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Abstract

How do differences in the government’s political and commitment structure affect the aggre-

gate economy, inequality, and welfare? I examine this question using a standard incomplete

markets model with uninsurable idiosyncratic income risk, wherein a flat tax rate and transfers

are endogenously determined according to its political and commitment structure. I compare

three economies over the transitional path: an economy with the optimal tax with commitment,

an economy with the optimal tax without commitment, and a political economy with sequen-

tial voting. Using the generalized Euler equation, I characterize the Markov perfect equilibria

of the cases without commitment. Additionally, through quantitative exercises, I obtain two

main findings. First, a lack of commitment hinders the government from managing the evolu-

tion of inequalities in the long run but instead makes it pursue more income with a lower tax

rate in the short run. This incapability results in substantially lower welfare in the case without

commitment. Second, given a lack of commitment, the economy with sequential voting yields

significantly different macroeconomic and distributional implications from the economy with

the optimal policy. In the political economy, the government considers only the interests of

the median voter, who is middle class and reluctant to bear larger distortions from a higher

tax rate. Therefore, the political economy becomes more efficient but less equal, leading to a

worse welfare outcome with the utilitarian criterion.
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1 Introduction

Public and fiscal policies are essentially subject to a lack of government commitment because po-

litical procedures sequentially determine the policy executor. Previous studies have found that a

lack of commitment can yield substantial differences in the implications of designing and imple-

menting policies (Kydland and Prescott, 1977; Calvo, 1978; Barro and Gordon, 1983; Lucas and

Stokey, 1983; Klein and Rı́os-Rull, 2003; Klein, Krusell and Rı́os-Rull, 2008). However, relatively

few studies have considered how the government’s political structure affects the design of public

and fiscal policies, given the difficulty in devising a proper framework. Investigating this issue

requires models that incorporate heterogeneous agents because political decisions—from selecting

policymakers to implementing policies—widely interact at the individual level. In addition to het-

erogeneous agents, because a lack of commitment leads successive governments to make strategic

choices, solving a dynamic game of consecutive governments is essential.

In this direction of research, there are two issues. The first is that not much is known about

the theoretical features of the equilibrium of this dynamic game of successive governments with

heterogeneous agents. Although a few studies—e.g., Klein, Krusell and Rı́os-Rull (2008)— have

succeeded in analyzing the strategic behavior of consecutive governments in Markov perfect equi-

libria (MPE), they do not examine how the government’s strategic choice interacts with individual

heterogeneity. A theoretical characterization for the MPE with heterogeneous agents is required to

understand the underlying economic forces behind the interactions of successive, strategic govern-

ments with individual heterogeneity.

The second issue is that solving this dynamic game entails a substantial computational bur-

den. For example, political-economy models, originally developed by Krusell, Quadrini and Rı́os-

Rull (1996); Krusell and Rı́os-Rull (1999), have three types of equilibrium objects—individual

decisions, the aggregate law of motion for the distribution of households, and the endogenous

government policy function—that have to be consistent with one another in equilibrium. One

might consider using Krusell and Smith’s (1998) method to achieve their consistency; however,

this approach is ineffective for this class of models. First, more than one aggregate law of motion

increases the computational burden exponentially in this simulation-based method. The existence

of the government policy function leads to adding another outer loop to the outer loop in their

method. Second, the government policy function is severely nonlinear because political decisions,

which shape the government policy function, are sensitive to the distribution of individuals. This

nonlinearity is not well-captured by the parameterized law of motion in Krusell and Smith (1998).

In this paper, I (i) characterize the Markov perfect equilibria of the dynamic game of consecu-

tive governments in a heterogeneous agent model with uninsurable idiosyncratic income risk; (ii)

develop a numerical computational method for solving this game. For the characterization of the

MPE, I have employed the generalized Euler equation (GEE) approach, proposed initially by Klein
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et al. (2008). Obtained by computing the first-order condition of the government’s choice, the GEE

provides insights into the underlying economic forces the government considers in making policy

decisions. Regarding my numerical solution method, to handle the aforementioned computational

issues, I take ideas from the backward induction method of Reiter (2010). Because the back-

ward induction method is not designed for economies in the MPE but for those with aggregate

uncertainty, I make variations to this method to address the characteristics of the MPE—e.g., the

existence of off the equilibrium—while preserving its computational benefits. My method is a

non-simulation-based approach as in Reiter (2010), which substantially improves computational

efficiency. Furthermore, my solution method approximates the aggregate laws of motion, including

the government policy function, through a non-parametric approach as in Reiter (2010), thereby

enabling me to capture the nonlinearity.

I characterize and solve for the MPE of this game in the canonical model of Aiyagari (1994)

with wealth effects of labor supply, in which the government’s tax/transfer system is endogenously

determined according to its political and commitment structure. I assume a simple government

financing rule to better understand the fundamental roles of the political and commitment structure:

the government levies a flat tax from labor and capital income and redistributes its revenue to

households through lump-sum transfers after covering a given size of government spending.

Specifically, I compare three economies: an economy with the time-inconsistent optimal in-

come tax with the Ramsey planner (with commitment), an economy with the time-consistent op-

timal tax (without commitment), and a political economy with sequential voting (without com-

mitment). In the economy with the time-inconsistent optimal policy, because the government can

commit to all future tax policies, it chooses a sequence of income taxes that maximizes the utilitar-

ian welfare function over the transitional path. By contrast, in the time-consistent optimal case, the

government can only decide a tax rate for the next period and cannot commit to it after that. Thus,

the government sequentially chooses a tax policy maximizing the utilitarian welfare function un-

der this commitment constraint, and this action continues perpetually. Finally, following a seminal

study by Krusell and Rı́os-Rull (1999), the political economy with voting has two political parties

whose unique goal is to win election in each period, meaning a lack of commitment, through the

majority’s support. The two parties propose tax rates on which households vote. Because the pol-

icy dimension is one in my policy exercise, the dominant strategy of the two parties is to offer the

most preferred tax rate of the median voter. To prevent multiple equilibria, I assume that one party

always wins when votes are tied.

In characterizing the MPE, I find that when deciding on taxes, the government strikes a balance

between two economic forces: the pecuniary externality—coming from income changes caused by

variations in the factor composition of individual income—and income redistribution—caused by

altered transfers following a tax rate change. Note that in response to a change in income tax rate,
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these two forces oppositely affect individual welfare. An increase in income tax rate, for example,

decreases overall individual savings, thereby reducing the aggregate capital. This reduction in

the aggregate capital increases the equilibrium interest rate but reduces the equilibrium market

wage. These factor price changes have different welfare implications across individuals. The

consumption-poor (-rich), whose income composition tends to be toward labor (capital) income,

stand to lose (gain) welfare. This pecuniary externality is considered by the government.

Meanwhile, an increased tax rate raises the level of lump-sum transfers, which increases (re-

duces) after-tax incomes for the consumption-poor (-rich). Because these two forces play an oppo-

site role for each individual, the government weighs the two forces, the extent to which is hugely

reliant on the political structure. Under the utilitarian government, the optimal policy tends to be

more in favor of the consumption-poor, who prefers larger redistribution through more substantial

transfers. But with sequential voting, income taxes are determined solely by the median voter, who

is reluctant to bear larger distortions from a higher tax rate.

Another notable feature revealed by the GEE is that when deciding on taxes, the government

in the MPE does not consider distortions—caused by decisions on consumption and labor—at

the individual level. This result contrasts with findings in the optimal tax literature. This stark

difference occurs because the economies in this model are not centralized with a social planner

but decentralized with a government making endogenous decisions. Because individuals optimally

make decisions on consumption, savings, and labor in competitive equilibrium, the government has

no room for improvement regarding individual allocations. Therefore, the government focuses on

balancing the pecuniary externality via variations in the factor composition of income and income

redistribution through transfers.

For quantitative exercises, I solve for and compare the aforementioned three economies. To

solve the Ramsey problem, I have employed the numerical approach in Dyrda and Pedroni (2022).

I solve for the economy with the time-consistent optimal income tax and the political economy

with sequential voting by using my numerical solution method. Then, I compare their equilibrium

results over the transitional path.

In the first set of these exercises, to understand the effects of the commitment structure, I

compare the economy with the time-inconsistent optimal income tax—Ramsey solution—to the

economy with the time-consistent optimal policy. I find that the commitment instrument makes

substantial differences in the aggregate economy, inequality, and welfare. The economy with the

Ramsey planner is less efficient but more equal by levying larger income taxes. Moreover, welfare

gain, measured by the consumption equivalent variation, in the economy with the time-inconsistent

optimal income tax (+2.19 percent) is much greater than that with the time-consistent case (+0.59

percent). These findings imply that the Ramsey planner achieves a better welfare outcome by

putting less weight on efficiency and managing the evolution of inequalities in consumption and
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leisure, through the controlling of after-tax incomes with a sequence of transfers. This management

for a sequence of transfers is possible thanks to the commitment instrument, which is unavailable

to the government without commitment. A lack of commitment leads the government with the

time-consistent optimal income tax to focus on sparing more income in the short run, putting less

weight on the management of inequalities in the long run.

In the other exercise, I examine the effects of the political structure by comparing the economy

with the time-consistent optimal policy and the political economy with sequential voting. I find

that given a lack of commitment, the political structure brings about non-negligible differences

in the macroeconomy, inequality, and welfare. The political economy shows more frugal income

taxes than the optimal policy economy, thus leading to a more efficient but less equal economy.

In my model, because the dimension for tax is single, the majority voting rule boils down to the

median voting rule. As a result, the equilibrium income tax in the political economy is equivalent

to income tax most preferred by the median voter. Because this median voter is an individual, it

considers only his interest. When the median voter is substantially different from the consumption-

poor, which is observed in my model result, he is reluctant to bear substantial distortions. Instead,

he prefers a lower tax rate while not considering a desirable level of inequality. As a result, welfare,

measured by the utilitarian criterion, is much lower in the political economy (-2.13 percent) than

in the economy with the time-consistent optimal income tax (+0.57 percent).

These findings imply that commitment and political structure are hard to ignore because they

bring different policy designs that cause disparities in the aggregate economy, inequality, and wel-

fare.

This paper belongs to the stream of political macroeconomic literature that examines the im-

plications of governments’ political and commitment structure in designing public policies. Moti-

vated by the seminal studies of Aiyagari and Peled (1995); Krusell, Quadrini and Rı́os-Rull (1996);

Krusell and Rı́os-Rull (1999), several papers have investigated the effects of the political procedure

on policy decisions from a macroeconomic perspective. Corbae, D’Erasmo and Kuruscu (2009)

studies how political governments make decisions on income taxation in response to the increased

inequality in wages in the U.S. They find that the increased inequality in wages raises the equilib-

rium income tax rate without commitment. The study of Corbae et al. (2009) is similar to my work

in the sense that both studies compare a series of economies with heterogeneous agents according

to the political and commitment structure of the government. However, in contrast to my model,

Corbae et al. (2009) employs the preference of Greenwood, Hercowitz and Huffman (1988), which

lacks wealth effects of labor supply and focuses on analyzing equilibrium results in the long-run.1

1The authors mention that this choice is made to mitigate the computational burden. Note that the wealth effects

of labor supply are crucial for the macroeconomy and welfare because changes in transfers affect efficiency through

this channel.
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Song, Storesletten and Zilibotti (2012) is another study using a political economy. Their goal

is to understand intergenerational conflict through public policy instruments. The different objec-

tive leads to a different model selection. While they consider an overlapping generations model in

partial equilibrium, this paper uses an infinite-horizon model in general equilibrium. Farhi, Sleet,

Werning and Yeltekin (2012) is also related to my work because they address the choice of in-

come tax without commitment. However, their approach is different from mine. Whereas Farhi et

al. (2012) solves the planner’s centralized problem in a dynamic Mirrleesian model, I solve house-

holds’ decentralized problems in an incomplete markets model with uninsurable idiosyncratic risk.

