods
8 | Storage goods Capital
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9 | Consumption Consumption

10 | Wages Wages

11 | Money stock of the household | Money stock of the household

Existing business cycle theories each assume certain cause-and-effect
relationships between different variables. In contrast, in GCD models, business
cycle fluctuations can only be explained by assumptions

- on the behaviour or utility functions of agents
- and about the balance of power between the agents.

In this context, the following remark seems important: In economics, there is
usually a very complex interplay of the various variables. This complex
interaction can be modeled well by systems of differential equations. However,
the complex behaviour of differential equation systems cannot usually be
described by simple cause-effect relationships. Simple cause-effect
relationships are therefore generally not suitable for correctly reflecting
economic interactions.

Figure 1: model A1

https://www.dropbox.com/s/dc3kb2cb1d018uv/Modell%20A1%20Version%201
1.ndsolve.nb?d1=0

Figure 2: model A1, business cycle analysis

https://www.dropbox.com/s/ngly7g0u52egale/Modell%20A1%20Version%207
%2C%20Konjunkturanalyse %20V 5.ndsolve.nb?d1=0



https://www.dropbox.com/s/dc3kb2cb1d018uv/Modell%20A1%20Version%2011.ndsolve.nb?dl=0
https://www.dropbox.com/s/dc3kb2cb1d018uv/Modell%20A1%20Version%2011.ndsolve.nb?dl=0
https://www.dropbox.com/s/ng1y7g0u52egale/Modell%20A1%20Version%207%2C%20Konjunkturanalyse%20V5.ndsolve.nb?dl=0
https://www.dropbox.com/s/ng1y7g0u52egale/Modell%20A1%20Version%207%2C%20Konjunkturanalyse%20V5.ndsolve.nb?dl=0
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Figure 1: model Al
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Figure 2: model A1, business cycle analysis
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8.Model A2: Model A2: 1 household, 1 firm, 1 good,
with accounts/debts and interest

8.1. Overview of the setup

L labor

Model A2: 1 household, 1 firm, 1 good, with L=vLwage

wrage(per howr)
accounts/debts and interest { rergstedichon

L cogited

S storgge
DPdepreciarion

i = L7 meet - fracestme
Activa Passiva Activa l Passiva C cormmmgrion

re— re— — € = pC commumption expendinee|

M money stack fim
ME M noney siock hosshold
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\ 4
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C o D= A" ) dblas firm
> N cradit caoh flow

- N Locperore flovr

r D" Jinaar ppmers
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Note: N =N" =—DF'=4
— Note the direction of flow for constraints = ' ' =—A{
Note: accounts with positive entry stand under activa

accounts with negative entry stand under pasiva
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Model A2: basic equations

aigebraically defined variables
Y(L.K)= BLK"™
DP(K)=  dpk

ufility flinctions
U“(C.LM")=
U (Y,L.5)=

constrainis

Z =0=wLlL-pC+rd" —N" —M""
Z,=0=pC—-wL-r(-D")+N" -M""
L =0=FLEK)-C-5-DP-LK'
ZN=0=N" - 4"

7' _0e—_N* _D""

pY—wL—(S5-S) —r(-D")

" production finction”

" depreciation”

" —| i-1 }_. —(M* —M*Y +r4" “utility fimction household"

"utility _fimction firm"

Jor mongy flow af howsehold H
Jor mongy flow gf firm F

Jor good 1 flowaf firm F

Jor accouiws | debis flow of H
Jor accouids | debis flow gf" F

Assuming vertical constraints, the differential-algebraic equation system of model
A2 is calculated from this with the help of the GCDconfigurator.



58

Model A2: diff.-alg. equationsystem for verticalconstraints

UF[t] = rdF[t] - (sdach-s[t])? - 1[t] w[t] +pIt] yIt]
UHIt] = raH[t] < cH[t]" - (1dach - 1[t])? - (mHdach - nH[t]}?

dp(t] == dpdach k[t]
inv[t] = k'[t)
yit] =gkrt}*1[t]°

aH [t] ==ruHaH + r A3 [t] - A5[T]

cH [t] == yuMcHcH[t] 7 e p{t] 25 [t] - plt) A3 [t] - As(t)

dF [t] = rufdF + P2y (t] - 44(t)

K[t] = (1-a) BuFKK[t] " 1[t]"p[t] - Aa(t]

1'[t] = 2uH] (1dach - 1[t]) » pFl (a SK[t]* " 1[t] " p[t] -w[t]] -w(t] A;[t] «
wit] Ap(t] s afk(t)T1(] 12 ay(t]

mF L] = -2 [t)

mH [t] == 2 uMnH (mMdach - mM[t]) - A;[t]

NH[t] = Ay [t] - Az (] - A4[t] » As[¥]

PIt] =Bufpk[t] ™ 1[t]1%+ cHIt] Az [t] - cH[t] Az[t]

s [t] = 2 uFs (sdach-s[t]) - A5[t]

Wt) » -uFwlit] - 1[t] 2y(t] « 1[t] Ay(t)

Q= rdF[t] e nH{t] ¢« cHt] pt] -1[t] w[t] -mF [t]
Owrad[t] «nM(t] «cH[t] plt] «1[t] w[t] -mM[t)
@:= -cH{t) -dpdach k[t] + SK[t]* 1[t]" -k [t] -§'[t]
@ == -nH[t] - dF [t]

@ nM[t) - ak [t]

aH[@] « aHe
cH{B] « ko' " 10" 8
df (@8] ~ dFe
k[@] = ke
1[(e] = 1@
mF (8] = mFe
mH (8] = mHe
nH{0) = nHO
p(@] = po
s[@] = 5@
W[@) = wd

8.2. Systematic derivation of constraints from the
model graph

Using the A2 model, we show how to systematically derive the relevant
constraints.

Arrows represent flows. In model A2 there are 3 different flows.

- The flow of the good (violet)

- The flw of money (red)

- The flow of debt notes when money is given as credit (light brown)
- The flow of labour (green)
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Each flow leads to a decrease in the corresponding balance sheet item (stock) in
the balance sheet of the agent from which the flow originates and to an increase
in the corresponding balance sheet item (stock) in the balance sheet of the agent
to which the flow goes.

In addition, there are source terms, such as production by the company, or sinks,
such as actual consumption of consumer goods by the household. This sink for
consumer goods at home is not shown in the graph for the sake of clarity and
because it leads to a trivial constraint under the assumption that everything is
consumed immediately.

Thus, for each agent and each flow there is a constraint in the form

inflow - outflow - stock change =0 <8.1>

e.g., this results in a constraint Z, for the flow of money at the firm

ZzzozpC—wL—nU1+N—MF'

When considering the direction of flow and the sign of variables on the liabilities
side of the balance sheet (passive), one must respect the convention we use,
namely that entries on the liabilities side of the balance sheet have a negative sign.
This results, for example, in a constraint on the flow of debt notes in the company

zF —o=-~n-pI"

For interpretation: if the bank gives the company a loan of N =10 €, this means
that

N =+10 money (red arrow) flows from the bank to the firm

- N =N =+10debt notes flow from the firm to the bank (light brown arrow)
if a debt note is issued for every euro

that the debt increases and thus, due to the sign convention, the debt account
on the liabilities side is reduced by 10, i.e. D" =-10

This results in

- debt note inflow to the firm =0
- outflow of debt notes to the bank N =10
- outflow of debt notes to the balance sheet D =-10
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F

Z~ = promissory note inflow— outflow of promissory notes to the bank —

— outflow of promissory notes to the balance sheet =

=0-N-D"'=0-10-(-10)=0

If C denotes the inflow of consumption goods to the household and C denotes
actual consumption and hence the destruction of consumption goods, then,
assuming immediate consumption, the following applies C=C.

Under the given assumption this is nothing else but the algebraically given
behavioural equation for actual consumption C. The constraint for the flow of
consumption to the household 0= C—C is therefore equivalent to the algebraic
definition equation of C. Since C does not occur in the utility functions, this
constraint is superfluous.

Analogously, the following constraints therefore arise:

Z, =0=wL-pC+rA" =N" -mM"™" fiir Geld von Haushalt H
Z2=O=pC—wL—r(—DF)+NH—MF' fiir Geld von Firma F
Z,=0=Y(L,K)-C-S'-DP-K' fiir Gut 1 von Firma F
Z"=0=N"-A"" fiir Forderungen [/ Verbindlichkeiten von H

Z"=0=-N"-D"
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8.3. Systematic derivation of constraints from the
transaction matrices

The constraints can also be derived from the transaction matrices used to describe
SFC models. It should be noted that this always results in linearly dependent
constraints that can be omitted.

The relevant constraints are marked in red.

