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abstract 
In an AI society, ICT is being introduced in all sectors. This trend is expected to significantly impact an aging 

society with a declining birthrate, which is expected to accelerate in the future. The development of medical 

care and improvements in diet will promote longer life expectancy, while the spread of online services will 

promote more efficient labor, and the development of home appliances will greatly reduce the burden of 

housework and childcare. In this paper, we analyze how the increase in longevity and disposable time of 

households in an AI society will affect the decline in fertility based on an R&D model. 
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1. Introduction 

As is well known, fertility rates in developed countries have been declining rapidly over the past half-century, 

especially in South Korea, where the total fertility rate in 2020 will be 0.92, and in Japan, where it will be 

1.33. It is due to unmarried and late marriages, which may be attributed to the relative opportunity cost of 

having children due to the diversity of values and declining incomes associated with lower economic growth 

rates. The government's policy to reduce the birthrate provides free nursery schools, compulsory education, 

and childcare allowances in kind or cash. However, the effects of these policies are far from clear. On the 

other hand, life expectancy increases rapidly due to the expansion of medical technology and the quality and 

variety of food products. 2020 life expectancy in Japan will be 87.74 years for women and 81.64 years for 

men, increasing for the ninth consecutive year. These are the factors that are thought to be creating a declining 

birthrate and aging population. The main challenges of an aging society with a declining birthrate include a 

decline in economic growth due to a shrinking working population, insufficient financial resources for social 

security, and reduced public capital investment due to declining tax revenues. In recent years, investment in 

AI (artificial intelligence), IT (Information Technology), and ICT (Information and Communication 

Technology) has increased rapidly in developed countries. In the United States, in particular, ICT investment 

has nearly doubled in the past 30 years. ICT and IT are terms that mean almost the same thing, but they are 

used differently in specific terms, and the key is what they focus on. IT is a term that refers to computer-

related technology itself, including hardware, software, and infrastructure. 

On the other hand, ICT emphasizes the transmission of information and refers to how technology is used in 

healthcare, education, and other areas or the methodology for doing so. The total fertility rate was 1.84 in 

1980 and 1.71 in 2019. Although the total fertility rate is declining, the rate of decrease is smaller than in 

Japan. IT investment in the U.S. and Japan in 2017 shows that Japan has about one-third the IT investment 

and about half the GDP per capita of the U.S. This gap has continued to widen since 2000. From the above 

data, it can be read that raising GDP through IT investment increases disposable income, which in turn 

increases fertility and survival rates. Specifically, increased disposable income can purchase new home 

appliances developed through innovation, reducing the time spent on household chores or opportunity costs. 

Alternatively, parents can reduce the amount of time they spend on child-rearing and education by hiring 

babysitters when they can afford to or through the spread of AI-based education systems. 

On the other hand, life expectancy is expected to increase due to the development of medical technology 

through IT investment, improved food quality, variety, and improved care functions through AI. Hirazawa 

and Yakita (2017) show a positive correlation exists between income and survival, and they endogenized its 

viability. In this study, we analyze how the opportunity cost of childcare is endogenized in the endogenization 

of their survival rate and how innovation through research and development, such as IT investment, affects 

demographics through the endogenization of the two. We keep it simple and build on the endogenous length 

model based on Romer's (1990) R&D, incorporating the opportunity cost of childcare and endogenization of 

survival. Romer (1990), in his dynamic equation in the quantity of innovation in the R&D sector, argued that 

the incremental amount of innovation depends frankly on developers and the quantity of existing innovation; 

furthermore, the population growth rate is assumed to be zero and that the rate of economic growth is always 

constant. His model relies heavily on the scale effect. Jones (1995) considers diminishing returns on the 

number of developers and the amount of existing innovation and shows that the equilibrium growth path is 



stable and converges to it through time. We define innovation dynamics equations to depend not on the 

number of researchers per se but the ratio of researchers to the total workforce. The percentage of researchers 

is also increasing in the U.S. and France, where IT investment is increasing rapidly. Trade-offs occur as 

innovation (economic growth rate) increases in our model. It is an increase in survival and a decrease in the 

cost of childcare. As income increases due to innovation, survival increases, and households increase their 

savings for old age. It increases capital, which increases the output of final goods and thus boosts GDP, but 

the decrease in disposable income during the working years leads to a decrease in the number of children as 

a luxury good. In other words, the effect on the population growth rate is negative. 