The characterization of the MPE in this paper relies hugely on two studies: Klein, Krusell

and Rı́os-Rull (2008) and Davila, Hong, Krusell and Rı́os-Rull (2012). However, the results in

this paper show some stark differences from these two papers. Klein et al. (2008) introduces the

generalized Euler equation approach in a model without commitment. However, because their

model lacks individual heterogeneity, the underlying economic forces are substantially different.

In their model, the government’s policy choice is closely related to distortions related to decisions

on consumption and labor supply. In my model, such distortions are borne by individuals, and the

government does not care about them. Instead, the government internalizes two economic forces

driven by individual heterogeneity—the pecuniary externality related to the income composition

and income redistribution with altered transfers. Davila et al. (2012) investigates the features of

constrained efficient allocation in the standard incomplete markets model. They find that con-

strained efficiency can be achieved when the social planner takes into account both distortions

related to dynamic consumption allocation at the individual level and the pecuniary externality

driven by changes in the factor composition of income at the aggregate level. In my model, the

government considers not distortions related to individual dynamic consumption allocation but the

pecuniary externality. This difference occurs because, in my model, the government is endogenous

but not a social planner, and individuals optimally make decisions on consumption in competitive

equilibrium.

The solution method in this paper is a non-negligible, independent contribution to the literature.

Broadly, two types of methods are often used to solve macroeconomic models with Markov-perfect

equilibria. The first is Klein, Krusell and Rı́os-Rull’s (2008) approach, which is a local solution

method using the generalized Euler equation. This method is accurate and efficient but not general

enough to handle the class of heterogeneous agent models. My method in this paper is a global

solution method applicable to heterogeneous agent models. The other approach is Krusell and

Smith’s (1998) method, which applicable to heterogeneous agent models. For example, Corbae

et al. (2009) used this approach in their heterogeneous agent economy. However, this simulation-

based method is computationally costly because economies with commitment would have more

than one aggregate law of motion (e.g., the law of motion for the distributions and the endogenous
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tax policy function). This structure increases the computational burden in an exponential manner.

Additionally, the endogenous policy function could show a severe non-linearity that is not well-

captured by the parameterized law of motion in Krusell and Smith’s (1998) method. My method

is an efficient non-simulation-based solution approach that captures the non-linearity through a

non-parametric way as in Reiter (2010).

The remainder of this paper proceeds as follows. Section 2 presents the model and defines

the equilibrium. Section 3 characterizes the MPE using the generalized Euler equation. Section

4 explains the core ideas of the numerical solution algorithm. Section 5 describes the calibration

strategy. Section 6 presents the results of the policy analysis. Section 7 concludes this paper.

Finally, Appendix A demonstrates the full details of the numerical solution algorithm.

2 Model

The quantitative model here builds upon the canonical model of Aiyagari (1994), incorporating

wealth effects of labor supply. In this model, given a tax policy function, heterogeneous households

make decisions on consumption, savings and labor supply at the intensive margin, as in standard

incomplete markets models. A notable difference from the standard models is the setting of its

tax policy. The tax policy is endogenously determined, according to the political and commitment

structure of government. In equilibrium, the tax policy, individual decisions, and the evolution of

the distribution are consistent with one another under the political and commitment structure.

2.1 Environment

The model economy is populated by a continuum of infinitely lived households. Their preference

follows

E

[ ∞∑

t=0

βtu(ct, 1− nt)

]

(1)

where ct is consumption, nt ∈ [0, 1] is labor supply in period t ((1− nt) refers to leisure), and β is

the discount factor. Preferences are represented by

u(ct, 1− nt) =
ct

1−σ

1− σ
+B

(1− nt)
1−1/χ

1− 1/χ
(2)

where σ is the coefficient of relative risk aversion, B is the utility of leisure, and χ is the Frisch

elasticity of labor supply.

It is worth spending more time on the above preference. Note that the preference here captures
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wealth effects of labor supply. By contrast, Corbae, D’Erasmo and Kuruscu (2009) employed the

preference in Greenwood, Hercowitz and Huffman (1988) that lacks wealth effects of labor supply,

to mitigate the computational burden. Such wealth effects are crucial for welfare analysis, closely

related to efficiency loss. An increase in transfers, for example, decreases overall labor supply,

shrinking the size of the aggregate economy and playing a role in reducing welfare.

The representative firm produces output with a constant return to scale. The firm’s technology

is represented by

Yt = F (Kt, Nt) = Kθ
tN

1−θ
t (3)

where Kt is the quantity of aggregate capital, Nt is the quantity of aggregate labor, and θ is the

capital income share. Capital depreciates at the rate of δ each period.

In each period, households confront an uninsurable, idiosyncratic shock ϵt to their wage that

follows an AR-1 process:

log(ϵt+1) = ρϵ log(ϵt) + ηϵt+1 (4)

where ηϵt+1 ∼ N(0, σ2
ϵ ). Using the method in Rouwenhorst (1995), I approximate the AR-1 process

as a finite-state Markov chain with transition probabilities πϵ,ϵ′ from state ϵ to state ϵ′. Households

earn wtϵtnt as their labor income where wt is the market equilibrium wage. They can self in-

sure through assets at. Such households have capital income of as much as rtat where rt is the

equilibrium risk-free interest rate.

The government obtains its tax revenue by levying taxes on household capital and labor income

at proportional flat tax rate, τt.
2 Given a tax revenue, the government covers government spending

G, and the rest is used for lump-sum transfers/tax Tt. The government runs a balanced budget each

period:

G+ Tt = τt [rtKt + wtNt] . (5)

Note that Tt can be either transfers (positive) or a tax (negative).

2.2 Competitive Equilibrium, Exogenous Policy

In this section, I define competitive equilibrium, given an exogenous tax policy first. Let me start

with a setting to address time-inconsistent policies. To describe problems with commitment (the

Ramsey problem), household dynamic problems need to be represented in a sequential manner.

2In a later section, I am relaxing this assumption.
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At the beginning of each period, households differ from one another in asset holdings a and labor

productivity ϵ. µt(a, ϵ) denotes the distribution of households in period t. Given a sequence of

prices {rt, wt}
∞
t=0, income taxes {τt}

∞
t=0, and lump-sum transfers {Tt}

∞
t=0, households in period t

solves

vt(a, ϵ) = max
ct, at+1, nt

u(ct(a, ϵ), 1− nt(a, ϵ)) + β
∑

ϵt+1

πϵt,ϵt+1
v(at+1(a, ϵ), ϵt+1) (6)

such that

ct + at+1 = (1− τt)wtϵtnt + (1 + rt(1− τt))a+ Tt.

Definition 2.2.1. Sequential Competitive Equilibrium (SCE), given a Sequence of Taxes

Given G, an initial distribution µ0(·), and income taxes {τt}
∞
t=0, a sequential competitive equilib-

rium (SCE) is a sequence of prices {wt, rt}
∞
t=0, a sequence of allocations {ct, nt, at+1, Kt, Nt}

∞
t=0,

a sequence of value functions {vt(·)}
∞
t=0, a sequence of distributions over the state space {µt(·)}

∞
t=1

, such that for all t

(i) Given {τt}
∞
t=0 and {wt, rt}

∞
t=0, the decision rules at+1(a.ϵ) and nt(a, ϵ) solve the household

problem in (6), and vt(a, ϵ) is the associated value fucntion.

(ii) The representative agent firm engages in competitive pricing:

wt = (1− θ)

(
Kt

Nt

)θ

(7)

rt = θ

(
Kt

Nt

)θ−1

− δ. (8)

(iii) The factor markets clear:

Kt =

∫

a µt(d(a× ϵ)) (9)

Nt =

∫

ϵ nt(a, ϵ) µt(d(a× ϵ)) (10)

(iv) The government budget constraint (5) is satisfied.

(v) Let B(A × E) denote the Borel σ-algebra on A × E. For any B ∈ B(A × E), the sequence

of distributions over individual {µt(·)}
∞
t=1 satisfies

µt+1(B) =

∫

{(a,ϵ)|(at+1(a,ϵ),ϵt+1)∈B}

∑

ϵt+1

πϵ,ϵt+1
µt(d(a× ϵ)). (11)
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On the other hand, to handle problems without commitment, it is convenient to present the

household dynamic problems in a recursive manner. In addition to the individual state variables a

and ϵ, there are two aggregate state variables, including the distribution of households µ(a, ϵ) over

a and ϵ and income tax τ . A variable with a prime symbol denotes its value in the next period.

Let v(a, ϵ;µ, τ) denote the value of households associated with a state of (a, ϵ;µ, τ). They

solve

v(a, ϵ;µ, τ) = max
c>0, a′≥a, 0≤n≤1

[
c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

∑

ϵ′

πϵ,ϵ′v(a
′, ϵ′;µ′, τ ′)

]

(12)

such that

c+ a′ = (1− τ)w(µ) ϵ n+ (1 + r(µ)(1− τ)) a+ T

τ ′ = Ψ(µ, τ)

µ′ = Γ(µ, τ, τ ′) = Γ(µ, τ,Ψ(µ, τ))

where a ≤ 0 is a borrowing limit, τ ′ = Ψ(µ, τ) is the perceived law of motion of taxes, and

µ′ = Γ(µ, τ, τ ′) is the law of motion for the distribution over households. Note that households

here solve the above problem given an exogenous tax policy function τ ′ = Ψ(µ, τ).

Definition 2.2.2. Recursive Competitive Equilibrium (RCE), given a Law of Motion for Tax.

Given G and Ψ(µ, τ), a recursive competitive equilibrium (RCE) is a set of prices {w(µ), r(µ)},

a set of decision rules for households ga(a, ϵ;µ, τ) and gn(a, ϵ;µ, τ), a value function v(a, ϵ;µ, τ),

a distribution of households µ(a, ϵ) over the state space, and the law of motion for the distribution

of households Γ(µ, τ,Ψ(µ, τ)) such that

(i) Given {w(µ), r(µ)}, the decision rules a′ = ga(a, ϵ;µ, τ) and n = gn(a, ϵ;µ, τ) solve the

household problem in (12), and v(a, ϵ;µ, τ) is the associated value function.

(ii) The representative agent firm engages in competitive pricing:

w(µ) = (1− θ)

(
K

N

)θ

(13)

r(µ) = θ

(
K

N

)θ−1

− δ. (14)

(iii) The factor markets clear:

K =

∫

a µ(d(a× ϵ)) (15)

N =

∫

ϵ gn(a, ϵ;µ, τ) µ(d(a× ϵ)) (16)
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(iv) The government budget constraint (5) is satisfied.

(v) The law of motion for the distribution of households µ′ = Γ(µ, τ,Ψ(µ, τ)) is consistent with

individual decision rules and the stochastic process of ϵ.

2.3 Competitive Equilibrium, Endogenous Policy

In this section, I define competitive equilibria where income tax is endogenously determined. I

model the tax choice in three ways: the time-inconsistent optimal income tax with commitment

(Ramsey problem); the time-consistent optimal income tax without commitment; and income tax

determined by majority voting. Let me begin with the Ramsey problem.

Definition 2.3.1. The Ramsey Problem:

A SEC with the Time-inconsistent Optimal Income Tax with Commitment

Given µ0, the government chooses {τt}
∞
t=0 such that

{τt}
∞
t=0 = argmax

{τ̃t}∞t=0

∫

E0

∞∑

t̂=0

β t̂u
(
c∗t̂ (a, ϵ|{τ̃t̂}

∞
t=0), 1− n∗

t̂ (a, ϵ|{τ̃t}
∞
t=0)

)
µ0(d(a× ϵ))

where
(
c∗
t̂
(a, ϵ|{τt}

∞
t=0), n

∗
t̂
(a, ϵ|{τt}

∞
t=0)}

∞
t̂=0

)
is an allocation in Definition (2.2.1) in period t̂,

given {τ̃t}
∞
t=0.

Note that the consumption and labor decisions at time t, (c∗t , n
∗
t ), are affected not only by the

policy in that period but also by a sequence of income taxes. Therefore, the current decisions are

influenced by past and future taxes, which leads to the time-inconsistent issue.

For time-consistent cases, I employ the definition in Krusell and Rı́os-Rull (1999); Klein and

Rı́os-Rull (2003).

