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Abstract: In a classic paper, Acemoglu (2003) developed a growth model where 
firms can undertake both labor- and capital-augmenting technological improvements. 
According to that paper the balanced growth path with purely labor-augmenting 
technical change is the unique asymptotic (noncycling) equilibrium, and is stable only 
when capital and labor are gross complements, i.e., only when the elasticity of 
substitution between these two factors is no greater than 1. Otherwise, the model not 
only has two other asymptotic steady-state paths, but also the balanced growth path is 
unstable. The current comment points out that Acemoglu's conclusion ignores the 
crowding effect in innovation sector that he has proposed due to the assumption of 
perfect mobility of scientists between sectors. By replacing the perfect mobility 
assumption with a smooth adjustment process, implicitly invoking the presence of some 
adjustment costs, this comment not only points out that the factors affecting the 
direction of technological progress include both the demand side of innovations 
(relative price and relative market size) and the supply side of innovations (relative 
marginal productivity of innovation), but also proves that regardless of whether the 
substitution elasticity is greater than 1 or less than 1, the balanced growth path is not 
only unique, but also at least locally saddle-path stable. 
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Comment on “Labor- and Capital-augmenting technical change”: Does the stability of 

balanced growth path depend on the elasticity of factor substitution? 

 

In a classic paper, Acemoglu (2003) developed a growth model, in which firms can undertake 
both labor- and capital-augmenting technological improvements. In the long run, the economy 
resembles the standard neoclassical growth model with purely labor-augmenting technical change. 
Although the Acemoglu paper does not reveal the reason why only purely labor-augmenting 
technical change is consistent with steady-state equilibrium, it provides a micro foundation for the 
basic neoclassical growth model with labor-augmenting technical change. However, the paper holds 
that only when capital and labor are gross complements, i.e., only when the elasticity of substitution 
between these two factors is no greater than 1, the balanced growth path with purely labor-
augmenting technical change is the unique asymptotic (noncycling) equilibrium, and is stable. 
Otherwise, the model not only has two other asymptotic steady-state paths, but also the balanced 
growth path is unstable, and the economy will converge to the non-balanced asymptotic path. 
Because empirical research (Karabarbounis and Neiman, 2014) shows that the real substitution 
elasticity may be greater than 1, this conclusion casts doubt on the balanced growth path.   

However, the current comment argues that Acemoglu’s conclusion ignores the crowding 
effect in innovation sector that he has proposed due to the assumption of perfect mobility of 
scientists between sectors. By replacing the perfect mobility assumption with a smooth adjustment 
process, implicitly invoking the presence of some adjustment costs, this comment proves that 
regardless of whether the substitution elasticity is greater than 1 or less than 1, the balanced growth 
path is not only unique, but also at least locally saddle-path stable. 

Although this result is contrary to the original conclusion of Acemoglu (2003), its economic 
intuition is not complicated. If, like other economic activities, scientists’ innovation activities are 
incentivized by market return that makes them always enter sectors with higher relative return, then 
the distribution of scientists in different innovation sectors will depend on the relative market value 
of different inventions which determined by the relative price of factors (proposed by Hicks 1932) 
and the relative market size (proposed by Acemoglu 2002), and relative marginal productivity of 
scientist which will decrease with the increase of the number of scientists in a sector if there is 
crowding effect of innovation. Obviously, the market return of scientists is determined by the two 
factors. Even if the market value of the invention is high, if the marginal output is too small, 
scientists may still be reluctant to enter this sector. Since the direction of technological progress 
depends on the distribution of scientists in different sectors, relative prices, relative market size and 
relative marginal productivity are the key factors affecting the direction of technological progress. 
Although the relative market size effect induces innovation to concentrate in the sector with larger 
market when the substitution elasticity is greater than 1 and consequently causes technological 
progress to deviate from the balanced growth path, the relative price effect and the crowding effect 
of innovation always lead innovation to converge to the balanced growth path. It is precisely the 
crowding effect which leads to the comprehensive consequence of the three effects is that, whether 
the substitution elasticity is greater than 1 or less than 1, the balanced growth path is unique and 
locally saddle-path stable. It is just because, Acemoglu (2003) ignored the crowding effect of 
innovation due to the assumption of perfect mobility of scientists between sectors that he was led to 
arrive at the conclusion that the stability of balanced growth path depends on the factor substitution  
elasticity.  
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The rest of the comment is organized as follows: In Section Ⅰ, we model the migration of 
scientists between sectors in line with the original ideas of Acemoglu’s paper but considering the 
crowding effect; Section Ⅱ proves the existence, uniqueness of the balanced growth path of 
Acemoglu (2003)’s model; Section Ⅲ shows that the balanced growth path of the model is at least 
locally saddle point stable; The fourth section concludes. 
 

Ⅰ. Migration of scientist between sectors 

Acemoglu (2003) assumes that firms can undertake both labor- and capital-augmenting 

technological improvements, whereby invention is the result of scientists’ efforts. The relative return 

of innovation allocates scientists into different innovative sectors, and thus affects the direction of 

technological progress. The return scientists obtain depends on their marginal productivity and on 

the market value of each invention. In equilibrium, scientists either receive equal returns at the two 

innovative sectors, or completely focus on either labor- or capital-augmenting technological 

improvement.  