On the other hand, the decrease in childcare costs associated with increased innovation lowers the opportunity 

cost of childcare and increases income during the working period. Its effect on population growth is positive. 

Therefore, this study analyzes the rate of decline of the child care cost for the population growth rate to be 

positive. In the model, we use a two-sector model based on the R&D model, and we use Diamond's (1965) 

two-period overlapping generations model. The first period is the work period, and households holding one 

unit of time allocate it to work or childcare. Childhood is not considered here because it is assumed to be 

dependent on parents and accounted for identically in the household. The opportunity cost of childcare in the 

first generation is endogenized and is assumed to decrease as income increases. The second generation is 

assumed to be old and does not engage in labor. The survival rate in the second period is assumed to be 

endogenous and increases with income. 

 

2. Model 
2.1 Individuals 
This study uses a life-cycle model, which defines survival as constant and determines savings and 

consumption based on budget constraints at the point in time when the economic agent is in existence; the 

OLG model uses a two-generation overlap model with two periods of survival and three or more periods of 

Multiple generation overlap models exist. In this model, the schooling period is excluded, and the model 

starts from the point when people enter society and begin working. In other words, it is a long-term analysis 

with a single period of 30 to 40 years. In addition, household heterogeneity is excluded here because a 

representative household is assumed. The OLG model was first developed by Samuelson (1958), and his 

model is characterized by the fact that it does not consider capital accumulation since there is no production 

sector, and a fixed number of non-durable goods are provided each period. The optimal solution of the model 

is for each generation in each period to consume all the given consumption goods. The intergenerational 

externality he showed us is that the generation in the second-period issues credits to obtain consumption 

goods from the generation in the first period. This externality assumes that a generation exists after an infinite 

period and that the population growth rate is positive, making it a Ponzi Game. One of Diamond's model 

characteristics is the introduction of capital accumulation: subjects in the two periods consume, but their 

budget is income from labor supply in the first generation and capital income in the second generation. (The 

sum of principal and interest income.) The first-period generation allocates income from labor to 

consumption or savings for the second period. One common feature of both models is the existence of an 

externality of intergenerational income transfers, and the possibility exists that the competitive equilibrium 

is not Pareto optimal because of “over-accumulation”. The policy is that the optimal solution is sought 



(1) 

(2) 

(3) 

through government intervention and intergenerational redistribution in the form of social security. However, 

as the capital accumulation progresses and harvest diminishes, the equilibrium value becomes less than the 

“Golden rule” (the value of capital that would maximize aggregate consumption in macroeconomic terms) 

when the population growth rate is greater than the interest rate. It is since each generation focuses only on 

its utility and does not view the economy from the perspective of the next generation or the long term. 

We set up a two-period OLG model consisting of adult and old. In the first period, which includes childhood, 

each individual has one unit of time allocated to work or childcare. In this analysis, there is no distinction 

between males and females, and each individual determines how many children he or she will have. This 

analysis does not distinguish between men and women but determines how many children each individual 

will have. Child-rearing needs time and goods. Income earned from labor is distributed to consumption in 

both periods. From the above, an individual's utility depends on the consumption in each period and the 

number of children in the first period. The utility function is shown as follows: 

 𝑢𝑡 = log 𝑐𝑡 + βlog 𝑑𝑡 + 𝛾 log 𝑛𝑡  ,                     

 

where β > 0, 𝛾 > 0 indicates the preference rate for the second period's consumption and the number of 

children. When each individual in the first period raises units of children, they must incur 𝛿𝑛𝑡 units of final 

goods and 𝜌𝑛𝑡 units of time. Furthermore, 𝑤𝑡  indicates the wage rate and the disposable working income 

will be (1 − 𝜌𝑛𝑡)𝑤𝑡, and consumption and savings are represented by 𝑐𝑡 and 𝑠𝑡. We will assume here 𝜌(𝑤𝑡)  that the childcare cost depends on the wage rate. Moreover, childcare costs diminish as income 

increases, 𝜌′(𝑤𝑡) < 0, 𝜌 "(𝑤𝑡) > 0. For example, private nursery schools, babysitters, and improvements 

in the quality of home appliances, housing, cars, and other products that come with AI will increase 

disposable time. Thus, the budget constraint for each individual in the first period is shown as follows: 

 𝑐1,𝑡 + 𝑠𝑡 + 𝛿𝑛𝑡 = [1 − 𝜌(𝑤𝑡)𝑛𝑡]𝑤𝑡 . 
 

