
Munich Personal RePEc Archive

Computers, Programming and Dynamic

General Equilibrium Macroeconomic

Modeling

Bongers, Anelí and Molinari, Benedetto and Torres, José L.

University of Malaga (Spain)

22 March 2022

Online at https://mpra.ub.uni-muenchen.de/112505/

MPRA Paper No. 112505, posted 22 Mar 2022 15:03 UTC

1

Computers, Programming and Dynamic General
Equilibrium Macroeconomic Modeling

Anelí Bongers, Benedetto Molinari and José L. Torres

Department of Economics and Economic History, University of Malaga, Spain

Abstract

Dynamic stochastic general equilibrium (DSGE) models nowadays undertake the bulk of
macroeconomic analysis. Their widespread use during the last 40 years reflects their usefulness
as a scientific laboratory in which to study the aggregate economy and its responses to different
shocks, to carry out counterfactual experiments and to perform policy evaluation. A key
characteristic of DSGE models is that their computation is numerical and requires intensive
computational power and the handling of numerical methods. In fact, the main advances in
macroeconomic modeling since the 1980s have been possible only because of the increasing
computational power of computers, which has supported the expansion of DSGE models as more
and more accurate reproductions of the actual economy, thus becoming the prevailing modeling
strategy and the dominant paradigm in contemporaneous macroeconomics. Along with DSGE
models, specific computer languages have been developed to facilitate simulations, estimations
and comparisons of the aggregate economies represented by DSGE models. Knowledge of these
languages, together with expertise in programming and computers, has become an essential part
of the profession for macroeconomists at both the academic and the professional level.

Keywords: Dynamic stochastic general equilibrium models; Computers; Programming languages;
Codes; Computational economics; Dynare.

JEL Classification: C61; C63; C88; E37

1. Introduction

The dynamic stochastic general equilibrium (DSGE) framework is the mainstream of

contemporaneous macroeconomic analysis. Although this framework has important

theoretical shortcomings and has proven not to be well-suited to explaining several key

aspects of the aggregate economy, DSGE models are still used everywhere from academia

to central banks and from financial and international institutions to governmental services

and departments of the public administration, supporting policy choices. They are the

most common tool for policy evaluations and forecasts and constitute the forefront of

state-of-the-art macroeconomic modeling.

2

DSGE models conquered modern macroeconomics because of a number of advantages

that they had with respect to the macro models in circulation before them, either the

econometric models formed by big systems of reduced-form equations that central banks

employed until the 1980s/1990s or the elegant but not comprehensive models of

economic growth developed by academic researchers during the 1960s and the 1970s. At

the time, they improved upon the existing macro models by providing a unified and stylish

mathematical framework to approach almost every research question regarding the

aggregate economy, thus charming macroeconomists and policy makers. They were

robust to Lucas’s (1976) critique because agents’ decisions were micro-founded and self-

interacting in the dynamic framework (see Sergi, 2018). Their underlying theoretical

framework was adequate not only for describing the reaction of the aggregate economy

to stochastic shocks in the short run (the aggregate dynamics) but also for characterizing

changes in the (deterministic) long-run equilibrium in response to variations of exogenous

variables and parameters (the steady state). Thus, DSGE models could also be used to

study structural changes, for example tax changes or the introduction of a new tax.

Exogenous shocks could be either stochastic or deterministic, thus delivering impulse

response function analysis or transition analysis, like economic growth models. A variety

of rigidities (real, nominal and informative) and frictions could be introduced, thus

making the models suitable for quantitative analyses of several research questions and

aggregate phenomena.

The popularity of DSGE models began when, at the beginning of the 1980s, Finn Kydland

and Edward Prescott (1982a) provided the numerical computation of the real business

cycle (RBC) model, a very stylized DSGE model that eventually won them the Nobel

prize for their contribution to the field of macroeconomics. From that initial contribution,

which represented a basic neoclassical economy with perfect competition and flexible

prices, DSGE models were extended to embed all aspects and theories regarding the

aggregate economy, from Keynesian characteristics like nominal rigidities in prices to

real rigidities, information rigidities, deviations from rational expectations, the inclusion

of side sectors (financial, exterior and R&D), all types of technological progress

(investment-specific, labor-augmenting and automation), heterogeneous agents, non-

Ricardian agents and so on. As a result, the complexity of the theoretical apparatus behind

DSGE models increased substantially, as did the number of variables, parameters and

shocks appearing in the models. It is easy to realize that the continuous increase in the

3

computational power of personal computers and the advances in programming languages

have played a key role in paving the road to success for the DSGE framework, the models

of which have become increasingly complex, computationally burdensome and

challenging for econometricians over time.

The close link between computing and macroeconomic modeling is justified by the fact

that DSGE models are represented by a complex framework composed of a system of

highly non-linear equations with forward-looking variables that, in general, have no

closed-form solution and have to be solved numerically, hence the absolute necessity of

computers, programming languages and numerical methods for macroeconomic analysis.

This means that the computational power of computers and the development of

programming languages and most likely specific estimation/simulation software are

necessary tools for the use of DSGE models in practice. This is especially true as the

complexity of DSGE models has increased over time with the emergence of New

Keynesian models and the introduction of features like heterogeneous agents, nominal

and real rigidities and so on. All these developments of the macroeconomic theory only

strengthen the importance of having computers and software to develop new DSGE

models, study them and, eventually, take them to the data for their empirical validation.

It can be argued that the DSGE revolution started thanks to computation and to the

pioneering code contributions by some leading economists with programming skills from

some particular American universities (Carnegie-Mellon, Rochester and Minnesota, in

particular). These leading economists understood the importance of incorporating the

knowledge of programming languages into the new type of models not only as an

empirical tool for econometric analysis but also as a tool for theoretical macroeconomic

modeling. Nevertheless, the theoretical framework on which DSGE models are based is

not new to economics. Indeed, the basic and canonical theoretical framework was

developed by Frank P. Ramsey almost a century ago, in the late 1920s (Ramsey, 1928).

However, then, its mathematical complexity and the absence of computers to obtain

numerical solutions and model simulations made their usage impractical for a long time

and hindered their adoption in macroeconomic modeling. Although some theoretical

advances were made during the 1960s and 1970s based on the Ramsey model, and new

solutions and numerical methods were developed, the barrier imposed by the lack of

computational power (hardware and software) limited their application and prevented

4

them from spreading in the profession, although they accounted for the main theoretical

framework for the optimal growth literature developed during the 1970s.

It was not until the 1980s, with the seminal work of Kydland and Prescott (1982a), that

the DSGE revolution started. This first numerical application of DSGE models consisted

of quantifying the relative importance of technological shocks in explaining the business

cycle. However, this new approach to macroeconomic analysis was restricted to those

economists with access to computers and with programming skills, a rare and limited

combination at the beginning of the 1980s, although this situation changed rapidly. The

computer language used in these first applications was Fortran, a compiled programming

language that was well extended across a number of fields but not very common in

economics at the time and was run using third-generation computers. It can be argued that

the DSGE revolution in its early days was a matter for a handful of the foremost clever

economists, in some leading departments, who learned compiled programming

languages, such as Fortran or C, as a new basic tool for theoretical macroeconomic

analysis as the only way to deal with these dynamic, micro-founded, rational expectations

forward-looking agents: general equilibrium models.

DSGE modeling, the intensive use of computers and the acquisition of programming

skills changed rapidly and, a few years later, by the beginning of 1990s, this approach

became the dominant one in macroeconomics. During the 1990s, programming language

skills and the extended use of scripting matrix-oriented programming languages, such as

MATLAB, were an essential part of the toolbox for all macroeconomists, not only those

pursuing empirical analysis but also those contributing at the theoretical level. A further

and definitive step ahead in DSGE modeling during the first years of the new century was

the development of specific software for solving this type of model, such as Dynare,

gEcon, YADA and IRIS. These software packages or pre-processors are not only a

collection of codes with tools for solving, simulating and estimating DSGE models but

packages written specifically to solve any type of DSGE model, following in some

aspects the philosophy of WinSolve. The most famous and extended DSGE modeling

package is without doubt Dynare, which has eliminated the traditional computational

barriers to DSGE modeling, transforming the hard-task solution and simulation

procedures of this type of models into a straightforward step in macroeconomic modeling.

Alternatively, advances in hardware allow access to incredibly powerful calculus

5

machines anywhere and by anyone. As shown by Blake (2012), even an iPhone/iPad can

be used to solve and carry out experiments with DSGE models.

Macroeconomic modeling during the last 40 years has been tightly driven by the

penetration of computing and programming techniques in a close symbiosis with

theoretical progress. As pointed out by Kocherlakota (2009), the initial simple DSGE

models (RBC type) were a by-product of the computing technology limitations existing

in the 1970s, and the posterior development of more advanced models of the New

Keynesian DSGE type was the result of innovations in computing in recent decades. Judd

(1997) discussed the relationship between computational economics and economic

theory. Computers have changed the way in which macroeconomics is developing, and

they are the key to current macroeconomic modeling for a number of reasons. Economics

is not an experimental science, and computer modeling is the only way to conduct

experiments. Computational economics is well developed in the case of the computational

general equilibrium (CGE) approach, in which standard software packages, such as

GAMS and GEMPACK, have also been developed, although they are mostly static

models. New specific software for DSGE modeling fills this gap, transforming

macroeconomics into a computational field.

