Pinto, Ricardo and Henriques, Sofia and Brockway, Paul and Heun, Matthew and Sousa, Tânia (2022): The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions.
Preview |
PDF
MPRA_paper_112541.pdf Download (1MB) | Preview |
Abstract
In the coming renewables-based energy transition, global electricity consumption is expected to double by 2050, entailing widespread end-use electrification, with significant impacts on energy efficiency. We develop a long-run, worldwide societal exergy analysis focused on electricity to provide energetic insights for this transition. Our 1900-2017 electricity world database contains the energy carriers used in electricity production, final end-uses, and efficiencies. We find world primary-to-final exergy (i.e. conversion) efficiency increased rapidly from 1900 (6%) to 1980 (39%), slowing to 43% in 2017 as power station generation technology matured. Next, despite technological evolution, final-to-useful end-use efficiency was surprisingly constant (~48%), due to “efficiency dilution”, wherein individual end-use efficiency gains are offset by increasing uptake of less efficient end uses. Future electricity efficiency therefore depends on the shares of high efficiency (e.g. electrified transport and industrial heating) and low efficiency (e.g. cooling and low temperature heating) end uses. Our results reveal past efficiency increases (carbon intensity of electricity production reduced from 5.23 kgCO2/kWh in 1900 to 0.49 kgCO2/kWh in 2017) did little to decrease global electricity-based CO2 emissions, which rose 380-fold. The historical slow-pace of transition in generation mix and electric end-uses suggest strong, urgent incentives are needed to meet climate goals.
Item Type: | MPRA Paper |
---|---|
Original Title: | The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions |
Language: | English |
Keywords: | Energy efficiency, electricity, Carbon intensity, decarbonisation, energy history, energy end-uses |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q40 - General |
Item ID: | 112541 |
Depositing User: | Ricardo Pinto |
Date Deposited: | 03 Apr 2022 19:11 |
Last Modified: | 03 Apr 2022 19:12 |
References: | [1] De Stercke S. Dynamics of Energy Systems: a Useful Perspective. IIASA Interim Report,IIASA: 2014. [2] International Renewable Energy Agency (IRENA). Global Energy Transformation: A roadmap to 2050. 2018. [3] IEA (International Energy Agency). World Energy Outlook 2018. 2018. [4] Goh T, Ang BW, Su B, Wang H. Drivers of stagnating global carbon intensity of electricity and the way forward. Energy Policy 2018;113:149–56. https://doi.org/10.1016/j.enpol.2017.10.058. [5] Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M, Krey V, et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat Clim Chang 2015;5:519–27. https://doi.org/10.1038/nclimate2572. [6] IEA, International Renewable Energy Agency (IRENA), UNSD, World Bank, WHO. Tracking SDG 7: The Energy Progress Report 2020. Washington DC: 2020. [7] Brockway PE, Sorrell S, Semieniuk G, Heun MK, Court V. Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications. Renew Sustain Energy Rev 2021;141:110781. https://doi.org/10.1016/j.rser.2021.110781. [8] Santos J, Domingos T, Sousa T, St. Aubyn M. Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009. Ecol Econ 2018;148:103–20. https://doi.org/10.1016/j.ecolecon.2018.01.008. [9] Van Heddeghem W, Lambert S, Lannoo B, Colle D, Pickavet M, Demeester P. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput Commun 2014;50:64–76. https://doi.org/10.1016/j.comcom.2014.02.008. [10] Sousa T, Brockway PE, Cullen JM, Miller J, Cabrera A, Domingos T. The Need for Robust, Consistent Methods in Societal Exergy Accounting. Ecol Econ 2017;141:11–21. https://doi.org/10.1016/j.ecolecon.2017.05.020. [11] Serrenho AC, Warr B, Sousa T, Ayres RU, Domingos T. Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009. Struct Chang Econ Dyn 2016;36:1–21. https://doi.org/10.1016/j.strueco.2015.10.004. [12] Serrenho AC, Sousa T, Warr B, Ayres RU, Domingos T. Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009. Energy 2014;76:704–15. https://doi.org/10.1016/j.energy.2014.08.068. [13] Ferguson R, Wilkinson W, Hill R. Electricity use and economic development. Energy Policy 2000;28:923–34. https://doi.org/10.1016/S0301-4215(00)00081-1. [14] Ayres RU, Ayres LW, Warr B. Exergy, power and work in the US economy, 1900 – 1998. Energy 2003;28:219–73. https://doi.org/10.1016/S0360-5442(02)00089-0. [15] Heun MK, Brockway PE. Meeting 2030 primary energy and economic growth goals: Mission impossible? Appl Energy 2019;251:112697. https://doi.org/10.1016/j.apenergy.2019.01.255. [16] Ayres RU, Ayres LW, Pokrovsky V. On the efficiency of US electricity usage since 1900. Energy 2005;30:1092–145. https://doi.org/10.1016/j.energy.2004.07.012. [17] Felício L, Henriques ST, Domingos T, Serrenho AC, Sousa T. Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014. Energies 2019. https://doi.org/10.3390/en12030534. [18] Guevara Z, Sousa T, Domingos T. Insights on energy transitions in Mexico from the analysis of useful exergy 1971–2009. Energies 2016;9. https://doi.org/10.3390/en9070488. [19] Williams E, Warr B, Ayres RU. Efficiency dilution: Long-term exergy conversion trends in Japan. Environ Sci Technol 2008;42:4964–70. https://doi.org/10.1021/es0716756. [20] Brockway PE, Barrett JR, Foxon TJ, Steinberger JK. Divergence of trends in US and UK aggregate exergy efficiencies 1960-2010. Environ Sci Technol 2014;48:9874–81. https://doi.org/10.1021/es501217t. [21] Eisenmenger N, Warr B, Magerl A. Trends in Austrian Resource Efficiency: An Exergy and Useful Work Analysis in Comparison to Material Use, CO 2 Emissions, and Land Use. J Ind Ecol 2017;21:1250–61. https://doi.org/10.1111/jiec.12474. [22] Brockway PE, Steinberger JK, Barrett JR, Foxon TJ. Understanding China’s past and future energy demand: An exergy efficiency and decomposition analysis. Appl Energy 2015;155:892–903. https://doi.org/10.1016/j.apenergy.2015.05.082. [23] Cullen JM, Allwood JM. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy 2010;38:75–81. https://doi.org/10.1016/j.enpol.2009.08.054. [24] Nakićenović N, Gilli PV, Kurz R. Regional and global exergy and energy efficiencies. Energy 1996;21:223–37. https://doi.org/10.1016/0360-5442(96)00001-1. [25] Palma M, Sousa T, Guevara Z. How much detail should we use to compute societal aggregated exergy efficiencies? Energies 2016;9. https://doi.org/10.3390/en9050364. [26] Etemad B, Luciani J, Bairoch P, Toutain J-C. World Energy Production. Switzerland: DROZ; 1991. [27] Dominion Bureau of Statistics. The Canada Year Book. 1925-1977: 1925. [28] Statistischen reichsamt. Statistisches Jahrbuch für das Deutsche Reich. 1928-1941: 1928. [29] Staatlichen zentralverwaltung für statistik. Statistisches Jahrbuch der Deutschen Demokratischen Republik. 1955-1971: 1955. [30] Statistisches bundesamt. Statistisches Jahrbuch für die Bundesrepublik Deutschland. 1953-1972: 1953. [31] Japan Statistics Association. Historical Statistics of Japan, 1868-1984 2001. https://warp.da.ndl.go.jp/info:ndljp/pid/11423429/www.stat.go.jp/english/data/chouki/10.html (accessed February 17, 2020). [32] Mitchell BR. European Historical Statistics 1750–2010. MacMillan. London: 2013. [33] Department of Energy & Climate Change (DECC). Historical electricity data: 1920 to 2019 2013. https://www.gov.uk/government/statistical-data-sets/historical-electricity-data (accessed January 22, 2020). [34] United States Bureau of the Census. Historical statistics of the United States, colonial times to 1970. Bicentennial Ed. Washington, DC: United States Government Printing Office: 1975. [35] U.S.S.R Commitee for International Scientific and Technical Conferences. Electrical power development in the USSR. INBA publishing society; 1936. [36] National Foreign Assessment Center. USSR: Development of the Gas Industry. A research paper. The center; 1978. [37] Wilson D. The demand for energy in soviet union. Rowman & Allanheld; 1983. [38] Institut national de la statistique et des Études Économiques. Annuaire statistique de la France 1966. [39] Instituto Nacional Estadistica. Anuario estadistico de España. 