Acemoglu (2003) assumes the existence of two different sets of intermediate goods, 𝑛 of which 

are produced solely with labor, and 𝑚  are produced using capital only. An increase in 𝑛  - an 

expansion in the set of labor-intensive intermediates - corresponds to labor-augmenting technical 

change, while an increase in 𝑚 corresponds to capital-augmenting technical change. Changes in n 

and m are the result of scientific effort.  

The economy has an exogenously given total number of scientists 𝑆 . Let 𝑆𝑙  and 𝑆𝑘  denote, 

respectively, the number of scientists working to discover new labor-intensive and capital-intensive 

intermediates, with the market clearing condition 𝑆𝑙 + 𝑆𝑘 = 𝑆 . Acemoglu assumes further that 

innovation has a crowding effect, that is, the more scientists are present in a sector, the lower the 

average productivity of these scientists. The innovation functions in Acemoglu (2003) are: �̇�𝑛 = 𝑏𝑙ϕ(𝑆𝑙)𝑆𝑙 − 𝛿 𝑎𝑛𝑑 �̇�𝑚 = 𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝛿                                             (1) 
where 𝑏𝑙, 𝑏𝑘, and 𝛿 are strictly positive constants, and ϕ(. )is a continuously differentiable function 

reflecting the crowding effect of innovation, therefore, ϕ′(. ) < 0. Acemoglu further assumes that 

the crowding effect is not internalized by individual R&D firms, therefore, each R&D firm takes 

the productivity of allocating one more scientist to each of the two sectors, 𝑏𝑙ϕ(𝑆𝑙) or 𝑏𝑘ϕ(𝑆𝑘), as 

given when deciding which sector to enter.4  While Acemoglu assumes ϕ(0) < ∞ , we assume ϕ(0) → ∞, which is an Inada-like condition to assure that in equilibrium, scientists are present in 

both sectors, thus excluding scientists from completely focusing on one sector and ensuring the 

uniqueness of the equilibrium. Equation (1) implies the marginal productivity of scientists in the 

two innovative sectors are: 𝜕�̇�𝜕𝑆𝑙 = 𝑏𝑙ϕ(𝑆𝑙)𝑛 and 𝜕�̇�𝜕𝑆𝑘 = 𝑏𝑘ϕ(𝑆𝑘)𝑚.  

 
4  If the crowding effect were to be internalized by individual R&D firms, the marginal output of scientists of 
equations (2) would be 𝑏𝑖ϕ′(𝑆𝑖)𝑆𝑖 + 𝑏𝑖ϕ(𝑆𝑖) rather than 𝑏𝑖ϕ(𝑆𝑖), 𝑖 = 𝑙 𝑜𝑟 𝑘. 
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Acemoglu assumes that the inventor has a permanent patent for each invention. The flow of 

profits from the sale of labor- and capital-intensive intermediate goods turn out to be 𝜋𝑙 = 1−𝛽𝛽 𝑤𝐿𝑛  

and 𝜋𝑘 = 1−𝛽𝛽 𝑟𝐾𝑚 , where 0 < 𝛽 < 1 determines the elasticity of substitution between intermediate 

goods in the production of final products, 11−𝛽 . 5  L represents labor, 𝑤  is the wage of labor, K 

represents capital and 𝑟 is the interest rate. Therefore, the market value of a patent is the present 

value of the respective profit streams 𝑉𝑙  and 𝑉𝑘 , where 𝑉𝑓(𝑡) = ∫ 𝑒𝑥𝑝[−∫ (𝑟(𝜔) +𝑠𝑡∞𝑡𝛿)𝑑𝜔]𝜋𝑓(𝑣)𝑑𝑣， 𝑓 = 𝑙 or 𝑘, 𝑟(𝑡) is the interest rate at date t, and 𝛿 is the depreciation (obsolescence) 

rate of existing intermediate inputs. 

 Suppose that the wage of scientists engaged in the labor-augmenting (capital-augmenting) 

technological innovation is 𝜔𝑠𝑙  (𝜔𝑠𝑘)  and both are given by the market value of the marginal 

product of scientist, that is, 𝜔𝑠𝑙 = 𝑏𝑙ϕ(𝑆𝑙)𝑛𝑉𝑙  and 𝜔𝑠𝑘 = 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘 . Acemoglu assumes that 

scientists are homogeneous, therefore in equilibrium the wage of scientists is the higher of the two, 

that is, 𝜔𝑠 = max{𝑏𝑙ϕ(𝑆𝑙)𝑛𝑉𝑙 , 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘}. This shows that there are three possible equilibria in 

the scientist market: First, scientists are active in both sectors and receive equal wage, that is, 0 <𝑆𝑙 < 𝑆, 0 < 𝑆𝑘 < 𝑆, 𝑏𝑙ϕ(𝑆𝑙)𝑛𝑉𝑙 = 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘; Second, all scientists focus on the innovation of 

labor-intensive intermediates and their wage is determined by the value of innovations in the sector 