The structure of the rest of the paper is as follows. Section 2 presents a brief history of

D[S]GE modeling, from the canonical model developed by Ramsey (1928) to the more

recent high-scale New Keynesian models developed in the 1990s with hundreds of

equations, and the strategy followed by taking the model to the data. Section 3 reviews

the computing languages, codes and packages developed over time for solving dynamic

macroeconomic models. Section 4 focuses on the implications of specific packages for

solving the dynamic general equilibrium model for the dissemination of this type of

macroeconomic modeling, mainly among graduate students. Section 5 presents some

concluding remarks.

2. A brief history of D[S]GE modeling

This section presents a deliberately incomplete review of the history of DSGE modeling

to illustrate how this modeling strategy has advanced over time and how this historical

process has been linked to advances in computing and programming. Dynamic general

equilibrium (DGE) models, either stochastic or deterministic, have become the

6

fundamental tool and the dominant paradigm in current macroeconomic analysis. Modern

macroeconomic analysis is increasingly concerned with the construction, calibration

and/or estimation and simulation of DSGE models, being the main tool for economic

policy analysis. DSGE modeling starts from what we call the micro-foundations of

macroeconomics, and it is, at its core, based on the rational expectations forward-looking

behavior of economic agents. While the theoretical principles are not too complex to be

understood by a beginner in this topic, perhaps with the exception of some mathematical

techniques, solving the model and carrying out practical applications of the data are

usually more difficult tasks as numerical solution methods must be used. Once the

theoretical model is at hand and the equations of the model economy have been

parameterized, we can proceed to its numerical solution. The usual procedure consists of

calibrating the parameters of the model using previous information, matching some key

ratios or moments provided by the data or, more recently, estimating the parameters using

maximum likelihood or Bayesian techniques. However, the main problem posed by

DSGE models is that they do not have a closed analytical solution—except for some very

simple and unrealistic examples of limited interest—and a numerical solution approach

is needed, which necessitates the use of computer software and an adequate level of

computer skills. In the next section, we will show how these advances have been directly

linked with the development of programming languages and their learning by economists

and especially with the development of specific packages for macroeconomic modeling.

2.1. From DGE to DSGE

The foundation of D[S]GE models is the model developed by Frank Ramsey (1928), the

so-called Ramsey optimal growth model. Although Ramsey was not an economist himself

but a professor of mathematics at the University of Cambridge, he was a friend of Keynes,

who introduced him to thinking about economic problems, such as optimal taxation and

the optimal saving rate for an economy. He built an economic model in which consumers

are infinitely-lived individuals or families who maximize their utility, adopting a micro-

foundation approach to macroeconomic modeling for the very first time. However, the

mathematics of the model prevented its adoption by economists at the time as Ramsey

used calculus of variations and other mathematical techniques that were not part of the

standard knowledge of economists. As a consequence, the seminal contribution of

Ramsey remained in oblivion until 1965, when David Cass (1965) and Tjalling C.

7

Koopmans (1965) in parallel recovered the Ramsey model. These contributions gave rise

to the so-called Ramsey–Cass–Koopmans model, which constituted the base of the

optimal growth model, a widely extended theoretical framework used to study a number

of economic problems.

The optimal growth literature was one of the main lines of macroeconomic research

during the second half of the 1960s and the 1970s. Although no direct data application

was made, this fixed dynamic optimization technique would be used in the later handling

of DSGE models. In short, the DSGE model is just the standard balance growth model

extended with a stochastic component, such as the one developed by Brock and Mirman

(1972). The introduction of stochastic components into the optimal growth model allowed

the transition from the long run to the short run. This permitted the use of the same model

for studying both economic growth and business cycles. The use of optimal growth

models was common during the 1970s, penetrating macroeconomic modeling and using

this theoretical framework to study a variety of economic issues, from human capital

(Uzawa, 1965) to natural resources (Dasgupta and Heal, 1974). The microfoundations of

the optimal growth model based on Ramsey’s model helped to face Lucas’s (1976)

critique of the traditional approach to policy evaluation. However, these models remained

at a theoretical stage, with economic analysis mainly being performed through the

graphical representation, the phase diagram, of a model reduced to a system of differential

equations. The limitations of macroeconomic modeling are related to the progress of

computation and access to computers by economists during the 1970s, although the dawn

of third-generation computers (a scaled-down version of mainframe computers) paved

the road to the numerical solution of the model (the appearance of the IBM PC took place

in 1981).

The connection between the stochastic growth model and computing involves the

difficulties in solving this type of models. These difficulties arise mainly from the

existence of non-linearities provoked by the technology (production function) or the

household utility function. These non-linearities disappear only in the case in which

utility is logarithmic and the capital depreciates fully in a single period. In this case, the

model becomes log-linear and a closed-form solution can be obtained, but this is not the

case for more general specifications. Those features required a radical change in the way

in which macroeconomic analysis had to be carried out, incorporating computers into the

traditional paper and pencil tools as an indispensable and essential new instrument. As

8

Lucas (1980) stated, the task of macroeconomics should be “… to write a FORTRAN

program that will accept specific economic policy rules as input and will generate as

output statistics describing the operating characteristics of time series which are predicted

to results from these policies.”

Different numerical methods were used to deal with the non-linearities of the model.

Following the seminal work by Kydland and Prescott (1982a), who used linear–quadratic

(LQ) approximation, a number of other important contributions appeared in the 1980s,

including those of Long and Plosser (1983), extending the model to economic sectors,

Hansen (1985), incorporating indivisible labor, and Christiano (1988) and Altug (1989),

providing the first estimations of a DSGE model using maximum likelihood techniques.

Kydland and Prescott (1982a) used linear–quadratic approximation to the model around

the steady state. King, Plosser and Rebelo (1987) and Christiano (1988) used log-linear–

quadratic approximation. See Taylor and Uhlig (1990) for a review of the existing

alternative methods. Importantly, most of these solution approaches are numerical

methods, given the low cost of computation.

Another important contribution was the development of the first solution method for a

rational expectations linear model by Blanchard and Kahn (1980). Later, alternative

solution methods were developed, such as those by Uhlig (1999), Klein (2000) and Sims

(2001). Blanchard and Kahn’s (1980) solution method established a straightforward and

standard procedure for solving relatively simple DSGE models and was an additional

determinant contributing to the spread of the RBC model across the profession. The

toolbox developed by Uhlig (1999), published in 1995, gave another important impulse

to the spread of DSGE modeling by providing simple rules for the log-linearization of

non-linear models and a new solution method.

2.2. From RBC to New Keynesian models

The standard RBC is a relatively simple model, with no government, no money, no

frictions or adjustment costs and only a few endogenous variables (eight variables for a

decentralized economy and six for a centralized economy, including the aggregate

productivity stochastic process); thus, it involves only a few equations. Indeed, most of

models solved with numerical methods during the 1980s adopted the neoclassical

framework of perfect competition and flexible prices as a well-defined benchmark to

9

explain the regularities of business cycles. This approach was not chosen willingly by

researchers. It was rather a constraint on the economic theory imposed by the existing

computers’ computational power and the availability of programming tools to solve

dynamic models. As pointed out by Kocherlakota (2009), the complexity of theoretical

models in the 1980s was constrained by the computing technologies. Given the

computing technologies existing at that time, only simple models could be solved

numerically. More complex models were hard to solve as they were time consuming and

required complex numerical and computational techniques. As a matter of fact,

Kocherlakota (2009) argued that the whole freshwater–saltwater division of the 1980s

was a consequence of the limitations in computing technologies and numerical techniques

at the time, and that division was eliminated in subsequent years thanks to better

computers. This had deep implications for policy recommendations as the result of

supporting policies of no optimal economies was not a theoretical principle but a result

of the level of complexity of the macroeconomic models that could be solved with the

existing computational techniques. The solution of more elaborate DSGE models is very

computation demanding and, hence, the complexity of the theoretical framework is

restricted by the computing power. Kocherlakota (2009) was convinced that the progress

of computers and programming was the key ingredient for the development of more

advanced and, in some cases, realistic and better theoretical models. The incorporation of

nominal and real rigidities, money, borrowing restrictions, imperfect markets, financial

markets and so on implies an increase in the complexity of the model and hence the

demand for better and more time-efficient computing techniques and faster computers.

Additionally, the advances in computing not only allowed more complex theoretical

models but also introduced important innovations into the way in which models are taken

to the data.

All these elements gave rise to the birth of the so-called New Keynesian DSGE models,

of which imperfect competition, money, nominal and real rigidities, adjustment costs and

so on are the fundamentals pillars. New Keynesian DSGE models were initially

developed by Rotemberg (1982), Mankiw (1985), Svensson (1986) and Blanchard and

Kiyotaki (1987). However, these models were much bigger and more difficult to solve

numerically than the canonical neoclassical RBC-type model. However, progress in

computing, the introduction of new numerical methods and the availability of a

significant and growing set of codes contributed to making the solution of more complex

10

models accessible, transforming New Keynesian (NK) DSGE models into the standard

tool for macroeconomic policy analysis. NK-DSGE models are much bigger than

neoclassical DSGE models because they include more endogenous variables (all

monetary variables) and therefore larger systems of equations and a number of adjustment

processes that also contributed to a significant increase in the number of parameters. The

increasing number of parameters also called for new methods for estimating DSGE

models.