Transaction matrices of model A2

money | constraint— Z, Z, Zmoney balance
agent— H F
stock— MH MF
wage +L=+w.L —L=-w.L 0
consumption| —C = —p.C +C = +p.C 0
flow| credit —N=-1.N| +N=+1.N 0
interest +Z=+r. A" | -7 = —r. A" 0
: ;|22
sum y = MH Yy = MF — MH' 4 MF

Z, = 0=wL—pC—N + rAH — MY’
Z, =0=—wL+pC+ N —rAf — MF

Zmoney balance = 0 = MP + M’ linearly dependent on Z; and Z,
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debt note | constraint— Zs Z, Zdebt note balance
agent— H F
stock— AH DF
credit +N —N 0
flow|
sum Y =A% | ¥ =DV Yy =0

Z3 =0=N-—A"

Z,=0=N-D"

—n — AH' F/
Zdebt note balance — 0=A" +D

In the case of the good, we consider the following stocks:

K

"Capital”

S "Storage goods"

linearly dependent on Z; and Z,

CS  "Consumption stock" (all goods consumed by the household)
good | constraint— Zs Zg Z, Zg00d balance
agent— H F
stock— CS K S
production +Y +Y
storage goods S’ +S" |0
depreciation —DP —DP
flow], (g:(?:;:mptlon iC _c 0
use of C —C —C
un Y-CS | ¥-K | ¥-¢ ZZ_CS’_fS,
=0 =0 =0 — 0
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Zs =0=C—-C—CS" trivial

Zg=0=Y—-S"—DP-C—-K

Z, =0=S"—S" trivial

Zgood balance = 0 = —CS' =K'= 5"+ Y —DP —C) linearly dependent

No non-trivial constraint arises for the labour L. Therefore, only the constraints
coloured red remain. These are the same as those that resulted from the model
graph in chapter 8.2.

8.4. Calculation results of model A2

https://www.dropbox.com/s/4jjwpccmgtsihtk/Modell%20A2 %20V ersion%207.
ndsolve.nb?d1=0

e . Agent F
dfo 11 '
ko il k
10 l 3 Y s E
mi B P w inv
mho ] . O —y
o i ‘M, ; : s df
. 3 Ve — N —
i i e T T 20 2 30 p =
wo | F P
Ly I ) inv s
P il B w
wFl .
w i -3
s |
;:: \ Agent H
pHE i
uHI f 3
pHmh I 5
a I Z H H
. R v
Y I agh —C
dﬁ::: i i ! 5 10 15 20 25 30 I —:ﬂh
mhdach . 1
-
sdach I
tmax l

plotmax I


https://www.dropbox.com/s/4jjwpccmgtsjhtk/Modell%20A2%20Version%207.ndsolve.nb?dl=0
https://www.dropbox.com/s/4jjwpccmgtsjhtk/Modell%20A2%20Version%207.ndsolve.nb?dl=0
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9. Model B1, (1 household, 1 firm, 1 good, 1 banking
system), Interest rate policy versus monetary
policy

9.1. Overview of the setup

The target of models B1 and B2 is to model the money creation process by the
central bank in a simplified way.

In model B1, the central bank is seen as an endogenous money creator and the
bank is seen as an endogenous credit creator. The central bank's target is to keep

inflation 2~ at the target inflation p =0.02 i.e. 2% by means of interest rate policy
P

(5 =1) and monetary-supply policy(5=0).

In this model B1, the central bank's interest rate policy is still modeled in a very
simplified way. We assume that the policy rate is constant O (banks do not pay
interest to the central bank) and that the central bank can, however, influence the
interest rate directly. That the policy rate is constant O is possible and does not
cause the bank to borrow arbitrarily from the central bank, since the bank is
assumed to have a constant O utility function. This means that the bank has no
particular interest in lending to firms or receiving savings deposits from
households. Thus, the bank lends endogenously and accepts savings deposits
endogenously.

In model B2, we will model the behaviour of the central bank according to the
Taylor rule.

All these simplifying restrictions regarding money creation, we will still keep in
models C1, C2. This is because in models C1, C2, we are concerned with
modeling the government.

It is only in the much more comprehensive model D2 that we will largely abandon
the restrictions on the modeling of money creation and the modeling of the
government.
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Model B1: 1 household 1 firm, 1 good, 1 bank. 1 central bank
Llabor

Aktiva|Passiva money creation _B Activa | Passiva il
=w .l wage
ZB
= o | [— ‘@ w age (per hore)

= L tr gmed labowr
i
s

N2 =
. E -

K epital

5 storags

DP depracicion

i = I met - irmestment
Activa |Passiva |° “EmEen

C'= pC cozunpionapaditure

r priceof good

M nong stock firm

M mongy stock howcehald

1" sar eatsd mongy stock howcehald
A marsy stock berd:

P
H
P

r. N noney creation camrd bak

N aradit money frombenk o firm

— N cavings money fromhorsahold i badk,
ME DF D" dsbes

4% 2" accows

—= ri-D ), r " interest pmymerss
EX eguity
L 11

Pay attention when establishing the constraints:
(1) Claims A have a positive sign, liabilities D have a negative sign

(2) Banks' equity capital is 0. They do not make profits.
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Model B1 : basic equations

algebraically defined variables

T(LK)= BLKF " production finction"

DAHK)= .@K "depreciation"

wiility frmctions

UNC LMY= c—(L- L}J — (MY — MY +r A" "utility function household"

UNY LS = pY—wIL—(S-5Y -r(-D") "wiility function firm"

U=0 "utility functionbank"

U (r, p N*) = (—dr+(1-)N")( p- £} "wiility function central bank"
ry

consirairnts

Z =0=wLl-pC+rd" -N"—M""
Z,=0=—wL+pC—r(-D")+N - M""

Z,=0=N" - N +H{-D")-rd" + N' - M*"
Z_I - 0 - _‘]tp’.'s _ R.-'.'s ]
Z,=0=Y(L.K)-C-5'-DP-K'

Z =0=N"-4"

Z =0=-N" -D"

Z =0=—N”+ N —N" —D*" 4*'

Z =0= NEE _ 4TE

Jor money flow of houselold H

Jor money flow of firm F

for money flow of bank B

for money flow of central bank ZB

for flow of goodlof firm F

Jor accowis | debix flow of houselold H
Jor accowis [ debis flow gf firm F

Jor accowris [ debis flow gf of bank B

for accowris [ debis flow of certral bank ZB

Model B1 : diff. -alg. equation system

usft] m @

UF[t] = dF[t] - r[t] - (sdach-s[t]}¥-1[t]) w(t] +p[t] y[t)
uH[t] = cH[t]" - (ldach - 1[t]}? - (mHdach -mH[t])? + aH[t] r[t)
uZB[t] = (pdach- 1"—[';9] ((1-2) nzB[t] - &r([t])

dp(t] = dpdachk([t]

inflation[t] = ?%L
)

invit] = k' [t]
yit] = Bk[t)"1(¢)"

a8 [t] w -25[t)

aH [t] = uHaH rIt] - A4 [t] - P[] Ag[t] + F[t] Aglt]

aZB (] w - 2s(t]

€H [t] = ¥ uHeH CHTt] " + p[t] A;[t] - p[t] Aa[t] - Aalt)

4B [t] = -2;[¢]

dF' [t] = uFdF n[t] - A3 [t] - P[t] Ag[t] + P[] Ay(t]

K[t] = (1-a) BuFkK[t]"" 1[t]" p[t] - Xe[t]

1'[t) = 2uH] (1dach « 1[t]) « wFL (aBk[t]*"1[t]) " p[t] - w(t]) < w[t] 2y(t] «
wit] Agt] +aBkItIV“ 1[t] 2 ap[t]

m8 (L] w2y [t])

W [t] = -A;[t]

wH[£] = 2 uMmH (mMdach - mH(t]) - g [t)

NF[t] = -A3[t] + Az [t] - Ag[t] « Az (2]

nH[t] = =35 (t] « Aa[t] ¢ 26[t] - Aa(t)

nZB'[t] w (1~ &) pZBnZ8 (pdacn - l:i[lfll) =23 [t] = 23 [t] » As[t] + 2 [t)

PIt] =BuFpk(t]?®1(t)° 4 LERRILIGD MBS | e 2y [t] - CHIt] Ag[€] - Ja0[t]

prea?