Now, let us rewrite the equation, focusing on the number of children where 𝛿𝑛𝑡 represents the cost to have 

children because it is the same as luxury goods. Furthermore, raising children needs the opportunity cost of 

parent and this time indicates 𝜌 to raise children. Parents' expense of cost per child is marked as 𝜌𝑤𝑡 + 𝛿. 

We consider a perfectly competitive insurance market shown by Yaari (1965) and Blanchard (1985). This 

market will deposit savings at the last period. Insurance companies invest their savings in a capital market, 

and the return on that investment will be paid to the surviving individuals in a second period. Details will be 

discussed later; according to Hirazawa and Yakita (2017), the survival rate is considered dependent on the 

wage rate, 𝜆𝑡(𝑤𝑡). Therefore, the second-period budget constraint is shown as follows: 

 𝑐2,𝑡+1 = 1 + 𝑟𝑡+1𝜆(𝑤𝑡) 𝑠𝑡 . 
 

By substituting the budget constraints in both periods for utility function, we can rewrite it as follows: 

 



(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

max 𝑠𝑡, 𝑛𝑡 log{[1 − 𝜌(𝑤𝑡)𝑛𝑡]𝑤𝑡 − 𝛿𝑛𝑡 − 𝑠𝑡} + 𝛽𝜆(𝑤𝑡) log [1 + 𝑟𝑡+1𝜆(𝑤𝑡) 𝑠𝑡] + 𝛾 log 𝑛𝑡  . 
 

Solving the optimization problem concerning savings and the number of children yields the following optimal 

solution. 𝑠𝑡 = 𝛽𝜆(𝑤𝑡)𝑤𝑡1 + 𝛽𝜆(𝑤𝑡) + 𝛾, 
 𝑛𝑡 = 𝛾𝑤𝑡[1 + 𝛽𝜆(𝑤𝑡) + 𝛾][𝜌(𝑤𝑡)𝑤𝑡 + 𝛿]. 
1.2   Productions 

2.2.1 Final goods sector 

This model has three sectors; a final-goods sector produces the consumption/capita good using labor. 

Furthermore, an intermediate-goods sector has monopoly firms and an R&D sector indicated by Romer 

(1990) and Jones (1995). First, the final goods market is perfectly competitive, and the production function 

is shown as follows: 𝑌𝑡 = 𝐿𝑌,𝑡1−𝛼 ∫ 𝑥𝑗,𝑡𝛼  𝑑𝑗 ,         0 <𝐴𝑡0 𝛼 < 1,  
 

The above production function can be rewritten as follows: 

 𝑌𝑡 = 𝐿𝑌,𝑡1−𝛼𝐴𝑡 (𝐾𝑡𝐴𝑡)𝛼 = (𝐴𝑡𝐿𝑌,𝑡)1−𝛼𝐾𝑡𝛼, 0 < 𝛼 < 1, 
 

Taking the logarithm of both sides of the above equation and differentiating to time yields the next equation: 

 log 𝑌𝑡 = (1 − 𝛼) log 𝐴𝑡 +(1 − 𝛼)log𝐿𝑌,𝑡 + 𝛼 log 𝐾𝑡 

 𝑌�̇�𝑌𝑡 = (1 − 𝛼) 𝐴𝑡̇𝐴𝑡 + (1 − 𝛼) 𝐿�̇�𝐿𝑡 + 𝛼 𝐾�̇�𝐾𝑡 

 

where the growth rate of total factor productivity is denoted by (1 − 𝛼) 𝐴𝑡�̇�𝑡 . As discussed later, TFP is 

determined by the ratio of researchers to all workers. It is, therefore, very different from the Solow model, 

which depends on the rate of population growth and the rate of technological progress. 

 𝑤𝑡 = (1 − 𝛼)𝐿𝑌,𝑡−𝛼 ∫ 𝑥𝑗,𝑡𝛼  𝑑𝑗 = (1 − 𝛼) 𝑌𝑡𝐿𝑌,𝑡  ,𝐴𝑡0  

 𝑞𝑗,𝑡 = 𝛼𝐿𝑌,𝑡1−𝛼𝑥𝑗,𝑡𝛼−1 , 
 



(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

where 𝑤𝑡 represents the wage rate and 𝑞𝑗,𝑡 is the price of the j th intermediate good. The demand function 

of its intermediate good is shown as follows: 𝑥𝑗,𝑡 = ( 𝛼𝑤𝑡) 11−𝛼 𝐿𝑌,𝑡  . 
 