2.3. From calibration to estimation

DSGE models do not have closed-form explicit solutions, except for some simple cases

(logarithmic utility functions and full depreciation of capital). This simply means that

DSGE models cannot be solved directly by hand with paper and pencil techniques.

Instead, DSGE modeling requires the use of numerical and computational methods to

obtain approximate solutions for simulating the variables of the model. DSGE models

have two key characteristics: a non-linear system of dynamic equations and expectations

about future endogenous variables. The key to solving a DSGE model consists of

representing functional forms for the control variables (for instance, consumption) as a

function of lagged state variables (for instance, capital stock). Once we have these

functions, the system becomes recursive; then, given the initial values for the state

variables, the dynamic process for the control variables can be generated. This are the so-

called decision rules or policy functions. The terms decision rule and policy function refer

to functional equations, that is, functions of functions, describing the dynamics of the

forward-looking control variables.

To obtain a numerical solution to DSGE models, first, it is necessary to assign values to

the parameters of the models. In general, the equations of a model have three components:

unknowns (endogenous variables, the value of which we are looking for), exogenous

variables (which are assumed to be a fixed number or to follow a stochastic process) and

parameters. The parameters of the model are assumed to be “deep” parameters, that is,

constants. To be precise, it is assumed that the values of the parameters do not depend on

the sample period as they are deep parameters (invariant to policy changes and therefore

not affected by Lucas’s critique). Two methods for assigning values to parameters have

been used in the literature: calibration and estimation (or a combination of the two).

11

Initially, the strategy was so-called calibration, a direct and relatively easy procedure to

give a value to the parameters of the model. Indeed, this “estimation” technique was

another of the innovations of the paper by Kydland and Prescott (1982a). Calibration can

be defined as a method to assign values to the deep parameters of a DSGE model using

all the a priori information. More precisely, calibration is an econometric technique to

take models to the data. DSGE models typically have identification problems that

complicate the estimation of all the parameters; thus, it is natural that the first approach

was based on calibration as the estimation of the parameters could lead to inconsistent

and unreasonable parameter values.

In the canonical neoclassical or RBC model, we typically have four types of parameters:

technological parameters, preference parameters, steady-state parameters and auxiliary or

nuisance parameters related to the stochastic process for aggregate productivity. As the

number of equations is small, the number of parameters is also reduced and can easily be

estimated (calibrated) using national accounts or key ratios. However, a New Keynesian

DSGE model has a large number of additional parameters: adjustment cost and price

parameters, heterogeneous agents’ share, monetary and fiscal policy parameters, mark-

ups and so on. These make the calibration method less appealing and robust, and more

sophisticated estimation methods are required.

Calibration can be performed using different alternative approaches. First, we can use the

values of other works that have calibrated and/or estimated a similar DSGE model for the

same economy. This is a very frequent approach in academic papers. The problems of

this approach relate to the use of different models, different economies and so on. Second,

we can use national accounts for some key parameters, for instance the technological

parameters of a Cobb–Douglas production function. This parameter has an interpretation

in terms of the proportion of capital income in the total rent. These data can be found in

national accounts and are typically used for the calibration of the technological parameter

representing the capital–output elasticity. Third, we can use estimation from econometric

(both micro and macro) studies. However, this approach also has drawbacks as the

estimated parameter values depend on the econometric technique, the variables, the

sample period and so on. Additionally, these estimations involve independent equations,

not integrated ones as used in the general equilibrium model. Finally, fourth, we can use

equilibrium conditions from the model or steady-state relationships (the model-based or

internal calibration approach). Using the equations of the model and a target for a variable

12

or a key ratio, it is possible to obtain the corresponding values for the parameters in those

equations. In this case, some parameters are considered as variables and their value comes

from solving a static version of the model, in which some endogenous variables are

changed by the data.

However, some authors moved ahead rapidly from calibration to econometric estimation

and used maximum likelihood methods for estimating the parameters (or some of them)

of the model. Christiano (1988), Altug (1989), Bencivenga (1992), McGrattan (1994),

Ireland (1997, 2001a, b, 2004), McGrattan, Rogerson and Wright (1997), DeJong et al.

(2000) and Kim (2000) provided examples of structural parameter estimation of DSGE

models using maximum likelihood methods. However, with the development of New

Keynesian DSGE models, estimation of the parameters has been the standard approach.

Today, DSGE models are estimated mainly using Bayesian techniques (Rabanal and

Rubio-Ramirez, 2003; Smets and Wouters, 2003). The popularity and spread of Bayesian

estimation of DSGE models was due to the appearance of Dynare, which allows the

estimation of DSGE models using ML and Bayesian Markov change Monte Carlo

(MCMC) estimation using the Metropolis–Hastings algorithm.

With the increasing complexity of DSGE models and the rising number of parameters for

which little a priori information is available, the Bayesian approach is becoming

increasingly popular for DSGE model estimation. Bayesian estimation can be considered

to be somewhere between calibration and maximum likelihood estimation. In fact,

calibration is just the specification of a prior (the first step in the Bayesian approach).

Conversely, the Bayesian approach confronts the model with the data, as ML does. The

Bayesian approach allows us to interfere in the estimation process. In fact, priors can be

interpreted as weights in the likelihood function, giving greater importance to certain

areas of the parameter subspace. One of the advantages of the Bayesian approach over

the ML method is that it avoids peaking at strange points where the likelihood peaks; that

is, it avoids situations with absurd parameter estimates. Rabanal and Rubio-Ramirez

(2003) and Smets and Wouters (2003) were the pioneers in estimating a DSGE model

with novel Bayesian techniques for economists. Fernández-Villaverde (2010) provided

an excellent review of these estimation techniques.

13

2.4. Programming and the teaching of dynamic macroeconomics

Finally, computing and programming advances have allowed the development of simple

tools for DSGE modeling that can be used not only by graduate but also by undergraduate

students; therefore, they have implications not only for academic research but also for the

macroeconomic theory taught at the undergraduate level. The work of Hobbs and Judge

(1992) is a good starting point for the discussion about the contribution of computer-

assisted learning to the teaching of economics. Computers are used widely in quantitative

methods and econometrics but not for the teaching of economics. This is crucial for

advanced macroeconomics, in which there is a real need for more accessible approaches

to teaching DSGE models to undergraduates. Indeed, there is an important current debate

about teaching DSGE models at universities. Solis-García (2018) defended the teaching

of DSGE models at the undergraduate level. Neumuller, Rothschild and Weerapana

(2018) recognized the existing gap between undergraduate macroeconomics and graduate

macroeconomics (a gap that does not exist for microeconomics or econometrics). This is

an important issue as macroeconomics teaching in current graduate programs builds on

DSGE models, whereas typical undergraduate macroeconomics courses are based on the

traditional IS-LM framework. The difficulties in teaching DSGE models to undergraduate

students arise from: i) the language of general equilibrium concepts; ii) the mathematical

background; and iii) computer language skills. Whereas the first two elements are

obstacles that are relatively easily overcome, the third constitutes the most important

barrier to the teaching of DSGE models in the most advanced undergraduate

macroeconomics courses as a numerical solution is needed; hence, students are forced to

solve the model computationally, for which they must use certain software. The standard

software used for solving DSGE models is MATLAB and, more recently, Python and

Julia, which necessitate a level of computer skills that is not generally possessed by

undergraduate students. Some advances have been made, although these are very limited.

For instance, Chu (2018) proposed a method that serves as a bridge between the Solow

model and the Romer model, in which the mathematical derivations involve only basic

calculus and algebra, and the basic principles of the Romer model are more accessible to

undergraduate students in economics. Bongers, Gómez and Torres (2020) presented two

alternative and easy methods for solving DSGE models in a spreadsheet such as Excel: i)

the models can be solved using Excel’s Solver tool, which employs a linear programming

algorithm for solving a system of equations; and ii) the model can be linearized and

14

numerically simulated directly in a spreadsheet using an eigenvalue method, without the

need to use a computer optimization algorithm.

Another interesting resource is the website created by Brian C. Jenkins (2022), on which

some dynamic macroeconomic models can be solved and simulated. For each model, the

parameters can be calibrated by the user, and simulated variables and impulse responses

can be plotted. Finally, Bongers, Gómez and Torres (2021) developed a web page on

which several dynamic macroeconomic models can be solved in Excel, including the

standard RBC model, the investment-specific technological change model and the

Ramsey optimal growth model.

3. Codes, models and computers

As stated above, the macroeconomic theoretical and empirical developments during the

last four decades have largely been driven by advances in programming languages and

specific software and hardware. The reason for that relationship can be found in the

characteristics of the new dominant macroeconomic paradigm, based on the forward-

looking rational expectations dynamic general equilibrium model, which can only be

solved using numerical methods and computing techniques. However, the connection

between economics and computation is not new. Indeed, attempts to use some types of

computing machine in economics occurred prior to the invention of analogic computers.

Taylor and Uhlig (1990) recognized that it is the fact that computing power has become

faster and cheaper that enables macroeconomists to study more complex models and

apply them for policy analysis. Initially, it was very difficult to solve a DSGE model.

Today, it is a much easier task thanks to the development of many techniques and to the

existence of specific computer programs developed by clever people. Parallel to the

development of programming, a large variety of alternative numerical methods have been

incorporated into macroeconomic analysis: local methods (i.e. the perturbation method)

versus global methods (i.e. projection methods: dynamic programming, the Chebyshev

polynomial method, the finite-elements method, the extended path method, parameterized

expectations, neural networks, etc.).