of labor-intensive intermediate inputs, that is, 𝑆𝑙 = 𝑆 , Sk = 0 , ωs = blϕ(Sl)nVl > bkϕ(Sk)mVk   
Third, all scientists focus on the innovation of capital-intensive intermediate inputs and their wage 

is given by the value of innovations in that sector, that is, Sl = 0, Sk = S, ωs = 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘 >𝑏𝑙ϕ(𝑆𝑙)𝑛𝑉𝑙 .  
Acemoglu (2003) does not clearly point out how scientists move between the two innovation 

sectors when the scientist market is out of equilibrium, a process that would affect the dynamic 

adjustment of the direction of technological progress. The wage rates of the two sectors are clearly 

equal along a balanced growth path but Acemoglu assumes scientists instantaneously move between 

sectors to keep the wage rates of the two sectors always equal. Accordingly, he takes the time 

derivative on both sides of the equation 𝑏𝑙𝜙(𝑆 − 𝑆𝑘)𝑛𝑉𝑙 = 𝑏𝑘𝜙(𝑆𝑘)𝑚𝑉𝑘 to obtain the equation of 𝑆�̇�𝑆𝑘 in transitional dynamics. We replace the perfect mobility assumption with a smooth adjustment 

process, implicitly invoking the presence of some adjustment costs. Moreover, we show that it is 

the setting of scientists’ migration function in the dynamic process that leads to the instability of the 

balanced growth path of the Acemoglu model.  

Specifically, we assume that scientists are incentivized by wage difference to move from one 

 
5 See equation (21) in Acemoglu (2003). 
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sector to the other. This becomes the main micro mechanism which changes the direction of 

technological progress in the transitional dynamics. Therefore, we assume the following scientist’s 

migration function:  𝑆�̇�𝑆𝑘 = 𝐺 [𝜔𝑠𝑘𝜔𝑠𝑙 ] ,                                                                                  (2) 
There are three possible equilibria which imply 𝑆�̇�𝑆𝑘 = 0: (1) when 𝜔𝑠𝑘𝜔𝑠𝑙 = 1; (2) 𝜔𝑠𝑘𝜔𝑠𝑙 < 1 and 𝑆𝑘 = 0, 

𝑆𝑙 = 𝑆; (3) when 𝜔𝑠𝑘𝜔𝑠𝑙 > 1 and 𝑆𝑘 = 𝑆, 𝑆𝑙 = 0. We further assume that 𝐺′(. ) > 0, that is, the greater 

the wage difference, the faster the migration of scientists.  

Substituting 𝜔𝑠𝑙 = 𝑏𝑙ϕ(𝑆𝑙)𝑛𝑉𝑙 and 𝜔𝑠𝑘 = 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘 into equation (2) we obtain: 𝑆�̇�𝑆𝑘 = 𝐺 [ 𝑏𝑘ϕ(𝑆𝑘)𝑚𝑉𝑘𝑏𝑙ϕ(𝑆 − 𝑆𝑘)𝑛𝑉𝑙] ,                                                                            (3) 
and further substituting for 𝜋𝑙 and 𝜋𝑘 into equation (3) we yield:  𝑆�̇�𝑆𝑘 = 𝐺 [ 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆 − 𝑆𝑘) . 𝑟𝑤 .𝐾𝐿]                                                                        (4) 

When 𝑆�̇�𝑆𝑘 > 0, more scientists are entering the capital-augmenting sector, �̇�𝑚 rises relative to �̇�𝑛, 

and technological progress will be more capital-augmenting. If the opposite holds, it will be more 

labor- augmenting. Therefore, equation (4) shows that there are three factors affecting the direction 

of technological progress: the relative factor price 𝑟𝑤  and the relative market size 𝐾𝐿   , both 

representing the demand side factors affecting the direction of technological progress as emphasized 

by Acemoglu (2002, 2003); The third factor is the relative marginal productivity of scientists 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆−𝑆𝑘), which is a supply side factor affecting the direction of technological progress. It is the 

migration equation of scientists proposed in this comment that can clearly reveal the impact of the 

relative marginal productivity of innovation on the direction of technological progress. Although 

Acemoglu (2002, 2003) too has pointed this factor out, given the assumption that the wage rates of 

scientists in different sectors are always equal, its impact is ignored. In addition, as we show below, 

it is also the key factor causing the economy to converge to a unique balanced growth path.  

Next, let 𝑁 ≡ 𝑛1−𝛽𝛽  and 𝑀 ≡ 𝑚1−𝛽𝛽 , 𝑘 ≡ 𝑀𝐾𝑁𝐿 , so that 𝑘 represents effective units of capital. In 

addition, specify a CES production function 𝑌 = [𝛾(𝑁𝐿)(𝜀−1)/𝜀 + (1 − 𝛾)(𝑀𝐾)(𝜀−1)/𝜀]𝜀/(𝜀−1) , 
𝑓(𝑘) ≡ 𝑌𝑁𝐿 = [𝛾 + (1 − 𝛾)(𝑘)(𝜀−1)/𝜀]𝜀/(𝜀−1). Provided 𝑟 and 𝑤 are the marginal product of K and 

L, then 𝑟𝐾𝑤𝐿 = (1−𝛾)𝛾 𝑘(𝜀−1)/𝜀. Substituting this into equation (4) we obtain: 𝑆�̇�𝑆𝑘 = 𝐺 [ 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆 − 𝑆𝑘) (1 − 𝛾)𝛾 𝑘(𝜀−1)/𝜀]                                                  (5) 
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Altogether, unlike Acemoglu (2003), this comment uses equation (5) as the migration equation 
of scientists between sectors to discuss on the steady state and stability of steady state in the model. 