. o -8} 1-8r
ps[t] w - LIS SMLSACIL | 3y (t)

£ [£] = uHr aH[t) + uFrdF(t) - & uZBr (pdach- !'!(l:-l] o (-aH[t]) - dF[t)) 2g[t] »
dF[t] 2;[t] » aH[t] Ag[t]

rZB (] = =23(t)

§°[t] =2 uFs (sdach-s[t]) - A5[t]

Wt) = -uFwl[t] - 1] Ap[t] + 1[¢] 24(t)

= =nF[t] - dF'[t]
Q== nF[t] -nH[t] -n2B([t]) - aB’'[t] - dB'[t]
@ = -nZB[t] - rZB’[t]
@ = nH[t) - aH' [t]
0= nZB[t] - aZB'[t]
@ = -nF[t] + nH[t] + nZB[t] - aH[t] - r[t] -dF[t] r[t] - mB'[t]
@ = nF[t] + cH[t] - p[t] +dF[t] - r[t] - 1[t] w[t] - mF [t]
@:== —nH[t] - cH[t] - p[t] +aH[t] r[t] + 1[t] w([t] - mH [t]
@ = -cH[t] ~dpdachk[t] + Bk[t]Y“1[t]%-k'[t] -s'[t]
@ = ps[t] -p'[t]

aB[@] == aBe

aH[@] == aHe

azB[@)] = azBo

cH[@] = i kel 1e° g

dB[@] = dB@
dF [@] = dFe
k(@] == ke

1[e] == 1@

mB[@] = mB@
mF [@] = mF@
mH[@] = mHe
nF[@] == nF@
nH[@] == nHe

nZB(@)] = nzBe

pre] = 24071451979 (.nhD.oHB 10410 ue)
A
ps[@] = pse
r[e] = re
rZB[@] = rZBe
s[@] == s@ 13
w[@] = we
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9.2. Calculation results of model B1

https://www.dropbox.com/s/Ojcckcutps06f6r/Modell %20B 1 %20V ersion%207.n
dsolve.nb?d]=0

aB0

az80 l

dBO

dFo

agent H

kO

mB0

mFo

mHO

nFO

nto . B 40 60 g0~
nzso [
ps0 l £
0 l gl

rZB0

s0
wO agent F

prdF

........ uF r

_____ dp
—inv T W

Fl

=
i
a
T

B |
i

——inv

0.10

uzZB

0.05 ~—ps

&
=]
o
@
= B B B

_— inflaion inflation
y

‘ ‘ 5 nz8 |
80 80~ ~——yzB = e - ps

r

-0.05F

dpdach I
Idach

-0.10-
mHdach

pdach I

sdach I
tmax l

plotmax I

o
B | HE B N .


https://www.dropbox.com/s/0jcckcutps06f6r/Modell%20B1%20Version%207.ndsolve.nb?dl=0
https://www.dropbox.com/s/0jcckcutps06f6r/Modell%20B1%20Version%207.ndsolve.nb?dl=0

Comparison of

pure money supply policy 6 =0

agent F

agent ZB
0.10 \
“\
0.05 | \
/,./"— ps
-------------------------------------- -~ inflation
— ———— — nzB
50 60 \iif~f
~—uZB

-0.05+

-0.10

inflation
nZB

}
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mixed money supply-interest rate policy 5 =0.5

agent F

........ uF
e
inv
P—LY
dF
k
—_—
P
agent ZB
0.10 \
Q05H L% % uZB
e inflation
-~ inflation
: —  nZB nZB
'?f:; ~—F  eeeeeees ps
~—uZB
r
-0.05 -

-0.100

J
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pure interest rate policy 5 =1

agent F
10 :
........ uF
8
...... dp
inv
uF dF
o T oY k
I ! l
I -dF
v - - % _—dp p
...... = L o o
8
: : L ~——inv
30 40 50 60 N e
agent ZB
0.10 . '
\\
. ‘.
o N \\
0.05( /1 7B
.
..................................................... —-'/ inﬂation
/ : __— inflation
E—— "‘_Cr -nZB nZB }
!-‘ 40 50 T80 o UZB e ps
: e
-0.05
-0.10
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10. Model B2, (1 household, 1 firm, 1 good, 1 bank,
1 central bank) Taylor rule

10.1. Setup

Model B2 differs from model B1 only in the assumption that the central bank acts
according to the Taylor rule.

In terms of the GCD methodology, the Taylor rule sets the value of the policy rate
as an algebraically defined variable (see chapter 3.11).

If p denotes the target inflation rate, this results in

YI ' 1 .
r:—+£+a,(£-p)+0'2(
p

~=
“<1>|"<\>

v )

(For simplicity we write r instead of r,, ).

If you insert and simplify you get

] ] . KI L’
r=L v prd-a)—+1+0,)a— <10.1>
p p K L

If the central bank acts only according to the Taylor rule, it does not act in the
sense of optimizing a utility function, but according to empirical values that have
proven their worth in the past. In this case, therefore, the utility function of the
central bank can be set equal to 0.
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Model B2 : basic equations

for standard Taylor rule

alge braically defined variables

T(LEy=  pLrE™
DP(E)= dan K
;'=‘E——.:r_rp—- J&J+i'.—¢z}‘—_+i'_+a'_.j¢z"'7
P g £ L
utility fumefions
UNC.LM"y= € =(E-L) -(d1" - MY
UT(T,L85)= pT —wL—(§-58) -r(-D")
® =0
U= 0

consirainis
Z=0=wl-pC+rd"-N"-M"
Z,=0=—wl+pC—r(-D)+N -M""
Z,=0=N"-N"+r(-D)—rd" + N" - M*"
Z, =0=-N"-R"

. =0=V{LEY-C-5-DP-K"'

" production function”

"depreciation”

" standard Taylor rule”

+rd” “uiility function honsehold"

“utility function firm"
"utility function hank"

"utility function central bank"

Jor money flow of honsehold H
for money flow of firm F
Jor money flow of bank B

Jor money flow of central bank Z8
for flow of good 1 of firm F

Z, =0=N"¥—-4% foraccounts | debis flow of household H
Z,=0=-N"-D"" foraccounts | debis flow of firm F
Z,=0=-N"+N"-N" -D*'— 4% foraccounts | debis flow of of bank B
Z,=0=N" -4 foraccounts | debis flow of central bank ZB
Model B2 : diff.-alg. equation system standard Taylor rule
uB[t] =
UF[t] == dF[t] ~r[t] - (sdach-s[t])?-1[t] ~w[t] +p[t] ~y[t]
UH[t] == cH[t]¥ - (1dach - 1[t])? - (mHdach -mH[t])? + aH[t] ~ r[t]
uzZB[t] ==

dp[t] = dpdach k[t]
inflation[t] == pe(t]

plt]
inv[t] = k' [t]
r[t] . —pdach ol olps[t] _ (-1+a) k' [t] o (1+02) 17 [t]
plt] k[t] 1[t]
y[t] = Bk[t]**1[t]®

15



73

a8 [t] = -As[t) : s
AN [t] = -Ag[£] + e [t) (pdachax —E"l—l n_::#m 2 ﬂ%”&m) . mB'[t] = -Ag[t]
Lal (-pdxh o4 SABSIU _ fclenlNIG | m Qleod) 1[0 } mF’ [t] = -2, [t]
L R s mH' [t] = 2 uHmH (mHdach - mH[t]) - 2g [t]
Aa(t] (-pdach o o SEUSL . Sl , adaibisl) NF [t] = -2y [t] + A3 [£] - Ae[t] + Ay [t]

& (4] = -4t nH[£] = -22[£] + A [£] + A6[t] - Ap[t]

M (t] »= ¥ uHcHcH[t) 2" 4 p(t) 2, (t] - p(t t] -t
:'.:t: =*f:2mc [t) pit] A, [t] - plt] Ag[t] - Aa(t]) NZB'[t] = -2 [t] - As [t] + As[t] + Ag[t]

dE[t] =2y [t] ¢ 2g[t] (pdi:hol— oips|y] | fclea) Wpe] | L&M}Lﬁl) . pt] =- uMpolat[t] ps[t] + uFp (Bk[t]l'a l[tla = m_ﬂm) +
it) kit] 1it) P[ﬂz p[t)z
uFdf [-paacncu. ety . LL—J—JJ' Srre —-‘LJ—U;['"‘ . } (al.ﬂ[t] ps[t] . oldF(t) psm) As[t] + (cH[t] & Mﬂ) A7[t] +
2] (-pdach o1 o SLESL _ Lhmbil | aleeliiin) pre1? pre)? 2
» €
ol aH[t 5[t
18] = TR Gl o Gl | i el e | (-cnm - —l-l-Lle, ) Ag[t] - Ase[t]
1] kit e e k[t Kit]
' ps'[t] = pHps olaM(t) pFpsoldf(t]  (_ oclaH[t] curm) A [t] +
2elt] ,"[.L'_"_:)’LL*J. ‘0, _L:l;:)"_'ul. L‘M’JLL'Q],\,“] . plt) plt) plt) plt)
L2 o " RE T CE T CRRETL CENC RS
1@
If[ lealait] , g _ LleaiaMit] (1 m[;lk'{tl] As[t] - Ag[t] + L2t ;au}[t ael plt) plt]
[0 At) Kit] kel rZB’ [t] = -2A3(t]
3 s'[t] = 2 uFs (sdach-s[t]) - t
qu((l-a)nk[t]"‘l[t]’p(t]-‘;hﬂ-_l?l}*-m) [t] u ( [t]) - Ag[t]
. S W[t] = -uFWl[t] -1[t] A;[t] +1[t] As[t]
[t) -
1F o 1e02) ams o . 100 dF e '.. _a"'a! it o wsad) oF |t A
irey ire; iy 1t
ailecap aMie] 174¢] | 8 (l.od) SF t] 1)
12 1eg? ]&[tl =
(30 o {le0d) & e hew 4
[ LR o, LAMBAL, ey - MU 301

x‘lalb::‘];n‘l] io, vsl-::z]ﬂ‘l![ L wlt] - 2 Iouzlnu:l{;] l‘;q] Aglt] +aBk[] =1(t] = a01t] +