Definition 2.3.2. A RCE with the Time-consistent Optimal Income Tax without Commitment.

(i) A set of functions {w(·), r(·), ga(·), gn(·), v(·),Γ(·)} satisfy Definition (2.2.2).
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(ii) For each (µ, τ), the government chooses τWO(µ, τ) such that

τWO(µ, τ) = argmax
τ̃ ′

∫

V̂ (a, ϵ;µ, τ, τ̃ ′)µ(d(a× ϵ)) (17)

where

V̂ (a, ϵ;µ, τ, τ̃ ′) = max
c>0, a′≥a, 0≤n≤1

[
c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

∑

ϵ′

πϵ,ϵ′v(a
′, ϵ′;µ′, τ̃ ′)

]

such that

c+ a′ = (1− τ)w(µ) ϵ n+ (1 + r(µ)(1− τ)) a+ T

τ ′ = τ̃ ′, and thereafter τ ′′ = Ψ(µ′, τ ′ = τ̃ ′) (18)

µ′ = Γ(µ, τ, τ̃), and thereafter µ′′ = Γ(µ′, τ̃ , τ ′′ = Ψ(µ′, τ ′ = τ̃ ′)) (19)

(iii) a′ = ĝa(a, ϵ;µ, τ̃ : τ̃ ′) and n = ĝn(a, ϵ;µ, τ̃ : τ̃ ′) solve (17) at prices that clear markets

and the government budget constraint, and Γ is consistent with individual decisions and the

stochastic process of ϵ.

(iv) For each (µ, τ), the policy outcome function satisfies Ψ(µ, τ) = τWO(µ, τ).

In the economy with the optimal income tax without commitment, the government implements

the time-consistent optimal policy as in Klein and Rı́os-Rull (2003); Corbae et al. (2009): a tax

rate that is sequentially chosen only for the next period while maximizing its utilitarian welfare

under this commitment constraint. Note that the government cannot commit to the future tax rate

from the period after the next period. Thus, once a chosen tax rate τ̃ ′ deviates from the equilibrium

tax policy function Ψ(·), tax rates thereafter follow the equilibrium tax policy function Ψ(·) be-

cause the government cannot commit to the future tax policy after one period. (18) presents such

dynamics. The law of motion for the distribution of households Γ(·) has to capture all the changes

in the evolution of distributions caused by the deviation of the income tax from the equilibrium tax

function, which is shown in (19). In equilibrium, for each aggregate state (µ, τ), the government’s

choice τWO(µ, τ) should be equal to the equilibrium tax function ψ(µ, τ), which is presented in

(iv).

Definition 2.3.3. A Political RCE with Sequential Voting.

(i) A set of functions {w(·), r(·), ga(·), gn(·), v(·),Γ(·)} satisfy Definition (2.2.2).
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(ii) For each (a, ϵ;µ, τ), households choose ψ(a, ϵ;µ, τ) such that

ψ(a, ϵ;µ, τ) = argmax
τ̃ ′

∫

V̂ (a, ϵ;µ, τ, τ̃ ′)µ(d(a× ϵ)) (20)

where

V̂ (a, ϵ;µ, τ, τ̃ ′) = max
c>0, a′≥a, 0≤n≤1

[
c1−σ

1− σ
+B

(1− n)1−1/χ

1− 1/χ
+ β

∑

ϵ′

πϵ,ϵ′v(a
′, ϵ′;µ′, τ̃ ′)

]

such that

c+ a′ = (1− τ)w(µ) ϵ n+ (1 + r(µ)(1− τ)) a+ T

τ ′ = τ̃ ′, and thereafter τ ′′ = Ψ(µ′, τ ′ = τ̃ ′) (21)

µ′ = Γ(µ, τ, τ̃), and thereafter µ′′ = Γ(µ′, τ̃ , τ ′′ = Ψ(µ′, τ ′ = τ̃ ′)). (22)

(iii) For each (µ, τ), the median voting outcome τM(µ, τ) satisfies

∫

{ψ(a,ϵ;µ,τ)≤τM (µ,τ)}

µ(d(a× ϵ)) ≥
1

2
(23)

∫

{ψ(a,ϵ;µ,τ)≥τM (µ,τ)}

µ(d(a× ϵ)) ≥
1

2
. (24)

(iv) For each (µ, τ), the policy outcome function satisfies Ψ(µ, τ) = τM(µ, τ).

The political economy with sequential voting follows a dynamic game between two political

parties, as in Krusell and Rı́os-Rull (1999). These parties compete with one another to take power,

and the winner is determined bymajority voting by households on income taxes that the two parties

proposed for each period—a lack of commitment. One-dimensional voting with a single-peaked

preference leads the most preferred policy of the median voters to be supported by the majority.

As a result, the dominant strategy of these two parties is a policy preferred by the median voter. To

avoid multiple equilibria, I assume that one party always wins when the votes are tied.

Condition (ii) implies that each household solves the one-time deviation problem in (20), re-

sulting in ψ(·), the most preferred tax of households associated with a state of (a, ϵ;µ, τ). As in

the case with the optimal policy without commitment, a lack of government commitment makes

households believe that future tax rates after one period will follow a sequence of income taxes

induced by the equilibrium tax policy function Ψ(·) as shown in (21). The law of motion for the

distribution of households has to capture all changes in the evolution of these distributions caused

by the one-time deviation problem of households, which is presented in (22).

Following Corbae et al. (2009), I use condition (iii) to define the median voter. I sort the agents

by the most preferred tax rate of households ψ(·) and find τM(·) for each (µ, τ). Condition (iv)
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implies that in the political equilibrium, the median voting outcome τM(µ, τ) should be equal to

the equilibrium tax function Ψ(µ, τ) for each (µ, τ).

3 Characterization of the Markov Perfect Equilibria

Despite the above definitions clearly showing how and when the government or the median voter

makes a decision on income tax, underlying economic trade-offs are hard to observe that the pol-

icymaker takes into account. In this section, I will explain what kinds of underlying economic

trade-offs exist and how the policymaker weighs these trade-offs in determining tax policy, us-

ing the generalized-Euler equation approach, which is proposed by Klein, Krusell and Rı́os-Rull

(2008).

The generalized-Euler equation of the policymaker reveals economic forces behind the poli-

cymaker’s decision through its first-order condition. The first-order condition can be derived by

using the Benveniste-Scheinkman condition—the envelope condition—to eliminate terms related

to the partial derivative of the value function. Here, I begin with this analysis for the case of the

time-consistent optimal income tax without commitment. For ease of computation, I omit the en-

dogenous labor supply decision, the general Euler equation with which is shown in Appendix. To

obtain the first-order condition of the government, I take the partial derivative of the value of the

government V̂ in income tax for the next period τ̃ ′ near its equilibrium value τ ′:

0 =
d

dτ̃ ′

∣
∣
∣
τ̃ ′=τ ′

∫

V̂ (a, ϵ;µ, τ, τ̃ ′)µ(d(a× ϵ))

=

∫
d

dτ̃ ′

∣
∣
∣
τ̃ ′=τ ′

[

u((1− τ)w(µ)ϵ+ (1 + r(µ)(1− τ))a+ T − g̃a(a, ϵ;µ, τ, τ̃ ′))

+ β
∑

ϵ′|ϵ

πϵ′|ϵv(g̃
a(a, ϵ;µ, τ, τ̃ ′), ϵ′;µ′, τ̃ ′)

]

µ(d(a× ϵ)) (25)

Note that the tilde over ga means that the deviation of τ̃ ′ from its equilibrium value τ ′ makes the

decision rule for assets g̃a different from that on the equilibrium path ga.

An obscure part in computing the FOC (25) is the derivative of v in µ. Let mq denote the q− th

moment of µ. I assume that there exists Q ∈ N such that {mq}
Q
q=1 is a sufficient statistics of µ.

This assumption allows me to replace µ with {mq}
Q
q=1 in the value function. Then, the FOC (25)
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is given by:

0 =

∫ [

− u′(c) ·
∂g̃a(a, ϵ; {mq}

Q
q=1, τ, τ

′)

∂τ ′

+ β
∑

ϵ′

πϵ,ϵ′

{
∂v(a′, ϵ′, {m′

q}
Q
q=1, τ

′)

∂a′
·
∂g̃a(a, ϵ; {mq}

Q
q=1, τ, τ

′)

∂τ ′

+

Q
∑

q=1

〈∂v(a′, ϵ′, {m′
q}
Q
q=1, τ

′)

∂m′
q

·
dm′

q

dτ ′

〉

+
∂v(a′, ϵ′, {m′

q}
Q
q=1, τ

′)

∂τ ′

}]

µ(d(a× ϵ)). (26)

I will substitute out the derivative terms of the value ∂v
∂a′
, ∂v
∂m′

q
, and ∂v

∂τ ′
using the Benveniste-

Scheinkman condition. First, ∂v
∂a′

is given by:

∂v(a, ϵ; {mq}
Q
q=1, τ)

∂a
=u′(c)(1 + r(K)(1− τ)) (27)

where K = m1 is the first moment of µ—the mean—, which is equivalent to the aggregate capital.

Let me define ω as a wedge for the consumption Euler Equation:

ω(a, ϵ; {mq}
Q
q=1, τ) = −u′(c) + β(1 + r(K ′)(1− τ ′))

∑

ϵ′

πϵ,ϵ′u
′(c′)

= −u′(c) + β(1 + r(K ′)(1−Ψ(µ, τ)))
∑

ϵ′

πϵ,ϵ′u
′(c′). (28)

Substituting (28) and (27) into the FOC (26) gives:

0 =

∫ [

ω(a, ϵ; {mq}
Q
q=1, τ) ·

∂g̃a(a, ϵ; {mq}
Q
q=1, τ, τ

′)

∂τ ′

+ β
∑

ϵ′

πϵ,ϵ′

{ Q
∑

q=1

〈∂v(a′, ϵ′, {m′
q}
Q
q=1, τ

′)

∂m′
q

·
dm′

q

dτ ′

〉

+
∂v(a′, ϵ′, {m′

q}
Q
q=1, τ

′)

∂τ ′

}]

µ(d(a× ϵ)).

(29)
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Now, I will substitute out ∂v
∂τ

using the Benveniste-Scheinkman condition. ∂v
∂τ

is given by:

∂v(a, ϵ; {mq}
Q
q=1, τ)

∂τ
=u′(c)

(

− w(m1)ϵ− r(m1)a+
∂T

∂τ
−
∂ga(a, ϵ; {mq}

Q
q=1, τ)

∂τ

)

+ β
∑

ϵ′

πϵ,ϵ′

{
∂v(a′, ϵ′; {m′

q}
Q
q=1, τ

′)

∂a′
·
∂ga(a, ϵ; {mq}

Q
q=1, τ)

∂τ

+

Q
∑

q=1

〈∂v(a′, ϵ′; {m′
q}
Q
q=1, τ

′)

∂m′
q

·
dm′

q

dτ

〉

+
∂v(a′, ϵ′; {m′

q}
Q
q=1, τ

′)

∂τ ′
·
∂Ψ(µ, τ)

∂τ

}

.