2.2.2 Intermediate goods sector 

We consider intermediate good firms with different interests, and this market is monopolistic competition. 

Each company issues stock to raise funds and employs a labor unit, producing various consumer goods. When 

a new blueprint is created, the firm in an R&D sector accepts a patent from the government that allows it to 

produce the new type of intermediate good exclusively. The patent is assumed to be valid indefinitely in this 

model for simplicity. The patent is then sold to the firm in a middle sector. The firm’s profit function in an 

intermediate goods sector is as follows: 

 𝑚𝑎𝑥             𝜋𝑗,𝑡 = 𝑞𝑗,𝑡(𝑥𝑗,𝑡)𝑥𝑗,𝑡 − 𝑤𝑡𝑥𝑗,𝑡 , 
 

𝑠, 𝑡              𝑥𝑗,𝑡 = ( 𝛼𝑞𝑗,𝑡) 11−𝛼 𝐿𝑌,𝑡   , 
 

where 𝑞𝑗,𝑡(𝑥𝑗,𝑡)  indicates the demand function of an intermediate goods. The first order condition is as 

follows: 𝑑𝑞𝑗,𝑡(𝑥𝑗,𝑡)𝑑𝑥𝑗,𝑡 𝑥𝑗,𝑡 + 𝑞𝑗,𝑡 − 𝑤𝑡 = 0 , 
 

Then solve the above equation for 𝑞𝑗,𝑡.  𝑞𝑗,𝑡 = 11 + [𝑑𝑞𝑗,𝑡(𝑥𝑗,𝑡)𝑑𝑥𝑗,𝑡 𝑥𝑗,𝑡𝑞𝑗,𝑡] 𝑤𝑡  , 
 

where the braces indicate an elasticity of demand for a price. Then, the above equation can be rewritten by 

the following equation:  𝑑𝑞𝑡𝑑𝑥𝑡 𝑥𝑡𝑞𝑡 = (𝛼 − 1) , 
𝑞𝑗,𝑡 = 11 + (𝛼 − 1) 𝑤𝑡 , ↔   𝑞𝑗,𝑡 = 𝑞𝑡 = 1𝛼 𝑤𝑡  , 

 

Next, we substitute the above equation into the demand function for the intermediate good to obtain the 

following equation: 

𝑥𝑗,𝑡 = 𝑥𝑡 = (𝛼2𝑤𝑡) 11−𝛼 𝐿𝑌,𝑡 , 
 



(21) 

(22) 

(23) 

(24) 

(25) 

Furthermore, the profit function can be rewritten as follows: 

 𝜋𝑗,𝑡 = 𝜋𝑡 = 1 − 𝛼𝛼 𝑤𝑡𝑥𝑡 . 
 

The value of the blueprint in period t should be equal to the present value of a profit 𝜐𝑡 that the firms in an 

intermediate sector can earn by purchasing it. 

 𝜐𝑡 = ∑ 𝜋𝜏∏ (1 + 𝑟𝑢)𝜏𝑢=𝑡+1
∞

𝜏=𝑡+1  . 
 

By using the formula for the sum of infinite geometric series, the above equation can be rewritten as follows: 

 𝜐𝑡 = 𝜋𝑡+1(1 + 𝑟𝑡+1) + 𝜋𝑡+2(1 + 𝑟𝑡+1)(1 + 𝑟𝑡+2) + ⋯ 𝜐𝑡+1(1 + 𝑟𝑡+1) + 𝜐𝑡+2(1 + 𝑟𝑡+1)(1 + 𝑟𝑡+2) + ⋯ ∞, 
 

𝜐𝑡 = 𝜋𝑡+1(1 + 𝑟𝑡+1)1 − 1(1 + 𝑟𝑡+1) + (𝜐𝑡+1 − 𝜐𝑡)(1 + 𝑟𝑡+1)1 − 1(1 + 𝑟𝑡+1) = 𝜋𝑡+1(1 + 𝑟𝑡+1)(1 + 𝑟𝑡+1) − 1(1 + 𝑟𝑡+1) + (𝜐𝑡+1 − 𝜐𝑡)(1 + 𝑟𝑡+1)(1 + 𝑟𝑡+1) − 1(1 + 𝑟𝑡+1) = 𝜋𝑡+1𝑟𝑡+1 + (𝜐𝑡+1 − 𝜐𝑡)𝑟𝑡+1 , 
 