 

Ⅱ. The existence and uniqueness of the balanced growth path 

In order to discuss the existence and stability of the steady-state equilibrium of the model, the 

dynamic equations of the model must be provided. To complete the setup, Acemoglu (2003) assume 

that the economy is populated by a representative consumer with the usual constant relative risk 

aversion (CRRA) preference as ∫ 𝐶(𝑡)1−𝜃−11−𝜃 𝑒−𝜌𝑡𝑑𝑡∞0 , where 𝜃 is the elasticity of marginal utility, 

and 𝜌 is the time discount rate. From these preferences, the familiar consumption Euler equation, 𝜃 �̇�𝐶 = 𝑟 − 𝜌, can be obtained. Using the Euler equation, the innovation equations (1), the migration 

equation (5), the definitions of N, M and k，and further defining 𝑐 ≡ 𝐶/𝐾, the dynamics of the 

amended Acemoglu model are summarized by: 

{  
  
   
 �̇�𝑐 = 𝑀(𝛽𝜃 𝑓′(𝑘) − 𝑓(𝑘)𝑘 ) + 𝑐 − 𝜌𝜃                                                        �̇�𝑘 = (𝑀𝑓(𝑘)𝑘 − 𝑐) + 1 − 𝛽𝛽 [𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)(𝑆 − 𝑆𝑘)]�̇�𝑀 = 1 − 𝛽𝛽 [𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝛿]                                                                   𝑆�̇�𝑆𝑘 = 𝐺 [ 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆 − 𝑆𝑘) (1 − 𝛾)𝛾 𝑘(𝜀−1)/𝜀]                                                 

                   (6) 
From equations (6) we can then obtain the following Proposition: 

 

Proposition 1: The system described by equations (6) possesses a unique steady-state 

equilibrium, described by equations (7) as follow: 

{  
   
  
   
   
 𝑆𝑘∗ = 𝛿𝑏𝑘ϕ(𝑆𝑘∗)                                                                                                                        𝑆𝑙∗ = 𝑆 − 𝑆𝑘∗                                                                                                                            𝑘∗ = [ 𝑏𝑘ϕ(𝑆𝑘∗)𝑏𝑙ϕ(𝑆 − 𝑆𝑘∗) (1 − 𝛾)𝛾 ] −𝜀𝜀−1                                                                                          𝑀∗ = 𝛽𝜌 − 𝜃(1 − 𝛽)𝛽𝛽𝑓′(𝑘∗) [𝑏𝑘ϕ(𝑆𝑘∗)𝑆𝑘∗ − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘∗)(𝑆 − 𝑆𝑘∗)]                                   𝑐∗ = [𝛽𝜌 − 𝜃(1 − 𝛽)𝛽𝛽 𝑓(𝑘∗)𝑘∗𝑓′(𝑘∗) + 1 − 𝛽𝛽 ] [𝑏𝑘ϕ(𝑆𝑘∗)𝑆𝑘∗ − 𝑏𝑙ϕ(𝑆 − 𝑆𝑘∗)(𝑆 − 𝑆𝑘∗)] �̇�𝑁 = �̇�𝐾 = �̇�𝐶 = 𝐼̇𝐼 = �̇�𝑌 = 1 − 𝛽𝛽 [𝑏𝑙ϕ(𝑆 − 𝑆𝑘∗)(𝑆 − 𝑆𝑘∗) − 𝛿]                                          �̇�𝑀 = 0                                                                                                                                           

        (7) 

Proof: 

First, we prove existence of a steady-state equilibrium. 
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Set �̇�𝑀 = 𝑆�̇�𝑆𝑘 = 𝑐̇𝑐 = �̇�𝑘 = 0 . From equations (6) and using 𝑆 = 𝑆𝑙 + 𝑆𝑘 , 𝑌 = 𝑁𝐿𝑓(𝑘) , we can 

obtain equations (7), which shows that there is a steady-state equilibrium of the model. 

Technological progress in equilibrium is purely labor-augmenting, �̇�𝑀 = 0 . This is the core 

conclusion of Acemoglu (2003).  

Second, we prove that the steady-state equilibrium is unique, regardless of whether the 

substitution elasticity is greater or less than 1. It has been proved that 𝑆𝑘∗ = 𝛿𝑏𝑘ϕ(𝑆𝑘∗) is a steady-

state equilibrium of the model implying �̇�𝑀 = 0. What we need to prove is that there is no other 

steady-state equilibrium. This requires to prove, contrary to the argument in Acemoglu (2003), that 𝑆𝑘 = 𝑆  and 𝑆𝑘 = 0  cannot be equilibria. Further, it needs to be shown that there is no other 

equilibrium 0 < 𝑆𝑘′ ≠ 𝛿𝑏𝑘ϕ(𝑆𝑘∗) < 𝑆. We prove this conclusion by contradiction.  