LMl (z (1dach - 1[t]) - M-li'ﬁl‘—m) ¥

1reg?
wFL (@ BRE]- (8] 1 pre] - wlt] - MAALELIIL ) "
@ = -nF[t] - dF' [t] aB[e)] =
@ = nF[t] - nH[t] - nZB[t] - aB’[t] - dB' [t] aH[@] == aHe
@ = -nZB[t] - rZB'[t] azB[@] == azBe

@ == nH[t] - aH' [t]

as 1 1-a
© = nZB[t] - aZB' [t] cH[@] = } ko' 10" 8

I oy dB[e] = dse
», olps[t] (~1+a) K’ [£] a (1+02) 1’ [t]
© = -nF[t] + nH[t] +nZB[t] - aH[t] (-pdachol + S S, A = dF (8] = PO
. olps(t] _ (-lea) K'[t] . a(leo2) 1'[t]) _ o k[@] == ke
dF[t] ( pdach o1 + 222 ERERINL o ) mB’ [t] e ks
o R - olps[t] - (~lea) k' [t] a (le02) 17(t] - =
© = nF[t] + cH[t] - p[t] - 1[t] ~w[t] + dF[t] ( pdach o1 + S22l e ::t:; . :::
NS mH[] =
@ = -nH[t] - cH[t] - p[t] + 1[t] - w[t] + aH[t] (-pdach01+"—:%‘]ﬂ-“1—':%m "—“—:tﬁ%u) nF[@] == nF@
. nH[@] ==
mETE) nZB[@] == nZBe
@ = -cH[t] - dpdachk[t] + Bk[t]1 % 1[t]% - k' [t] - s'[t] p[o] = po
0 = ps[t] - p'[t] ps[@] == pse
rZB[@] = rZBe
s[e] = s
w[e] = we

16



74

10.2. Calculation results of model B2

https://www.dropbox.com/s/wtlgtbxqglf38cnw/Modell%20B2%20Version%?203.
ndsolve.nb?dl=0

aB0

aHo

azeo [

dBo

agentH *

dFo
ko

mBo

mFo

5 8 8 B 0 B | =5 =
o

mHO

10 20 30 40 el —— i |
neo | T

nto [ E bLE | mema= mH
nzeo [ ;
p0 [ | ‘ Lo
es0 ] S " J
1280

agent F

wFdF

z
o
8 8 B B B |

agent ZB
Hp I . ‘ g

#Hps I 0‘10‘

------ uZB

inflation

£-S
B B |

P

a | e : s
~ inflation

dpdach I 3 | / i e P8

Idach ~0.05L

mHdach
pdach I £ |
sdach l H -
tmax l

plotmax I


https://www.dropbox.com/s/wtlgtbxqlf38cnw/Modell%20B2%20Version%203.ndsolve.nb?dl=0
https://www.dropbox.com/s/wtlgtbxqlf38cnw/Modell%20B2%20Version%203.ndsolve.nb?dl=0
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11. Model C1, (1 household, 1 firm, 1 good, 1
banking system, 1 government) interest rate policy
versus money supply policy

11.1. Setup

The target of model C1 is to extend model B1 by the government G as an agent
in a simple form.

The government has a utility function analogous to that of the household. It
collects an income tax from the household, which either flows to its money stock
M€ or is used for government consumption C°.

Model C1: 1 household 1 firm, 1 good, 1bankingsystem,1 Government PART 1
Liabar

Activa Passwa money creation

: B Activa | Passiva L= Lags
@ A -___: @ w wage (per hotr)
. . . I targered laborr
; ) K capital

5 storage

Activa Passiva 175 DP depreciarion

i =K met - imesimens

C cormumprion

€ = pC comunprionspediure

p price gf good

M" morey stack firm

M momey stodk howwehold

M tergaed meng: rtock howwshald
M* morey stock hardk

N

Activa | Passiva

nonEy aEdion catra badk

7 credt monsy frombenk o firm

N sevings monsy fromboicshiold 1o bark]
ME D D" debes

4%, 4" accowr

rf-D° Jrd" imerer paymers
EX] egraty
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Model C1: 1 household 1 firm, 1 good, 1bankingsystem,1 Government PART 2
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H
— T tex household
C" govermment consimption
M"Y money stock of govermment
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Model C1 : basic equations

a gebraically dgfined variables

F{L.EK)= BLL"s

DR(E)= dpk

T"(w,[}= T'wL

urility fioctions
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I =0=—wl+pC—r(-D"}+ N "+ pG-M""
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Z =0=N"-4
Z.=0=-N'-D"’

Z =0=-N"+N' -N"-D"'— 4
Z, =0=N"-4
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Model C1: diff. -alg. equation system

uB[t] =@

UF[t] = @F[t]  r[t] - (séach-s[t])*-1[t] w(t]+p[t] y([t]
uG[t] = eG[t]""

UH[t] = eH[t]™ - (1dach - 1[])% - (midach-mH[t])* + AH[t] - r[t]
uZB[t] = [pnuh. 5—"1) ({1-56) nZ8[t] -8 r[t])

.
L8]

cGschlange(t] = cG[t] pit]
dp(t] « dpdachk(t)
inflation[t] « %

tnv[e] = k'[t]

taxHt] = tH1[t] wit]
yit] = pkit]* 1)

a8 [t] = -Ag[t]

M [£] s pHaHr (] o r(£] Aalt] - rE) Aaft] - 2e(t]

OZB [t] e -2y [t)

€6 [t] w yGuGEGCGt] M ™ e p[t] As[t] ~A(t] - p[t] Aw(t]

CH'[£] s yHuHcH e t] "™ < p[t] Ay [t] o p(t] AyLt] - 2A5[t)

d8'[t] = -Ae[t]

dF'[t] = uFdF r[t] « r[t] Az(t] - r[t] As[t] - 25[t]

K[t] == (1-a) AuFkk[t] 112" p[t] - A5 t]

V[t] = 24H) (1dach-1[t]) + pFL (@B k[t]*“ 1[t] " p[t] - w[t]) + (wIt] - THWt]) As[t] -
wit] A [t] +@BKIt) " L[] 4 Ag[t] » THW[E] A [t]

"8 [t] = -As[t]

wF [t] = -A[t]

nG'[t] « -2(t)

wH (8] « 2 uMeH (rHdach -mH[t]) - A, [t]

OF (8] w A;0t) - Ay [t] -35(2) « As(t]

BH (2] = =g [] o Ay [] « 2g[t] = Ae[t]

NZB [t] « (1-5) uZBnZB [pﬂﬂu ?I&-l +2alt] =2u[t] - Aalt] + A (t)

PLE] = BuFpk(t]®1[e]" o SRILID D RSl i) oy (€] + (CGLE] + eHIE]) Ale] -
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R T T TN

ps[t] m - ERLELSESAN L g, (1)

#[t] = uHr el [t] + uFrdF[t) - & uZBr [pda(h- ’:‘:‘ll] vaH[t] A, [t) « F ] 2, (t]

(~8H(t) ~dF[t]) A,(%)
FIB[t] = - g [t]
s [t] = 2 uFs (sdach-5[t]) - A.[t]
Wt] = -uFuWl[t] o (1[t] - THL[]) 23 [t] - 1[t] 2;[t]  THL[] Age[t]

@ == —nH[t] - cH[t] - p[t] + aH[t] - r[£] + 1[t] - w[t] - tH1[t] - w[t] -nH [t]
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© w nF[t] -nH[t] - nZB[t] - aB'[t] - dB [t]
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)
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dF (@] = - Zpdach ko po-10 wooko? " 167 po

"
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1[0] =10
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mF (@) = mFO
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nH[8] » nHO
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11.2. Calculation results of model C1

https://www.dropbox.com/s/vh378ffs1t901k4/Modell%20C1 %20V ersion%2019.

ndsolve.nb?d1=0
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12. Model C2, (1 household, 1 firm, 1 good, 1
banking system, 1 government)), standard Taylor

rule

12.1.

Set up

Model C2 corresponds to the extension of model B2 by the agent government in
the sense of model C1 and corresponds to model C1 with the change that the
central bank acts in the sense of the standard Taylor rule.