Nowadays, economists have a wide variety of computer software codes in different

languages and some DSGE-specific packages. We classify these sources into three types:

codes in compiled languages, codes in scripting (interpreted) languages and packages (or

15

more exactly pre-processors). Macroeconomic modeling has been heavily based on codes

in compiled and scripting languages, made available by their developers, and only

recently have packages have been developed, Dynare being the most popular. This is in

contrast to, for instance, econometrics, in which packages, both open access and

commercial, dominate.

Kendrick and Amman (1999) classified computer programming languages into three

groups: a) high-level languages (GAUSS, MATLAB, Maple, Mathematica and GAMS);

b) low-level languages (Basic, Fortran, C/C++ and Java); and c) languages for

programming graphical user interfaces (GUI), such as Java, VisualBasic and Visual C++.

Each type of programming language has pros and cons. Flexibility, runtime speed, ease

of learning and so on are all factors to consider. Codes in compiled languages, such as

Fortran or C/C++, are very flexible and can be adapted to the particular problem at hand.

These codes can be modified by users, increasing the number of available codes.

Alternatively, codes in compiled languages are freely available, and, more recently, some

advanced scripting languages have emerged that are free and offer a number of

advantages over the previous commercial scripting languages that had been widely used

in macroeconomic modeling. Finally, pre-processors or specific packages have

significantly increased the availability of programming tools for DSGE modeling.

3.1. Computational economics in the pre-digital era

Computation was an extremely difficult task before the advent of digital machines, and

reliable analog computers were scarce. One type of analog computer intended for

economic applications was hydraulic computers. The first idea about using hydraulic

machines for economic modeling came from Irving Fisher. In his PhD thesis (Yale

University, 1891), Fisher presented a hydraulic apparatus for computing equilibrium

prices and the resulting distribution of society’s endowments among economic agents

(Brainard and Scarf, 2005).

The first attempt at computing macroeconomic models was performed by A. W. H.

Phillips in 1949 (Phillips, 1950). The Phillips machine, also known as the Monetary

National Income Analogue Computer (MONIAC), is a mechanical device built with

tubes, pipes, valves, pumps, tanks, electrodes and servo-mechanisms. In the construction

of the original machine, Phillips used different materials from Lancaster bombers: the

16

tubes and tanks were made of Perspex from aircraft windscreens, and the pump was the

landing gear pump. Colored water flowed in the tanks and tubes. The machine represents

an economy ruled by an aggregate model formed of eleven equations, based on the

canonical Mundell–Fleming model. There is also the possibility of connecting two mirror

machines to manage a two-country model. The MONIAC was the first analog computer

to solve the non-linear differential equations of the IS-LM model (Bollard, 2011).

During the 1950s, other attempts to solve dynamic models numerically were undertaken

based on the development of electro-analog computers. The idea consisted of the

possibilities of applying electrical analog computing techniques to a broad number of

economic issues, that is, building an electrical circuit for an electro-analog simulation of

dynamic economic models. Morehouse, Strotz and Horwitz (1950) developed an

electrical circuit for the simulation of an inventory model. Enke (1951) used this electro-

analog approach for simulating spatially separated markets, whereas Strotz, Calvert and

Morehouse (1951) simulated a stochastic national income model, and Strotz, McAnulty

and Naines (1953) developed an electro-analog solution for the non-linear business cycle

model proposed by Goodwin (1951). See Raybaut (2020) for a review of this electric-

analog computing simulation approach.

Apart from the MONIAC and electrical circuits, little use of computational techniques

for solving dynamic macroeconomic models occurred in the 1960s and 1970s. This

contrasts with applied economics, in which computers were used extensively in those

decades for estimating a variety of econometric models. This was natural as econometric

analysis and statistical applications to economics have a long tradition. Nevertheless,

computers for economic simulations were used during the 1950s, such as the development

of system dynamics by Forrester (1958) using an IBM 704 computer or by Adelman and

Adelman (1959) using an IMB 650 computer. During the 1960s, the use of mainframe

computers extended among economists as they became more accessible, although they

were mainly used for empirical analysis. Finally, another important change in

computational economics occurred during the 1970s with the development of specific

software, that is, the General Algebraic Modeling System (GAMS) for computable

general equilibrium (CGE) models.

17

3.2. The 1980s

The incorporation of computing techniques into theoretical dynamic macroeconomic

modeling started at the end of the 1970s. In the first applications, the computer language

code used in dynamic macroeconomics was Fortran. The penetration of Fortran in

economics is explained by its popularity among numerical mathematicians and engineers.

Some economists started, for the first time, to write Fortran codes for solving and

simulating a dynamic general equilibrium macroeconomic model. The standard

numerical approach used was linear–quadratic (LQ) approximation. The initial

macroeconomic modeling programming in Fortran expanded rapidly among several

economists, although it was concentrated in a few universities. The initial contribution by

Kydland and Prescott (1982a) was soon followed by those by John B. Long, Charles I.

Plosser, Gary D. Hansen, Lawrence J. Christiano, Ellen R. McGrattan and Sumru G.

Altug, among others, expanding the solution techniques and the corresponding Fortran

code. Kydland and Prescott (1982b) develop a DOS executable program (the operating

system in personal computers at the time) to perform the calculations in their paper and

to generate impulse–response functions, in which some parameters can be entered

interactively; they also created a web interface that is no longer active.

At the beginning of the 1980s, computers were fourth-generation machines (based on

microprocessors). However, the introduction of the IMB PC, a fifth-generation computer,

in 1981 changed the scene completely, with an easily accessible, extremely reliable and

powerful computer, albeit with some data storage limitations. These new-generation

computers supported all the existing programming languages, such as C and Fortran, as

well as the development of new code and packages in PC DOS. The introduction of hard

disks in 1983 solved the problems with data storage. As a consequence, the transition

from mainframes to PCs was very fast, increasing the access to computers.

The combination of all these elements radically transformed macroeconomics in only a

decade, and less than 10 years after the seminal contribution by Kydland and Prescott

(1982a), the RBC and the DSGE approach in general spread widely across a large number

of departments and researchers around the world, emerging as the dominant paradigm in

modern macroeconomics.

18

3.3. The 1990s

During the 1990s, the use of DSGE models expanded rapidly among the academic

community due to the enhanced access to computers, the development of specific

software and the availability of programming codes from individual contributors first and

then from more ambitious teams that developed specific packages for solving DSGE

models without the need for computer programming skills. Developments in computer

languages were also rapidly incorporated into macroeconomic modeling. The variety of

programming languages used by economists expanded, not only to compiled languages

but also to some new scripting languages, such as MATLAB, R, Mathematica and Octave,

that were rapidly incorporated into economics. Initial codes in Fortran were translated

into GAUSS, OX, MATLAB, R and, more recently, Python and Julia. Codes in other

languages, such as TROLL and RATS, were also developed but in a more limited

quantity. The most widely used scripting language adopted by macroeconomists has been

MATLAB, leading with some initial key free code developed by leading practitioners

(see Nerlove, 2004).

Nowadays, all macroeconomists have skills in one or a number of computer languages as

an essential basic tool of their profession as an economic theoretical background or as

econometric techniques. However, some barriers to DSGE modeling remained in the

1990s as it required computing skills that were substantial and no specific software was

available. This contrasted with the extended use of computers in statistics and

econometrics, with the availability of specific software, such as SAS, SPSS and TROLL

from the early 1970s and later Stata and other econometrics-specific packages. A

remarkable attempt to fill this gap at the beginning of 1990s was the development of

WinSolve for solving and simulating non-linear models. This was the first specific

package for DSGE and other dynamic macroeconomic modeling, but it was commercial

software with very limited success.

The spread of the user community started with some leading contributors offering

publicly available code for solving DSGE models: Ellen McGrattan, Harald Uhlig,

Christopher Sims, Frank Schorfheide and Christian Zimmermann, just to cite a few

among many. Whereas the beginnings were difficult due to limited software, the publicly

available contributions developed in MATLAB, R, GAUSS, C and Fortran helped an

increasing number of economists to cross those barriers. In parallel, a number of websites

collected a variety of sources, including codes for different solution techniques for

19

solving DSGE models. Another remarkable contribution was the website developed by

Christian Zimmermann named Quantitative Macroeconomics and Real Business Cycle

(QM&RBC), which collected a number of contributions and codes. DSGE-NET is an

international research network for DSGE modeling and monetary and fiscal policy. It

includes a number of programs in different computer languages by a number of

contributors. The community is undergoing continuous expansion. More recent

contributions are the website QuantEcon developed by J. Perla, T. Sargent and J.

Stachurski for quantitative economic modeling and the tutorial in Julia by Bradley

Setzler.

The first package created specifically to solve dynamic macroeconomic models was

SoWhat by Stefan Bachmann and Holger Strulik (1992). It is a computer package for

solving dynamic models numerically with a simple menu for simulating dynamic models.

The use of SoWhat is very intuitive as no programming skills are needed. The user simply

needs to introduce the equations of the models, the initial values for the endogenous

variables and the values for the parameters. Endogenous variables are automatically

detected by the software. The program uses the Runge–Kutta algorithm for simulating

the dynamic system and includes some options regarding the simulating errors and the

speed of the simulation. This package can be used for simulating models such as Solow’s

growth model but not more sophisticated models with rational optimizer agents.