(30)

With ∂T
∂τ

= rk + wN , (30) is rearranged to:

∂v(a, ϵ; τ, {mq}
Q
q=1)

∂τ
=u′(c)

(

w(m1)(N − ϵ) + r(m1)(K − a)

)

+ ω(a, ϵ, τ, {mq}
Q
q=1) ·

∂ga(a, ϵ; τ, {mq}
Q
q=1)

∂τ

+ β
∑

ϵ′

πϵ′|ϵ

{ Q
∑

q=1

〈∂v(a′, ϵ′; τ ′, {m′
q}
Q
q=1)

∂m′
q

·
dm′

q

dτ

〉

+
∂v(a′, ϵ′; τ ′, {m′

q}
Q
q=1)

∂τ ′
·
∂Ψ(τ, µ)

∂τ

}

. (31)

Note that u′(c)
(
w(m1)(N − ϵ) + r(m1)(K − a)

)
means a welfare change from income changes

via redistribution with transfers T following an increase in the current tax τ . This effect is in favor

of lower-labor income and -wealth, implying lower ϵ and a relative to N and K, respectively, as

these households benefits from greater transfers following an increasing in income taxes. I define

this redistribution effect with transfers T as χ to be used later:

χ(a, ϵ; τ, {mq}
Q
q=1) = u′(c)

(
w(m1)(N − ϵ) + r(m1)(K − a)

)
(32)

The remaining is to substitute out
∂v(a′,ϵ′;τ ′,{m′

q}
Q
q=1

)

∂m′

q
. It is hard to know how large Q is required

for sufficient statistics for µ. Here, I assume Q = 1, implying m1 = K is sufficient to capture

the evolution of distributions as in Krusell and Smith (1998). An alternative interpretation of this

assumption is that the government considers only changes in the future prices, not higher moments

for the future distribution in determining income taxes. This assumption enables me to characterize

the MPE further.
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With the Benveniste-Scheinkman condition, ∂V
∂K

is given by:

∂v(a, ϵ; τ,K)

∂K
=u′(c)

(

(1− τ)(fNK(K)ϵ+ fKK(K)a) +
∂T

∂K

)

− u′(c)
ga(a, ϵ; τ,K)

∂K
+ β

∑

ϵ′

πϵ′|ϵ

{
∂v(a′, ϵ′; τ ′, K ′)

∂a′
·
ga(a, ϵ; τ,K)

∂K

+
∂v(a′, ϵ′j; τ

′, K ′)

∂K ′
·
∂Γ(K, τ, τ ′)

∂K
+
∂v(a′, ϵ′; τ ′, K ′)

∂τ ′
·
∂Ψ(τ,K)

∂K

}

.

(33)

u′(c)
(
(1− τ)(fNK(K)ϵ+ fKK(K)a) + ∂T

∂K

)
implies an individual welfare change driven by vari-

ations in the factor composition between capital and labor income following an increase in the

current tax τ . As discussed in Davila, Hong, Krusell and Rı́os-Rull (2012), this effect differs

across individuals and depends on the composition of their income. To clarify how this effect

is linked to the factor composition of individual income, I proceeds with further steps following

Davila et al. (2012). Because f is homogeneous of degree 1, fKK(K,N)K+fKN(K,N)N = 0.

On top of that, because T = τ(rK + wN) − G = τ(fKK + fNN) − G, ∂T
∂K

= fK(K)τ . Then,

with these conditions, ∂v
∂K

is given by:

∂v(a, ϵ; τ,K)

∂K
= u′(c)

(
(1− τ)(−

ϵ

N
+

a

K
)fKK(K)K + fK(K)τ

)
+ ω(a, ϵ; τ,K) ·

ga(a, ϵ; τ,K)

∂K

+ β
∑

ϵ′

πϵ′|ϵ

{
∂v(a′, ϵ′j; τ

′, K ′)

∂K ′
·
∂Γ(K, τ, τ ′)

∂K
+
∂v(a′, ϵ′; τ ′, K ′)

∂τ ′
·
∂Ψ(τ,K)

∂K

}

(34)

Note that u′(c)
(
(1 − τ)(− ϵ

N
+ a

K
)fKK(K)K + fK(K)τ

)
indicates a welfare change following

a shift of the factor composition of income that is driven by general equilibrium effects after an

increase in K. This channel has been thoroughly investigated by Davila, Hong, Krusell and Rı́os-

Rull (2012). Note that because fKK(K)K < 0, fK(K)τ > 0, the sign of this term depends hugely

on the size of (− ϵ
L
+ a

K
). For example, let me assume that there is an increase in K. In regard

to this change, if ϵ
L

is substantially larger than a
K

—the factor income is biased to labor (the factor

composition of income of the consumption-poor)— ∂v
∂K

is positive because w increases while r is

reduced in general equilibrium. On the other hand, the consumption-rich, whose factor income is

biased more toward capital, are more likely to experience a loss in welfare because a decline in r

plays a role in reducing their income. I will define this pecuniary externality through changes in
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the composition of individual income as ϕ to be used later:

ϕ(a, ϵ; τ,K) = u′(c)
(
(1− τ)(−

ϵ

N
+

a

K
)fKK(K)K + fK(K)τ

)
. (35)

I will ease the notations by employing sequential ones. I refers to vi,Xt
as the partial derivative

of v in Xt for individual i in period t. Then, ∂v
∂K

and ∂v
∂τ

are rearranged to:

vi,Kt
= ϕi,t + ωi,t · g

a
i,Kt

+ βEi,t[vKt+1
ΓKt

+ vτt+1
ΨKt

] (36)

vi,τt = χi,t + ωi,t · g
a
i,τt + βEi,t[vKt+1

Γi,τt + vτt+1
Ψτt ] (37)

where gai,Kt
= ∂ga

∂K
, gai,τt = ∂ga

∂τ
, ΓKt

= ∂Γ(K,τ,τ ′)
∂K

, Γτt = ∂Γ(K,τ,τ ′)
∂τ

,ΨKt
= ∂Ψ(K,τ)

∂K
, and Ψτt =

∂Ψ(K,τ)
∂τ

. Ei,t means the conditional expectation of individual i in period t.

I will eliminate the partial derivatives of the future values by successively substituting them-

selves out. Then, vi,K is given by:

vi,Kt
=ωi,t · g

a
i,Kt

+
∞∑

s=1

βsEi,t

[(
ΞΓt+s−1

ΞKt

· gai,Kt+s
+

ΞΨt+s−1

ΞKt

· gai,τt+s

)

· ωt+s

]

︸ ︷︷ ︸

PDV of lifetime wedges over Euler Equation following Kt ↑

+ ϕi,t +
∞∑

s=1

βsEi,t

[
ΞΓt+s−1

ΞKt

· ϕt+s

]

︸ ︷︷ ︸

PDV of changes in lifetime income via
variations in factor composition of income

following Kt ↑

+
∞∑

s=1

βsEi,t

[
ΞΨt+s−1

ΞKt

· χt+s

]

.

︸ ︷︷ ︸

PDV of changes in lifetime income
via redistribution with transfers

following Kt ↑

(38)

where
ΞΓt+s−1

ΞKt
is the sum of all the variation in Γt+s−1 = Kt+s caused by a change inKt and

ΞΨt+s−1

ΞKt

is the sum of all the variation in Ψt+s−1 = τt+s caused by a change in Kt.
3 These operators are

required because one-time change in capital stock Kt causes itself to adjust gradually over time.

Note that
ΞΓt+s−1

ΞKt
is positive because of the mean-reverting dynamics of capital. Likewise

ΞΨt+s−1

ΞKt

is positive because the government tend to impose a grater tax on an economy with a good deal of

the aggregate capital.

Equation (38) implies that a change in Kt leads individuals to face three different effects over

time. First, a change inKt affects individual consumption allocations over time, which is presented

in the sum of the first two terms. This sum indicates the present discount value of the lifetime

wedges over the consumption Euler equation. Second, a variation in Kt changes individuals‘

lifetime income through variations in the factor composition of income over time. This force is

observed in the sum of the third and fourth terms. Finally, a change in Kt affects individuals’

lifetime income via redistribution caused by altered transfers over time, which is shown in the fifth

3Appendix B shows their formal definition with recursive operators.
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term.

It is worth examining several features for the effects above. The first effect–related to individual

dynamic allocations—has no impact on individual values. Note that the first two terms comprise

the product the wedge from the consumption Euler equation (ω) and the partial derivative of the

saving decision rule in K and in τ (gai,K and gai,τ ) for each period. This product is always zero for

each period because when an individual, for example, does not hit the borrowing constraint, ω is

zero, and when it does so, both gai,K and gai,τ are zero. Such no impact takes place because this

economy is not centralized by a social planner but, with a government endogenously making de-

cisions, a decentralized economy where individuals optimally and efficiently choose consumption

and savings in competitive equilibrium.

As previously mentioned, the second effect—relevant to income changes caused by variations

in the factor composition of individual income—can differently affect individuals’ value according

to their income factor composition. For instance, when Kt increases, the sign of ϕ is reliant on the

composition of income. Note that in general equilibrium, this capital increase gives rise to a reduc-

tion in r but an increase in w. Equation (35) indicates that in response to these price changes, those

whose income tends to be toward labor income have a benefit. Considering the mean-reverting dy-

namics of Kt,
ΞΓt+s−1

ΞKt
is positive over time. Therefore, for labor income-biased individuals—the

consumption-poor, an increase in Kt has a positive impact on value through changes in the factor

composition of individual income. On the other hand, for capital income-biased individuals, the

non-consumption-poor, increased K reduces their value.

The final effect—associated with changes in income via redistribution caused by altered

transfers—differs across individuals. Equation (32) suggests that the sign of the final effect de-

pends on individuals’ relative labor productivity and asset holdings to the aggregate factors. Note

that
ΞΨt+s−1

ΞKt
is positive because the government tends to levy a more significant tax on an econ-

omy with a good deal of capital. Therefore, the final effect benefits the poor while negatively

influencing the rich.

Likewise, vi,τt is given by:

vi,τt =ωi,t · g
a
i,τt +

∞∑

s=1

βsEi,t

[(
ΞΓt+s−1

Ξτt
· gai,Kt+s

+
ΞΨt+s−1

Ξτt
· gai,τt+s

)

· ωt+s

]

︸ ︷︷ ︸

PDV of lifetime wedges over Euler Equation following τt ↑

+
∞∑

s=1

βsEi,t

[
ΞΓt+s−1

Ξτt
· ϕt+s

]

︸ ︷︷ ︸

PDV of changes in lifetime income via
variations in factor composition of income

following τt ↑

+χi,t +
∞∑

s=1

βsEi,t

[
ΞΨt+s−1

Ξτt
· χt+s

]

.

︸ ︷︷ ︸

PDV of changes in lifetime income
via redistribution with transfers

following τt ↑

(39)
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where
ΞΓt+s−1

Ξτt
is the sum of all the variation in Γt+s−1 = Kt+s caused by a change in τt;

ΞΨt+s−1

Ξτt

is the sum of all the variation in Ψt+s−1 = τt+s caused by a change in τt. The sign of
ΞΓt+s−1

Ξτt

is negative because a greater tax reduce overall savings, and that of
ΞΨt+s−1

Ξτt
is positive given its

mean-revert dynamics.

Equation (39) shows that one-time change in τt causes individuals to confront three different

effects over time, as in the case with a change in Kt. First, a change in τt affects individual

consumption allocations over time, which is presented in the sum of the first two terms, of which

value is zero as previously mentioned. Second, a change in τt changes individuals‘ lifetime income

through variations in the factor composition of income over time. This force is observed in the

sum of the third term. Finally, a change in τt affects individuals’ lifetime income via redistribution

caused by altered transfers over time, which is shown in the fourth and the fifth terms.