Therefore, the no-arbitrage equation for the new blueprint, which indicates the current value of blueprint 

equals income gain 𝜋𝑡+1 and capital gain 𝜐𝑡+1 − 𝜐𝑡 in the future, is shown as follows: 

 𝑟𝑡+1𝜐𝑡 = 𝜋𝑡+1 + 𝜐𝑡+1 − 𝜐𝑡  , 
 

where the left-hand side shows the return of the invested funds which were deposited in a financial institution 

for only one period, and the right-hand side shows the sum of the profit earned by purchasing the patent of 

blueprint, using it in production for one period, and the yield gained by selling it immediately afterward. In 

equilibrium, these coincide. 

 

2.2.3 R&D sector 

The R&D-based models in the endogenous growth are indicated by Romer (1990), Grossman and Helpman 

(1991a, 1991b, 1991c), and Aghion and Howitt (1992). Romer (1990) distinguishes between skilled and 

unskilled workers and states that only skilled workers will be engaged in the R&D sector. Furthermore, In 

Romer (1990), there is a scale effect, i.e., if the population growth rate is positive, the economic growth rate 

is also positive, whereas, in Jones (1995), the growth rate is independent of the number of laborers but depend 

on the labor growth rate. The developed knowledge is a new type of capital good, and 𝐴𝑡 denotes its quantity 

which offers an increase of input in an R&D sector boosts productivity proportionally. The difference 

equation in the blueprint is shown as follows: 



(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

𝐴𝑡+1 − 𝐴𝑡 = 𝛿𝜃𝑡 𝐿𝐴𝑡𝐿𝑡 = 𝛿𝜃𝑡𝜇𝑡 , 
 

where 𝐿𝐴,𝑡 represents the number of laborers in the R&D sector. 𝜇𝑡 > 0 is the labor ratio in the R&D sector 

to the total number of laborers. In other words, we consider that the R&D sector, which is the foundation of 

economic growth, should incorporate the researcher’s ratio to other sectors, not the number of researchers 

involved in the sector itself. Moreover, we consider the productivity of firms in the R&D sector depends on 

existing knowledge produced previous R&D production indicated by Romer (1990), Grossman and Helpman 

(1991), and Jones (1995). Individuals take advantage of the existing stock of knowledge to invest in new 

designs. The productivity of firms in an R&D sector is indicated as follows: 

 𝜃𝑡 = 𝐴𝑡𝜙, 
 

where 𝐴𝑡 represents the stock of technological knowledge. Jones (1995) showed that 𝜙 < 1 means fishing 

out in which the rate of innovation decreases with knowledge. Furthermore, 𝜙 > 0 indicates the positive 

external returns (In other words, standing on the shoulders of giants). 𝜙 = 0 means the constant returns to 

scale (there is no externality) in which the arrival rate of an additional idea is independent of the stock. Romer 

(1990) defines it as 𝜙 = 1, but the external effect is too large to be realistic. We consider the firms in an 

R&D sector that create a new variety of intermediate goods. This sector’s market is perfectly competitive, 

and firms in intermediate goods demand these blueprints, which the firms in an R&D sector create. When a 

new blueprint is discovered, firms receive from the government the exclusive right to produce fresh 

intermediate good and sell it to firms in an intermediate goods sector: it is said as a patent. The number of 

blueprints developed equals the number of intermediate goods because they are purchased by firms that 

produce intermediate goods. The firm’s profit function in the R&D sector is presented as follows:  

 𝜋𝑡𝐴 = 𝜐𝑡(𝐴𝑡+1 − 𝐴𝑡) − 𝑤𝑡𝐿𝐴,𝑡 = 𝜐𝑡𝛿𝐴𝑡𝜙𝜇𝑡 − 𝑤𝑡𝐿𝐴,𝑡 = (𝜐𝑡𝛿𝐴𝑡∅𝐿𝑡 − 𝑤𝑡) 𝐿𝐴,𝑡 = 𝜐𝑡𝛿𝐿𝐴,𝑡𝐴𝑡∅𝐿𝑡 − 𝑤𝑡𝐿𝐴,𝑡, 
 

The profit-maximizing condition is indicated as follows: 𝜐𝑡 = 𝑤𝑡𝐿𝑡𝛿𝐴𝑡∅      
3. Market  

In the labor market, an individual’s available supply of time is 1 − 𝜌(𝑤𝑡)𝑛𝑡, and labor is employed in the  

final goods sector, medium goods sector, and R&D sector. The following equation represents the condition 

in the labor market equilibrium: 𝐿𝑌,𝑡 + 𝐴𝑡𝑥𝑡 + 𝐿𝐴,𝑡 = [1 − 𝜌(𝑤𝑡)𝑛𝑡]𝑤𝑡𝑁𝑡 . 
  