Finally, another important contribution during the 1990s was Harald Uhlig’s toolkit

(1999), the first version of which was published in 1995. This is a collection of MATLAB

codes to solve for the recursive equilibrium law of motion with the method of undermined

coefficients for non-linear dynamic stochastic models. This toolkit has become very

popular among DSGE practitioners and an invaluable source for PhD students, especially

for model log-linearization and solution techniques.

3.4. The 21st century

The new century started with the preponderance of MATLAB as the main scripting

language for developing code for dynamic macroeconomic modeling, although Fortran

and GAUSS were still used. This is, for instance, the case of the contributions by Paul

Klein with the solab (solving difference equations) codes developed in MATLAB,

Fortran and GAUSS. New researchers chose MATLAB as a computing language mainly

20

due to the large quantity of available free code and other resources for numerical methods

previously developed by a number of authors. One of the main advantages of MATLAB

is that it is a natural environment notation for writing linear algebra. However, it is a

commercial language (although the alternative option of Octave exists), poor at dealing

with data analysis and inferior to incoming new scripting language ecosystems that have

experimented with rapid and continuous expansion in several fields, including economics.

Indeed, two new languages have been developed in recent years, and macroeconomists

have incorporated these new computing tools into the toolbox for macroeconomic

modeling. These new computing languages are Python and Julia. Python is an object-

oriented programming language, adopted by some economists as an alternative to

MATLAB. Julia is a more promising programming language in economics given its

similarities to MATLAB and its faster computation speed compared with Python. One of

the main supporters, Thomas J. Sargent, is the founder of QuantEcon, a platform that

advances pedagogy in quantitative economics using both Julia and Python, including

open-source code for economic modeling. Sargent (2016) considered that the next

generation of macroeconomic models will be very computationally intensive, with large

datasets and many variables. These macroeconomic models and their forecasts help to

solve large constrained optimization problems using massive datasets to inform policy

analysis; hence, the availability of programming languages such as Julia will determine

further advances in macroeconomic models.

3.4.1. Python

Python is a general-purpose interpreted programming language with an object-oriented

approach that was initially developed by Guido van Rossum in 1991. A fully revised

version 2.0 was released in 2000. In the last years, Python has become one of the most

popular programming languages. It is suitable for a variety of applications because it is

supported by a vast collection of scientific libraries that are continuously updated by its

community. During the last five to seven years, Python has also been incorporated into

the computing toolbox in economics. As a matter of fact, the dynamic programming

language Python is well suited to use in economics and, in particular, econometrics, which

typically involves matrix-based calculations. The scientific packages for numerical

programming (NumPy), data preparation (pandas) and symbolic programming (Sympy)

21

with their many well-known extensions provide an ideal framework for working

scientifically in the field of economics.

Two remarkable sources of Python libraries designed to solve and compute DSGE models

are the Python Macroeconomics Laboratory (PyMacLab) and QuantEcon.py. The latter

is an open-source Python code library for economics and finance that is financially

supported by the Alfred P. Sloan Foundation and promoted by the Nobel prizewinner

Thomas J. Sargent. The library QuantEcon.py, together with QuantEcon.jl (using the

same codes but in the Julia language), form QuantEcon (Quantitative Economics), a

fiscally supported project dedicated to the development and documentation of modern

open-source computational tools for economics, econometrics and decision making.

Another contributor is Brian C. Jenkins, who developed a website on which DSGE

models can be simulated. On his website, users can choose the parameter values for the

simulation and other simulation-specific settings, and simulation results can be visualized

or downloaded, but there is no flexibility regarding the type of models to be solved.

As an example, to compute DSGE models, Dynare still outweighs Python by a factor of

12, according to a Google Scholar search with the terms Python “AND” DSGE (359

results) vs. Dynare “AND” DSGE (4960 results). Nonetheless, the growing success of

Python as a programming language suggests that this situation may quickly change,

although Julia is a formidable competitor. As argued by the PyMacLab team, there are

several clear-cut advantages in developing and using software written in Python rather

than any other programming language. First, Python is rapidly turning into the language

with the best supply of ready-to-use libraries. Second, it glues well to traditional scientific

languages, thus allowing existing source codes in other languages (e.g. Fortran and C++)

to be called inside Python scripts as if they were normal Python routines. In addition,

Python code can easily be embedded into the programming codes of html web pages,

Flash applications or smartphone/tablet apps (both HTML5 and Java), which are all

compatible with Python. Third, differently from Java and G++, Python is interpreted and

not compiled, thus making the programming experience much more seamless, interactive

and transparent. This turns Python into a so-called rapid application development (RAD)

tool. Python also has limitations. For example, the programming languages of Python 2

and Python 3 are incompatible. Additionally, Python is slower than Java and C+, even

though it is faster than MATLAB and GNU-Octave (see Aldrich et al., 2011). Finally,

22

Python is not self-contained but requires module support that sometimes lacks adequate

inputs.

3.4.2. Julia

A more recent programming language alternative with a number of advantages over

Python is Julia. Julia is a high-level, high-performance, free and open-source dynamic

programming language for technical computing, with syntax that is familiar to users of

other technical computing environments. In particular, its syntax is quite similar to that

of MATLAB, which is a significant advantage. The similarity of the syntax means that a

lot of MATLAB code will run in Julia with few changes. Indeed, Julia can be defined as

a combination of MATLAB and Python languages at the syntax level. However, it is a

more advanced programming language given that it has just-in-time compilation

characteristics and hence a computation speed close to compiled languages such as

Fortran or C/C++.

Julia is a scientific computing language, and an increasing number of economists are

adopting this programming language for computation-intensive tasks (e.g., Tom Sargent

and the NY FRB). It is a close substitute for MATLAB, and the cost of switching from

MATLAB to Julia is somewhat modest since Julia’s syntax is quite similar to MATLAB

syntax after changing array references from parentheses to square brackets (e.g., “A(2,

2)” in MATLAB is “A[2, 2]” in Julia and most other languages), though there are

important differences. Julia also competes with Python, R and C++, among other

languages, as a fast-computational tool. Julia’s advantages are that it is modern, elegant,

open source and much faster than MATLAB. Its disadvantage is that it is a young

language, so its syntax is evolving, its user community is smaller and some features are

still undergoing development.

Julia has many advantages over other scripting languages and for this reason is

extensively used in industries and in research with a fast penetration speed. Recently, the

Federal Reserve of New York open sourced its macroeconomic model (used for

producing forecasts about key variables and conducting policy experiments). The code is

written in Julia. One result of this research is DSGE.jl in GitHub, a Julia language package

that facilitates the solution and Bayesian estimation of DSGE models.

23

An excellent tutorial for programming in Julia for economists is the manual written by

Jesse Perla, Thomas J. Sargent and John Stachurski (Sargent and Stachurski, 2015; Perla,

Sargent and Stachurski, 2022). This tutorial can be found on the website

https://julia.quantecon.org/intro.html. As well as providing an excellent introduction to

the language, this is also a complete macroeconomic textbook with concepts illustrated

in Julia. Another source of codes for solving DSGE models in Julia can be found in the

book by Caraiani (2019). Furthermore, Bradley Setzler has elaborated some Julia

economics tutorials on structural econometrics (https://juliaeconomics.com/tutorials/).

The high running speed of Julia compared with MATLAB is a key aspect for new

developments in macroeconomic modeling using this new programming language. For

example, Thomas Hasenzagl, Filippo Pellegrino, Lucrezia Reichlin and Giovanni Ricco

switch from MATLAB to Julia for computing models using real-time data for monitoring

the economy. They chose Julia due to the computational intensity of the problem at hand

as Julia significantly improves the computational efficiency and speed of the nowcasting

model. This framework employs a number of different algorithms, including an

expectation maximization (EM) algorithm for dynamic factor models (DFM), a Kalman

filter and smoother, and several routines used to measure the impact of each individual

economic release. They also pointed out that Julia is crucial when a large number of

simulations is required, such as in Bayesian estimation methods, given its reduced

running time compared with MATLAB.

Table 1 summarizes the three types of computing software that are most extensively used

to solve, simulate and estimate DSGE models, classified by software type and year.

During the 1980s, two main languages were used: the Fortran compiled language and the

GAUSS scripting language, although the latter had little penetration in macroeconomics.

The spread of DSGE modeling came about in the 1990s, with application in C/C++ and

the advent of a number of scripting languages, such as MATLAB, R, Mathematica and

Octave, MATLAB being the most popular among macroeconomists. During this decade,

some packages for solving simple dynamic macroeconomic models, such as WinSolve

and SoWhat, also appeared.

24

Table 1: Computing languages for DSGE modeling

 Compiled languages Scripting languages Packages/preprocessors

1980s Fortran GAUSS

1990s C/C++ MATLAB

R

Octave

Mathematica

WinSolve

SoWhat

2000s Python

Dynare

gEcon

IRIS

YADA

GEMLLIB

2010s Julia Dolo/Jolo

Auroba and Fernández-Villaverde (2015) used the stochastic neoclassical growth model

and solved this model with the same algorithm (the value function iteration with a grid

search for future optimal capital) in different languages: C, Fortran, MATLAB,

Mathematica, R, Java, Python and Julia. They found that compiled languages (C and

Fortran) are faster, with C being slightly faster than Fortran but with Julia (a scripting

language) almost being faster than compiled languages. By contrast, Python, MATLAB

and R are extremely slow. They reported that MATLAB is around 10 times slower than

C++. As is usual in this type of computing exercises, the comparison was based on the

execution of a specific problem and measured the solving time. However, more factors

influence which programming language is the most appropriate, which depends on a

number of factors: personal skills in programming languages, the language/software that

is used most in the profession and the number of code sources that are publicly available

for each language.