Substituting (38) and (39) into the FOC (29), the FOC is given by:

0 =

∫
[

Ei,t

[

ωi,t · g
a
i,τt+1

+
∞∑

s=1

βs
{

ωt+s ·

(

gai,Kt+s
·
(∂Kt+1

∂τt+1

·
ΞΓt+s−1

ΞKt+1

+
ΞΓt+s−1

Ξτt+1

)

+ gai,τt+s
·
(∂Kt+1

∂τt+1

·
ΞΨt+s−1

ΞKt+1

+
ΞΨt+s−1

Ξτt+1

)
)}

+
∞∑

s=1

βs
{

ϕt+s ·
(∂Kt+1

∂τt+1

·
ΞΓt+s−1

ΞKt+1

+
ΞΓt+s−1

Ξτt+1

)}

+
∞∑

s=1

βs
{

χt+s ·
(∂Kt+1

∂τt+1

·
ΞΨt+s−1

ΞKt+1

+
ΞΨt+s−1

Ξτt+1

)}]
]

µ(d(a× ϵ)). (40)

As mentioned before, the first three terms are zero because individuals’ optimal decisions on con-

sumption and savings. Thus, the above equation is rearranged to:

−

∫
[

Ei,t

[{ ∞∑

s=1

βsϕt+s ·
(∂Kt+1

∂τt+1

·
ΞΓt+s−1

ΞKt+1

+
ΞΓt+s−1

Ξτt+1

)}]
]

µ(d(a× ϵ))

︸ ︷︷ ︸

Sum of PDV of changes in lifetime income
via variations in factor composition of income following τt+1 ↑ over individual )

=

∫
[

Ei,t

[{{ ∞∑

s=1

βs
{

χt+s ·
(∂Kt+1

∂τt+1

·
ΞΨt+s−1

ΞKt+1

+
ΞΨt+s−1

Ξτt+1

)}]
]

µ(d(a× ϵ))

︸ ︷︷ ︸

Sum of PDV of changes in lifetime income
via redistribution with transfer following τt+1 ↑ over individuals

(41)

where
(
∂Kt+1

∂τt+1
· ΞΓt+s−1

ΞKt+1
+ ΞΓt+s−1

Ξτt+1

)

is negative, and
(
∂Kt+1

∂τt+1
· ΞΨt+s−1

ΞKt+1
+ ΞΨt+s−1

Ξτt+1

)

is positive.4

Equation (41) implies that when determining taxes, the government takes into account two

4Recall that
∂Kt+1

∂τt+1
< 0 ,

ΞΓt+s−1

ΞKt+1
> 0,

ΞΓt+s−1

Ξτt+1
< 0,

ΞΨt+s−1

ΞKt+1
< 0, and

ΞΨt+s−1

Ξτt+1
> 0.
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underlying forces: the pecuniary externality relevant to changes in the income factor composition

and income redistribution across individuals with transfers. Note that the government does not

consider distortions observed in the consumption Euler equation; because individuals optimally

choose consumption and saving in competitive equilibrium, there is no room for improvement in

terms of the government. As a result, when making tax decisions, the government internalizes the

above two forces—the pecuniary externality and income redistribution with altered transfers.

Equation (41) can be interpreted from the view of the government’s cost-benefit analysis. Be-

cause the government takes the utilitarian’s view, and each force is weighted with the individual

marginal utility of consumption, the government favors the consumption-poor. Let us assume an

increase in τ ′ causing an increase in transfers and a gradual reduction in the aggregate capital over

time. Because this change brings about an increase in r and a decrease in w, the government will

regard the force related to income changes through variations in individuals’ income composition

as a cost. But the government will view the channel associated with redistribution via altered

transfers as a benefit because the consumption-poor benefits from these increased. In response to

a reduction in τ ′, of course, the government will take the opposite view regarding cost-benefit.

Equation (41) also shows how individual heterogeneity plays a role in the determination of

taxes. Without individual heterogeneity, the cross-sectional distribution is de-generated, and the

force related to income redistribution via altered transfers—χ = becomes zero. Thus Equation

(41) is rearranged to:

−Et

[ ∞∑

s=1

βsϕt+s ·
(∂Kt+1

∂τt+1

·
ΞΓt+s−1

ΞKt+1

+
ΞΓt+s−1

Ξτt+1

)]

= 0 (42)

where

ϕt = u′(ci,t)
(
(1− τt)(−

ϵi,t
Lt

+
ai,t
Kt

)fKK(Kt)Kt + fKt
(Kt)τt

)
= u′(ci,t) · fKt

(Kt) · τt

The above equation indicates that to satisfy the above condition, the force associated with the

pecuniary externality has to be null, consistent with previous literature findings: the optimal tax

in the representative agent model is zero. This finding means that individual heterogeneity shaped

by the interaction between their decisions and uninsurable idiosyncratic income risk brings about

the pecuniary externality and insurance channels via transfers, thereby making the optimal tax rate

positive. Another interesting investigation for the optimal condition (41) is to compare this to the
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planner’s optimal condition in Davila et al. (2012):

ωi,t + β

∫

Ei,t
[
ϕt+1

]
µ(d(a× ϵ)) = 0 (43)

where

ωi,t = −u′(ci,t) + β(1 + r(Kt+1))
∑

ϵ′

πϵ′|ϵu
′(ct+1) (44)

ϕi,t = u′(ci,t)
(
(−
ϵi,t
Lt

+
ai,t
Kt

)fKK(Kt)Kt

)
(45)

In contrast with the government’s optimal condition (41) in this paper, the consumption Euler

equation part in Davila et al. (2012) does not need to be null. What matters for the social plan-

ner is to satisfy this optimal condition considering the pecuniary externality as well as distortions

embedded in the consumption Euler equation. This distinction takes place because of different

assumptions between the two economies. Davila, Hong, Krusell and Rı́os-Rull’s (2012) economy

is centralized: the social planner can manipulate individual saving decisions while preserving con-

straints caused by incomplete markets and uninsurable idiosyncratic income risk. This centralized

economy assumption makes the consumption Euler equation non-zero. But the economy in my

paper is decentralized. Although the government exists and endogenously determines taxes, in-

dividuals optimally choose consumption and saving; therefore, the government has no room for

improvement regarding individual consumption dynamic allocations.

Finally, the government’s optimal condition (41) allows a theoretical investigation for the dif-

ference between the case with time-consistent optimal policy and with sequential voting. As men-

tioned previously, the majority voting game boils down to the median voter’s choice. Therefore, in

this political economy, the optimal condition is given by:

0 =
d

dτ̃ ′

∣
∣
∣
τ̃ ′=τ ′

V̂m(a, ϵ; τ, µ, τ̃
′)

=
d

dτ̃ ′

∣
∣
∣
τ̃ ′=τ ′

[

u((1− τ)w(µ)ϵ+ (1 + r(µ)(1− τ))a+ T − g̃a,m(a, ϵ; τ, µ : τ̃ ′))

+ β
∑

ϵ′

πϵ′|ϵvm(g̃a(a, ϵ; τ, µ : τ̃ ′), ϵ′, µ′, τ̃ ′)

]

(46)

where m subscript refers to the median voter. Using the Benveniste-Scheinkman condition, I

rearrange this condition with χi, ηi, and ϕi as in the optimal time-consistent case. In the economy
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with sequential voting, the government offers voters τmt+1 satisfying

−Em,t

[{ ∞∑

s=1

βsϕm,t+s ·
(∂Kt+1

∂τt+1

·
ΞΓt+s−1

ΞKt+1

+
ΞΓt+s−1

Ξτt+1

)}]

︸ ︷︷ ︸

PDV of changes in lifetime income
via variations in factor composition of income following τt+1 ↑ for the median voter

= Em,t

[{{ ∞∑

s=1

βs
{

χm,t+s ·
(∂Kt+1

∂τt+1

·
ΞΨt+s−1

ΞKt+1

+
ΞΨt+s−1

Ξτt+1

)}]

.

︸ ︷︷ ︸

PDV of changes in lifetime income
via redistribution with transfer following τt+1 ↑ for the median voter

(47)

No integral appears over individual because the government considers only what the median

voter prefers. Therefore, what matters is where the median voter is. When his position is far

from the consumption-poor’s, The median voter’s income composition is more likely to be biased

toward capital than the consumption-poor, thereby leading the cost from variations in the factor

composition of income to be smaller in response to an increase in τt+1. Therefore, this smaller

cost requires a less generous transfer system. Because the median voter’s position is a quantitative

issue, I will address its implications in a later section.

4 Numerical Solution Algorithm

Here, I focus on conveying the key ideas of the numerical solution algorithm. Appendix A demon-

strates each step of the algorithm with details.

Although the characterization in the previous section helps us better understand the govern-

ment’s decisions on policies, it is not that useful in numerically computing the equilibrium because

of its sequential feature. Basically, solving the model entails a substantial computational burden.

The law of motion for the distribution of households Γ(·) has to be consistent with individual de-

cisions. Additionally, because the labor supply is endogenous with wealth effects, the two factor

markets—K and N—must clear. Furthermore, perhaps the most challenging part is finding the

equilibrium policy function Ψ(·) that should be determined according to the political and commit-

ment structure while consistent with individual decisions and the law of motion for the distribution

of households. In other words, three equilibrium objects—individual decisions, the law of motion

for the distribution Γ(·), and the policy function Ψ(·)—interact and have to be consistent with one

another in a Markov-perfect equilibrium.

I address the above computational issues by taking ideas from the backward induction method

of Reiter (2010). The author introduced a non-simulation-based solution method to solve an in-
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complete markets economy with aggregate uncertainty. As in Krusell and Smith’s (1998), Reiter’s

(2010) approach also reduces the dimension of distributions in the law of motion Γ(·) to some finite

moments of the distribution, and it is defined across the aggregate finite grid points. However, the

way of finding Γ(·) is differs substantially between the two methods. In Krusell and Smith (1998),

their algorithm repeatedly simulates the model economy through the inner and outer loops. In the

inner loops, the value is solved given a perceived law of motion for the distribution of households,

and the law of motion is updated after a simulation in the outer loop. This procedure is repeated

until the perceived law of motion is equal to the updated one.

By contrast, the backward induction method of Reiter (2010) does not simulate the economy

to update the law of motion for the distribution of households Γ(·); rather, this is updated while

solving for the value given a set of proxy distributions across the aggregate finite grid points.

Given a proxy distribution, finding the law of motion for the distribution of households Γ(·) is

feasible by using the moment-consistent conditions. For example, individual decision rules for

assets allow me to obtain the information (e.g., mean or variance) on the aggregate capital in the

next period. A simulation step is followed not to update the law of motion for the distribution of

households Γ(·) but to update a set of proxy distributions across the finite nodes in the aggregate

state. Simulations are much less required in Reiter (2010) than in Krusell and Smith (1998),

which improves computational efficiency for the backward Induction method. Additionally, with

these proxy distributions, the backward induction method allows me to approximate not only the

aggregate law of motion for the distribution Γ(·) but also the tax policy function Ψ(·) consistent

with the political and commitment structure. This is feasible because, with the value function,

these endogenous tax functions can be directly obtained by solving (17) and (20).

However, I wish to clarify that I cannot directly apply the Reiter’s (2010) method to the model

in this paper because of the existence of off-equilibrium paths. In the incomplete markets economy

with aggregate uncertainty, for which Reiter’s (2010) method is originally designed, the distribu-

tion of aggregate shocks (TFP) Z is stationary. Thus, all the aggregate states Z are not measure

zero. With a positive probability, all the states in Z are realized on the equilibrium path. However,

an economy in Markov-perfect equilibrium does not have this property. For example, in the po-

litical economy with sequential voting, the vote on policies are obtained by comparing one-time

deviation policies. Some tax paths would not be reached on the equilibrium path.

To cope with this issue, I make three variations to the original backward induction method of

Reiter (2010). First, as mentioned above, I approximate not only the aggregate law of motion for

the distribution of households but also the endogenous tax policy function. I find these mappings

in a nonparametric way as in Reiter (2010). Second, I arrange distributions for all types of off the

equilibrium paths, taking the initial distribution of the simulations as the previous proxy distribu-

tion for each finite grid point of the aggregate state. Figure 1 shows various transitions from off the
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Figure 1: Transitions from off the Equilibrium to the Equilibrium

equilibrium to the steady-state equilibrium in the political economy with voting. Finally, I modify

the way of constructing reference distributions, which is required to update the proxy distributions

in Reiter (2010), by reflecting the features of the Markov-perfect equilibrium, in which how many

times a tax rate off the equilibrium takes place is unknown before simulation. Appendix A demon-

strates the full details of the solution method, with its performances in efficiency and accuracy.

Because of these somewhat complex variations in Reiter’s (2010) method, one might consider

simply using Krusell and Smith’s (1998) method to solve this model. However, their approach

would not be efficient in addressing this class of models in Markov-perfect equilibrium. First,

finding the two aggregate laws of motion–Γ and Ψ—is computationally very costly when using

this simulation-based solution method. When this method is employed to solve the economy in this

paper, this process is the same as adding another outer loop to the outer loop in Krusell and Smith’s

(1998) original algorithm, thereby exponentially increasing the computational burden. Second, the

parametric assumption of Krusell and Smith’s (1998) approach would act as a barrier because the

equilibrium tax function Ψ(·) could be severely nonlinear in the aggregate state. The parametric
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assumption works well when the law of motion for household distributions Γ(·) is close to linear.