Aggregate savings will be invested or purchased in an R&D sector and asset market. The equilibrium 

condition is shown as follows: (𝐴𝑡+1 − 𝐴𝑡)𝜐𝑡 + 𝐴𝑡𝜐𝑡 = 𝐴𝑡+1𝜐𝑡 = 𝑠𝑡𝑁𝑡 , 



(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

 

where 𝑁𝑡 means the number of populations at t period. The equilibrium condition in a final goods sector is  

shown as follows: 𝑌𝑡 = 𝑐1,𝑡𝑁𝑡 + 𝑐2,𝑡𝜆𝑡−1𝑁𝑡−1 + 𝛿𝑛𝑡𝑁𝑡 , 
 

The final goods are consumed by individuals in the t, t+1 period and used to raise children. We can rewrite  

the above equation by using the utility-maximizing conditions as follows: 

 𝑌𝑡 = (𝛼2𝑤𝑡) 𝐴𝑡𝐿𝑌,𝑡  , 
 

Furthermore, we substitute the above equation for profit-maximizing condition as follows: 

   𝑤𝑡 = (1 − 𝛼)1−𝛼𝐴𝑡1−𝛼𝛼2𝛼(1−𝛼), 
 𝑤𝑡 = �̂�𝐴𝑡1−𝛼, 
 

Where �̂� ≡ 𝛼2𝛼(1 − 𝛼)1−𝛼 and the growth rate of a blueprint in an R&D sector can be rewrite 

by next equation: 𝑔𝐴,𝑡 ≡ (𝐴𝑡+1 − 𝐴𝑡)𝐴𝑡  , 
 1 + 𝑔𝐴,𝑡 = 𝐴𝑡+1𝐴𝑡 = 𝑠𝑡𝑁𝑡𝜐𝑡 = 𝛿𝛽𝜆(𝑤𝑡)[1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝐿𝑡 𝑁𝑡𝐴𝑡∅−1 , 
 

where per capita labor supply, as shown in the household sector, subtracts the cost of childcare from a unit 

of time owned, and the overall labor supply is then multiplied by the number of adult populations. Taking 

these into account, we obtain the following equation. 

 1 + 𝑔𝐴,𝑡 = 𝛿𝛽𝜆(𝑤𝑡)[1 + 𝛽𝜆(𝑤𝑡) + 𝛾][1 − 𝜌(𝑤𝑡)𝑛𝑡] 𝐴𝑡∅−1 , 
 

 The growth of the population can be indicated as follows: 

 1 + 𝑔𝐿 = 1 + 𝑁𝑡+1 − 𝑁𝑡𝑁𝑡 = 𝑛𝑡 ,   
Therefore, the dynamic equation of the population is as follows: 

 𝑁𝑡+1 = 𝑛𝑡𝑁𝑡 . 
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Fig1. The case of 𝜒 > 1. 
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(42) 

(43) 

(44) 

(45) 

(46) 

4. Relationship between fertility and per capita wage income 

Following Hirazawa and Yakita (2017), we define 𝜆(𝑤𝑡) as follows: 

 𝜆(𝑤𝑡) = 𝑣1 + 𝜒𝑒−𝜓𝑤𝑡 , 
 

where 𝜈 ∈ (0,1] and 𝜒, 𝜓 > 0. We will differentiate the survival rate 𝜆 concerning wage rate. 

 𝜆′(𝑤𝑡) = 𝜈𝜓𝜒𝑒−𝜓𝑤𝑡(1 + 𝜒𝑒−𝜓𝑤𝑡)2 > 0 , 
 𝜆′′(𝑤𝑡) = 𝜈𝜓2𝜒𝑒−𝜓𝑤𝑡(1 + 𝜒𝑒−𝜓𝑤𝑡)3 (𝜒𝑒−𝜓𝑤𝑡 − 1) , 
 

where if 𝑤𝜆 ≡ 1𝜓 log 𝜒 , (𝑒𝜓𝑤𝜆 ≡ 𝜒), the equation can be rewritten as follows: 

