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Abstract

Using daily county-level data since 1970, we construct a series of temperature shocks for the United

States that capture the average surprise effect of heat and cold events experienced in each season, net

of climate trends and adaptation. Temperature surprise shocks in the global warming era have been

a balanced mix of heat and cold surprises and reduced in size in recent times, in contrast to common

belief. Estimates made with local projections show a negative impact on the US economy at business

cycle frequency via both consumption and investment, while the effect on prices is more muted and varies

over time. The central bank does react to the shocks by adjusting its economic projections and cutting

interest rates, with effects spreading out through the yield curve.
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1. Introduction

The analysis of the economic effects of climate change has gained traction in recent years, with a

renewed focus on very high and low temperatures. In the macroeconomic literature, the impact of

temperatures has commonly been investigated empirically under the assumption that, in the short run,

temperatures vary randomly in a given place. However, findings in climate research cast doubt on the

plausibility of this assumption, as global warming is considered to be impacting not only temperature

trends, but also their local variability over time, increasing the incidence of extreme values. If this is

the case, deviations of temperatures from their long-run averages may not be considered as exogenous

shocks, because part of this variation depends on climatic developments, making it predictable.

We take up this issue and propose a new way to construct temperature shocks. For this purpose, we

resort to a concept that is common in the empirical macro literature but still absent from climate research,

which is that of surprise shocks. Based on that notion, pointing to agents’ reaction to a surprising event,

we construct a time series of temperature shocks for the United States by isolating the component of

temperature variations that cannot be reasonably anticipated. We do this at business cycle frequency

and by aggregating local (county-level) surprises, as average country-year dynamics may hide relevant

variations at seasonal frequency and sub-national level. We make our shock series in two steps. First, using

daily data since 1970, we construct a series of surprises in each county, where surprises are defined as the

number of hot and cold days in excess to those agents expect in each quarter, based on their experience

in the preceding years for the same period. Temperature beliefs, defined in terms of a distribution

of experienced temperatures, are constructed over multi-year spans reflecting the documented learning

behavior regarding climate-related phenomena, and updated yearly to identify surprises. Second, county-

level surprises are averaged based on counties’ weather exposure and weight on the national economy,

pinning down US-wide unanticipated surprise shocks. The obtained series nets out any secular variation

in the temperature distribution, including trends in temperature level and volatility, as well as any form

of adaptation of agents to climate change.

We build US temperature surprise shocks quarterly starting from the beginning of the global warming

era (the 1970s) to 2019. Shocks have been relatively small in the last 15 years, suggesting that adjustments

in the shape of the temperature distribution have been stronger in the early phase of climatic changes.

This is not in contrast with the intensification of climate-related manifestations (including temperatures

oscillations) over time, as large weather events with respect to the pre-global-warming period may have

become increasingly frequent, but also less surprising than in the past. We use these shocks to explore the

effects of temperatures on the US economy, studying the impacts on different expenditure components
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of output, on consumer prices and interest rates. In a narratively identified local projection framework,

we find that temperature surprise shocks negatively affect both consumption and investment, but weigh

more on the latter. On aggregate, a one-standard deviation shock causes a contraction in real GDP by

0.34% after 2 years; by contrast, the impact on prices appears to be more muted, with significant effects

on the CPI index showing up only discontinuously as if demand- and supply-side effects almost balance

out. The detrimental economic effect induces an expansionary monetary policy reaction, with a fall in

short- and long-term nominal interest rates. These findings survive to a large set of robustness exercises

on the design of the temperature shock – experimenting different learning times, thresholds for extreme

values and counties’ weighting schemes – and on regression specifications. Moreover, the effects appear to

be heterogeneous across seasons – largest in summer – and between right-tail (heat) shocks and left-tail

(cold) shocks, with the latter generating slightly stronger responses.

In order to investigate the central bank’s reaction further, we rely on Fed’s staff economic expectations

provided to the Federal Open Market Committee ahead of their meetings (Greebook forecasts), as well as

on textual analysis on the transcripts of each meeting since the 1970s. Following the shock, the Federal

Reserve is found to revise its forecasts down for growth, slightly up for prices in the short run and down

in the longer term. Moreover, shocks have an impact on policy discussion within the Committee: while

climate change has been rarely debated, the Fed did mention temperatures quite often and the incidence

of this wording increases after temperature shocks occurr.

Our contribution to the literature is twofold. First, we provide a new source of exogenous macroe-

conomic variation, related to climate change, which affects the economy at aggregate level and business

cycle frequency. Having a measure of unanticipated climate-related shock can help tackle a wider range

of questions than those faced in this paper, and can be the basis of further climate research. Moreover,

our shock is easy to be replicated for other countries or at wider/narrower geographic dimension, and can

serve as reference to construct other weather-related shocks under the same logic. Second, we contribute

to the literature by quantifying the aggregate short-term implications of temperature oscillations for the

United States, including the extent of monetary policy reaction. In this respect, looking at temperature

shocks in isolation is key, as temperatures impact the economy through a set of transmission channels

(including demand-side ones) that can shape output, prices and interest rates differently than other

weather-related extreme events. While our shock, being temporary in nature, cannot speak about longer

run effects of climate change, it can nonetheless inform the debate on the needed policy response, in

particular regarding the engagement of central banks.

The paper is organized as follows. Section 1.1 reviews the theoretical and empirical contributions

related to our study. Section 2 illustrates the possible transmission mechanisms of temperature varia-
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tions to the economy. Section 3 discusses the key issues surrounding the identification of an exogenous

temperature shocks and describes how the shock is constructed. Section 4 presents the data used in the

analysis and works out the shock series. Section 5 proposes an empirical application to estimate the

domestic effect of temperatures on the US economy using the previously constructed shock. Section 6

provides robustness checks, and Section 7 concludes.

1.1. Related literature

The effects of climate change on the global economy are found to be multifaceted. Increasing temper-

atures substantially reduce activity and growth, especially in hot and poor countries (Dell et al., 2012;

Burke et al., 2015; Acevedo et al., 2020); see Dell et al., 2014 for a review of the literature). Advanced

economies appear not to be immune either, and evidence of an impact of temperatures also in the United

States, initially mixed, is also growing. Indeed, US output is negatively affected in a wide range of indus-

tries (Hsiang et al., 2017; Colacito et al., 2019), with income per capita losses being concentrated during

business days (Deryugina and Hsiang, 2014).1 From a wider perspective, extreme weather events are

found to have increased their negative impact on the US economy in the most recent decades, according

to Kim et al. (2021). However, challenges in isolating the economic effects of temperatures remain, also

because their implications differ substantially in different seasons and sectors (Addoum et al., 2021).2 We

contribute to this literature by shedding light on the impact of temperatures shocks on the US economy,

exploring their effects beyond aggregate output including consumption, investment, consumer prices and

bond yields.