4. Packages and pre-processors: The democratization of DSGE modeling

Packages, either free or commercial, have been common in statistics and econometrics

for a long time. Indeed, we can find a large number of software programs covering all the

existing statistical and econometric techniques used for empirical economics. Moreover,

25

new econometric techniques developed by researchers have quickly been incorporated

into these packages, eliminating the need to develop individual specific codes for the use

of these new techniques and the necessity of knowledge of programming languages. The

circumstances have been different for macroeconomic analysis. Econometricians have

unified their language, and the computation for empirical estimations of models has been

highly standardized. The road of macroeconomics has been very different from that of

econometrics. After the initial attempts, such as the release of the SoWhat package

(Bachmann and Strulik, 1992; Strulik, 1992) and Winsolve (Pierse, 1998, 2000),

advances in macroeconomic computation have generally been piecemeal, with the

individual development of codes to solve particular problems. This difference is

explained by two factors. First, the number of numerical techniques and solution methods

for working with DSGE models is large (although they produce different results, as shown

by Taylor and Uhlig, 1990), and different authors have different preferences for using a

particular numerical method and solution techniques. Second, theoretical models are

customized, and they can have particular characteristics that require specific codes.

However, the situation has changed recently, and, during the last two decades, a number

of specific packages, apart from the commercial WinSolve, for solving, simulating and

estimating DSGE models have been developed by different teams in a free and non-

commercial fashion.

The new century has been characterized by the development of specific packages for

DSGE modeling written in both compiled and scripting languages. A keystone that

contributed decisively to the spread of DSGE models as the cornerstone of modern

macroeconomic analysis was the development of Dynare by a CEPREMAP team. Dynare

(Dynamic Rational Expectations) was developed initially in GAUSS by Michael Julliard

and later extended to MATLAB, Octave and C++. More recently, the Dynare team has

developed this pre-processor for DSGE modeling in Julia (Dynare.jl). It can be argued

that Dynare revolutionized the profession as people with a low level of programming

skills can solve and simulate DSGE models using this specific user-friendly user interface

(UI) combined with MATLAB. The development of specific software such as Dynare has

“democratized” the use of DSGE models as economists with few skills in computer

languages but enough knowledge about the theoretical model can use these models for

macroeconomic analysis, something that was restricted to a relative small “DSGE club”

before the dawn of Dynare.

26

Apart from Dynare, other packages have been developed to handle DSGE models: gEcon,

IRIS, YADA and Dolo/Jolo. gEcon is a tool for solving DGE models developed in R at

the Department for Strategic Analyses at the Chancellery of the Prime Minister of the

Republic of Poland, by Grzegorz Klima, Karol Podemski and Kaja Retkiewicz-

Wijtiwiak. Another specific piece of software is IRIS, consisting of a toolbox for

MATLAB developed by the IRIS Solutions Team since 2001, headed by Jaromir Benes

for macroeconomic modeling and forecasting. YADA is another package for MATLAB

developed through research at the European Central Bank since 2006. Recent packages

for Python and Julia are Doco/Jolo. Finally, another contribution is GEMLLIB, developed

by Pawel Kowal (2005). This is a collection of routines for C++ in GEML language to be

run in MATLAB, devoted to specifying large-scale DSGE models easily, including

algorithms that perform all the required symbolic computation to solve the model.

GEMLLIB uses the perturbation method for solving DSGE models. However, the success

of Dynare has not been reached by any other software for DSGE modeling.

4.1. WinSolve

WinSolve is a program for solving and simulating non-linear models. It is a commercial

package developed by Richard G. Pierse in 2004. Whereas commercial packages have

been common in statistics and econometrics, this is an exception in the case of dynamic

macroeconomics or structural econometrics, for which codes have traditionally been free.

This program handles a wide class of models, including both DSGE models and structural

econometric models. WinSolve is a stand-alone application for the Windows operating

system. The size of models that can be built is unlimited as there is no restriction on the

number of variables or parameters. This software can linearize a non-linear model and

use the perturbation methods to solve it. Although version 5.0 was announced in October

2016, only version 4.0, from November 2007, is available. WinSolve uses a large variety

of solution algorithms and alternative numerical methods. Currently, the distribution of

WinSolve by a commercial company has been announced but still not commenced.

27

4.2. Dynare

Without any doubt, the most popular software with the greatest impact on the

development of dynamic macroeconomics is Dynare. Dynare is a free and open-source

pre-processor, that is, a pre-compiler consisting of a program that processes input data (a

text file) to produce output (i.e., a MATLAB program) that is used as input for another

program (i.e., MATLAB). Part of Dynare is programmed in C++, and part in is

programmed in MATLAB/Octave. This pre-processor uses a very simple language that

allows the conversion of a DSGE model into a simple code that can be run in various

programming languages, such as MATLAB or Octave, and it is expected in the near

future to be run in Julia. Additionally, Dynare++ is a stand-alone program. Dynare has

been developed at CEPREMAP (Centre pour la REcherche ÉconoMique et ses

APplications) by a team directed by Michel Julliard, Stéphane Adjemian and Sébastian

Villemot. Dynare can solve both DSGE and perfect-foresight DGE models and models

with alternative expectation mechanisms, and it estimates DSGE models using both

maximum likelihood and Bayesian techniques.

The success of Dynare can be attributed to a number of reasons. First, the source syntax

is very friendly and simple, keeping the command instructions to a minimum. The input

file for the pre-processor is a text file with a set of simple instructions and blocks. It is

only necessary to provide a text “mod” file with a set of endogenous variables, a set of

exogenous variables, the parameters, the values of the parameters and the equilibrium

equations of the model. The set of equations is written in a similar fashion to a sheet, the

only change being the way in which the time indexes are provided. For Dynare, the model

is a set of equations defining the technology, the feasibility condition and the optimal

decisions by economic agents (first-order conditions of maximization problems

previously solved by hand). This implies that few programming skills are required and

that the structure and scale of the model can be changed easily.

Second, it is based on MATLAB/Octave, scripting languages that are already used by

DSGE modelers. Although the first version was developed in GAUSS, it was

subsequently developed in MATLAB, a programming language used by most

macroeconomists. This facilitated the adoption of Dynare given its flexibility and

possibilities. Additionally, Dynare permitted researchers to concentrate on the theoretical

model, without the need to integrating existing MATLAB code or create their own code,

saving time and avoiding errors. On the other hand, new models, especially NK-DSGE

28

estimated models, have been written in Dynare, a publicly available code, to replicate the

results published in articles and to explore further those collections of models with

alternative specifications and values of the parameters.

Finally, Dynare is a simple yet powerful tool and is easy to learn, requiring only basic

knowledge of MATLAB/Octave, so it can be used by graduate students with little

knowledge of programming languages. This has contributed to the expansion of Dynare’s

use among PhD students as well as to the formation of an army of students attracted by

DSGE modeling.

Dynare is a complete and reliable tool that includes a collection of solution methods for

the steady state of the model (non-linear models) and uses a local-approximation method

around the steady state to solve DSGE models (the perturbation method) based on Klein’s

solution method. The latest version of Dynare can perform high-order approximations.

This software platform can not only solve a calibrated model but also use data to estimate

the parameters of a DSGE model, using both maximum likelihood and Bayesian

techniques using MCMC methods. Indeed, Dynare has influenced the way in which

DSGE models are taken to the data and has expanded the use of estimated DSGE models

as opposed to calibration. Dynare includes a high number of options and is able to

generate a vast set of results regarding solution, estimation and forecasting with DSGE

models. All these elements combined have made Dynare the standard software for those

interested in DSGE modeling.

4.3. gEcon

A second specific package is gEcon, developed by Grzegorz Klima, Karol Podemski and

Kaja Retkiewicz-Wijtiwiak and presented in 2013. This package was developed in R to

take advantage of the high availability of R code for economic and econometric modeling.

gEcon is based on a comprehensive symbolic computation library with an object-based

R interface. The model can be calibrated (including the use of input–output matrices or

social accounting matrices given that CGE models can also be solved).

One particular characteristic of gEcon is that models are written as they are defined. That

is, for gEcon, a model is the set of equations comprising the optimization problems of

economic agents. Indeed, the main differential characteristic of gEcon is that the model

29

can be solved directly by writing the optimization problems for different economic

agents. The first-order condition from problem maximization, steady state and

linearization matrices can be derived through this software. This is different from the

definition of the model used by Dynare, in which the model is the set of first-order

conditions plus technological, budget and feasibility constraints and state accumulation

equations. This means that first-order conditions are not needed when using gEcon as it

calculates them itself. Additionally, the process of solving the model is interactive, which

means that the values of parameters can be changed without the need to recompute the

model. The definition of the model is organized in blocks for each economic agent, for

which information on the optimization problem (control variables, objective function,

constraints, etc.) or equilibrium relationships is supplied. All this information is written

in a gcn file, which is read by R using a function that calls on a shared library for symbolic

computation, converting the gcn file into an R script that solves and simulates the model.

Additionally, gEcon can estimate a model using the maximum likelihood approach or

Bayesian estimation using the random walk Metropolis–Hastings algorithm.