 𝜆′′(𝑤𝑡) = 𝜈𝜓2(𝜒𝑒−𝜓𝑤𝜆 − 1) = 0 , 
 

where 𝑒 ≅ 2.718 is Napier's constant, the bottom of the natural logarithm, and the range of values of 𝑒−𝜓𝑤𝑡 
when 𝜓𝑤𝑡 > 0 is 0 < 𝑒−𝜓𝑤𝑡 < 1. Therefore, if 0 < 𝜒 ≤ 1, the sign of 𝜆 " becomes negative. Then, the 
relationship between 𝑤 and 𝜆 is concave for any value of 𝑤𝑡. Similarly, if 𝜒 > 1 and 𝑤𝜆 > 1𝜓 log 𝜒, then 

it indicates 𝜆′′(𝑤𝑡) < 0 . If 𝜒 > 1  and 𝑤𝜆 < 1𝜓 log 𝜒 , then it shows 𝜆′′(𝑤𝑡) > 0 . In other words, 𝑤𝜆 

indicates the threshold between concave and convex functions. The value of 𝜆  when the wage is 

approximated to zero and infinity is as follows: lim𝑤𝑡→0 𝜆(𝑤𝑡) ≡ 𝜆 = 𝜈1 + 𝜒  , 
lim𝑤𝑡→+∞𝜆(𝑤𝑡) ≡ 𝜆 = 𝜈 . 
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Next, we analyze the parenting time function, and the function is shown as follows: 

 𝜌(𝑤𝑡) = 𝜒𝑒−𝜑𝑤𝑡 + 𝜖𝑤𝑡 

 

where 𝜈 ∈ (0,1] and 𝜒, 𝜓 > 0. We will differentiate the survival rate 𝜆 concerning wage rate. 

 𝜌′(𝑤𝑡) = −𝜑 𝜒𝑒−𝜑𝑤𝑡 + 𝜖 < 0, 
 𝜌′′(𝑤𝑡) = 𝜑 2𝜒𝑒−𝜑𝑤𝑡 > 0, 
 

where if 𝑤𝜌 ≡ − 1𝜑 log 𝜒 , (𝑒−𝜑𝑤𝜌 ≡ 𝜒), the equation can be rewritten as follows: 

 𝜌′′(𝑤𝑡) = 𝜒𝑒𝜑𝑤𝜌 − 1(1 + 𝜒𝑒−𝜑𝑤𝜌)3 = 0, 
 

where 𝑒 ≅ 2.718 is Napier's constant, the bottom of the natural logarithm, and the range of values of 𝑒−𝜓𝑤𝑡 
when 𝜓𝑤𝑡 > 0 is 0 < 𝑒−𝜓𝑤𝑡 < 1. Therefore, if 0 < 𝜒 ≤ 1, the sign of 𝜌 " becomes negative. Then, the 
relationship between 𝑤 and 𝜆 is convex for any value of 𝑤𝑡. Similarly, if 𝜒 > 1 and 𝑤𝜌 > 1𝜓 log 𝜒, then it 

indicates 𝜌′′(𝑤𝑡) < 0. If 𝜒 > 1 and 𝑤𝜌 < 1𝜓 log 𝜒, then it shows 𝜌′′(𝑤𝑡) > 0. In other words, 𝑤𝜌 indicates 

the threshold between concave and convex functions. The value of 𝜌 when the wage is approximated to 

zero and infinity is as follows: lim𝑤𝑡→0 𝜌(𝑤𝑡) ≡ 𝜌 = 𝜈2  , 
 lim𝑤𝑡→+∞𝜌(𝑤𝑡) ≡ 𝜌 = ∞ . 
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5. Balanced Growth Path (Long-run growth) 
This chapter analyzes the long-term suburbs: we derive the number of children in A when income goes to 

infinity. lim𝑤𝑡→∞ 𝑛𝑡 = 𝑛∗ = ∞ . 
 