From a methodological point of view, this paper contributes to the strand that identifies short-

term impacts of climate change, in particular temperature shocks. A common empirical approach is to

retrieve shocks in a recursively-identified structural VAR, with average temperatures ordered as the most

exogenous variable (Donadelli et al., 2017); the same logic has been applied to extrapolate shocks from

other weather series.3 Other studies employ temperature anomalies, constructed as deviations from the

1A significantly negative effect is also found on agriculture (Fisher et al., 2012; Burke et al., 2015), despite earlier

evidence suggested no impact (Deschênes and Greenstone, 2007).
2While pointing to a detrimental effect on firm activity, micro evidence is still mixed. Some papers do not find any

consequence of high temperatures on firm sales and labor productivity (Addoum et al., 2020), while others document

negative effects on upstream firms in the supply chain (Custódio et al., 2021; Pankratz and Schiller, 2021) and a reduction

in the number of employees and firm establishments in the medium run (Jin et al., 2021).
3Gallic and Vermandel (2020) uses a de-trended version of the soil moisture index, a measure capturing the combined

effect of temperatures and precipitations, in a VAR model; Cashin et al. (2017) includes deviation of the Southern Oscillation

Index (SOI) from their historical averages in a Global VAR framework.
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averages of a pre-global-warming reference period, as a direct measure of temperature shocks (Makkonen

et al., 2021, among others). In the widely used fixed-effects panel settings, shocks to temperatures are

identified as the deviation of current temperature levels from their long run mean. We argue that all

the methods that do not take into account the continued evolution of the temperature distribution suffer

from an endogeneity issue, and propose a new way to compute shocks capturing the surprise component

embedded in temperature episodes. Moreover, most research employs country-level temperatures built

as simple averages of sub-national values, disregarding the fact that extreme events occurring in different

areas of the country can produce profoundly different aggregate effects. We start our analysis from daily

county data and test different weighting schemes to evaluate the robustness of our results. Last, we take

into account seasonal patterns in line with the relevance of seasonality found in Colacito et al. (2019) and

Addoum et al. (2021).

As our notion of temperature shock is based on variations in the shape of the whole temperature

distribution, we also connect to papers studying the effects of actual or expected temperature volatility

(Kotz et al., 2021; Donadelli et al., 2021; Alessandri and Mumtaz, 2021). While these papers isolate

second-moment shocks, which might have the characteristics of forward-looking climatic risk, our shock

is defined over the level of temperatures currently experienced by agents. As such, it should be interpreted

as an unanticipated variation, more than as a news over future temperature oscillations.

The idea of macroeconomic temperature surprises is inherited from the empirical macro literature,

in which the identification of shocks typically rely on extrapolating an exogenous component from pol-

icy announcements or decisions (see Nakamura and Steinsson, 2018 for a review of the literature). For

example, the notion of surprise shocks related to monetary policy refers to the contemporaneous sur-

prise component of monetary policy announcements (Gurkaynak et al., 2005; Gertler and Karadi, 2015;

Miranda-Agrippino and Ricco, 2021 among others); regarding fiscal policy, government spending sur-

prises can reflect the unanticipated component of public spending decisions (Forni and Gambetti, 2016,

among others). As for policy surprises, what matters here is defining agents’ ex-ante expectations in a

proper way: in our setting, what agents expect in a given year and season cannot be any different from

temperatures directly experienced during the same season in the most recent years, i.e. those agents are

used to.

Last, our paper links to those investigating the effects of climate change on consumer prices and the

reaction of monetary policy. With respect to output effects, the implications for prices are less clear in the

literature, sometimes providing opposite evidence (Mukherjee and Ouattara, 2021; Faccia et al., 2021).

This can be due to the fact that temperatures might have relevant demand-side – other than supply-side

– effects, which might offset the final impact on consumer prices at some particular horizons. We find
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that the effects of temperatures on prices are more muted than those on output, but skewed towards a

price fall in the medium run. This price response is broadly in line with that found in Faccia et al. (2021)

for a panel of countries, for which the impact is initially positive and it becomes negative in the longer

term: our result of a barely significant response is coherent with that found in that paper for advanced

economies.

On monetary policy, the literature has mainly focused on how changes in the monetary stance might

have implications for climate and how central banks might cooperate to stimulate the low-carbon tran-

sition (Ferrari and Nispi Landi, 2020; Papoutsi et al., 2021; Hansen, 2021, among others), almost disre-

garding the effects of actual weather occurrences on its conduct. We fill this gap by documenting that

monetary policy responds to the economic damage caused by temperature shocks by cutting short-term

rates, with effects passing through the whole term structure of government bond yields.

2. Transmission channels

While climate change is a long run phenomenon, the literature has widely documented that temper-

atures are able to affect economic outcomes also in the short run. These effects unfold through different

transmission mechanisms. The one that received most attention so far is the heat stress channel. Ex-

treme temperatures might cause illnesses (e.g., heat stroke), reducing hours worked and time allocated

to outdoor leisure (Graff Zivin and Neidell, 2014), and generate a fall in individual productivity related

to heat-exposed working tasks (Cachon et al., 2012; Somanathan et al., 2021). As temperature extremes

are not destructive events, supply effects are mainly on the labor side, while direct effects on capital are

much more limited. Through the same channel, temperature oscillations might also hit the economy on

the demand side. Indeed, some papers have documented significant behavioral effects of temperatures,

according to which extreme temperatures would discourage open air activities: perception of waiting

time worsens in hot days (Baker and Cameron, 1996) and social interactions with strangers are felt as

more unpleasant (Griffit and Veitch, 1971). There is initial evidence that these effects can have economic

implications, putting downward pressure on consumer spending through a decrease in shop retail sales

(Starr-McCluer, 2000; Roth Tran, 2022).

Another transmission mechanism of temperature extremes to the economy is through the cost channel,

for which the literature is scant. In the United States, based on climate scenarios demand for electricity

will rise in the next decades, with a substantial increase in system costs (McFarland, 2015). In the shorter

run, firms may suffer larger expenses to cool/heat work spaces or production processes: this can hit firms’

performance and higher costs may pass through higher consumer prices. Along the same lines, if extreme
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temperatures damage agricultural output (crop yield channel), this may entail an increase in the food

component of consumer prices, as shown in Faccia et al. (2021).

A third channel of transmission is related to uncertainty over future climatic developments. Extreme

temperature oscillations, if wide or frequent enough, can influence decision making by raising attention

towards the future repercussions of climate change (wake-up call effect): this is documented in Choi et al.

(2020), who link temperature episodes to higher financial investment in green than brown assets. From

a firm point of view, in times of very hot or cold periods forward-looking entrepreneurs might decide

to undertake adaptation strategies to cope with increasingly frequent temperature extremes, thereby

reducing more productive investments.

All in all, the economic effects of temperature oscillations can be diverse, potentially impacting both

the consumption and investment components of output, as well as final consumer prices. In what follows,

we explain how our shock is constructed, starting from methodological issues and insights, and test its

effects on GDP and its sub-components, on prices and interest rates.