Model C2: 1 household 1 firm, 1 good, 1bankingsystem,1 Government PART 1 |

R

ZB

Activa [Passiva

m money creation

v

Passiva

=]

Activa | Passiva

Passiva

Liabar

L=wL wage

w wags (per o)

L targmad labow

K eapital

5 storage

LP depracicaion

i = K et - irvestmvers

C corcunprion

€= pC comungrionexpandiure
p price qf good

M woney stock firm

M"Y movey stock howehold

hrad targated mong stock howsdhald
A money stock bevd:

N money crection camral beadk
V7 aradit money frombank to firm
N savings monsy fromhowwehold io bard|
DF D7 debes

4% 4" mcowr

rf-D" )rd" imerast poymeas
EL squity
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Model C2 : basic equations

a gebraically defined veniables

TL.E)y= BLE"
DRE)y= apll
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Model C2: diff.-alg. equation system

uB[t] == 0
uF[t] = dF[t]
uG[t] = cG[t]*®

UH[t] == cH[t]*™ - (1dach - 1[t])? - (mHdach - mH[t])? + aH[t]
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plt]

plt]
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. ' H
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12.2. Calculation results of model C2
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https://www.dropbox.com/s/e630zg6tabimva6/Modell %20C2%20Version%201

%20%?28Taylor-Reegel%29.ndsolve.nb?d1=0
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13. Model D2, comprehensive model

13.1. Setup

We extend the C2 model in the following aspects:

- The interest rate is formulated in more detail: in central bank policy rate,

premium for lending rates, premium for savings rates 7, r,

D’r

A

- The central bank distributes the profit to the government, the bank distributes
the profit to the household, the firm distributes a part of the profit to the household

- Taxes are composed of income and property taxes for household and firm.

- The government aims to achieve a debt level of 60% of GDP in line with the
Maastricht criterion.

- The central bank acts according to the modified Taylor rule

- The target level of the firm's investment and the target level of the household's
money stock are interest rate dependent.

- The targeted level of the government's money stock is not interest rate dependent
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Model D2, PART 1
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Model D2 : basic equations

algelraically defimed variables

DF=gpo "depreciarion"
irgflation = £ "irgflarion"
Fa

i =K' "met irvestmers "
imma =015 "myrcimal frmvestment (e §f n_ T, = 0)"
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v (M +5+E+D) "income tax + asset tax F
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azB[@] = azBe
cG[@] = cGo

cH[O] =
dB[e] == dBe
dF[@] = dFe
dG[e] = dGe
k[e] = ke

1[e] == 1@

mB[@] = mBe
mF [@] = mF@
mG (@] = mGo

13.2. Calculation results of model D2

mG[@] = mGo
mH[@] = mHO

mZB[@] = mZBO

nF (@] = nFe

nG[@] = nGo

nH[@] = nHe

nZB[@) = nZBO

ple] = pe

ps[@] = ps@

rze[e] ~mB@ - mF@ - mG@ - mHe
ra[e] = rae

rd[@] = rdo

s[e] =se

w[e] = we
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14. Different economic theories differ only by
different assumptions about the power of agents

14.1. Basic idea

The basic idea of GCD models can also be formulated in the following way: With
GCD models, the supposedly insurmountable opposition of different economic
models can be eliminated in the sense that they can be understood as versions of
a single model that differ from each other only by different one-sided power
relations or adjustment speeds. On the other hand, GCD models offer the
possibility of better representing reality, because mixed power relations usually
correspond better to reality than one-sided power relations.

This is illustrated by the following 2 examples.

14.2. Savings = Investment (Neoclassics) or
Investment = Savings (Keynes)

14.2.1. Problem description

The two economic schools of neoclassical economics and Keynesianism differ
diametrically in their assumptions about the variables "saving" and "investing".

In the Keynesian sense, investing is an exogenous variable, saving is an
endogenous variable and the cause-effect relationship applies

Investing = Saving

In the neoclassical sense, the opposite is true: investing is an endogenous
variable, saving is an exogenous variable and the cause-effect relationship applies.

Saving = Investing
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From the perspective of the GCD models, these seemingly insurmountable
opposites can be overcome and resolved in the following sense. The statement
that saving and investing must always be the same corresponds to an accounting
identity that results from the definition of saving and investing. The two economic
schools differ only in the different assumptions about the power of savers and
investors.

The Keynesian cause-effect relationship results from the assumption that the
power of investors is « and the power of savers is 0. The neoclassical cause-
effect relationship results from the opposite assumption that the power of
investors is 0 and the power of savers is oo.

In reality, however, these one-sided power relations do not usually occur, but
rather mixed power relations. Therefore, reality can be better described with GCD
models than with Keynesian or neoclassical models.

Investing = Saving

Keynes: Neoclassical, mainstream:

* Investing — Saving * Saving — Investing

* Investing exogenous variable * Saving exogenous variable

* Saving endogenous variable * Investing endogenous variable
GCD interpretation: GCD interpretation:

* Investing = Saving * Investing = Saving

* Power of the investor = oo * Power of the investor =0

* Power of the saver = () * Power of the saver = oo

GCD modelsin general: not one-sided power relations |

The model equations for the Keynesian model are
1=1
S=1

The model equations for the neoclassical model are

A

§=S8
I=5

Furthermore, with the assumed master utility function
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MU —1(1f—1)2 +1(§ ~5)°
2 2

the general equilibrium model can be formulated as maximising MU under the
constraint Z(1,5)=1-S =0 in the following way:

0= oMy /16—2—(1 nN+4
o ol

0_6MU /18—2—(5 S)y-4
oS oS

0=1-S

All these 3 models can be understood as special cases of the following GCD
model:

utility functions

F= E(i -1’ F firm, I investment, I targeted investment

1 A .
" :E(S -S) H household, S savings, S targeted savings

constraints

0=1-S

basic GCD - equations
(@ I'suy;d-D+2

B S'=p(S-85)-4
(¢) 0=1-S§

From this GCD model we get the Keynesian model with the assumptions

=
wl =0 (oder 0 < ul' < o0)

because it follows from equation (a)

R I R R R
=yf(1—1)+/1:>—F=(1—1)+iF:>wegenyf=oo 0=I-D+0=>1=1
Hy Hy
and from equation (c)
S=1

Equation (b) is not needed. It would also be possible 0< x4 <.
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Similarly, the neoclassical model results with the assumptions

u =0 (oder 0< p) <o)
ps =

and the general equilibrium model with the assumptions

I'=0 Annahme des stationiiren Gleichgewichts
S"=0 Annahme des stationiren Gleichgewichts
H =1
' =1

GCD ~ mixed power Keynesian,Neoclassic ~ one sided power
Constraint GE ~ stationary

GCD — Model Kevnes Neoclassic Constraint GE

"Lagrange — Closure"

MU
I'=u/(JF -+ i I =1IF WM KK O=C‘I +Ai=(IF-1IN+ A
P
) AATT
S'= uf(SF-8)-4 WO KK 5=8F 0=C'j‘(;—2=(5’!~_—5)—2
P)
I-5=0 S=1T I=58 I-8§=0
J.cff Power of Business ,ﬂf = ,uf = ,u;? =1
_ﬂf Power of Households ;ff = ,uf = ,uf =1

MU = %((IF -+ (SF -5

0TI 20T CoOWem FrErhaTdGiotzt 70

14.2.2. Formally analogous problems

Completely analogous to the accounting identity 7 =5, in a closed economy the
accounting identity applies that the sum of the accounts A (receivables) is always
equal to the sum of the debts D (liabilities), i.e. A= D or with the convention used
in this paper for the negative sign of liabilities A=-D. The development of these
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quantities over time depends on the one hand on the interests of the sum of
creditors and the sum of debtors, and on the other hand on their power to enforce
these interests! (Glotzl 1999; 2015).

The two models (investing/saving and liabilities/receivables) are not only
formally mathematically completely equivalent to each other, but they are also
formally completely equivalent to the movement on an inclined straight line
inclined at 45 degrees, which is described by the constraint x, = x, (see Glotzl

(2015)).

Similar Models

* Model variables constramt condition
* Inclined plane x1 x2 x1=x2

* Investment versus Saving I S =8

* Creditors versus Debitors R D R=D

14.2.3. Calculation results

The GCD equation system is given by:

I (Glotzl 1999; 2009) describes the "fundamental paradox of the monetary
economy". It states that in an economy where credit is measured in monetary
units, the power of the sum of creditors to increase their acounts is always greater
than the power of the sum of debtors to reduce their debts. In other words, it
describes the "powerlessness" of debtors relative to the "power of creditors™”.
These power relations are ultimately the cause of debt traps and the constant

growth of accounts and debts.



uF[t] ==
uH[t] ==
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(idach - inv[t])?
(sdach - spar[t])?2

N IR NIR

inv’'[t] = puFinv (idach - inv[t]) + A;[t]
spar’[t] == uHspar (sdach - spar[t]) - A;[t]

@ == inv[t] - spar[t]

inv[@] == inve
spar[@] == inve

We assume that investors want to invest 4 units and savers want to save 2 units,

1.€.
idach =4
sdach =2

At the time 7 =0 neither investing nor saving occurs, i.e.

inv[0] = spar[0]=0

The following numerical calculations show the different behaviour for the
different assumptions about the power factors.

https://www.dropbox.com/s/1wo3{f68pcfqzmct/Keynes%20Version%205.ndsolv

e.nb?d1=0


https://www.dropbox.com/s/1wo3f68pcfqzmcf/Keynes%20Version%205.ndsolve.nb?dl=0
https://www.dropbox.com/s/1wo3f68pcfqzmcf/Keynes%20Version%205.ndsolve.nb?dl=0
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Keynes UFiny = o (approximated by uFinv = 6) MHspar =0

Keynes versus Neoklassik

inv

— uF
— uH }
uF .
— NV
-2 uH

Investing (= saving) converge against the firm's targeted investments.

equal power uFinv =3 UHspar =3

Keynes versus Neoklassik

inv

— uF
— uH }
uH .
uF inv

Investing(=saving) converges to a mixture of the investment targeted by the firm
and the saving targeted by the household. The speed of convergence, depends on
the level of the power factors, because the power factors can always be interpreted
as speed-adjustment factors (see also chapter 3.7).
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Neoclassics wuFinv=0 LHspar = o (approximated by pHspar = 6)

Keynes versus Neoklassik

Db inv — uF
{ H
L | L L . n L . . " . L . " " . L uH .
0.5 1.0 1.5 2.0 — NV

-2f uF

Investing (=saving) converge against the saving targeted by the household.