To investigate whether 𝐴𝑡+1 > 𝐴𝑡 or 𝐴𝑡+1 = 𝐴𝑡 at each point of the (𝐴𝑡, 𝑁𝑡) plane, we set 𝑔𝐴,𝑡 = 0 in 

Eq. (38) as follows: Ϝ(𝐴𝑡) ≡ 𝑛𝑡 = 1 − 𝛿𝛽𝜆(𝑤𝑡)𝐴𝑡∅−1[1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝜌(𝑤𝑡) , 
 

Above this nonlinear curve, ideas continue to emerge (𝐴𝑡+1 > 𝐴𝑡). Below the curve, ideas remain constant (𝐴𝑡+1 = 𝐴𝑡). We differentiate Ϝ(𝐴𝑡) concerning 𝐴𝑡 using 𝑤𝑡 = �̂�𝐴𝑡1−𝛼as follows:  

 Ϝ′(𝐴𝑡) ≡ 𝑑Ϝ(𝐴𝑡)𝑑𝐴𝑡 = 𝛽𝛿𝜌(𝑤𝑡)[1 + 𝛽𝜆(𝑤𝑡) + 𝛾][(1 − ∅)𝜆(𝑤𝑡)𝐴𝑡∅−2 − 𝜆′(𝑤𝑡)�̂�(1 − 𝛼)𝐴𝑡∅−𝛼−1]{[1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝜌(𝑤𝑡)}2  

 + 𝐴𝑡∅−𝛼−1𝛽𝛿𝜆(𝑤𝑡)(1 − 𝛼)�̂�{[1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝜌′(𝑤𝑡) +  𝜌(𝑤𝑡)𝛽𝜆′(𝑤𝑡)}{[1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝜌(𝑤𝑡)}2  

 

In the first item of the above equation, the conditional expression for the sign to be positive is shown. 

 (1 − ∅)𝜆(𝑤𝑡)𝐴𝑡∅−2 > 𝜆′(𝑤𝑡)�̂�(1 − 𝛼)𝐴𝑡∅−𝛼−1 

 𝜆′(𝑤𝑡) < (1 − ∅)𝜆(𝑤𝑡)�̂�(1 − 𝛼)𝐴𝑡1−𝛼 

 

The condition for the sign of the second item to be positive is then shown as follows: 



(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

 −[1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝜌′(𝑤𝑡) < 𝜌(𝑤𝑡)𝛽𝜆′(𝑤𝑡), 
 𝜌′(𝑤𝑡)  > − 𝛽𝜌(𝑤𝑡)𝜆′(𝑤𝑡)[1 + 𝛽𝜆(𝑤𝑡) + 𝛾] , 
 (1 − ∅)𝜆(𝑤𝑡)�̂�(1 − 𝛼)𝐴𝑡1−𝛼 > 𝜆′(𝑤𝑡)𝜌′(𝑤𝑡) > − [1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝛽𝜌(𝑤𝑡)  , 
 

In the above equation, the sign of the ratio of survival rate to marginal childcare costs in the middle is 

negative, so the sign on the leftmost side is satisfied and is rewritten as follows: 

 𝜆′(𝑤𝑡)𝜌′(𝑤𝑡) > − [1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝛽𝜌(𝑤𝑡) , 
 

In the above equation, it is intuitively clear that this inequality holds if the marginal childcare cost reduction 

is very large. To analyze the economy in the long run, we derive the values of Eq. (42) and Eq. (48) infinitely 

far in time. lim𝑤𝑡→∞ 𝜆′(𝑤𝑡) = lim𝑤𝑡→∞ 𝜈𝜓𝜒𝑒−𝜓𝑤𝑡(1 + 𝜒𝑒−𝜓𝑤𝑡)2 = 0, 
 lim𝑤𝑡→∞ 𝜌′(𝑤𝑡) = lim𝑤𝑡→∞ −𝜑 𝜒𝑒−𝜑𝑤𝑡 + 𝜖 = 𝜖 > 0, 
 

where consider A again using the above equation.  

 0 = 𝜆′(𝑤𝑡)𝜌′(𝑤𝑡) > − [1 + 𝛽𝜆(𝑤𝑡) + 𝛾]𝛽𝜌(𝑤𝑡) , 
 

where clearly, this inequality is satisfied. In other words, more R&D (innovation) indicates an increasing 

birth rate, resulting in positive population growth. It indicates that the fertility rate will increase if the rate 

of increase in efficiency of housework and childcare, which is associated with technological advances in AI 

and IT, increases more than the survival rate in the long run. 

 

6. Concluding remarks 

This study used a two-sector model based on an R&D model to analyze how economic growth associated 

with innovation (AI-Imation and IT-Imation) affects demographics. Primarily, we endogenized survival and 

child care opportunity costs to model the impact of increased innovation on them. A trade-off relationship 

existed between these two impacts on population growth rates, and conditions for population growth 

(expansion of fertility) were derived. In conclusion, we showed that population growth is possible if the 

increase in innovation converges to a constant value in the long term. 
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