3. Constructing the shock

3.1. Key points

Using temperatures to construct a climate-related macro shock is the natural choice, as local tem-

peratures have a direct link with the current global warming trend.4 However, the advantages of using

temperatures go beyond that. For example, while all other climate-related phenomena are rare, temper-

atures manifest everyday, allowing to compute statistics at high frequency. Moreover, they are collected

simultaneously in different places and are easily comparable. We use daily temperatures in each US

county to construct a nation-wide shock at the lower (quarterly) frequency.

The shock design is based on the following arguments. First, it rests on the idea that very high

ad low temperatures are intrinsically undesirable and, as documented in the literature, generate mostly

detrimental effects on the economy. Indeed, while the direction of the impact can be different by season

and depend on the type of business exposed, studies recognize that, overall, both extremes are bad

for the economy. At the hearth of this outcome lies, for example, the U-shaped relationship between

temperatures and mortality documented for the United States by Deschenes (2014) and Barreca et al.

(2016), among others. A second key point is that, as science suggests, temperatures turning very hot

or cold in a short period of time can be considered as exogenous to current and recent past economic

4Other weather events might also act as shocks to the economy, but whether and how they occur because of human-

induced climate change is less clear. On the attribution of extreme events to climate change, see Schiermeier (2018).
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activity, as feedback effects to local temperatures from human-generated CO2 emissions unravel only in

the longer term.

Third, and most important, we argue that while agents can be able to find a workaround to isolated

extreme temperature episodes, e.g., by rescheduling working tasks or outdoor activities, exposure to very

hot or cold temperatures could become impossible to avoid if these events are frequent enough within a

short time span, with negative effects on human and firm activity accumulating over time. This might be

so because there are limits to adaptation in the short run, and time constraints (notably in business) that

impede to postpone any important activity. For households, although available at very short horizons,

daily weather forecasts may in principle help to cope with undesirable temperatures: however, evidence

shows that an anticipatory behavior – including taking protective actions – is limited at best (Morss

et al., 2010; Graff Zivin and Neidell, 2014).

All these arguments suggest that a shock to temperatures can be inferred by looking at the incidence

of multiple extreme temperature episodes within a specific period of time. We choose to work at quarterly

frequency as quarters roughly coincide with calendar seasons. Because many economic activities (not only

agriculture) follow seasonal patterns, there could be some degree of substitution over time of outdoor

tasks – due to extreme temperatures – within seasons, but much less so across seasons, so quarters are

ideal time spans to measure temperature surprises. Moreover, quarterly frequency allows to empirically

treat calendar year seasonality in temperatures: highs or lows in each seasons can be damaging even

if they do not reach extreme levels in absolute terms. For example, the impact of an exceptionally

cold summer, while not reaching winter lows, can be nonetheless material for tourism. If this is so, to be

surprising extreme realizations need to be evaluated with respect to what the distribution of temperatures

is expected to be for that period.

In this perspective, climate change causing temperatures to drift upward and oscillations to become

wider over time, need to be properly considered. Indeed, the scientific literature agrees on the fact that

climate change manifests not only as an upward trend in temperatures, but also as a trend in temperature

volatility, leading to an increasing frequency of very hot and cold days. As the entire distribution of

seasonal temperatures modifies over time because of that, a reference set to proxy agents’ beliefs on

current temperatures must relate to past realizations that cannot go too far back in time. One reason for

that, from an economic viewpoint, is that agents have memories and learn from their past experience: this

form of experience-based Bayesian learning, which takes multiple years, has been documented to drive

the dynamics of beliefs also related to global warming (Kelly et al., 2005; Deryugina, 2013; Moore, 2017;

Kala, 2019; Choi et al., 2020; Pankratz and Schiller, 2021). In our shock computation, we assume that the

reference distribution for each quarter rolls over time, in order to compare current values with updated
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temperature beliefs. This identification procedure marks a stark difference with all past approaches based

on pre-global-warming anomalies or on deviations from historical averages, which implicitly assume that

agents anchor their beliefs to some average values and do not update them over time. According to those

metrics, observing a larger number of extreme realizations than in the pre-global-warming period would

always imply a positive shock, even though agents can be, in fact, used to them: therefore, outdated

beliefs may lead to overestimate the size of the current shock. In the following section we provide the

formula to recover our shock at local level, as well as the procedure to aggregate it to country level.

3.2. A US wide climate shock

We build our US surprise shock in two steps. First, we construct temperature surprises separately for

each county; then, we aggregate them to obtain the nation-level shock. We start by collecting average

temperatures in each county at daily frequency. For each series, we group observations by quarter and

compare the within-quarter distribution of temperatures to a reference distribution, which is made by

pooling daily observations recorded in the same quarter of the past years. We argue that five years is a

sufficiently long period for agents to figure out the shape of the underlying temperature distribution, so we

construct the reference distribution based on that time span.5 The reference distribution rolls over time,

i.e. it is updated every year for each quarter. In each period, we compute the 10th and 90th percentiles,

which are taken as upper and lower thresholds for current temperatures, i.e. the values beyond which

actual observations are labeled as very high or low. In order to be perfectly aligned with expectations, we

posit that the share of extreme days in current quarter must be the same of that distribution: differently,

a larger number of extremes represent a positive surprise, while a lower number makes a negative one.

In formulas, let T i
d,q,y being average daily temperatures in day d, quarter q and year y, recorded in

county i, for i = 1, . . . ,K counties. Denote with F i
q,y = {T i

d,q,y−j , j = 1, . . . , 5} the empirical cumulative

distribution function of the reference temperature distribution for quarter q and year y, totalling Nq,y

days. The reference temperature values are

ut(q)iy = F−1
q,y (0.9) ∀ q = {q1, q2, q3, q4} (1)

lt(q)iy = F−1
q,y (0.1) ∀ q = {q1, q2, q3, q4} (2)

where ut(q)iy and lt(q)iy are yearly series for upper (lower) thresholds for county i, quarter q and year y.

By combining threshold values together by quarter, we get quarterly series of upper and lower thresholds

5Pankratz and Schiller (2021) test learning periods of five, ten, and fifteen years length. As a robustness check, we

construct an alternative version of the shock using a 10-year learning window as in Choi et al. (2020), see Section 6.
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for each county, i.e.

utit,y = {ut(q)iy, q = q1, . . . , q4}

ltit,y = {lt(q)iy, q = q1, . . . , q4}

The same can be done with the size of the reference distribution, yielding Nt = {Nq,y, q = q1, . . . , q4}.