14.2.4.  On the relationship of "drop closure”,
"Lagrange closure”, GCD and general equilibrium GE

We explain the relationship first with the simple example above and then in the
following chapter 14.3 with the models of A. Sen (Sen 1963). More detailed
information can be found in Glé6tzl (2015).

Based on the utility functions for F and H

1 « .
Ut = —5(1 -1 )2 F Firma, I Investieren, I angestrebtes Investieren

1 A n
U = _E(S -5) H Haushalt, S Sparen, S angestrebtes Sparen

the ex-ante behavioural equations (i.e., the behavioural equations without
considering the constraint 0=17-S) are as follows

@ I'=ud-D"2

. <14.1>
b)  S'=p(S-572

This system of equations has 2 variables ( S,7) and 2 equations. It is therefore
solvable with appropriate initial conditions.
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However, these ex-ante solutions do not describe the reality, because they usually
do not fulfill the constraint 0= 7 - S which has to be fulfilled.

If the constraint is added to the ex-ante system of equations, the following is
obtained

-
(@)  I'=u (=D

(b) S'=,u;'%(§—5) <14.2>

(c) I1=5

This system of equations consists of 3 equations for 2 variables and is therefore
usually not solvable. A method with which this system of equations is changed in
such a way that it becomes solvable is called a closure method.

14.2.4.1. Drop closure
In the simplest case, one omits so many equations until the system of equations
becomes solvable. This basic procedure is used by A. Sen in (Sen 1963)).

If in the case of equation system <14.2> equation (a) is omitted, the result is

1 -
b " H — _
b))  S'= 2(S S)

<14.3>
) I=S§
which corresponds exactly to the neoclassical approach and, in equilibrium (
§'=0)
(b)) S=S
(c) I=5
results.
If we omit (b), we get
I=uf Lo
(a) _lul 5( ) <14.4>

(c) 1=S

which is exactly in line with the Keynesian approach and in equilibrium (7'=0)

Il
U ™~

(a) 1
(¢) 1

results.
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14.2.4.2. Lagrange Closure, GCD, general equilibrium

In the case of Lagrange Closure, the opposite approach is taken: equations are not
omitted, but new additional variables are introduced until the system of equations
becomes solvable. In the concrete case, one adds the Lagrange multiplier A as a
new additional variable to the variables and the constraint forces to the behaviour
equations in the sense of the GCD methodology. This results in the GCD equation
system, which is usually solvable.

1 ~ aZ 1 ~
I'=uf —(I-D+1—==u"—(U-D+1
(a) H; 2( ) PY; H; 2( )
1 - oz 1 -
b S'=ul — S-S+ 1—==u"=(§-85)-1 <14.5>
(b) Hy 2( ) oS s 2( )

(c) Z=0=1-S
We show that in the Keynesian case, because of x =0 this system of equations
<14.5> transforms to the system of equations

" Fl o
(@) I —ﬂ,z(l nH+A4 <14.6>

(¢) Z=0=I-§

This means that ' =0 leads to (b) becoming linearly dependent on (a) and (c)

and can therefore be omitted in the sense of drop closure. This is discussed in
more detail in Glotzl (2015).

In the case of the general equilibrium 7'=0, because of x4, =oo it follows that

(a) 1=
(¢) 1=

WA ™~

Proof:

Because of 4 =0 and because of (c), it follows from <14.5>

(a) r==ﬂf%d—1)+z
(b)) S§'=-1

(¢) Z=0=I-§

dy Z'=0=I'-§
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If we apply (d) in (b1), we get

(a) I':yf%(f—1)+/1

b2) I'=-4
(c) Z=0=1-S
(d) Z'=0=I'-§'

From (a) and (b2) we get

1 .1 «
A=——ul = -1
2/1, 2( )

Inserting into (a) and (b1) results in

1 .1 -
a I'=—uf = -1
(a) 2/11 2( )

1 .1 -
b S'=—u"=(I-1
(b) 2/J, 2( )
(¢) Z=0=1-5
d) Z'=0=I-5'

Thus, equation (b) is linearly dependent on (a) and (d) and can therefore be
omitted.

In the case of the general equilibrium (7'=0), this results in the following
equations because of u =oo

(a) I =
() I=

WA "~

by bringing x/ to the left side at first.

Summary: The Keynesian model results from the GCD model both by drop-
closure, by omitting equation (b), and by setting the power factor x =0. The

power factor x4, need only be 4 >0, it can also be y,” =o. The magnitude of x,

only determines the speed of convergence. For the neoclassical model, everything
applies correspondingly.
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14.3. A. Sen: different economic theories differ in their
assumptions about the endogeneity or exogeneity of
different variables.

14.3.1. Problem description

In 1963, Amartya Sen showed that neoclassical and Keynesian models can often
be derived from the same system of equations and essentially differ only in which
behavioural equations are dropped (Sen 1963). This also corresponds to a decision
on the direction of causality within the model.

Similarly to the previous chapter, all models examined by Sen can be understood
as special cases of a single GCD model and dropping certain equations is
equivalent to assuming different one-sided power relations. Again, it is true that
in reality, these one-sided power relations do not usually occur, but rather mixed
power relations. Therefore, reality can be better described with GCD models than
with the models cited by Sen.

The original system of equations of Sen is

) Y(LK)= BL'K"* wir nehmen die Cobb — Douglas Produktionsfunktion an

oY
(2) w=— w Lohn, L Arbeit
oL
(3) Y=P+wlL P Profit <14.7>
(4) I=8S.L+SpP St Sparanteil vom Arbeitseinkommen
S Sparanteil vom Profit
(5) I=i+i,Y wir nehmen diese Standard - Investitionsfunktion an

For clarity, we also introduce the variable S for saving and the constraints
0=7-S and I=K'. Implicitly, Sen assumes that L is exogenously given by
L=L. This yields the system of equations (14.8) which is equivalent to (14.7).
We write it in our methodology as follows
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algebraically defined variables
1) Y(LK)= BL'K"

behavioural equations

oY
(2) W=8_L
(4) S=S.L+SrP
(5) I=i+i,Y <14.8>
© L=L
constraints
(3) 0=Y-P-wL
(7) 0=71-S
8) 0=/-K'

This system of equations consists of 8 equations for the 7 variables
Y,L,K,w,S,P,1

and is therefore generally not solvable. Sen shows that by dropping different
equations (drop closure) different solvable economic models result:

omitting (5) results in the neoclassical model
2) results in the Kaldor model (Neo — Keynesianisches Modell)

)
)
)
)

omitting (6) results in the Keynesian model of the General Theory

<14.9>

results in the Johansen model

(
omitting (
omitting (4

(

We show below that the system of equations <14.8> and the various models
<14.9> arise from a single GCD model through a specific choice of power factors
in each case.
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Standard model SEN

price good market: p; = py,,, =1, price capital market: pg, . =1 |

Activa | Passiva Activa: | Passiva

l oF price labor market: w iF
A D

P ——
F - H
P —

o [ S=—F" =N L labar

L=wL wase
P 1j'|1'.5gg-|;ﬂ9rinrn'.l
- L rargradlabonr
= C C I copital
=pc C I'=I" imetmes

I= p, I imezmes in nongy

C cormumgion

o~ € =p_C corsimption ependiwe in mong
] L L |Pee

4" avoows H

Dy=-A" ) &F

3 = spar senings nonge o

N dlabe mare flar
EX gty

23.10.2015 Erhard Glotzl 41

The variables N”,D",A" are only listed for the sake of completeness. They are
omitted in the following (as by Sen), because due to the assumption p =1

immediately spar=p_,N" =N" is valid.