Another important characteristic of gEcon is that it is a unified computing package for

both DSGE and computable general equilibrium (CGE) models. Traditionally, CGE

software (GAMS, MPSGE and GEMPACK) has been different from applications for

DSGE models, the main reason being that CGE models are designed for static analysis

whereas DSGE models are dynamic. However, gEcon is an integrated package that can

be used to solve both types of models.

4.4. IRIS

Another package for DSGE modeling is IRIS. IRIS consists of a toolbox for MATLAB

that has been developed since 2001 by the IRIS Solutions Team, headed by Jaromir

Benes, for macroeconomic modeling and forecasting. IRIS can solve, simulate and

estimate (using maximum likelihood methods) DSGE models. Forecasting using the

structural model is also possible. Currently, it is supported by the Global Projection Model

Network (GPMN). IRIS is a free, open-source MATLAB toolbox, which uses a very

flexible language with the possibility of carrying out simulation, estimation, forecasting

and model diagnosis. The working of IRIS is similar to that of Dynare, in which the

structure of the economic model is described in a model file. Nevertheless, as in the case

30

of gEcon, the competition of Dynare has limited the use of IRIS as a standard tool by

DSGE macroeconomists.

4.5. YADA

YADA (Yet Another DSGE Application) is another program for DSGE modeling and

structural macroeconometric model estimation, incorporating Bayesian estimation

techniques. This code was developed by the New Area-Wide Model (NAWM) team at

the Forecasting and Policy Modelling Division of the European Central Bank (ECB) in

2006, using code from other researchers. YADA uses a MATLAB version of the

Anderson–Moore (AiM) algorithm for solving linear rational expectations models, but

the program also includes other solution algorithms, such as Klein’s solution method, as

well as csminwel (for optimization) and gensys (for solving a DSGE model), developed

by Christopher Sims. It can also be used to solve models with alternative expectation

mechanisms. A distinctive feature compared with other packages, such as Dynare, is that

YADA is a GUI-based program, in which the user can control all actions and settings.

The latest version of YADA, version 4.90, was released in January 2022 (Warne, 2022).

YADA incorporates the code for a number of the most famous DSGE models, produces

various results, including the Smets and Wouters (2003) model, a model with a zero lower

bound constraint, the DSGE-VAR model and so on and provides a set of Bayesian

estimation tools.

4.6. Dolo/Jolo

A more recent source taking advantage of new programming languages is Dolo/Jolo.

Dolo/Jolo is a tool or, more specifically, a pre-processor to assist researchers in solving

several types of DSGE models, developed by Pablo Winant for Python and Julia. In

solving DSGE models, Dolo/Jolo can use either local or global approximation methods.

Dolo is a pre-processor for Python, whereas Jolo is a pre-processor for Julia, although

later code developed in Julia is also named Dolo.

The logic and main characteristics of this pre-processor are similar to those of Dynare.

Users can write the model in a text file YAML (YAML stands for Yet Another Markup

Language), in which the components of the models (variables, parameters and equations)

31

are defined. Sections of a basic file are composed of symbols, equations, calibration,

domain and options, with a structure similar to that of the “mod” files of Dynare. Dolo

then compiles that text file into Python of Julia. One important characteristic is that Dolo

understands several types of non-linear models with occasionally binding constraints,

which can be a very useful characteristic for studying some particular economic

environments. The software also checks the consistency of the model and computes an

efficient numerical representation. The user can choose a particular solution method using

one of the methods provided by the package or use one of the already implemented

procedures. Currently, only time iteration is supported, but it is expected that, in the near

future, value function iteration and parametrized expectations procedures will be

available.

4.7. Model comparison: The Macroeconomic Model Data Base

Finally, it is worth mentioning the Macroeconomic Model Data Base (MMB), a project

headed by Volker Wieland and supported by a number of contributors (Wieland et al.,

2012, 2016). This is a collection of dynamic macroeconomic models based on a common

computational platform for systematic model comparison with an application that works

with MATLAB/Octave and Dynare. The MMB aims to make a large number of structural

macroeconomic models more reproducible, collaborative and comparative. Accordingly,

the MMB initiative proposes a unified and straightforward software application for model

comparison and result replication. The MMB application collects more than 150 models

with the code written in Dynare, including the most popular DSGE models, as a

replication source for a number of papers, and a tool for model comparison. The database

includes both calibrated and estimated DSGE models for the US, the euro area, multi-

country models and other specific-country models as well as a number of models with

adaptive learning expectations. The replication package, in which the Dynare code for all

models remains as close as possible to the authors’ original code or article, can be

downloaded from the website (https://www.macromodelbase.com). The MMB interface

is divided into five menus—Models (151 models in MMB 3.1.0), Policy Rules (nine

monetary policy rules plus one user-specified rule), Shocks (monetary policy shocks,

fiscal policy shocks and model specific shocks), Variables (inflation, interest rate, output,

output gap and model specific variables) and Options—and it allows the comparison of a

model with alternative policy rules or different models for a particular policy rule.

32

5. Concluding remarks

During the last decades, the progress in macroeconomic theory and that in computing

technology have been interconnected, and the current way in which macroeconomic

analysis is carried out is strongly related to the advances in computing and programming

languages. Computer technology has experienced significant advances during the last

century, and it is expected that these will continue or even accelerate in the near future,

especially with the transition to quantum computing. Computing advances have allowed

the generalization of economic experiments that are difficult to perform otherwise by

applying numerical methods and techniques to solve complex theoretical macroeconomic

models. This is the main approach followed by macroeconomics, in which the simulation

of DSGE models is the core of the macroeconomic laboratory used by researchers and

practitioners for policy evaluation.

Kocherlakota (2009) argued that macroeconomic modeling is a by-product of computing

technology and that computing technology has been a barrier to the development of more

complex DSGE models. The spread of DSGE modeling as the ground of current

macroeconomics is related to advances in computers and programming languages and a

significant amount of code developed by some leading contributors. The democratization

of DSGE access with packages and pre-processors has both positive and negative effects,

with the balance clearly in favor of the former. It is clear that this software has eliminated

the main barriers to introducing economists to the solution and simulation of DSGE

models as little knowledge of programming and numerical methods is required. However,

it is true that this is a pure black box and can turn part of macroeconomic modeling into

a purely mechanical procedure, similar to that of empirical econometrics, as the cost of

solving and simulating DSGE models is currently very small, and it can make a large

amount of free code available for a large number of alternative models.

In the near future, it is expected that the importance of computers and software in the

development of macroeconomics will increase, allowing the foundation of more

advanced, complex and realistic theoretical models. The development of faster and more

powerful computers, new code in more advanced programming languages, more

advanced and efficient computational numerical methods and more advanced pre-

processors will allow the development of DSGE models without the need to use the

33

representative agent assumption, allowing interactions among a high number of

heterogeneous economic agents, which will result in richer and more realistic models,

improve the macroeconomic laboratory, contribute to a better understanding of economic

phenomena and help policymakers to choose the most appropriate policy instruments to

face shocks of different natures. This is a promising and very likely avenue given the

observed and expected progress in computing technology and the increasing dependence

of macroeconomic analysis on computing.

References

Adelman, I. and Adelman, F. L. (1959). The Dynamic Properties of the Klein–Goldberger
Model. Econometrica, 27(4): 596–625.

Aldrich, E. M., J. Fernández-Villaverde, R. A. Gallant and Rubio-Ramírez, J. F. (2011).
Tapping the Supercomputer under Your Desk: Solving Dynamic Equilibrium Models
with Graphics Processors. Journal of Economic Dynamics and Control, 35(3): 386–393.

Altug, S. (1989). Time-to-Build and Aggregate Fluctuations: Some New Evidence.
International Economic Review, 30: 889–920.

Auroba, S. B. and Fernández-Villaverde, J. (2015). A Comparison of Programming
Languages in Economics. Journal of Economic Dynamics and Control, 58: 265–273.

Bachmann, S. and Strulik, H. (1992). SoWhat 1.6. A Tool for Easy Simulation of
Dynamical System. Manuscript.

Bencivenga, V. R. (1992). An Econometric Study of Hours and Output Variation with
Preference Shocks. International Economic Review, 33: 449–471.

Blake, A. P. (2012). DSGE Modeling on an iPhone/iPad Using SpaceTime.
Computational Economics, 40: 313–332.

Blanchard, O. J. and Kahn, C. H. (1980). The Solution of Linear Difference Models under
Rational Expectations. Econometrica, 48: 1305–1311.

Blanchard, O. J. and Kiyotaki, N. (1987). Monopolistic Competition and the Effects of
Aggregate Demand. American Economic Review, 77(4): 647–666.

Bollard, A. E. (2011). Man, Money and Machines: The Contributions of A. W. Phillips.
Economica, 78(309): 1–9.

Bongers, A., Gómez, T. and Torres, J. L. (2020). Teaching Dynamic General Equilibrium
Models to Undergraduates Using a Spreadsheet. International Review of Economic
Education, 35(4): 1–11.

34

Bongers, A., Gómez, T. and Torres, J. L. (2021). Dynamic Macroeconomic Models with
Excel. Journal of Economic Education, 52(4): 372-372.

Brainard, W. C. and Scarf, H. E. (2005). How To Compute Equilibrium Prices in 1891.
American Journal of Economics and Sociology, 61(1): 57–83.

Brock, W. and Mirman, L. (1972). Optimal Economic Growth and Uncertainty: The
Discounted Case. Journal of Economic Theory, 4(3): 479–513.