Note that we change notation for the quarter (from q to t) as q denotes quarters in yearly series, while

t indicates quarterly frequency. Denoting with ni
t the number of days in quarter t, county surprises

are then evaluated as the number of beyond-threshold days in the current quarter in excess of those in

the reference distribution. Provided that, by construction, the share of extreme days in the reference

distribution is 20 percent, county surprises can be expressed as

county_surpriseit,y =

ni

t
∑

j=1

[

I(T i
d,t,y < ltit,y) + I(T i

d,t,y > utit,y)
]

−Nt,y × 0.2 (3)

where I(x) is an indicator function that values 1 if x is true, 0 otherwise. County surprises are the

difference between the number of extremely hot and cold days in quarter t and the number of extreme

days in the reference distribution for that quarter. The underlying idea is that the reference distribution,

which updates quarterly, represents the information set of economic agents, who directly experienced a

range of temperatures for that season in the recent past. As they have no reason to foresee some change in

the distribution with respect to the very recent past, agents expect that the same number of hot and cold

days also occur in current quarter. In this setting, temperatures go beyond expectations if the number

of extreme days exceed (or is below) what agents expect.

In order to make a US-wide surprise shock, we make a weighted average of county-level surprises

occurred in the K counties by quarter:

US_shockt,y =
K
∑

i=1

(

county_surpriseit,y × wi
y−1

)

(4)

where w are county-level weights, proxying counties’ vulnerability to temperatures, which vary at annual

frequency. Weights are lagged to capture the ex-ante exposure to temperatures.

Example. Imagine to compute the US-wide temperature shock for q2 (spring) of a generic year (numbers

are fictitious). Suppose the US is divided in only two large territories, West (40% population) and

East (60%). Assume that, considering spring time in the past 5y, the 10th percentile of the reference

temperature distribution for the West – made of 90 days × 5 years – is 40 F, while the 90th percentile

is 60 F. In spring this year, West had 8 days with average daily temperature below 40F, and 15 days

above 60F. As norm in a single quarter should be 9 days per tail, the temperature surprise for the West
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is quantified as

shockW = (8− 9) + (15− 9) = 5 days

if surprise in East results, instead, to be 2 days, the US-wide shock is

shockUS = 5× 0.4 + 2× 0.6 = 3.2 days

3.3. Insights

The constructed shock presents the following characteristics. First, it is designed to have an un-

ambiguous economic interpretation: a positive one, meaning an unexpected increase in the occurrence

of abnormal daily temperatures, should have a negative economic impact, while a negative one (milder

temperatures than expected) should be beneficial. Second, it is season-specific, as surprises are measured

within the same season. Therefore, the largest surprises during the year may not necessarily come in

winter and summer when temperatures show record lows and highs, as what matters is how temperatures

deviate from their seasonal norm. Third, as the shock is measured with respect to updated expectations,

it nets out long-run phenomena such as the intensification of climatic trends – upward-drifting and in-

creasing volatile temperatures – and adaptation to extreme temperatures: agents learning about the

evolution of temperatures can continuously adjust their resilience to them. Last, the shock is two-sided

and surprises coming from extremely hot and cold days are treated as equivalent. This can be consid-

ered as a neutral assumption, as taking a stance on which tails matter more in each season is not easy

(Addoum et al., 2021). In a robustness exercise, we decompose the US-wide shock into heat and cold

shocks and explore their effects separately using local projections, finding that the response of economic

variables to them are comparable in size.

Overall, the shock measures the size of the variation in the distribution of temperatures in the short

run. Being an aggregation of county-level surprises, it will be largest in absolute value the largest

temperature variations will be in highly relevant US counties. In this respect, the way surprises are

aggregated could also make the difference: for this purpose, the economic vulnerability of each place to

temperature shocks, which can itself vary over time, should be properly considered.

4. Data

4.1. Temperature data

To construct our shock, we rely on two data sources. The first one is the gridded air temperature

database for continental US taken from the Northeast Regional Climate Center. From that source we

extract daily temperatures, i.e. the mean value of temperatures recorded during the 24 hours, averaged
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at county level. We consider data starting from Jan 1, 1970, i.e. the beginning of the human-induced

global warming trend, and ending on Dec 31, 2019. To construct the weights to aggregate county-level

surprises, we take annual data on US counties’ economies from the Census Bureau, from 1969 to 2018.

In our baseline formulation of the shock, we consider county-level population and construct weights as

the county share over nation-wide values. The rationale for this choice is that the higher the population,

the higher the incidence of agents that are exposed to extreme temperatures, so the higher the potential

economic impact. As a robustness, we also consider land extension – used as an alternative to population

in Colacito et al. (2019) – or the number of employed people and personal income to weight temperature

surprises: while the first two are also proxies of counties’ temperature exposure, personal income might

instead proxy the vulnerability of the local economy to temperature shocks. Merging the two datasets

yields time series of temperatures and weights for 3053 counties. This sample is highly representative of

the US economy, covering more than 98% of the country’s population, jobs and personal income as of

2019.

4.2. County-level statistics

Figure 1 represents county-level statistics over geographic maps of the United States. Panel 1 shows

the growth rate of temperatures in the years 2010s with respect to the 1960s. On average, temperature

grew by 1.7%, but climatic trends have been quite diverse, with some counties experiencing temperatures

rising by more than 8%, while others in which temperatures decreased by 5%. Overall, northeastern

counties and the west coast experienced the steepest temperature increase. The picture looks different

when evaluating the size of county-level surprises occurred over time, which depend on the evolution of

the entire temperature distribution: surprise shocks in northeastern counties have been small on average,

while they have been very large in the south (Panel 2). Overall, what matters is the combination of shocks

and weights: even small surprises can be important if occurred in highly-populated counties. Panel 3

shows counties’ population in 2019. At that time, the 20 most populated counties, covering about 20

percent of US population, were mostly in California, Texas, New York and Florida.

In addition to having no one-to-one correspondence with local temperature trends, surprises do not

necessarily pair with a high incidence of temperature extremes. Figure 2 shows the histogram of the

correlation coefficient, by county, of the surprise series with the count of days with temperatures above

80F or below 20F in each quarter. Within country correlation has a mode between 0.1 and 0.2 and is rarely

above 0.5, confirming that surprises and extremes are generally uncorrelated. To confirm that we are

correctly capturing unexpected events even at the very short horizon, we conduct an illustrative exercise

for the Washington DC county (for ease of computation) to evaluate how temperature predictability is
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related to realized temperature levels. Results, summarized in Appendix B suggest that days that are

labeled as surprisingly hot or cold under our procedure are also associated with largest ex-post forecast

errors at one- and two-day horizons.

To have an idea of how surprises at quarterly frequency evolve over time, we compare those occurred

in two of the richest counties in the US, New York County and Los Angeles County, see Figure 3. The two

surprise series look substantially different – correlation is approximately null – showing peaks of positive

surprises in different periods: 1989q4 and 2003q1 in NY and 1978q4, 2001q1 and 2015q1 in LA. Also,

those peaks reflect episodes that are different in nature: all the aforementioned events in New York were

mainly due to exceptionally cold falls and winters while, in Los Angeles, heat- and cold-related surprises

have been more balanced (e.g., temperatures in winter 2015, on account of a very warm March, mainly

surprised on the upside).
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Figure 1: Within country comparison
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Figure 2: Surprises vs incidence of extremes

Time series correlation, by county

Notes: The histogram reports the correlation of the series of county-level

surprises with that of temperature extremes, proxied by the number of days

above 80F and below 20F in each quarter.