On the one hand, we rule out steady-state equilibria in which scientists focus on one of the 

sectors, that is, 𝑆𝑘 = 𝑆 or 𝑆𝑘 = 0 cannot be steady-state equilibria.  

Suppose to the contrary that scientists are completely concentrated in one sector, that is, 𝑆𝑘 =𝑆  or 𝑆𝑘 = 0 , is also a steady-state equilibrium. Then, when 𝑆𝑘 = 𝑆 , ϕ(𝑆 − 𝑆𝑘) → ∞  and 𝑏𝑘ϕ(𝑆)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘(𝜀−1)/𝜀 < 1  and hence 𝑆�̇�𝑆𝑘 < 0 . Therefore, 𝑆𝑘 = 𝑆  cannot be a steady-state 

equilibrium. Analogously, when 𝑆𝑘 = 0 , ϕ(0) → ∞  and 𝑏𝑘ϕ(0)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘(𝜀−1)/𝜀 > 1  and 

accordingly 𝑆�̇�𝑆𝑘 > 0, therefore 𝑆𝑘 = 0 cannot be a steady-state equilibrium either. 6 

On the other hand, we now show that there is no another steady-state equilibrium in which 0 < 𝑆𝑘′ ≠ 𝛿𝑏𝑘ϕ(𝑆𝑘∗) < 𝑆.  

Suppose to the contrary there is another such steady-state equilibrium in which 0 < 𝑆𝑘′ ≠𝛿𝑏𝑘ϕ(𝑆𝑘∗) < 𝑆. By construction, �̇�𝑀 ≠ 0 and 0 < 𝑆𝑙′ = 𝑆 − 𝑆𝑘′ < 𝑆. Since the number of scientists in 

both sectors is greater than zero, the wage rates of scientists in the two sectors must be equal in 

steady state, that is 𝑏𝑘ϕ(𝑆𝑘′)𝑏𝑙ϕ(𝑆−𝑆𝑘′) (1−𝛾)𝛾 𝑘′𝜀−1𝜀 = 1  Therefore, from the wage equality 𝑘′  is a finite 

constant which satisfies 𝑘′ = [ 𝑏𝑘ϕ(𝑆𝑘′)𝑏𝑙ϕ(𝑆−𝑆𝑘′) (1−𝛾)𝛾 ] −𝜀𝜀−1
. Accordingly, given the definition of k and 𝑌 =𝑁𝐿𝑓(𝑘′) we can obtain  

 
6  As mentioned above, Acemoglu (2003) assumes ϕ(0) < ∞ . However, as long as ϕ(0)  is not “too small”, 𝑏𝑘ϕ(𝑆)𝑏𝑙ϕ(0) (1−𝛾)𝛾 𝑘(𝜀−1)/𝜀 < 1 and 𝑏𝑘ϕ(0)𝑏𝑙ϕ(𝑆) (1−𝛾)𝛾 𝑘(𝜀−1)/𝜀 > 1 will still hold, and the model will still have a unique steady-
state equilibrium. 
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�̇�𝑀 + �̇�𝐾 = �̇�𝑁 + �̇�𝐿 = �̇�𝑌                                                                   (8) 
The capital accumulation equation �̇� = 𝐼 = 𝑌 − 𝐶 implies that in steady state  �̇�𝑌 = �̇�𝐶 = 𝐼̇𝐼 = �̇�𝐾                                                                             (9) 
Substituting equation (9) into equation (8), we then obtain �̇�𝑀 = 0, which is consistent only 

with 𝑆𝑘′ = 𝑆𝑘∗ = 𝛿𝑏𝑘ϕ(𝑆𝑘∗).  
QED. 

 

This proves that the model has a unique steady-state equilibrium given by equations (7), the 

capital-augmenting technological progress rate is equal to zero (�̇�𝑀 = 0), and technological progress 

is purely labor augmenting. The uniqueness of the steady-state equilibrium does not depend on 

whether 𝜀 > 1 or 𝜀 < 1. Therefore, Proposition 2 of Acemoglu (2003), which argues that with 𝜀 >1 , there are three asymptotic paths (Aps), does not hold unless ϕ′(. ) = 0 , that is, the marginal 

productivity of scientists remains unchanged, which contradicts the crowding effect Acemoglu 

assumed in his paper. Accordingly, it is the properly specified crowding effect (and the Inada-like 

condition that we added) that guarantee the equilibrium’s uniqueness.  

 

Ⅲ. Steady-state equilibrium is at least locally saddle-path stable 

Acemoglu (2003) argues that when 𝜀 > 1 there are multiple steady-state equilibria. Moreover, 

he argues that in this case, the balanced growth path is unstable, and the economy will inevitably 

converge to the asymptotic equilibrium with 𝑆𝑘∗ = 𝑆 or 𝑆𝑘∗ = 0. As a result, the balanced growth 

path of purely labor-augmenting technological progress may be of no practical significance. 