1930-1961: 1930. [40] Malanima P. Energy Consumption in Italy in the 19th and 20th Centuries: A Statistical Outline. 2006. [41] Italian National Institute of Statistics. Gross electricity production and final electricity consumption in Italy - Years 1883-2014 2015. http://seriestoriche.istat.it/index.php?id=1&no_cache=1&L=1&no_cache=1&tx_usercento_centofe%5Bcategoria%5D=31&tx_usercento_centofe%5Baction%5D=show&tx_usercento_centofe%5Bcontroller%5D=Categoria&cHash=579686ba1e4b0850cf494bfb15f55d77 (accessed March 14, 2020). [42] Isabel Bartolomé Rodríguez. La Industria Eléctrica en España (1890- 1936). Estud Hist Económica - Banco España 2007;50:165. [43] Bordes J. Les barrages en France du XVIII è à la fin du XX è siècle Histoire , évolution technique et transmission du savoir 1994:70–120. [44] Organisation for European Economic Co-operation (OEEC). The Electricity Supply Industry in Europe. 1955. [45] International Energy Agency (IEA). Extended world energy balances. IEA World Energy Stat Balanc 2018. https://doi.org/https://doi.org/https://doi.org/10.1787/data-00513-en. [46] Castelli F. Developments in the use of fuels for thermal power generation in Italy. Sixth world Power Conf., 1962. [47] Norwegian Water Resources and Energy Directorate. Utbygd vannkraft i Norge. Oslo: Norges Vassdrags- Og Elektrisitetsforening: 1946. [48] Statistisk Sentralbyra. Statistisk årbok for Norge. 1940-1970: 1940. [49] Kander A, Malanima P, Warde P. Power to the People: Energy in Europe over the Last Five Centuries. 2013. https://doi.org/10.1017/S0022050715001011. [50] Rubio MDM, Tafunell X. Latin American hydropower: A century of uneven evolution. Renew Sustain Energy Rev 2014;38:323–34. https://doi.org/10.1016/j.rser.2014.05.068. [51] Ertesvåg IS, Mielnik M. Exergy analysis of the Norwegian society. Energy 2000;25:957–73. https://doi.org/10.1016/S0360-5442(00)00025-6. [52] Carnahan, W.; Ford, K. W.; Prosperetti, A.; Rochlin GI., Rosenfeld, A.; Ross M. Second-law efficiency: The role of the second law of thermodynamics in assessing the efficiency of energy use. AIP Conf. Proc., vol. 25, AIP; 1975, p. 25–51. https://doi.org/10.1063/1.30306. [53] Bureau of census and statistics. Union Statistics for fifty years. Pretoria: 1960. [54] World Power Conference. Statistical Year Book of the World Power Conference No.8. 1956. [55] World Power Conference. Statistical Year Book of the World Power Conference No. 9. 1960. [56] Urquhart MC, Buckley KAH. Historical statistics canada.pdf 1965. [57] Statistiska centralbyrån. Statistisk årsbok för Sverige. Stockholm; 1925. [58] Union Internationale des Producteurs et Distributeurs D’Énergie Électrique (UNIPEDE). Statistiques. (Several Issues) Years between 1937 and 1952: 1937. [59] Heun MK, Marshall Z, Aramendia E, Brockway PE. The energy and exergy of light with application to societal exergy analysis. Energies 2020;13:1–24. https://doi.org/10.3390/en13205489. [60] Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy. Japan: Institute for Global Environmental Strategies; 2006. [61] Dahmus JB. Can Efficiency Improvements Reduce Resource Consumption?: A Historical Analysis of Ten Activities Dahmus Can Efficiency Improvements Reduce Resource Consumption? J Ind Ecol 2014;18:883–97. https://doi.org/10.1111/jiec.12110. [62] IEA (International Energy Agency). Net Zero by 2050. Paris: 2021. [63] Ang BW, Su B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016;94:56–63. https://doi.org/10.1016/j.enpol.2016.03.038. [64] Fouquet R. The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy 2010;38:6586–96. https://doi.org/10.1016/j.enpol.2010.06.029. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112541 |
Available Versions of this Item
-
The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions. (deposited 22 Mar 2022 15:02)
-
The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions. (deposited 23 Mar 2022 17:03)
- The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions. (deposited 03 Apr 2022 19:11) [Currently Displayed]
-
The rise and stall of world electricity efficiency:1900-2017, results and implication for the renewables transitions. (deposited 23 Mar 2022 17:03)