I find that although this linearity still appears in Γ(·), Ψ(·) shaped by the median voter’s choice is

severely nonlinear, as shown in Figure 2.5

When solving the Ramsey problem, I have employed the approach in Dyrda and Pedroni

(2022), parameterizing the transitional path of income taxes as follows:

τt =

( mx0∑

i=0

αxi Pi(t)

)

exp(λt) + (1− exp(−λt))

(mxF∑

j=0

βxj Pj(t)

)

, t ≤ tF (48)

where {Pi(t)}
mx0

i=1 and {Pj(t)}
mxF

j=0 are families of Chebyshev polynomial; mx0 and mxF are orders

of the polynomial apporoximation for the short-run and long-run dynamics; {αxi }
mx0

i=0 and {βxj }
mxF

j=0

are weights on the consecutive elements of the family; and λ controls the convergence rate of the

fiscal instrument. This setting assumes that the economy has the long-run steady state at the latest

in period tF . I first choose mx0 = mxF = 2 and tF = 250. Then, I seek {αx0 , α
x
1 , α

x
2 , β

x
0 , β

x
1 , β

x
2 , λ}

5Corbae et al. (2009) employed Krusell and Smith’s (1998) method to solve a similar economy to mine but without

wealth effects of labor supply. Such difficulties might lead them to omit wealth effects of labor supply although adding

more states to the forecasting rules.
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that maximizes the welfare function of the utilitarian government at time 0.6

5 Calibration

I calibrate the model to capture the features of the U.S. economy. I divide the parameters into two

groups. The first set of the parameters requires solving the stationary distribution of the model

to match moments generated by the model with their empirical counterparts. The other set of

the parameters is determined outside the model. I take the values of these parameters from the

macroeconomic literature and policies.

Table 1: Parameter Values of the Baseline Economy

Description (Target) Value

β Discount factor (K/Y = 3) 0.951

B Utility of leisure (AVG Wrk Hrs = 1/3) 3.803

σ Relative risk aversion 2

χ Frisch elasticity of labor supply 0.75

a Borrowing constraint 0

θ Capital income share 0.36

δ Depreciation rate 0.08

ρϵ Persistence of wage shocks 0.955

σϵ STD of wage shocks 0.20

G Government spending G/Y = 0.19
τ AVG income tax 0.31

Table 1 displays the parameters. I internally calibrated two parameters: the discount factor β

and the utility of leisure B. β is selected to match a capital to output ratio of 3, and B is chosen to

reproduce an average hours worked of 8 hours a day. The other parameters are determined outside

the model. The coefficient of relative risk aversion is set to 2. The Frisch elasticity of labor supply

χ is taken to be 0.75. I set the borrowing constraint a = 0. The capital income share θ is chosen to

reproduce the empirical finding that the share of capital income is 0.36. The annual depreciation

rate δ is 8 percent. The persistence of wage shocks ρϵ is set to be 0.955, and the standard deviation

of wage shocks σϵ is taken as 0.20. The values of ρϵ and σϵ lie in the range of those frequently used

in the literature. Government spending G is set up so that the fraction of government spending

out of GDP is equal to 0.19. The flat income tax rate is chosen as 0.31 in the baseline economy,

implying the ratio of transfers to GDP to be 0.046 that is closer to its empirical counterpart, 0.044.7

6The inclusion of lump-transfers prevents the non-existence of a Ramsey steady state, which is examined in Straub

and Werning (2020). More details are noted in Dyrda and Pedroni (2022).
7I take the value from Jang et al. (2021) that excludes Social Security and Medicare in their calculation to reflect a

lack of lifetime structure.
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6 Results

In this section, I quantitatively explore how differences in the commitment and political structure

affect the aggregate economy, inequality, and welfare. For this, I conduct two sets of counterfactual

exercises. First, to examine the effects of the commitment structure, I compare the economy

with the time-consistent optimal policy to the economy with the time-inconsistent optimal policy

with the Ramsey planner. Second, to figure out the impacts of the political structure, I contrast

the economy with the time-consistent optimal policy with the economy with sequential voting. I

assume that the initial economy begins at the calibrated steady-state through all these exercises,

and I compare their equilibrium results over the transitional path.
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Figure 3: Time-consistent and -inconsistent Optimal Policies: Tax/Transfers Transition Paths

Figure 3 shows the time-consistent and inconsistent optimal taxes and the implied ratio of transfers

to the initial output. The first raw indicates economies where income tax is allowed to be varying

over time; the second raw dose economies where only labor income tax is allowed to be time-
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varying while capital income tax is fixed at 0.31; and the last raw does economies where only

capital income tax is allowed to be time-varying while labor income tax is fixed at 0.31. Note

that the time-consistent capital income tax is not well-established in my model. With a lack of

commitment, the government levies capital income tax at a confiscatory rate, leading the economy

to shrink. In my model, because the government purchase is constant, households have to pay

income taxes or a lump-sum tax to finance it. Under this shrinking economy, because their income

is also reduced, levying a lump-sum tax is required. In the case with capital income tax without

commitment, this lump-sum tax level is so high that households with low productivity cannot

have a positive consumption under their budget set, preventing the sustainability of this economy.

Therefore, I focus on analyzing results with the cases with proportional income and labor income

taxes going forward.8

Let me begin with the cases with proportional income tax. The top-left panel of Figure 3 im-

plies that the Ramsey planner with the time-inconsistent optimal policy chooses more substantial

income taxes than the government with the time-consistent optimal policy over the whole transi-

tional path. The Ramsey planner gradually increases income taxes by 16 percentage points. But

with a lack of commitment, the optimal income tax rate raises taxes by 2 percentage points. This

gap in the tax policies results in differences in the size of transfers. The time-inconsistent optimal

income tax economy generates larger transfers than the time-consistent optimal income tax econ-

omy. The ratio of transfers to the initial GDP in the case with commitment gradually increases by

9.2 percentage points, but that in the case without commitment by 4.7 percentage points.

Table 2: Welfare Outcomes According to Commitment Structure

Welfare (CEV) Time-inconsistency Time-consistency

OPT INC TAX +2.19% +0.57%

OPT Labor INC TAX (τk = 0.31) +2.20% -1.24%

OPT Capital INC TAX (τl = 0.31) +2.85% -

This distinction for income taxes brings about different welfare consequences. Table 2 shows

that welfare, measured by the consumption equivalent variation (CEV) of the utilitarian welfare

function, is significantly higher in the case with the time-inconsistent optimal tax. The time-

inconsistent optimal tax improves welfare by 2.19 percent, while the time-consistent one does so

by 0.57 percent. To understand this disparity in welfare consequences, I examine how differently

the inputs of the social welfare function vary over time according to the commitment structure.

Note that welfare increases when the overall level of consumption and leisure increases and their

inequality is reduced.

8I report results for the case with the time-inconsistent optimal capital income tax in Appendix.
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Figure 4: Time-consistent and -inconsistent Optimal Income Tax: Aggregate Outcomes

Figure 4 depicts changes in the levels of the aggregate variables. Figure 4 suggests that the

case without commitment generates more efficient outcomes. All the aggregate variables in the

economy with the time-consistent optimal policy are larger than that with time-inconsistent optimal

policy. This result may be obvious because lower taxes in the time-consistent case bring about

fewer distortions. However, this finding seems obscure to understand the welfare consequences

because consumption is substantially larger in the case with the time-consistent policy, and the

gaps in hours worked are not significant.

Figure 5 shows inequalities in consumption, hours worked, wealth and after-tax income. Fig-

ure 5 suggests that more substantial welfare improvements in the case with the time-inconsistent

optimal policy are driven mainly by larger reductions in inequalities in consumption and leisure.

Although consumption inequality, measured by the Gini coefficient, decreases by less than 5 per-

cent with the time-consistent optimal policy, it is reduced by around 10 percent with the time-

inconsistent optimal tax. Similarly, inequality in hours worked is also reduced more in the case

with the time-inconsistent optimal policy. These findings imply that the Ramsey planner achieves

better welfare outcomes by better balancing efficiency and redistribution through the controlling

of a sequence of transfers over the transitional path, leading to more equal after-tax incomes. This

management is allowed thanks to the commitment instrument. By contrast, the government with

the time-consistent optimal policy is less competent in managing the trade-off between efficiency

and redistribution over the transitional path because it is under a lack of commitment. As a result,
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Figure 5: Time-consistent and -inconsistent Optimal Income Taxes: Distributional Outcomes

the government without commitment implements less tax to spare more incomes in the short run

while forsaking welfare gains from reduced inequalities in the long run.
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Figure 6: Time-consistent and -inconsistent Optimal Labor Taxes: Aggregate Outcomes
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Figure 7: Time-consistent and -inconsistent Optimal Labor Taxes: Distributional Outcomes

The optimal labor income tax cases show similar implications for the macroeconomy, inequal-

ity, and welfare. As can be seen in Table 2, an evident difference is that the gap in the welfare

outcomes is more substantial according to the commitment structure. This quantitative difference

is driven by the longer working hours in the case with the time-consistent optimal policy, as shown

in Figure 6; however, as Figure 7 shows, the evolution of distributions is still crucial in understand-

ing their welfare consequences.

6.2 Time-consistent Optimal Tax versus Sequential Voting

In this section, given a lack of commitment, I examine how the political structure affects equilib-

rium outcomes. Figure 8 shows the tax/transfers paths according to the political structure. Figure 8

implies that the economy with sequential voting has more frugal income taxes both in proportional

income tax and in labor income tax. In the proportional income tax system, the political economy

shows lower tax rates than the initial steady state’s. This reduction in tax rates converts transfers

to a lump-sum tax in the economy with sequential voting. In the labor income case, the economy

with sequential voting generates tax rates lower than 5 percent. This lower tax rate brings about a

lump-sum tax of 0.1 percent of the initial GDP.

As mentioned in the previous section, because the dimension of taxes is one in my model, the

majority voting rule boils down to the median voting rule. Thus, the tax outcomes in the political

economies are equivalent to tax rates most preferred by the median voter. Figure 8 implies that the
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Figure 8: Time-consistent Optimal Policy vs. Sequential Voting: Tax Transition Paths

median voter is substantially different from the consumption-poor because this voter is not willing

to bear large distortions, preferring a lower tax rate with fewer transfers.

This median voter’s decision considering only his own efficiency affects aggregate outcomes.

Figure 9 implies that the economy with sequential voting shows larger aggregate variables. While

the aggregate consumption declines with the time-consistent optimal policy, it increases with se-

quential voting. And the overall level of hours worked, the aggregate capital, and the efficiency

unit of the aggregate labor are also higher in the economy with sequential voting. These results are

driven by fewer distortions—driven by lower tax rates—that the median voter prefers and chooses.

Figure 10 shows the distributional outcomes according to the political structure. Figure 10

implies that the political economy does not bring a reduction in inequality. Because he takes only

into account his own efficiency, the median voter has no interest in overall inequality. Of course,

the median voter considers how much transfers he would get in voting. However, this consideration

does not mean that the median voter thinks of a desirable level of inequality. Therefore, the level

of transfers relies on the median voter’s position. In my quantitative model, the median voter

is substantially different from the consumption-poor, thereby preferring lower tax rates with few

transfers. As a result, the economy’s overall inequalities with sequential voting are greater than

with the time-consistent optimal income tax.