Caraiani, P. (2019). Introduction to Quantitative Macroeconomics Using Julia. Academic
Press, Elsevier.

Cass, D. (1965). Optimum Growth in an Aggregative Model of Capital Accumulation.
Review of Economic Studies, 32: 233–240.

Christiano, L. J. (1988). Why Does Inventory Investment Fluctuate So Much? Journal of
Monetary Economics, 21: 247–280.

Chu, A. C. (2018). From Solow to Romer: Teaching Endogenous Technological Change
in Undergraduate Economics. International Review of Economics Education, 27(c): 10–
15.

DeJong, D. N., Ingram, B. F., and Whiteman, C. H. (2000). A Bayesian Approach to
Dynamic Macroeconomics. Journal of Econometrics, 98(2), 203-223.

Dasgupta, P. and Heal, G. (1974). The Optimal Depletion of Exhaustible Resources.
Symposium on the Economics of Exhaustible Resources. Review of Economic Studies,
41: 3–28.

Enke, S. (1951). Equilibrium among Spatially Separated Markets: Solution by Electric
Analogue. Econometrica, 19(1): 40–47.

Fernández-Villaverde, J. (2010). The Econometrics of DSGE Models. SERIEs, 1(1–2):
3–49.

Forrester, J. W. (1958). Industrial Dynamics—A Major Breakthrough for Decision
Makers. Harvard Business Review, 36(4): 37–66.

Goodwin, R. M. (1951). The Nonlinear Accelerator and the Persistence of Business
Cycles. Econometrica, 19: 1–17.

Hansen, G. D. (1985). Indivisible Labor and the Business Cycle. Journal of Monetary
Economics, 16: 309–327.

Hobbs, P. and Judge, G. (1992). Computers as a Tool for Teaching Economics.
Computers and Education, 19 (1-2), 67-72.

Ireland, P. N. (1997). A Small, Structural, Quarterly Model for Monetary Policy
Evaluation. Carnegie-Rochester Conference Series on Public Policy, 47, 83-108.

Ireland, P. N. (2001a). Technology Shocks and the Business Cycle. Journal of Economic
Dynamics and Control, 25, 703-719.

35

Ireland, P. N. (2001b). Sticky-price Models of the Business Cycle. Specification and
Stability. Journal of Monetary Economics, 47, 3-18.

Ireland, P. N. (2004). A Method for Taking Models to the Data. Journal of Economic
Dynamics and Control, 28: 1205–1226.

Jenkins, B. C. (2022). A Python-Based Undergraduate Course in Computational
Macroeconomics. Journal of Economic Education, forthcoming.

Judd, K. L. (1997). Computational Economics and Economic Theory: Substitutes or
Complements? Journal of Economic Dynamic and Control, 21: 907–922.

Kendrick, D. A. and Amman, H. M. (1999). Programming Languages in Economics.
Computational Economics, 14: 151–181.

Kim, J. (2000). Constructing and Estimating a Realistic Optimizing Model of Monetary
Policy. Journal of Monetary Economics, 45(2): 329–359.

King, R. G., Plosser, C. I. and Rebelo, S. T. (1987). Production, Growth, and Business
Cycles: Technical Appendix. Manuscript. University of Rochester.

Klein, P. (2000). Using the Generalized Schur Form to Solve a Multivariate Linear
Rational Expectations Model. Journal of Economic Dynamic and Control, 24: 405–423.

Kocherlakota, N. R. (2009). Modern Macroeconomic Models as Tools for Economy
Policy. The Region: 5–21.

Koopmans, T. C. (1965). On the Concept of Optimal Growth, The Econometric Approach
to Development Planning. Rand McNally.

Kowal, P. (2005). GEMLLIB-Matlab Code for Specifying and Solving DSGE Models.
Computer Programs 0504007. University Library of Munich.

Kydland, F. and Prescott, E. (1982a). Time To Build and Aggregate Fluctuations.
Econometrica, 50: 1350–1372.

Kydland, F. and Prescott, E. (1982b). Executable Program for Time To Build and
Aggregate Fluctuations. QM&RBC Codes 4, Quantitative Macroeconomics & Real
Business Cycles.

Long, J. B. and Plosser, C. I. (1983). Real Business Cycles. Journal of Political Economy,
91(1): 39–69.

Lucas, R. E. (1976). Econometric Policy Evaluation: A Critique. In K. Brunner and A.
Meltzer (eds), The Phillips Curve and Labor Markets. Carnegie-Rochester Conference
Series on Public Policy 1, New York.

Lucas, R. E. (1980). Methods and Problem in Business Cycle Theory. Journal of Money,
Credit, and Banking, 12(4): 696–715.

Mankiw, N. G. (1985). Small Menu Costs and Large Business Cycles: A Macroeconomic
Model of Monopoly. Quarterly Journal of Economics, 100: 529–539.

36

McGrattan, E. (1994). The Macroeconomic Effects of Distortionary Taxation. Journal of
Monetary Economics, 33(3): 573–601.

McGrattan, E., Rogerson, R. and Wright, R. (1997). An Equilibrium Model of the
Business Cycle with Household Production and Fiscal Policy. International Economic
Review, 38(2): 267–290.

Morehouse, N. F., Strotz, R. H. and Horwitz, S. J. (1950). An Electro-analog Method for
Investigating Problems in Economic Dynamics: Inventory Oscillations. Econometrica,
18(4): 313–328.

Nerlove, M. (2004). Programming Languages: A Short History for Economists. Journal
of Economic and Social Measurement, 29: 189–203.

Neumuller, S., Rothschild, C. and Weerapana, A. (2018). The Macro Pedagogy Debate:
Teaching DSGE to Undergraduates Symposium. Journal of Economic Education, 49(3):
242–251.

Perla, J., Sargent, T. J. and Stachurski, J. (2022). Quantitative Economics with Julia.
Manuscript.

Phillips, A. W. H. (1950). Mechanical Models in Economic Dynamics. Economica,
17(67): 283–305.

Pierse, R. G. (2000). WinSolve Version 3: An Introductory Guide. Department of
Economics, University of Surrey.

Rabanal, P. and Rubio-Ramirez, J. F. (2003). Inflation Persistence: How Much Can We
Explain? Economic Review, Federal Reserve Bank of Atlanta, Q2: 43–55.

Ramsey, F. (1928). A Mathematical Theory of Saving. Economic Journal, 37: 543–559.

Raybaut, A. (2020). Analog Computing Simulations and the Production of Theoretical
Evidence in Economic Dynamics. Œconomia, 10(2): 309–329.

Rotemberg, J. (1982). Monopolistic Price Adjustment and Aggregate Output. Review of
Economic Studies, 49(4): 517–531.

Sargent, T. J. and Stachurski, J. (2015). Quantitative Economics with Julia. Manuscript.

Sergi, F. (2018). DSGE Models and the Lucas Critique. A Historical Appraisal. Working
Paper 20181806. Department of Accounting, Economics and Finance, Bristol Business
School, University of the West of England, Bristol.

Sims, C. (2001). Solving Linear Rational Expectations Models. Computational
Economics, 10: 1–20.

Smets, F. and Wouters, R. (2003). An Estimated Dynamic Stochastic General
Equilibrium Model for the Euro Area. Journal of the European Economic Association, 1:
1123–1175.

37

Solis-García, M. (2018). The Macro Pedagogy Debate: Teaching DSGE to
Undergraduates Symposium: Yes We Can! Teaching DSGE Models to Undergraduate
Students. Journal of Economic Education, 49(3): 226–236.

Strotz, R. H., Calvert, J. F. and Morehouse, N. F. (1951). Analogue Computing
Techniques Applied to Economics. IEEE Xplore, 70: 557–563.

Strotz, R. H., McAnulty, J. C. and Naines, J. B. (1953). Goodwin’s Nonlinear Theory of
the Business Cycle: An Electro-analog Solution. Econometrica, 21(3): 390–411.

Strulik, H. (1992). SoWhat for Windows 1.6. QM&RBC Codes 96, Quantitative
Macroeconomics & Real Business Cycles.

Svensson, L. (1986). Sticky Goods Prices, Flexible Asset Prices, Monopolistic
Competition and Monetary Policy. Review of Economic Studies, 53(3): 385–405.

Taylor, J. B. and Uhlig, H. (1990). Solving Nonlinear Stochastic Growth Models: A
Comparison of Alternative Solution Methods. Journal of Business and Economic
Statistics, 8: 1–17.

Uhlig, H. (1999). A Toolkit for Analyzing Nonlinear Dynamic Model Easily. In R.
Marimon and A. Scott (eds), Computational Methods for the Study of Dynamic
Economies. New York: Oxford University Press.

Uzawa, H. (1965). Optimum Technical Change in an Aggregative Model of Economic
Growth. International Economic Review, 6: 18–31.

Warne, A. (2022). YADA Manual—Computational Details. http://www.texlips.net/yada/

Wieland, V., Afanasyeva, E., Kuete M. and Yoo, J. (2016). New Methods for Macro-
Financial Model Comparison and Policy Analysis. Handbook of Macroeconomics, 2:
1241–1319.

Wieland, V., Cwik, T., Müller, G. J., Schmidt, S. and Wolters, M. (2012). A New
Comparative Approach to Macroeconomic Modeling and Policy Analysis. Journal of
Economic Behavior and Organization, 83: 523–541.