However, as pointed out in section Ⅰ, Acemoglu’s conclusion is due to the assumption of perfect 

mobility of scientists between sectors. We prove next that for the model described by equations (6), 

the balanced growth paths are at least locally saddle-path stable regardless of the value of the 

elasticity of substitution. Like the original paper of Acemoglu (2003), we also examine the case 

which θ = 0 (risk neutral preferences) first, and then consider a more general situation. 

1. Let θ = 0. When 𝛆 < 𝟏, the steady state is locally stable, and when 𝜺 > 𝟏, it is locally 

saddle point stable. 

When θ = 0, the consumption Euler equation degenerates to 𝑀𝛽𝑓′(𝑘) = 𝜌                                                                                          (10) 
From equation (10), we obtain k = k(M) with dkdM > 0, that is, 𝑘 is an increasing function of 

M. Using this condition, equations (6) simplify into the following pair of dynamic equations: 
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{  
  𝑆�̇�𝑆𝑘 = 𝐺 [ 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆 − 𝑆𝑘) (1 − 𝛾)𝛾 𝑘(𝑀)(𝜀−1)/𝜀]    �̇�𝑀 = 1 − 𝛽𝛽 𝑏𝑘ϕ(𝑆𝑘)𝑆𝑘 − 𝛿                                                                         (11) 

Linearizing equations (11) near the equilibrium point yields:  

{  
  𝑆�̇�𝑆𝑘 = 𝑎𝑠𝑠(𝑆𝑘 − 𝑆𝑘∗) + 𝑎𝑠𝑚(𝑀 −𝑀∗)�̇�𝑀 = 𝑎𝑚𝑠(𝑆𝑘 − 𝑆𝑘∗)                                                                                     (12) 

where 𝑎𝑠𝑠 ≡ 𝜕𝑆�̇�𝑆𝑘𝜕𝑆𝑘 = 𝐺′. 𝑏𝑘𝑏𝑙 (1−𝛾)𝛾 𝑘(𝑀)𝜀−1𝜀 ϕ′(𝑆𝑘)ϕ(𝑆−𝑆𝑘)+ϕ(𝑆𝑘)ϕ′(𝑆−𝑆𝑘)[ϕ(𝑆−𝑆𝑘)]2 < 0 , 𝑎𝑠𝑚 ≡ 𝜕𝑆�̇�𝑆𝑘𝜕𝑀 =𝐺′. 𝜀−1𝜀 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘(𝑀)−1𝜀 𝑑𝑘𝑑𝑀  the sign of which depends on the value of ε , and 𝑎𝑚𝑠 ≡ 𝜕�̇�𝑀𝜕𝑆𝑘 =1−𝛽𝛽 𝑏𝑘ϕ(𝑆𝑘) > 0.7  

The characteristic equation of the model is: 𝑑𝑒𝑡 |𝑎𝑠𝑠 − 𝜆 𝑎𝑠𝑚𝑎𝑚𝑠 −𝜆 | = 0   ,                                                            (13) 
leading to: 𝜆2 − 𝜆𝑎𝑠𝑠 − 𝑎𝑠𝑚𝑎𝑚𝑠 = 0 ,                                                         (14) 
By using the Vieta theorem we obtain:  {𝜆1𝜆2 = −𝑎𝑠𝑚𝑎𝑚𝑠       𝜆1 + 𝜆2 = 𝑎𝑠𝑠 < 0                                                                   (15) 
When ε < 1，asm < 0 and ams > 0, so that −asmams > 0. Equation (15) shows that equation (14) 

must have two negative roots, λ1 < 0 and λ2 < 0. In this case, the steady-state equilibrium of the 

model is locally stable. 

When ε > 1 , then asm > 0  and ams > 0  Since λ1λ2 = −asmams < 0 , there must be a 

positive root and a negative root, so the steady-state equilibrium of the model is locally saddle point 

stable.8 This stands in contrast to Proposition 6 in Acemoglu (2003), arguing that the steady-state 

equilibrium of the model is unstable when ε > 1. 

 

2. The stability of steady-state equilibrium in the general case  

The dynamic equation (6) of the model is linearly approximated to obtain: 

 
7 The sign of these coefficients holds in all circumstances, not just in the steady state. 
8 Because the Euler equation disappears, there is nothing to guarantee that the economy is on the saddle path initially. 
However, this problem disappears when one considers θ > 0 and imposes the transversality conditions. 
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{   
  
   �̇�𝑐 = 𝑎𝑐𝑐(𝑐 − 𝑐∗) + 𝑎𝑐𝑘(𝑘 − 𝑘∗) + 𝑎𝑐𝑚(𝑀 −𝑀∗)                                 �̇�𝑘 = 𝑎𝑘𝑐(𝑐 − 𝑐∗) + 𝑎𝑘𝑘(𝑘 − 𝑘∗) + 𝑎𝑘𝑚(𝑀 −𝑀∗) + 𝑎𝑘𝑠(𝑆𝑘 − 𝑆𝑘∗)�̇�𝑀 = 𝑎𝑚𝑠(𝑆𝑘 − 𝑆𝑘∗)                                                                                    𝑆�̇�𝑆𝑘 = 𝑎𝑠𝑘(𝑘 − 𝑘∗) + 𝑎𝑠𝑠(𝑆𝑘 − 𝑆𝑘∗)                                                         