Standard model SEN, neoclassic, Kaldor, Johansen, Keynes, GCD

SEN neoclassic Kaldor Joharsen Keayneas GCD - Mbdell
overdetermined drop (5) drop (2) drop (4) drop(6) " Lagrange — Clasureg"

1 variables Y, L. K w, S, PT
8 equations

algebraically defined veariables
0y WLEK)= LK™

behavioural eguations

) -
2) W= % M =m Ho =0 f =@ ML =co w=u (;—; -w)—-AL

(4) S=5.L+5.P w = = 10=0 il = S =y (s, wL+5,P-8)— A

(50  I=i+LT 1 =0 uo= i =mw A =w I'sp (i+i¥V-IN+i,+4

© L-I woew plme @em @m0 L= =Dt G-
constraints

3) 0=FV-P—wL

() 0=I-5

(&) 23. {']0.=o{5_ A

Erhard Glotz! 42
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The GCD model SEN results from the following basic equations:

GCD-Modell SEN : Grundgleichungen

algebraically defined variables

V(LKy=BLFK" " production finction”

utility fnctions

U =—— %1 L-L }_. —% (S.L+5:P-5Y "utility fimction household"

I = _1 (i +i ¥ -1 — 1 (ﬁ —w) "utility fimction firm"
20 2°éL ‘

consirainis

i3 0=FV-P-wl

(M) 0=I-5

® 0=I-K'

The GCD equations are then
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uF[t] == -

NI NP

(e BK[tI**1[t] 1 -w[t])?- i (i1 -inv[t] +i2y[t])?
UH[t] = -2 (ldach-1[t])2- i (spardachl 1[t] + spardachprofit profit[t] - spar[t])?
c[t] = -spar[t] +1[t] ~w[t]
ylt] = Bk[t]*“1[t]®

inv'[t] = pFinv (il-dinv[t] + i2Bk[t]* 2 1[t]%) + A [t] + A3 [t]
k'[t] ==
pFk (-i2 (1-a) Bk[t] *1[t]* (il-inv[t] +i2Bk[t]*®1[t]%) -

(1-a) aBk[t]™*1[t] ™ (aBk[t]1**1[t] **-w[t])) + (1-a) BK[t] “1[t]* A1 [t] - A3[t]
1'[t] == uH1 (1dach - 1[t] - spardachl (spardachl1[t] + spardachprofit profit[t] - spar[t])) +

uFl (-i2a BKk[t]**1[t] 71 (il-dnv[t] +i2Bk[t]?*1[t]°) -

(-1+a) aBk[t]*1[t] > (a B[] 1[t] ™™ -w[t])) + (aBk[t]*1[t] ™ -w[t]) A, [t]
profit’[t] == -spardachprofit yuHprofit (spardachl1[t] + spardachprofit profit[t] - spar[t]) - A;[t]
spar’[t] == uHspar (spardachl1l[t] + spardachprofit profit[t] - spar[t]) - A, [t]

W [t] = pFw (aBk[t]**1[t] 1 -w[t]) - 1[t] A [t]

0= Bk[t]1*1[t]% - profit[t] - 1[t] ~w[t]
@ == inv[t] - spar[t]
= inv[t] - k' [t]

inv[@] == inve

k[e] == ke

1[0] == 10

profit[@] = -10we + ke'~* 1% B
spar[@] == inv@

w[O] == we

Dividing the differential equations for w,S,1,L by u”,u!, 1,1/ in each case and

setting
py =
ps =
pi =00
py =

we get the 4 behavioural equations of the standard model SEN

oY
w=—
oL
(4) S=S.L+SrP
(5) I=i+i,Y
6 L=L

(2)

In addition, one has the differential behavioural equations for K and P.
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If one sets individual power factors equal to O, this leads in an analogous way, as
it was shown in chapter 14.2.4.1, to the fact that the corresponding differential
equation becomes linearly dependent on the others and can therefore be omitted.
More details can also be found in Glétzl (2015).

14.3.2. Calculation results

https://www.dropbox.com/s/nro0gczdek1lramn/Modell %20SEN %20V ersion%?20
10.ndsolve.nb?d1=0

In order to solve the differential-algebraic GCD equation system with NDSolve
one has to use the method

Method— {IndexReduction—Automatic}

u=oo 1s always approximated by 1 =6.

Neoclassical model ;" =0, yf =0, i/ =0, y' =0

Agent F Agent H
k
6 [
y . uF ceeeeees uH
4 4 — profit
i p—Y /// w c
2 | mmeem inv 2 - c —|
e — o TLELLh i
.S--V-,-,1-!,-,!!!!!,!!,!,!!,',F,?,', il et i v Borreseersnsneraneeae st ne s Shisr profit
| 5 10 15 20 25 30 uF 5 10 15 20 25 30
5 | 2 uH aaa spar
! w
-4 w -4
gl -8
F O H F H
= = 00 = 00 = 00
Kaldor model #» =% Hs =% H =% A,
Agent F AgentH
6 k .
y uF ) uH
4 4 w
w y f ¢ c
2 N inv 2 —— profit E |
f — -~ I
memsmsmEsssssssssmssEsssmssEmnEEEEn) i k A A s ARsSsssEEsEEEsSSEEEEEEEEE e e profit
5 A0S 2002580 5 10 15 20 25 30 oo P
2 —_— tH pades spar



https://www.dropbox.com/s/nro0gczdek1ramn/Modell%20SEN%20Version%2010.ndsolve.nb?dl=0
https://www.dropbox.com/s/nro0gczdek1ramn/Modell%20SEN%20Version%2010.ndsolve.nb?dl=0
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Johansen model | =, 1/ =0, ) =0, 4/ =0

| Agent H
it - K ,
I y veeeeens UF ceeeeees uH
4| 4 profit B i
: w — - c
2 | mmees inv 2 ¢ —_—
- 5 |
;.....,‘.-.._..'----_ ------ memmmmmmmm- inv Kk ' e ewssemsssssesesssesssssmesnes coi profit
I 5 10 15 20 25 30 N | 5 10 15 20 25 30 P
2| — | 2} W ceaww spar
-4 w -4 W
&l 6
F H F H _
Keynes model y =oo, yf =00, yf =00, 1" =0
Agent F Agent H
6 — _ k gl
I y : uF profit uH
4l 4f
| . = o c
2, ] msss= inv 2t lc — |
e LT L LT L LT L L L L Tkt k| Eowwsmmwewmsmesrecaeno ettt siat profit
5 10 15 20 25 30 uF 5 10 15 20 25 30 i
4 | L spar
P w 4 w
! &
3 3 F _ H _ F _ H _
GCD-Modell with mixed parameters . =1, /' =1, 11/ =1, 1] =1
Agent F Agent H
6 k
; S - —— uH
4_ ¥ — 4 profit c
w
2 Iw ----- inv 2 | —_—
—— - — -
measRmERE AmemssssspnmenmsmEnnAREEEE- inv k A msmmmmmRmEEmm=a sasssmmEmssmsmms . ¢ profit
5 10 15 20 25 30 oF | 5 1 15 20 25 30 spar
=2 —_ =3 UH  eemam spar
4 w —4] w
B -6

14.3.3.  On the relationship between GCD models,
General Constrained Equilibrium models (GCE
model) and DSGE models.

A general equilibrium model can only start from 1 master utility function to be
maximized (note: multiple utility functions cannot be maximized at the same time,
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they have to be combined to 1 master utility function, e.g. by weighting). A
possible master utility function for a general constrained equilibrium (GCE)

model would be:
lszH+UF=—l(f,—L)2—%(SLL+SPP—S)2— (G, +iY =1 _l(a_y_ w)?

With the algebraically defined variable
Y(L,K)=BL'K"™“

this results in

. Tyr 2 1 1 1
U(L,P,S,K,I,w)= —E(L—L) —E(SLL+SPP—S)2 —E(i1 +L, LK — 1) —E(ﬁaL“’lKl’“ —w)?

The constraints remain the same:

Z,=0=Y-P-wL
Z,=0=1-5
Z,=0=1-K'

A maximum under constraints can only exist if the "first order" conditions are
fulfilled, i.e.

H
0=, % % 0z U oU”* AR AN A
oL ‘oL ?oL “oL oL @ oL oL oL oL

ou, .o .0, o0z, _ou" ou' oz, oz, 0z,

0=—+4—+2 + = — 4+ A2+
oP oP 7’ opP & oP  oP  OP A P op & oP
5 H
026_U+ %+/128Z2+&8Z326U aU jjai %4_&%
oS oS oS " 0S8 oS oS © oS
5 H
Oza_U_|_ %_’_ﬂzazz_{_ﬂqazgzaU aU ﬂqai %4_&%
oK oK oK "0K'  OK oK oK " oK'
5 H
O:a_U_|_ %_’_/12822_{_&8Z3=8U aU ﬂ‘lai %4_&%
ol ol ol "ol ol ol ol "ol
5 H
0=20 3By, T g T U BT O 0 00,
ow ow ow T ow ow ow ow T ow
Z,=0=Y-P-wL
Z,=0=1-S
Z;=0=1-K' <14.10>
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This system of equations <14.10> is obviously identical to the GCD system of
equations in steady state, i.e. for

L'=P=S8=K'=I'=w'=0

In contrast to GCE models, in DSGE models in particular (apart from the
stochastic terms) not a master utility function is maximized under constraints, but
rather the master utility function discounted by the discount rate B is maximized

U 5() = J-e’ﬁ ‘U (t)dt > max under constraints
0

For holonomic constraints this problem can be solved by the variational problem
with the Lagrange function

t

U7 =je—ﬁ’(t}(t)+2/1j

0

Z
Oox,

o jJ
dt — max

This leads to the corresponding Euler equations that describe the dynamics of the
DSGE model.