This median voter’s attitude for efficiency and redistribution brings stark differences to wel-
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Figure 9: Optimal Policy and Sequential Voting for Income Tax: Aggregate Outcomes

Table 3: Welfare Outcomes According to Political Structure

Welfare (CEV) Optimal Policy Sequential Voting

INC TAX +0.57% -2.13%

Labor INC TAX (τk = 0.31) -1.24% -7.8%

fare outcomes between the case with sequential voting and that with the time-consistent optimal

policy. Table 3 implies that welfare losses with sequential voting are substantially associated with

its more significant inequalities. Although the increased consumption plays a role in improving

welfare, longer hours worked and more significant inequalities in consumption and hours worked

overwhelm the buoyant force, leading to welfare’s aggravation.
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Figure 10: Optimal Policy and Sequential Voting for Income Tax: Distributional Outcomes
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Figure 11: Optimal Policy and Sequential Voting for Labor Income Tax: Aggregate Outcomes
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Figure 12: Optimal Policy and Sequential Voting for Labor Income Tax: Distributional Outcomes

The cases with labor income tax shows similar implications for the macroeconomy, inequality,

and welfare. As can be seen in Table 3, an evident difference is that the gap in the welfare outcomes

is greater according to the political structure. This quantitative difference is driven by larger gaps

in labor taxes between these two economies, as can be seen in the bottom-left panel of Figure 8.

In particular, the median voter in the political economy pursues very low tax rates, causing the

substantial lump-sum tax. Although these quantitative difference appears, the macroeconomic and

distributional implications and welfare consequences are very similar to the case with proportional

income tax: Although the increased consumption plays a role in improving welfare, longer hours

worked and more significant inequalities in consumption and hours worked overwhelm the buoyant

force, leading to welfare’s deterioration.

7 Conclusion

This paper examines how differences in the government’s political and commitment structure affect

the macroeconomy, inequality, and welfare. I characterize the MPE with heterogeneous agents

using the generalized Euler equation; develop a numerical solution method for this game; and apply

this method to the standard incomplete markets model with uninsurable idiosyncratic income risk,

in which its tax/transfer system is endogenously determined according to its government’s political

and commitment structure.
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I find that both—commitment and political structure—are significantly crucial for the aggre-

gate economy, inequality, and welfare. Commitment and political system endogenously shape the

government’s behaviors, resulting in different dynamics of taxes. As a result, these different poli-

cies give rise to disparities in individual decisions, causing the aggregate economy, inequality, and

welfare to differ.

Note that the solution method itself could provide many opportunities for studying unexplored

research topics. Given the fundamental feature of Reiter (2010), this solution method can be

compatible with aggregate uncertainty. This research direction would make it possible to revisit

questions on fiscal policies according to the political and commitment structure. Another exciting

application of the method is addressing the interactions between policies and life-cycle dimensions.

Kim’s (2021) method would make this direction reachable. She extends Reiter’s (2010) backward

induction method to solve an overlapping generations model with aggregate uncertainty. Such

analyses are deferred to future work.
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Klein, Paul and José-Vı́ctor Rı́os-Rull, “Time-consistent optimal fiscal policy,” International

Economic Review, 2003, 44 (4), 1217–1245.
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Appendix A Numerical Solution Algorithm

Solving the Markov-Perfect Equilibria (MPE) of consecutive governments entails heavy compu-

tational burdens with heterogeneous agents. As in standard macroeconomic heterogeneous agent

models, individual decisions should be consistent with the aggregate law of motion for the dis-

tribution of agents. On top of that, the aggregate tax policy function must be compatible with

individual decisions and the aggregate law of motion for the distribution of agents. In other words,

these three equilibrium objects—individual decisions, the law of motion for the distribution, and

the tax policy function—have to be consistent with each other in the Markov-perfect equilibrium.

I address this computational issue by taking ideas from the Backward Induction method of Re-

iter (2010). This method discretizes the aggregate state into finite grid points. For each aggregate

grid point, the Backward Induction algorithm allows updating the aggregate law of motion while

solving the decision rules thanks to the existence of the proxy distribution. This means that for each

aggregate grid point, the backward induction algorithm would make it possible to approximate not

only the aggregate law of motion for the distribution; but also the tax policy function consistent

with the voting outcome or optimal policy without government commitment. With the value func-

tion, this endogenous tax policy outcome can be directly obtained when the proxy distribution is

explicitly available.

Unfortunately, the original Reiter’s (2010) method cannot directly be applied to the MPE mod-

els because the existence of off the equilibrium paths makes it challenging to arrange the proxy

distribution. In the model of Krusell and Smith (1998), for which Reiter’s (2010) method is orig-

inally designed, the distribution of TFP shocks Z is stationary, thus all the aggregate states Z are

not measure zero. With a positive probability, all the states Z are realized on the equilibrium path.

However, the MPE economy does not have this property. Let us think about a political economy

with sequential voting and its stationary distribution. In this political equilibrium, the voted poli-

cies are obtained by comparing among one-time deviation policies. Some tax paths would not be

reached at all on the equilibrium path.

I have three variations from the original backward induction method. First, I have to approx-

imate not only the aggregate law of motion for distributions but also the tax policy function that

is endogenous. I find these mappings in a non-parametric way, as in Reiter (2010). Second, I

arrange distributions for all types of off the equilibrium paths, taking the initial distribution of the

simulations as the previous proxy distribution for each aggregate state. Finally, I modify the way of

constructing the reference distributions in Reiter (2002, 2010), reflecting the features of economies

in the MPE wherein how many times a policy off the equilibrium takes place is unknown before

simulations.

Here, I show how to apply the algorithm to the political economy with sequential voting, which
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is the most complicated and informative in the three economies. Note that I solve all the value

functions in the following steps with the Endogenous Grid Method of Carroll (2006).

A.1 Notation and Sketch of the Solution Method

The aggregate law of motion Γ and the tax policy function Ψ are evolved with the distribution

µ that is an infinite dimensional equilibrium object, and thus it not not feasible in computations.

To handle this issue, the Backward Induction method replaces µ with m, a set of moments from

the distribution and discretize it. Here, I take the mean of the distribution and discretize it, M =

{m1, · · · ,mNm
}. Furthermore, I discretze the tax policy, T = {τ1, · · · , τNτ

}. This setting allows

me to define the aggregate law motion and the tax policy function on each grid (mim , τiτ ) such that

m′ = G(mim , τiτ , τ
′) where τ ′ = P (mim , τiτ ). Note that G and P do not rely on a parametric law.

Across a grid of aggregate states (mim , τiτ ), each point selecting a proxy distribution, the Back-

ward Induction method simultaneously solves for households’ decision rules and an intratempo-

rally consistent end-of-period distribution. This implies a future approximate aggregate state con-

sistent with households’ expectation (m′ = G(mim , τiτ , τ
′)). Likewise, the backward induction

can find the tax policy function that is consistent with the voting outcome, by using household’s

value functions and the proxy distribution (τm = τ ′ = P (mim , τiτ )). Theses mappings imply that

G interacts with P . Given P , first, I find G during the iteration of value functions, and then update

P with the value function and proxy distribution (voting). I repeat this until P is convergent.

Given a distribution over individual states at each aggregate grid point (mim , τiτ ), my goal is

to obtain the law of motion for households distribution G and the tax policy function P that are

intratemporally consistent with the end-of-period distribution and the voting outcome. Explicitly,

m′ = G(mim , τiτ , τ
′) (49)

τ ′ = P (mim , τiτ ) (50)

τ ′ = τm(mim , τiτ ) (51)

w = W (mim , τiτ ) (52)

T = TR(mim , τiτ ) (53)

(49) is to approximate Γ, (50) is to do Ψ, (51) is for the voting outcome, (52) is the mapping for

the market wage, and (53) is the mapping for trasnfers.

The backward induction method explicitly computes G, P , τm,W, and T , given a set of proxy

distributions before the simulation step. An issue is that computing G(mim , τiτ , τ
′) in solving the

value is costly because it depends on τ ′ not only on the equilibrium path but also off the equilibrium

path. To address this issue, I reduce G(mim , τiτ , τ
′) into G̃(mim , τiτ ) = G(mim , τiτ , P (mim , τiτ ))
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while solving the value function; retrieve G(mim , τiτ , τ
′) with the converged value function and

the proxy distribution. Note that G(mim , τiτ , τ
′) must also satisfy an intratemporal consistency.

A.2 Computing the Aggregate Mappings given a Set of Proxy Distributions

(1) Given vn(a, ϵ;m, τ) and τ ′ = P q(m, τ), where n = 1, 2, · · · and q = 1, 2, · · · denote the

rounds of iteration, at grid (mim , τiτ ), where im = 1, · · · , Nm and iτ = 1, · · · , Nτ are grid

indexes, solve for intratemporally consistent m′.

a) Guess m′ . Using vn and P q, solve for a′ = gn+1
a (a, ϵ;mim , τiτ ) and n =

gn+1
n (a, ϵ;mim , τiτ ) using

vn+1(a, ϵ;mim , τiτ ) = max
c,a′,n

u(c, 1− n) + β
∑

ϵ′

vn(a′, ϵj,m
′, τ ′) (54)

such that

c+ a′ = (1− τiτ )w(mim , τiτ ) + (1 + (1− τiτ )r(mim , τiτ ))a+ T (mim , τiτ )

τ ′ = P q(mim , τiτ )

b) Using the proxy distribution, µ(a, ϵ;mim , τiτ ), compute the distribution consistent with

capital stock in the end of period m̃′, wage w̃, and transfers T̃ .

m̃′ =

∫

gn+1
a (a, ϵ;mim , τiτ )µ(da, ϵ;mim , τiτ ) (55)

w̃ = (1− θ)

(

mi

N

)θ

(56)

T̃ = τiτ (r(mim , τiτ )mi + w(mim , τiτ )N) (57)

where

N =

∫

gn+1
n (a, ϵ;mim , τiτ )ϵ µ(da, ϵ;mim , τiτ )

c) If max
{
|m̃′ − m′|, |w̃ − w|, |T̃ − T |

}
>precision, update m′, w, and T ; set r =

θ
(
w

1−θ

) θ−1

θ − δ; and return to a).

(2) Having found m′ = G̃q(mim , τiτ ), w = W q(mim , τiτ ), and T = TRq(mim , τiτ ), use (54)

to define vn+1(a, ϵ;m, τ) consistent with vn(a′, ϵ′;Gq(mim , τiτ ), P
q(mim , τiτ )). If ||vn+1 −

vn|| > precision, n = n+ 1 and return to (1).
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(3) For each aggregate grid (mim , τiτ , τ
′
iτ ), retrieve Gq(mim , τiτ , τ

′
iτ ) by solving for intratempol-

lay consistent m̂′.

a) For each (mim , τiτ , τ
′
iτ ), guess m̂′. With v∞, solve for a′ = ĝa(a, ϵ;mim , τiτ , τ

′
iτ ) and

n = ĝn(a, ϵ;mim , τiτ , τ
′
iτ ) using

v̂(a, ϵ;mim , τiτ , τ
′
iτ ) = max

c,a′,n
u(c, 1− n) + β

∑

ϵ′

v∞(a′, ϵj,m
′, τ ′iτ )

such that

c+ a′ = (1− τiτ )ŵ(mim , τiτ , τ
′
iτ ) + (1 + (1− τiτ )r̂(mim , τiτ , τ

′
iτ ))a+ T̂

b) For each (mim , τiτ , τ
′
iτ ), using the proxy distribution, µ(a, ϵ;mim , τiτ ), compute the

distribution consistent with the end of period aggregate capital stock.

m̃′ =

∫

ĝa(a, ϵ;mim , τiτ , τ
′
iτ )µ(da, ϵ;mim , τiτ )

w̃ = (1− θ)

(

mi

N

)θ

T̃ = τiτ (r̂mi + ŵN)

where

N =

∫

ĝn(a, ϵ;mim , τiτ , τ
′
iτ )ϵ µ(da, ϵ;mim , τiτ )

c) If max
{
|m̃′ − m̂′|, |w̃ − ŵ|, |T̃ − T̂ |

}
> precision, update m̂′, ŵ, and T̂ ; set r̂ =

θ
(
ŵ

1−θ

) θ−1

θ − δ; and return to a).

(4) Having found m′ = Gq(mim , τiτ , τ
′
iτ ), keep Gq(mim , τiτ , τ

′
iτ ). Note that here is no update of

the value.