Figure 3: Surprises in NY vs. LA
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Notes: NY County (FIPS code 36061) and LA County (FIPS code 06037).

4.3. The shock series

The time series of the US-wide shock is displayed in Figure 4. The shock is expressed as the total

number of surprisingly hot and cold days per quarter, and reaches a minimum at -9 and a maximum at

14. The shock embeds the basic econometric requirements to be used in empirical analysis: it is zero-

mean and serially uncorrelated (see Appendix A). From an economic point of view, it features the three

characteristics, explained in Ramey (2016), which make it suitable for macroeconomic applications: it is

exogenous with respect to current and lagged outcome variables, it can be considered as uncorrelated with

other exogenous economic shocks and it represents unanticipated movements in an exogenous variable.
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Figure 4: US-wide temperature shock
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Looking at the plotted series, one thing that catches the eye is that temperature shocks have not been

particularly large in the last 15 years with respect to the earlier period. Indeed, the volatility of the shock

series computed on a rolling 10-year window slightly decreases throughout the sample, from a peak of 5

to about 3.5 days. It suggests that adjustments in the shape of the temperature distribution have been

largest – inducing greater surprises – in the early phase of global warming than in recent times. This

evidence reverses the common wisdom that climate change is generating shocks of increasing size. In fact,

our shock dynamics is not in contrast with the intensification of climate-related weather events (including

temperatures extremes), as climate indicators such as the Actuaries Climate Index show.6 As we take

out predictable climatic trends to capture the unexpected component of temperature fluctuations, it is

well possible that large weather episodes with respect to the pre-global-warming period have become

increasingly frequent, but also less surprising than in the past. This higher predictability speaks to the

evidence of an upward trend in annual temperature volatility found for a panel of countries in Alessandri

and Mumtaz (2021), over which the US economy may have adapted over time.

The largest positive values of our shock are recorded in 1977q1, 1989q4, 2000q4 and 2003q1. As the

New York Times described, 1977 was “a year of weather extremes”, which spurred new climate research

in the United States and worldwide (Sterba, 1977). Analyses made at that time by the National Weather

Service reported that winter in 1977, especially in the eastern part of the country, was one of the coldest

6The Actuaries Climate Index is a composite indicator of the frequency of a set of climate-related natural events including

extreme temperatures, precipitation, wind, drought and sea level rise (American Academy of Actuaries, Canadian Institute

of Actuaries, Casualty Actuarial Society and Society of Actuaries, 2020). The components are constructed as anomalies,

i.e. in difference with respect to a fixed reference period in the past (1961-1990).
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in the 20th century, with temperatures close to the record lows of 1917-18. The first quarter of 1989 also

stood apart for its exceptionally low temperatures. Surges of Arctic air in December was, according to the

National Weather Service, “a historic event, with many locations establishing monthly or all-time record

lows” (National Weather Service, 1989). While the fall in temperatures was strongest in the northwest,

the southeastern coast was also particularly damaged, with losses caused by damaged crops in Florida and

broken water pipes in Texas causing failures at manufacturing plants. In that area, the 1989 cold wave

also generated the largest snowstorm in recent history. The fourth quarter of year 2000 saw temperatures

passing from one extreme to the other. The late summer period was characterized by a prolonged heat

wave which, particularly, in southern states, resulted in record high temperatures. Then, after a warm

October, temperatures plunged in November, standing as the second coldest since records began in 1895,

according to NOAA’s National Climate Report. This turnaround in temperatures caused power outages

and triggered other weather-related extreme events, such as tornadoes. The fourth peak in the series is

that of winter of 2003. That period will be mainly remembered in northern states such as Minnesota

and Michigan. While it was not among the coldest on record, it stood out for its persisting cold, which

started in December and went through mid-March. In particular, Michigan recorded the second longest

continuous streak of very cold temperatures (76% of days in January and February) on record, just one

notch below the exceptionally cold winter of 1977.

All the four aforementioned peaks were mainly due to abnormally cold periods. However, heat-

related surprises have also been frequent in the history of US temperatures. To have a flavor on how

both extremes contribute in shaping US-wide shocks, we inspect the incidence of surprisingly hot and

cold days in the shock series within each quarter. Figure 5 displays positive US shocks in a bar plot

where observations are labeled as orange or blue depending on whether surprisingly hot or cold days

prevailed at each point in time. Abnormally hot and cold quarters have been almost equally frequent,

with the former being slightly more (55% of times). Moreover, their incidence have been mostly balanced

throughout the sample, with no apparent clusters in the most recent period. This finding also dispels the

myth that, in a global warming era, abnormally hot days largely predominate over cold ones. In Section

6, we break down the US-wide shock into heat and cold shocks and estimate the economic effect of each

component separately, finding comparable albeit not equal effects.
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Figure 5: Prevailing heat vs. cold surprising days

Notes: Labeling of positive shocks based on the number of surprisingly hot and cold days within the quarter. Orange bars

represent quarters in which surprisingly hot days predominate, while blue bars denote those in which there are relatively

more surprisingly cold than hot days.

5. Application: the impact on the US economy and monetary policy

In this section we employ our US-wide shock to evaluate the effect of temperature surprises on the

US economy. In the following, we describe our approach and comment on the main findings.

5.1. Impulse-response analysis

We estimate the response of US domestic variables to the previously constructed temperature shock

using the local projections framework of Jorda (2005). Impulse response functions (IRFs) are obtained

from the following linear regressions:

yt+s = αs + βs US_shockt + ψs(L)Xt−1 + ut+s s = 0, 1, 2, . . . , H (5)

where t are quarters, y is the target variable andXt is a vector of controls.7 Estimation is made separately

for each time horizon s and for each dependent variable. IRFs are defined by the sequence {βs}
H
s=0, and

inference is performed with Newey-West standard errors.

5.2. Target variables

In our baseline estimates, we test the effects of temperature shocks on the following set of domestic

dependent variables: GDP, private consumption and investment (all in real terms); the CPI index, 3-

7Note that, with respect to previous notation, we here suppress subscript y to indicate years.
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month interest rate and the 10-year Treasury yield. All variables except the 3-month rate and the 10-year

yield are expressed in natural logarithm. Among control variables, we include linear and quadratic time

trends, seasonal dummies, four lags of the shock and of the aforementioned variables and the 2-year less

3-month yield to control for the impact on the short-term portion of the yield curve. A summary of all

data used in this paper is reported in Appendix C. Impulse responses are estimated up to 16-quarter

horizon, and displayed with 68% and 90% confidence bands. The estimates are carried out on the sample

going from 1975 Q1 to 2019 Q4.