Note: Without going into more detail here, we would like to point out the
following: If the constraints are neither holonomic nor integrable nor linear, the
two problems

=B

(D) U 5 ()= ‘U (t)dt —> max under constraints

2 U=

e’ (ﬁ(r) +Y 4,

oZ .
! Jdt — max
Ox.

1

are different and lead to different Euler equations and thus different dynamics.

The dynamics to (1) is called "vakonomic mechanics". For more details see Gl6tzl
(2018).
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15. Obesity or consumption/environment model

In section 3.9.2 we referred to the special case where a utility function depends
on variables x={x,x,, ..., x,} as well as on their antiderivatives X =(X,X,,....X,)

and/or the derivatives x'=(x,x},....x;) of these variables. In these cases, both the
antiderivatives X =(X,X,,....X,) and the derivatives x'=(x,x,....x;) are to be
regarded as additional variables of their own and appropriate constraints are to be

added describing the relations between antiderivatives, functions and derivatives
of the function.

We will describe this situation using a simple example with only one variable x,
where the utility function depends on a flow variable x as well as on some stock
variable X .

A good illustrative example is that we all like to eat but do not want to be fat.
Here, x describes the flow variable eat and X the stock variable, which describes
the body weight.

utility function

Ux,X)=—-(G-x)"—(X - X) oder U=x"—(X-X)

constraint
0=X'-x+0oX

The utility function describes the decreasing marginal benefit of eating and the
increasing marginal cost of body weight. The constraint describes that eating
increases weight and decreases it at the rate o due to natural weight loss. If the
parameter o =0 , then the constraint just describes the direct stock-flow
relationship X '=x between X and x.

This results in the following GCD equation system



UA[t] = x[t]"! - xx[t]*?2

X [t] = y1 pAx x[t] 7 - Ay [t]
XX [t] = -¥2 pBAxx xx [t] 172 + A, [t]

= -X[t] + oxx[t] +xx'[t]

x[0] == x@
XX [@] == xx©
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https://www.dropbox.com/s/7oetfsp9shlmzca/Modell %20Fresssack %20V ersion

%202 .ndsolve.nb?d1=0

The result of the calculation is, for example:

(In the plot stands xx for the stock variable X )

x0 I
1 — kiR —
xx0 I
05 — >+ Ax — Agent A
LAX I
1 -+ R¥ —
HAYK I
1 -+ ARY —
v |
0.5 —r+ R —
y2 |
15 -+ R —
& I -05
05 -+ R —

tmax

plotmax

eyl B
[
v
+
»
«
1

[
v
+
»
«
!

xx

uA


https://www.dropbox.com/s/7oetfsp9shlmzca/Modell%20Fresssack%20Version%202.ndsolve.nb?dl=0
https://www.dropbox.com/s/7oetfsp9shlmzca/Modell%20Fresssack%20Version%202.ndsolve.nb?dl=0
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We give this simple example mainly because this contradictory behaviour of flow
variable and stock variable is also relevant in many environmental problems. For
example, the following other interpretations are also possible:

Flow variable x

Stock variable X

Land consumption Building Built-up area
Waste Production Total waste
Plastic packaging Consumption Plastic waste in the sea

Carbon dioxide

Fossil fuel combustion

Carbon dioxide
concentration in the air

Furthermore, this simple model serves as an example for a model in which the
stock and flow variables occur simultaneously in the utility function. As already
explained in chapter 3.9, in this case a separate variable must be introduced for
the stock variable and the flow variable. The relationship between the two is
described by a constraint X'=x-oX . If the parameter o =0, then the constraint
just describes the direct stock-flow relationship X '=x between X and x.
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16. Summary and conclusions

16.1. Principle of GCD

By using differential-algebraic equations in continuous time, the GCD approach
extends existing analogies between classical mechanics and economics from
constrained optimization to constrained dynamics.

16.2. Problem 8 by Stephen Smale
Problem 8 of the 18 problems published by Smale in 1998 (Smale 1991; 1997;
1998; Smale Institute 2003) is: introducing dynamics (adjustment of prices) in
economic equilibrium theory (Arrow-Debreu equilibrium model). The problem
arose from Smale's own involvement with mathematical economics.

GCD models describe the out-off-equilibrium dynamics of economic systems.
They converge to the solutions of general equilibrium theory under certain
conditions. They describe not only the dynamic adjustment of prices, but also of
all other economic variables and thus may represent a solution to S. Smale's
problem 8.

The method is based on the standard method for modeling dynamics under
constraints in physics.

16.3. GCD is a fundamentally new methodology for
modeling economic systems and, in a certain sense,

can be seen as a metatheory of economic modeling
Simplified, so far there are 4 najor groups of methods for modeling economic
systems:

16.3.1.  Neoclassical general equilibrium theory (GE,
DSGE)
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This is essentially based on the maximization of an (overall) utility function under
constraints (overall utility maximization). The existence of one overall utility
function presupposes the aggregability of individual utility functions.

16.3.2. Post-Keynesian Models

These reject the use of individual utility functions and describe the aggregate
variables via differential equations.

A special case of these are the Stock-Flow-Consistent (SFC) models.

16.3.3. Agent-Based Models (ABM)

These describe the behaviour of mostly many agents based on individual
interactions among them.

16.3.4. The relation of the basic principles of GCD

models to these types of economic models

- The dynamic evolution of the variables is determined in GCD models
by the fact that each of the agents applies an individual force to these
variables and the actual dynamics is determined by the resultant of these
forces. These individual forces can be described (in most practical
cases) as gradients of individual utility functions. The resulting
dynamics can be called individual utility optimization as opposed to
neoclassical overall utility maximization. A detailed discussion of the
relationship between individual utility optimization and overall utility
maximization can be found in Glotzl (2022b).

- Note on post-Keynesian models: Agents' forces do not necessarily arise
as gradients of individual utility functions. Therefore, GCD models can
also describe post-Keynesian models that cannot be described by utility
functions. In principle, the forces (on the right-hand side of the
differential equations of post-Keynesian models) can always be
decomposed into a gradient component (resulting from a utility
function) and a rotation component. This is called a Helmholtz



117

decomposition, which is not only possible in 3 dimensions, as it usually

occurs in physics, but is possible in any dimension (Gl6tzl und Richters
2021b; 2021a)

- GCD models are always stock-flow consistent (SFC). But not only
(economic) accounting identities, but also any other relations or
conservation laws like the 1st law of chemistry (conservation of mass)
or the 1st law of thermodynamics (conservation of energy) can be used
as constraints.

- GCD models are always agent-based and thus microfounded.

16.4. GCD models can be the bases for a new economic
thinking in terms of: economic power, economic

force, economic constraint force

Especially the concept of economic power is of fundamental importance for
understanding economics (Rothschild 2002). With GCD models, this concept can
also be formally incorporated into economic models. In comparison with classical
mechanics in physics, power factors correspond to the reciprocal value of mass
(Glotzl 2015). Conventional economic models usually describe one-sided power
relations, which, however, rarely occur in reality. GCD models can also be used
to better describe mixed power relations and thus reality.

GCD models can be the basis for a new theoretical understanding of e.g.:

- Economic growth
- Business cycles and economic crises
- Analogies between physics and economics

16.5. With the help of the GCD methodology, a
formally clean definition of the terms ex-ante and ex-
post is possible

16.6. Non-equilibrium dynamics
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GCD models can be used to describe true disequilibrium dynamics. In particular,
it is also possible to describe situations in which no equilibrium exists or situations
in which the utility function is not concave.

16.7. Genuine competitive models
Apart from game-theoretic models, the other types of economic models
mentioned cannot be used to describe genuine competition models, i.e. models in
which the individual optimization strategy does not lead to an overall optimum.
In reality, however, such situations, which are similar to the prisoner's dilemma,
are very common. With GCD models, genuine competition models can be
described very well.

16.8. Applications
GCD models and IGCD models can be used for many practical tasks such as
economic forecasting, modeling the impacts of fiscal or monetary policy,
modeling business cycle fluctuations and economic shocks.

16.9. GCD models are a generalisation and alternative
to DSGE models

GCD models in principle can also be formulated with intertemporal utility
functions called IGCD models (Glotzl 2022¢). IGCD models can be seen as a
generalisation or alternative to DSGE models.

16.10. What remains to be done in the future

a) Adjustment of parameters to describe real circumstances and comparison of
model results with real business cycle trends.

b) Extend GCD models to multiple households, firms, and goods, and in particular
to commodity and financial markets.

c) In the long run, develop a more complex, real-world model to enable better
economic forecasting and test measures to achieve economic policy targets.

d) Elaborate GCD models with economic shocks in detail.

e) Elaborate IGCD models (with intertemporal utility functions) in detail.
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