        (16) 
Where 𝑎𝑠𝑠 = 𝐺′. 𝑏𝑘𝑏𝑙 (1−𝛾)𝛾 𝑘𝜀−1𝜀 ϕ′(𝑆𝑘)ϕ(𝑆−𝑆𝑘)+ϕ(𝑆𝑘)ϕ′(𝑆−𝑆𝑘)[ϕ(𝑆−𝑆𝑘)]2 < 0 , 𝑎𝑠𝑚 = 𝑎𝑠𝑐 = 0 , 𝑎𝑠𝑘 =𝐺′. 𝜀−1𝜀 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘−1𝜀  the sign of which depends on the value of substitution elasticity ε；𝑎𝑚𝑠 =

1−𝛽𝛽 𝑏𝑘ϕ(𝑆𝑘) > 0, 𝑎𝑚𝑚 = 𝑎𝑚𝑐 = 𝑎𝑚𝑘 = 0; 𝑎𝑐𝑠 = 0, 𝑎𝑐𝑚 = (𝛽𝜃 𝑘𝑓′(𝑘)𝑘 − 𝑓(𝑘)𝑘 ) the sign of which is 

unknown, 𝑎𝑐𝑐 = 1, 𝑎𝑐𝑘 = 𝑀(𝛽𝜃 𝑓′′(𝑘) − 𝑘𝑓′(𝑘)−𝑓(𝑘)𝑘∗𝑘 ) the sign of which is also is unknown；𝑎𝑘𝑠 =
1−𝛽𝛽 (𝑏𝑘ϕ(𝑆𝑘) + 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)) > 0, 𝑎𝑘𝑚 = 𝑓(𝑘)𝑘 > 0, 𝑎𝑘𝑐 = −1 < 0, 𝑎𝑘𝑘 = 𝑀 𝑘𝑓′(𝑘)−𝑓(𝑘)𝑘∗𝑘 < 0. 

The characteristic equation is as follows: 

𝑑𝑒𝑡 |𝑎𝑐𝑐 − 𝜆 𝑎𝑐𝑘 𝑎𝑐𝑚 0𝑎𝑘𝑐 𝑎𝑘𝑘 − 𝜆 𝑎𝑘𝑚 𝑎𝑘𝑠0 0 −𝜆 𝑎𝑚𝑠0 𝑎𝑠𝑘 0 𝑎𝑠𝑠 − 𝜆| = 0                                     (17) 
Expanding of the characteristic equation yields:  𝜆4 − 𝜆3(𝑎𝑠𝑠 + 1 + 𝑎𝑘𝑘) + 𝜆2(𝑎𝑠𝑠 + 𝑎𝑠𝑠𝑎𝑘𝑘 + 𝑎𝑘𝑘 + 𝑎𝑐𝑘 − 𝑎𝑠𝑘𝑎𝑘𝑠)+ 𝜆(−𝑎𝑠𝑠𝑎𝑐𝑘 − 𝑎𝑠𝑠𝑎𝑘𝑘 + 𝑎𝑠𝑘𝑎𝑘𝑠 − 𝑎𝑠𝑘𝑎𝑚𝑠𝑎𝑘𝑚) + 𝑎𝑠𝑘𝑎𝑚𝑠(𝑎𝑘𝑚 + 𝑎𝑐𝑚)= 0                                                                                                                                    (18) 

From the Vieta theorem: 𝜆1𝜆2𝜆3𝜆4 = 𝑎𝑠𝑘𝑎𝑚𝑠(𝑎𝑘𝑚 + 𝑎𝑐𝑚)                                                  (19) 
When ε > 1 , Proposition 5 of Acemoglu (2003) says that the equilibrium growth path is 

unstable, and the economy will converge to one of two unbalanced asymptotic equilibria. However, 

here we prove that the steady-state equilibrium is a locally saddle-path stable equilibrium, regardless 

of the elasticity of substitution’s value relative to 1. 

When ε > 1 , ask = 𝜀−1𝜀 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘−1𝜀 > 0，𝑎𝑚𝑠 > 0，(𝑎𝑘𝑚 + 𝑎𝑐𝑚) = 𝛽𝜃 𝑘𝑓′(𝑘)𝑘 > 0，
therefore λ1λ2λ3λ4 > 0. Equation (19) shows that the characteristic equation must have 4 positive 

roots, or 4 negative roots, or two positive and two negative roots. If there are 4 positive roots, the 

steady state is unstable. If there are 4 negative roots, then the steady state is locally stable, if there 

are two positive and two negative roots, then the steady state is locally saddle-stable. Therefore, as 

long as we can rule out the case of four positive roots, the equilibrium growth path is at least saddle-

path stable. 
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We prove by contradiction that not all four roots can be positive. That is, provided ε > 1, 

claiming that equation (18) has four positive roots results in a contradiction.  