5.3. Results

Impulse response functions from one a standard deviation shock are displayed in Figure 6. In re-

sponse to a positive temperature surprise, real GDP in the United States significantly decreases. As it

is common using local projections, the impact slowly builds up reaching a trough after 2 years. Both

private consumption and investment shrink, with investment resulting much more impacted – response

is five times larger at the trough. The CPI index falls too, but its variation is not significant. In line

with the detrimental economic effects, short-term interest rates also decline, suggesting an expansionary

monetary policy response. This effect pass through the long-end of the government yield curve, as the

10-year yield also decreases. A slight above-zero overshooting of the responses is visible four years after

the shock, but it never looks significant.

In terms of size, the economic effects can be quantified as follows: a positive shock in a single quarter

by one standard deviation, which is equal to 4.3 days (5% of the days in the quarter), entails a fall in

real GDP by 0.34% in about two years. This effect speaks to the impact found in Deryugina and Hsiang

(2014), where a single hot day generates a reduction by 0.065% in annual income.8 Moreover, it implies

a decrease in real private consumption by 0.35% and in real investment by 1.7%. Regarding interest

rates, it generates a fall in the 3-month rate by 25 basis points, and in the 10-year yield by 18 bps at the

same horizon. This effect stands out in the literature, as the response of US interest rates to extremely

hot and cold temperatures has recently been found as insignificant (Kim et al., 2021). In fact, the two

approaches capture different aspects of climate change, as we identify an unexpected surprise shock on

the entire temperature distribution taking out climatic trends.

84.3 days would cause a reduction in annual income by 0.28%, very close to our 0.34%.
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Figure 6: Baseline estimates

Notes: 68% and 90% confidence bands.

5.4. Shock transmission over time

The impacts found in the previous estimates should be interpreted as the average economic effects of

the shock throughout the sample period. However, as climate manifestations are the more and more visible

and knowledge about them becomes more widespread, the economic impact to temperature surprises may

have also changed since the early global warming phase. To gauge such potential time variation, we repeat

local projections on sub-periods, focusing on the effects on GDP, CPI and the 3-month rate only. We

set a trailing sample of 124 quarters (31 years) and perform new estimates by rolling it by one quarter

at a time. In this way, we get 57 sets of estimates, which begin from the sample period 1975q1-2005q4

and end with the sample 1989q1-2019q4. To summarize the impulse responses obtained at each iteration,

we display for both variables the IRFs at the horizon displaying the largest negative impact (trough) in

the baseline estimates; we also display the response at the trough reached at each iteration to capture

possible changes in the dynamics of the effects.9

Figure 7 shows the results for GDP (Panel a and b), CPI (Panel c and d) and the short rate (Panel

e and f), where pointwise median responses are displayed together with their 68% and 90% confidence

bands. The estimates suggest two interesting facts. First, the elasticities of GDP and CPI to temperature

shocks have slightly reduced in size over time: after reaching -0.47% at the trough, the response of GDP

almost halved to a maximum (negative) impact of -0.25% (panel b); the response of CPI passed from

being -0.27% to about -0.09%, before widening again to -0.16% (panel d). This reduced impact in both

9IRFs computed on different samples may reach the same trough but at different horizons.
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variables reflects the fact that the increasing adoption of heating and cooling systems in houses and firm

establishments and, more generally, the adaptation measures put in place to safeguard from temperature

oscillations have made agents more resilient to shocks than they were 50 years ago. Second, the effects on

GDP and CPI are substantially different between them, as the negative impact on GDP remained always

significant throughout the whole period, while that of CPI is not significant during part of it. This may

suggest that demand- and supply-side effects balance out in some part of the sample, muting price effects.

Moreover, the response of CPI appears to be less significant in Panel (c) than in Panel (d), suggesting

that the trough effect may have moved ahead (i.e, the pass-through to lower prices have become slower)

over time. This is coherent with the idea that demand-side effects of temperatures are lagged and affect

prices with a delay (Faccia et al., 2021). Panel (e) and (f) show the response of the short-term rate. In

line with the slight reduction in the impact on GDP and prices, also the effect on interest rates diminishes

throughout the sample. Overall, interest rates fall in response to the shock, suggesting an expansionary

monetary policy response to sustain the economy. However, this response seems to be absent in the last

part of the sample, where the variation in the short rate is barely or even not significant. This happens

despite the effects on GDP and CPI continue to be material.
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Figure 7: Maximum negative impacts on GDP, CPI and 3-month rate, rolling estimates

Trough (baseline) Time-varying trough

GDP Panel (a) Panel (b)

CPI Panel (c) Panel (d)

3m rate Panel (e) Panel (f)

Notes: .

5.5. Impact on Fed’s economic forecasts

The impact of temperature shocks on the short-term rate observed in Figure 6 and 7 suggests that, on

average, the Fed does react to the induced economic impact by lowering policy rates. A natural question

that arises is why this is so: do temperature shocks affect central bank’s view on the economy for present

and future quarters? Is that view aligned with the economic outcomes? To have insights on this, we

explore whether Fed’s economic forecasts are affected by temperature shocks. We consider Greenbook

Forecasts for GDP and CPI, which are available to the Federal Open Market Committee prior to each

meeting, and re-run local projections on those outcome variables. Greenbook Forecasts are available at

quarterly level between 1980 and 2015. We investigate the effects of temperatures on current quarter

nowcasts, as well as on the forecasts for the following two quarters.

Figure 8 displays the effects on Fed’s forecasts, compared with the effects on actual GDP and CPI

in the same sample period. The Fed reacts to the shock by adjusting both its nowcasts and short-term
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forecasts for both variables. Regarding GDP, it predicts a fall in current quarter that is in line with the

actual fall, but it overestimates the effects on the subsequent quarters. On CPI, the impact in current

quarter is predicted to be initially positive, then turning negative three years after the shock.

Figure 8: Effects on Fed’s Greenbook Forecasts

Notes: 68% and 90% confidence bands.

5.6. Attention to temperatures and climate

Does the Fed recognize climate and temperatures as a source of economic shocks? To investigate

this issue, we collect the transcripts of all FOMC meetings historically available (i.e., from 1976 to 2015)

and analyze wording therein. We define three sets of climate-related terms: a wording related to the

climate change phenomenon (Climate change wording); a wording related to temperatures and strictly

related phenomena (Temperatures wording); a wording related to climate-related non-temperature events

(Natural disasters wording). For details on single words, couples and triples included in each list, see

Appendix D. Figure 9 displays the word count over time for each set of words. The first panel reveals

that the FOMC has explicitely mentioned the climate change phenomenon very rarely (only 7 times since

1976), but temperatures and natural disasters much more frequently. Between them, most attention has

been devoted to temperature oscillations. Overall, evidence suggests that during the global warming era,

climate change has rarely been a hot topic in official central bank’s conversations, at least before 2016

(temperatures had mentioned, on average, just 4 times per quarter).10

10Nonetheless, this attitude could have changed in the last years as climate change debate increased strongly in popularity.
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Figure 9: Climate mentions by FOMC members
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Notes: 68% and 90% confidence bands.