(5) For each aggregate grid (mim , τiτ ), find τm,q(mim , τiτ ).

a) Given (a, ϵ;mim , τiτ ), using v̂(a, ϵ;mim , τiτ , τ
′
iτ ) in (3) - a), solve ψq(a, ϵ,m, τ) as fol-

lows:

ψq(a, ϵ;mim , τiτ ) = argmax
τ̃ ′

v̂(a, ϵ;mim , τiτ , τ̃
′) (58)
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The golden section search is used to find ψq(a, ϵ;mim , τiτ ) with a cubic spline for v̂

over τ ′.

b) For each aggregate grid (mim , τiτ ), using the proxy distribution µ(a, ϵ;mim , τiτ ), com-

pute the policy outcome τm,q(mim , τiτ ) that satisfies

∫

{ψq(a,ϵ;µ,τ)≤τm,q(mim ,τiτ )}

µ(da, ϵ;mim , τiτ ) ≥
1

2
(59)

∫

{ψq(a,ϵ;µ,τ)≥τm,q(mim ,τiτ )}

µ(da, ϵ;mim , τiτ ) ≥
1

2
(60)

(61)

c) For each aggregate grid (mim , τiτ ), if P q(mim , τiτ ) = τm,q(mim , τiτ ), G
q and P q are

the solutions, given the proxy distribution. Then, go to the next step. Otherwise, they

are not the solutions. Take P q+1 = ω · P q + (1− ω) · τm,q, and go back to (1).

A.3 Constructing the Reference Distributions

Until now, I have solvedG and P for a given set of proxy distributions. In the following step, I will

simulate the economy and update the distribution selection function, as in Reiter (2002, 2010); but,

the simulation step in this paper is substantially different from that in his method. He addresses

Krusell and Smith (1998) model where aggregate uncertainty exists. Thus, what matters in his

papers is to obtain the Ergodic set that is not affected by the initial distribution.

However, in economies without government commitment, it is important to obtain not only

distributions on the equilibrium path but also those off the equilibrium path. For example, let us

think of a political economy with sequential voting in the stationary equilibrium. Then, there will

be a unique value of τ ∗ = P (m∗, τ ∗) and m∗ = G(m∗, τ ∗, τ ∗). In this case, I may not know the

value of other alternatives because this economy has nothing but the unique equilibrium path. This

difficulty might lead the previous studies to employ local solution methods in solving this type

of the MPE. By constrast, my approach is a global solution method, which means I need proxy

distributions over all types of off the equilibrium paths.

To reserve distributions off the equilibrium path, I use the proxy distributions in the previous

step as the initial distribution for the simulation. For each (mim , τiτ ), I run a simulations for T

periods from the proxy distribution µ0 = µ(a, ϵ;mim , τiτ ), implying the number of simulations is

Nm ×Nτ and that of simulation outcomes is T ×Nm ×Nτ . Note that any type of (mim , τiτ ) will

be observed at least once in the simulations. For each (mim , τiτ ), using µ0 = µ(a, ϵ;mim , τiτ ) and

v∞ from the previous step, I simulate the economy in a forward manner. I compute the market

cleared wt and rt and transfers Tt satisfying the government budget condition for each simulation
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period t = 1, · · · , T . In addition, I solve the median voting rule τmt for each simulation period

t = 1, · · · , T with the m′ = G(mim , τiτ , τ
′
iτ ) obtained in the previous step.

I gather all the simulated distributions and rearrange the index as t̃ = 1, · · · , T × Nm × Nτ .

In creating the reference distributions from the simulation, I need a measure of distance for the

moments of a distribution. For (m, τ), define an inverse norm

d((m0, τ0), (m1, τ1)) = (m0 −m1)
−4 + (τ0 − τ1)

−4 (62)

In contrast to an economy with uncertainty, the initial simulation results should be preserved,

having to be used to construct the reference distributions off the equilibrium path (non-Ergodic

set). For each t, when (mt, τt) with mt ∈ [mk,mk+1) and τt ∈ [τs, τs+1),

d1(mk, τs) = d1(mk, τs) + (mt −mk)
−4 + (τt − τs)

−4

d1(mk+1, τs) = d1(mk+1, τs) + (mt −mk+1)
−4 + (τt − τs)

−4

d1(mk, τs+1) = d1(mk, τs+1) + (mt −mk)
−4 + (τt − τs+1)

−4

d1(mk+1, τs+1) = d1(mk+1, τs+1) + (mt −mk+1)
−4 + (τt − τs+1)

−4

Above mk (τs) is the k-th (s-th) grid point for m (τ). Note that distances between a given node

and non-adjacent moments are not taken into account, which is different from the corresponding

step in Reiter (2002, 2010).

I construct the reference distributions for each (mim , τiτ ) using the above, when (mt̃, τt̃) ∈
(

[mim ,mim+1), [τiτ , τiτ+1)
)

,

µr(a, ϵ;mim , τiτ ) =
T×Nm×Nτ∑

t̃=1

d((mim , τiτ ), (mt̃, τt̃))

d1(mim , τiτ )
µt̃(a, ϵ). (63)

Each reference distribution is a weighted sum of distributions over the simulation only when simu-

lated moments are adjacent to a given pair of grid points (mim , τiτ ). Since the simulation moments

are not on an Ergodic set, this should be considered.

I arrange the finite grid, which is the distribution support, as explicit. The distribution over

(a, ϵ) used below size (Na × Nϵ) with ϵ ∈ E = {ϵ1, · · · , ϵNϵ
} and a ∈ A = {a1, · · · , aNa

}.

I represent µr(a, ϵ;mim , τiτ ) using µria,iϵ(im, iτ ), indexing (aia , ϵiϵ) over A × E for (mim , τiτ ).

The moment of a reference distribution,
∑Nϵ

iϵ
µria,iϵ(im, iτ )aia , will not be consistent with mim .

However, the proxy distribution at (im, iτ ) will have this property.
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A.4 Updating the Proxy Distributions

Following Reiter (2002, 2010), for each aggregate grid (im, iτ ), I solve for µia,iϵ , the proxy distri-

bution, as the solution to a problem that minimizes the distance to the reference distribution while

imposing that each type of sums to its reference value and moment consistency.

min
{µia,iϵ}

Na,Nϵ
ia=1,iϵ=1

Na∑

ia=1

Nϵ∑

iϵ=1

(

µia,iϵ − µria,iϵ(im, iτ )
)2

(64)

Na∑

ia=1

µia,ıϵ =
Na∑

ia=1

µria,iϵ(im, iτ ) for i = 1, · · · , Nϵ (65)

Nϵ∑

iϵ=1

Na∑

ia=1

µia,iϵ · aia = mim (66)

µia,iϵ ≥ 0 (67)

The first-order condition for µia,iϵ with λi as the LaGrange multiplier for (65) and ω the multi-

plier (66) is

2(µia,iϵ − µria,iϵ(im, iτ ))− λi − ω · aia = 0 (68)

If I ignore the non-negative constraints for probabilities in (67), I have Nϵ constraint in (65). 1

constraint in (66) andNa×Nϵ first-order conditions in (67). These are a system ofNa×Nϵ+Nϵ+1

linear equations in
(

{µia,iϵ}
Na,Nϵ

ia=1,iϵ=1, {λiϵ}
Nϵ

iϵ
, ω
)

.

I construct a column vector x. The first block of x are the stack of the elements from the proxy

distribution, such that x(j) = µia,iϵ where j = (iϵ − 1)×Na + ia. Next are the Nϵ multipliers λi,

followed by one multiplier ω. I solve for x using a system of linear equations, Ax = b in Figure

13. The non-zero element of A and b are described here. The coefficients for µia,iϵ are entered into

A as

A((iϵ − 1)×Na + ia, (iϵ − 1)×Na + ia) = 2 (69)

A(Nϵ ×Na + iϵ, (iϵ − 1)×Na + ia) = 1 for iϵ = 1, · · · , Nϵ (70)

A(Nϵ ×Na +Nϵ + 1, (iϵ − 1)×Na + ia)) = aia . (71)

The coefficient for λi are entered in A, for iϵ = 1, · · ·Nϵ and ia = 1, · · · , Na, as

A((iϵ − 1)×Na + ia, Nϵ ×Na + iϵ) = −1 (72)
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The coefficients for ω sets the following elements of A, for iϵ = 1, · · ·Nϵ and ia = 1, · · · , Na,

A((iϵ − 1)×Na + ia, Nϵ ×Na +Nϵ + 1) = −aia . (73)

The elements of b are, for iϵ = 1, · · ·Nϵ and ia = 1, · · · , Na,

b((iϵ − 1)×Na + ia) = 2µria,iϵ(im, iτ ) (74)

b(Nϵ ×Na + iϵ) =
Na∑

ia=1

µria,iϵ(im, iτ ) (75)

b(Nϵ ×Na +Nϵ + 1) = mim . (76)

I solve x = A−1b iteratively using an active set method corresponding to probabilities that are not

set to 0.

Figure 13: A × x = b

To solve the linear system, I use the active set approach to non-negative constraints in Reiter

(2002, 2010). If any of the first Nϵ × Na elements of x are negative, the constraint µia,ıϵ ≥ 0 has

been violated for some (iϵ − 1)Na + ia = j ∈ J0 where

J0 = {j|1 ≤ j ≤ Na ×Nϵ and x(j) < 0}. (77)

For some O > 0, set the most negative O elements indexed in J0 to 0, µia,iϵ = 0. Remove the

j − th row and column of A along with the j − th element of b. Solve the reduced system with O

less rows. If any of the Nϵ × (Na − O) elements are negative, again discard the most negative O.

I repeat this procedure until the most negative elements of x is larger than a precision level. This

iteratively implements the non-negativity of probabilities (77).

Table 4 shows the setting of the grids in this paper. With this setting, I continue to repeat the
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Table 4: Setting for Computation

num. of nodes Description

Na 400(400) asset (distribution)

Nϵ 10 persistence wage process

Nm 5 aggregate capital (aggregate)

Nτ 7 income tax (aggregate)

whole steps above until no improvement in accuracy statistic proposed by Den Haan (2010). I find

that the mean errors on the equilibrium path are sufficiently small (considerably less than 0.6%

for all cases) and the mean errors over transitions from off the equilibrium to the equilibrium are

also reasonably small (not exceeding 0.6% for all cases). Furthermore, the method is substantially

efficient in a usual personal computer.

Table 5: Accuracy and Efficiency of the Solution Method

OPT w/o Commitment Voting

Run time 11.1 min 15.8 min

DH of m at EQ 0.394% 0.539%

DH of w at EQ 0.048% 0.046%

DH of τ at EQ 0.153% 0.263%

AVG(DH) of m 0.668% 0.577%

AVG(DH) of w 0.251% 0.202%

AVG(DH) of τ 0.129% 0.244%

MAX(DH) of m 2.133% 2.44%

MAX(DH) of w 0.949% 0.935%

MAX(DH) of τ 0.415% 1.4%

AV G(·) and MAX(·) are computed with all of the results both on and off the equilibrium paths.

Processor: i7-10770 @ 2.9GHz, RAM: 16GB
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Appendix B Definition of
ΞΓt+s−1
ΞKt

, ΞΨt+s−1
ΞKt

, ΞΓt+s−1
Ξτt

, and
ΞΨt+s−1

Ξτt

ΞΓt+s−1

ΞKt

= FK
t+s(F

K
t+s−1, G

K
t+s−1) =







ΓKt
if s=1

ΓKt+s−1
FK
t+s−1 + Γτt+s−1

GK
t+s−1 if s ≥ 2

ΞΨt+s−1

ΞKt

= GK
t+s(F

K
t+s−1, G

K
t+s−1) =







ΨKt
if s=1

ΨKt+s−1
FK
t+s−1 +Ψτt+s−1

GK
t+s−1 if s ≥ 2

ΞΓt+s−1

Ξτt
= F τ

t+s(F
τ
t+s−1, G

τ
t+s−1) =







Γτt if s=1

ΓKt+s−1
F τ
t+s−1 + Γτt+s−1

Gτ
t+s−1 if s ≥ 2

ΞΨt+s−1

Ξτt
= Gτ

t+s(F
τ
t+s−1, G

τ
t+s−1) =







Ψτt if s=1

ΨKt+s−1
F τ
t+s−1 +Ψτt+s−1

Gτ
t+s−1 if s ≥ 2
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