Use the Vieta theorem to obtain： 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 𝑎𝑠𝑠 + 1 + 𝑎𝑘𝑘                                                    (20) 
If equation (18) has 4 positive roots, then from equation (20) we can obtain 𝜆1 + 𝜆2 + 𝜆3 +𝜆4 = (ass + 1 + akk) > 0 , implying that 1 + akk > −ass > 0 . From the Vieta theorem also the 

following equation holds: 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆1𝜆4 + 𝜆2𝜆3 + 𝜆2𝜆4 + 𝜆3𝜆4 = 𝑎𝑠𝑠(1 + 𝑎𝑘𝑘) + (𝑎𝑘𝑘 + 𝑎𝑐𝑘) − 𝑎𝑠𝑘𝑎𝑘𝑠   (21) 
Owing to 𝑎𝑠𝑠 < 0，if 1 + akk > 0, then 𝑎𝑠𝑠(1 + 𝑎𝑘𝑘) < 0; and akk + ack = M βθ f ′′(k) < 0; 

𝑎𝑘𝑠 = 1−𝛽𝛽 (𝑏𝑘ϕ(𝑆𝑘) + 𝑏𝑙ϕ(𝑆 − 𝑆𝑘)) > 0 , but when ε > 1 , ask = 𝐺′. 𝜀−1𝜀 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘−1𝜀 > 0 . 

then −askaks < 0. Therefore, the RHS of equation (21) is less than 0. However, if all four roots are 

positive, then the RHS of equation (21) should be greater than zero. Therefore, equation (18) cannot 

possess four positive roots, and can either have two positive roots and two negative roots, or four 

negative roots. If there are two positive roots and two negative roots, the steady-state equilibrium is 

locally saddle-path stable, if there are four negative roots, the steady-state equilibrium is locally 

stable. In a word, the steady-state equilibrium is at least saddle-path stable. 

When ε < 1 , ask = G′. 𝜀−1𝜀 𝑏𝑘ϕ(𝑆𝑘)𝑏𝑙ϕ(𝑆−𝑆𝑘) (1−𝛾)𝛾 𝑘−1𝜀 < 0 , 𝑎𝑚𝑠 > 0  and (𝑎𝑘𝑚 + 𝑎𝑐𝑚) = 𝛽𝜃 𝑘𝑓′(𝑘)𝑘 >0  then λ1λ2λ3λ4 = askams(akm + acm) < 0 , so the equation must have negative roots and the 

steady-state equilibrium is also saddle point stable. Whether there is just one negative root or there 

are three negative roots cannot be established. 
This proves the most important conclusion of this comment: even if the elasticity of 

substitution is greater than 1, i.e., ε > 1, the steady-state equilibrium of Acemoglu (2003) is at least 
saddle-path stable. Therefore, under our specification, Proposition 5 of Acemoglu (2003) does not 
hold either.  

 

Ⅳ. Conclusion 

Acemoglu’s classic paper (2003) developed a growth model with an endogenous direction of 

technological progress, in which firms can undertake both labor- and capital-augmenting 

technological improvements. In the long run, the economy resembles the standard growth model 

with purely labor-augmenting technical change. It provides a micro foundation for the purely labor-

augmenting technological progress in the neoclassical growth model. However, Acemoglu (2003) 

argues that the balanced growth path is unstable when the substitution elasticity is greater than 1. In 

that case the economy will converge to the unbalanced growth path. This makes the notion of a 

balanced growth path questionable, given the empirical work that shows that the real substitution 

elasticity may be greater than 1 (e.g., Karabarbounis and Neiman, 2014). However, this comment 
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proves that as long as scientists cannot move instantaneously between sectors with adjustment cost, 

and there is a crowding effect of scientist in innovation and the marginal productivity of scientist 

decreases, whether the substitution elasticity is greater than or less than 1, the balanced growth path 

is not only the unique steady-state equilibrium of the model, but also at least locally saddle-path 

stable.  

This comment also points out that the factors affecting the direction of technological progress 

are not only coming from the demand side of innovations (relative price and relative market size), 

but also from the supply side (relative marginal productivity of innovation). It is the latter that makes 

the balanced growth path of Acemoglu (2003) model not only the unique steady-state equilibrium, 

but also at least locally saddle-path stable. It is Acemoglu’s (2003) assumption that scientists’ wages 

are always equal even in the transitional dynamics that led him to ignore the impact of relative 

marginal productivity of innovation on the direction of technological progress. As a consequence, 

Acemoglu came to the conclusion that the model has multiple asymptotic steady states and the 

balanced growth path is unstable when the factor substitution elasticity is greater than 1. 

The relative marginal productivity of innovation not only affects the steady-state equilibrium 

of Acemoglu’s (2003) model, but is also of great significance in understanding the direction of 

technological progress in reality. It shows that that direction depends not only on the relative market 

value of inventions, but also on the relative difficulty of inventions (describled by the relative 

marginal productivity of innovation). In particular, it may be the case that some kind innovations 

have greater market demand than others, but are relatively more difficult to obtain. As a result, 

enterprises may not necessarily be willing to invest in such research. This result  has important 

policy implications, indicating that it may not be enough to regulate the direction of technological 

progress purely by changing relative market incentives. Effort should also be made to change the 

relative marginal productivity of innovations, e.g. through improved research and development 

conditions, innovative talent training, forming an environment conducive to innovation, and the like. 
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