Do shocks stimulate more discussion on the topic within the FOMC? We re-run local projections on

the count of words related to temperatures and natural disasters. According to Figure 10, it turns out

that the Committee slightly increases mentions of temperatures after shocks. This increase is tiny – just

2 words against a one-standard deviation temperature shock. Differently, shocks to temperatures do not

stimulate other climate-related debate such as that on natural disasters.

Figure 10: Effect on Fed’s climate-related wording

Notes: 68% and 90% confidence bands.

6. Robustness exercises

In this Section we perform a number of robustness exercises to confirm our baseline findings, based on

different specifications of our temperature shock, of control variables and of the econometric specification.

6.1. Heat vs cold shocks

The baseline temperature surprise shock is constructed by summing left and right tail surprises in

each quarter. In this section we dissect the economic effects of these two components by including them
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separately in local projection estimates. According to Equations 3 and 4, left- and right-tail shocks, which

we call cold and heat surprise shocks, can be retrieved as

US_shockbt,y =

K
∑

i=1

(

county_surprisei,bt,y × wi
y−1

)

b = {cold, heat} (6)

where

county_surprisei,cold
t,y =

ni

t
∑

j=1

I(T i
d,t,y < ltit,y)−Nt,y × 0.1

county_surprisei,heat
t,y =

ni

t
∑

j=1

I(T i
d,t,y > utit,y)−Nt,y × 0.1

The two components, which sum up to the baseline shock in each quarter, are plotted in Figure Appendix

E.2. We then employ those variables into linear local projections as

yt+s = αs + γs US_shockcold
t + δs US_shockheat

t + ψs(L)Xt−1 + ut+s s = 0, 1, 2, . . . , H (7)

where γs and δs are impulse response functions to cold and heat shocks, respectively, and X is the set

of control variables. Figures Appendix E.3 and Appendix E.4 show the response to the two shocks

of all the variables considered in the baseline estimates. The economic impact of heat and cold shocks

looks overall quite similar, although the response to cold shocks is somewhat larger (especially for GDP,

consumption and investment) and slightly more significant. The difference is starker for the response of

CPI, which is negative and even barely significant for cold shocks while it hovers around zero in case of

heat shocks.

6.2. Impacts by season

How does the impact of heat and cold shocks vary by season? For this purpose, we estimate the

following variant of Equation 7 :

yt+s = αs+
4

∑

j=1

(

γjs US_shockcold
t ×D

j
t + δjs US_shockheat

t ×D
j
t

)

+ψs(L)Xt−1+ut+s s = 0, 1, 2, . . . , H

(8)

10The set of controls is the same we employed in the baseline estimate. Four lags of the shocks are substituted here with

four lags of both heat and cold shocks.
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where Dj
t with j = {1, . . . , 4} are four dummies that equal 1 if current quarter is quarter j of the year, 0

otherwise. As we interpret quarters as calendar seasons, γjs and δjs represent impulse response functions

to cold and heat shocks in winter (q1), spring (q2), summer (q3) and fall (q4). Figure Appendix E.5 and

Figure Appendix E.6 represent IRFs for heat and cold shocks by season, which are displayed for GDP,

CPI and short rate only to save space.11 Overall, the two figures show that the impact of heat and cold

shocks are generally more pronounced in summer than in other seasons. Regarding heat shocks, summer

shocks have a stronger impact on GDP and the short rate than shocks in other seasons; the sign of the

response of CPI vary substantially across seasons, appearing to be positive in winter and fall. Instead,

cold temperature shocks have a detrimental economic effect not only in summer, but also in winter, while

cold shocks in spring and fall seem to play a minor role.

6.3. Surprise thresholds

The temperature surprise shock is constructed in each quarter with respect to some threshold values,

which are the 10th and 90th percentiles of the reference distribution. We propose alternative specifications

of the shock in which we enlarge or restrict the definition of surprising days by setting threshold values first

at the 5h and 95th percentiles, and then at the 25th and 75th percentiles of the reference distribution.

Figure Appendix E.7 shows the median responses for our 6 variables of interest in these two cases,

together with the baseline IRFs. Impulse responses of the two alternative specifications look very similar

to the baseline, with shocks computed with larger tails having a slightly stronger impact. In that case,

the effect on the CPI index is more persistent than in the baseline. Correlations between baseline US

shock and the two alternatives are about 96%.

6.4. Weighting scheme

We here compute alternative formulation of the US-wide shock using counties’ employment, personal

income and land extension instead of population shares to aggregate county-level surprises. The median

impulse responses obtained from these alternative shocks are displayed in Figure Appendix E.8. Using

employment share and personal income share leave results unchanged with respect to the baseline. Using

land weights change responses a bit more, although remaining broadly in line with baseline results.

6.5. Learning period

In the baseline specification we construct reference distributions by aggregating temperatures observed

in the five years prior to the shock. Here, we assume that learning takes longer and construct those

11IRFs to heat and cold shocks by season of all the other variables in the baseline are available upon request.
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distributions over 10-year rolling windows. The shock, plotted in Figure Appendix E.9, is very similar

to the baseline version (95% correlation).

6.6. Control variables

Baseline local projections are constructed using a rich set of controls, including four lags of all of the

six variables. We explore the effects of temperature shocks using a reduced set of controls by reducing

lags of all control variables (except the shock) to two instead of four. Figure Appendix E.10 shows that

estimates are robust to the choice of the lag structure, as impulse responses remain almost unchanged.

6.7. One-sided shock

The baseline shock is two-sided under the assumption that both extremes are bad for the economy.

One may take a different stance and consider extreme days in one tail only. In this case, the underlying

assumption is that temperatures in the other tail should be considered as beneficial for the economy as

mild temperatures are. While this assumption looks quite strong, we construct an alternative, one-sided

version of the shock by considering surprises only for the tail that is supposed to count more (in negative

terms) in each season. Based on the literature (Colacito et al., 2019; Addoum et al., 2021), we define

positive surprises as number of days in excess on the left tail (cold days) for all seasons but summer, for

which we consider surprises as excess days in the right tail. This alternative formulation of the shock is

reported in Figure Appendix E.11. Local projections carried out using this version of the shock, shown

in Figure Appendix E.12 yield results that are in line with the baseline, with slightly smaller coefficients

(e.g., the response of real GDP is -0.29%).

6.8. Asymmetric responses

Have shocks a symmetric impact on the economy? We investigate this issue by running state-

dependent Local Projections, where the state variable is a dummy equal to 1 for positive shocks (a higher

number of abnormal daily temperatures than expected), 0 otherwise (a lower number than expected). In

the spirit of Iacoviello and Navarro (2019), we adopt a partial state-dependency specification:

yt+s = αs + β1s US_shockt × dt + β2s US_shockt × (1− dt) + ψs(L)Xt−1 + ut+s

where dt is the dummy that equals one in state 1 (positive shocks), 0 otherwise (negative shocks). Re-

sponses, displayed in Figure Appendix E.13, show that only positive temperature shocks (i.e., very hot

and cold days going beyond expectations) affect GDP and the short rate, while negative ones (tempera-

tures being milder than in the past) do not significant improve activity nor prices, with no effect on the

short-term rate.
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7. Conclusions

Climate change has multiple effects on the global economy. We propose a method to isolate exogenous

temperature surprise shocks in one country based on the incidence of relatively high and low tempera-

tures in excess to what agents expect in each season. Estimates made with local projections show that

temperature surprise shocks in the United States have been significantly hurting the economy, and that

the Federal Reserve has been reacting to the deteriorating environment by lowering short-term rates,

slightly increasing its attention to temperature oscillations after the shocks. All in all, results show that

temperatures are an autonomous source of macroeconomic variation, adding another piece of evidence in

the debate on the needed policy response to climate change. The shock constructed in this paper can be

replicated for other countries and at wider or narrower geographic dimension, and can serve as reference

to build other weather-related shocks under the same logic.
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Appendix A. Diagnostics on the shocks

In order to check that our US-wide shock series has desirable properties to be used in macroeconomic

analysis, we perform the Ljung-Box Q-test for serial correlation. We repeat the test 6 times including

a different number of lags each time (1,4,8,12,16,20). All tests fail to reject the null hypothesis of no

residual autocorrelation. The autocorrelation function is displayed in Figure Appendix A.1, showing

that evidence for serial correlation is limited at best.

Figure Appendix A.1: Autocorrelation function of the US-wide shock
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Appendix B. Exercise using weather forecasts

We conduct an illustrative exercise to investigate whether days that we label as surprisingly hot or

cold have also been more difficult to predict. We employ data from the Model Output Statistics (MOS)

database of the National Weather Service, collected from the Iowa State Mesonet archive and available

since year 2000. For our forecasting exercise, we focus on Washington DC county (FIPS code 11001) as

temperature forecasts are made through one weather station only (station ID: KDCA): in this way we

avoid the need of making spatial interpolation of different forecasts. Forecasts are made six times per day

and relate to temperatures for the same day and up to 3 days ahead, at 3-hour frequency. We retain the

last forecasts made during the day (8 pm DC time) to construct predictions of one- and two-day ahead

average daily temperatures. Using realized county temperatures, we construct daily ex-post forecast

errors as

fe j
t = f

j
t−j − tempt
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where f j
t−j are forecasts made at time t− j with horizon j, with j = 1, 2 days and tempt are the realized

average daily temperatures used to construct our shock. To compare forecasts with surprises, we compute

a dummy variable that equals one if the day is labeled as surprisingly hot or cold under our procedure,

and 0 otherwise. We then estimate a probit regression model to test if high forecast errors (in absolute

values) are correlated with the probability of a day being a surprise for agents. In formulas

Probt (surprising dayt = 1) = F
[

α+ βj |fe j
t |

]

j = 1, 2

The estimates are carried out in the sample going from Jul 1, 2000 to December 31, 2019. Results show

that the probability of a day being surprising is positively and significantly correlated with the size of

forecasts errors, confirming that days with temperatures going beyond expectations are also more difficult

to predict than those with milder temperatures.
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Appendix C. Data sources

Table Appendix C.1: Data summary

Variable Source Frequency Sample

Temperature shock

gridded average daily temperatures Northeast Regional Climate Center daily Jan 1,1970 - Dec 31,2019

population (by county) Census Bureau yearly 1969 - 2018

employment (by county) Census Bureau yearly 1969 - 2018

personal income (by county) Census Bureau yearly 1969 - 2018

land extension (by county) Census Bureau yearly 1969 - 2018

Response variables

Real GDP (USGDP...D) Refinitiv quarterly 1975q1-2019q4

Real Personal Consumption Expenditures (USCNPER.D) Refinitiv quarterly 1975q1-2019q4

Real gross private domestic investment (USGDPRIND) Refinitiv quarterly 1975q1-2019q4

Consumer Price Index (USCONPRCE) Refinitiv quarterly 1975q1-2019q4

3-month rate (TB3MS) Fred quarterly 1975q1-2019q4

2-year Treasury yield (GS2) Fred quarterly 1975q1-2019q4

10-year Treasury yield (GS10) Fred quarterly 1975q1-2019q4

GDP nowcast (t) Greenbook Forecasts quarterly 1980q1-2015q4

GDP forecasts (t+1) Greenbook Forecasts quarterly 1980q1-2015q4

GDP forecasts (t+2) Greenbook Forecasts quarterly 1980q1-2015q4

CPI nowcast (t) Greenbook Forecasts quarterly 1980q1-2015q4

CPI forecasts (t+1) Greenbook Forecasts quarterly 1980q1-2015q4

CPI forecasts (t+2) Greenbook Forecasts quarterly 1980q1-2015q4

FOMC word count

Transcripts of FOMC meetings federalserve.gov meeting calendar 1976 - 2015

Weather forecasts

1-day ahead temperature forecasts (at 8 pm DC time) Iowa State Mesonet archive daily Jul 1,2000 - Dec 31,2019

2-day ahead temperature forecasts (at 8 pm DC time) Iowa State Mesonet archive daily Jul 1,2000 - Dec 31,2019
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Appendix D. List of words for textual analysis

The three sets of words employed for textual analysis in FOMC meeting transcripts are detailed below:

• Climate change: climate change, climate crisis, climate emergency, climate breakdown, global

warming, global heating, carbon emissions, greenhouse gas emissions

• Temperatures: extreme heat, heat wave, temperature, hot days, weather, cold days, drought,

wildfires, heat stroke, sunstroke

• Climate-related non-temperature events: flood, landslide, tornado, hurricane, dustnado,

snowfall, snow, rainfall, precipitation

Appendix E. Robustness exercises

Figure Appendix E.2: Breakdown of the shocks
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Figure Appendix E.3: IRFs to heat shock

Notes: 68% and 90% confidence bands.

Figure Appendix E.4: IRFs to cold shocks

Notes: 68% and 90% confidence bands.
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Figure Appendix E.5: IRFs to heat shocks by season (GDP, CPI and short rate)

Notes: 68% and 90% confidence bands.

Figure Appendix E.6: IRFs to cold shocks by season (GDP, CPI and short rate)

Notes: 68% and 90% confidence bands.
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Figure Appendix E.7: IRFs to shock computed with different thresholds
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Figure Appendix E.8: IRFs to shock computed under different weighting schemes
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Figure Appendix E.9: Shock computed with 10-year reference distribution
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Figure Appendix E.10: Two-lag controls

Notes: 68% and 90% confidence bands.
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Figure Appendix E.11: Alternative, one-sided shock
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Figure Appendix E.12: IRFs to one-sided shock

Notes: 68% and 90% confidence bands.
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Figure Appendix E.13: Positive vs negative shocks

Notes: 68% and 90% confidence bands.
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