

Export of Medium and High-Tech Products in Europe

LEOGRANDE, ANGELO

LUM University Giuseppe Degennaro

 $3 \ {\rm April} \ 2022$

Online at https://mpra.ub.uni-muenchen.de/112619/ MPRA Paper No. 112619, posted 03 Apr 2022 19:15 UTC Angelo Leogrande¹

Export of Medium and High-Tech Products in Europe

It grew by 19.10% between 2014 and 2021

The European Innovation Scoreboard-EIS analyzes the value of exports of medium and high-tech products as a percentage of the total value of product exports. In the context of the European Innovation Scoreboard-EIS, the value of the export of medium and high technology products is considered as a function of the employment of human capital. That is, the companies that export more in terms of medium and high technology products are also companies that have a more qualified human capital and whose employability is more resistant to economic crises and recessions.

Ranking of European countries by export value of medium and high technology products in 2021. Hungary is in first place for export of medium and high technology products with an amount equal to 143.53, followed by Slovakia with an amount equal to 142.19 and from the Czech Republic with an amount equal to 139.35. In the middle of the table are Italy with an amount equal to 93.54 units, followed by Holland with an amount equal to 92.68 and Belgium with a value equal to 92.05 units. Montenegro closes the ranking with a value of 3.99 units, followed by Iceland and Norway with a value of 0.

Ranking of the percentage changes in the export of medium and high technology products between 2014 and 2021. Greece is in first place in terms of percentage growth in the export of medium and high technology products with a value equal to 1243.09 % equal to 30.58 units, followed by Bosnia with an amount equal to 272.77% equal to 15.63 units and by Bulgaria with a value equal to 92.26% equal to an amount of 24.43 units. In the middle of the table there are the United Kingdom with an amount equal to 18.2% equal to an amount of 15.33 units, followed by Belgium with an amount equal to 16.64% equal to a value of 13.13 units and followed from Croatia with an amount of 14.61% equal to a value of 8.2 units. Malta closes the ranking with an amount equal to -4.82% equal to a value of -5.05 units, followed by Estonia with an amount equal to -5.46% equal to a value of -3.84 units and from Ukraine with a value equal to -47% equal to a value of -23.37 units.

Clustering with the k-Means algorithm. A clustering is proposed below using the k-Means algorithm to verify the presence of groups of countries by value of the export of medium and high technology products. The choice of the number of clusters takes place through the optimization of the Silhouette coefficient. Based on the application of the Silhouette coefficient, two clusters were found, namely:

- *Cluster 1*: Austria, Belgium, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Luxembourg, Malta, Netherlands, North Macedonia, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom;
- *Cluster 2*: Bosnia, Bulgaria, Croatia, Estonia, Greece, Iceland, Latvia, Lithuania, Montenegro, Norway, Portugal, Serbia, Turkey, Ukraine.

¹ PhD, Assistant Professor of Economics at LUM University Giuseppe Degennaro, Researcher at LUM Enterprise s.r.l., Casamassima, Bari, Italy, European Union. Email: <u>leogrande.cultore@lum.it</u>

Furthermore, considering the value of the median of the clusters, it appears that the median value of the countries of cluster 1 is equal to a value of 105,835 units while the median value of the countries of cluster 2 is equal to a value of 48.12. Therefore, the following ordering of clusters C1> C2 derives. Furthermore, from the analysis of the clusters, a contrast is evident between Western European countries with high export levels of medium and high technology products and Eastern Europe with significantly lower values.

Network analysis. A network analysis mediated across the Manhattan distance is presented below. Specifically, the analysis shows the presence of some particularly dense nodes between the various countries, among which Austria, Poland, Lithuania, United Kingdom, Ireland, Slovenia stand out. Furthermore, the cluster analysis has the following metric values, that is:

- Number of nodes equal to 38;
- Number of edges equal to 151;
- Average of 7,947;
- Density equal to a value of 0.2148;
- Diameter equal to a value of 30.79;
- Radius equal to an amount of 15.91;
- Average length of the shortest route equal to 9.053.

Machine Learning and Predictions. Below is a machine learning analysis for predicting the export value of medium and high-tech goods between the European countries considered. Eight different algorithms were analyzed and compared in terms of performance understood as maximization of the R-square and minimization of statistical errors. 70% of the data was used for training the algorithms while 30% of the data was used for the actual prediction. Therefore, the following ordering of the algorithms derives, namely:

- 1. Random Forest Regression with a payoff value of 5;
- 2. Linear Regression with a payoff value of 7;
- 3. ANN-Artificial Neural Network with a payoff value of 12;
- 4. Gradient Boosted Tree Regression with a payoff value of 19;
- 5. Tree Ensemble Regression with a payoff value of 20;
- 6. Polynomial Regression with a payoff value of 22;
- 7. PNN-Probabilistic Neural Network with a payoff value of 28;
- 8. Simple Regression Tree with a payoff value of 31.

Using the Random Forest Regression algorithm, the following predictions are indicated, namely:

- *Switzerland* with a decrease from a value equal to 100.04 units up to a value equal to 92.95% equal to a variation of -7.09 units equal to a value of -7.09%;
- *Germany* with a decrease from a value equal to 138.01 units up to a variation of 130.46 units equal to a variation of -7.55 units or equal to a variation of -5.47%;
- *Ireland* with a decrease from an amount of 119.99 units up to a change of 105.00 units or equal to a change of -14.99 units equal to a change of -12.49%;
- *Iceland* with a variation from 0.00 units up to a variation of 15.04 units;
- Italy with an increase from an amount equal to 93.54 units up to a change of 99.51 units or equal to a value of 5.97 units equal to a variation of 6.38%;
- *Norway* with a variation from 0.00 units up to a value of 15.04 units;
- *Portugal* with a variation from an amount of 69.87 units up to a value of 65.13 units or equal to a variation of -4.74 units equal to a variation of -6.78%;

- *Romania* with an increase from an amount of 110.44 units up to a variation of 109.02 units or equal to a variation of -1.42 units equal to a variation of -1.29%;
- *Serbia* with an increase from an amount of 75.06 units up to a value of 75.40 units or equal to a variation of 0.34 units equal to an amount of 0.45%;
- *Sweden* with a decrease from an amount of 106.37 units up to an amount of 106.34 units or equal to a variation of -0.003 units equal to an amount of -0.03%;
- *Slovakia* with a decrease from a value of 142.19 units up to a value of 129.61 units or equal to a variation of -12.58 units equal to a variation of -8.85%;
- *Ukraine* with an increase from an amount of 26.35 units up to a value of 47.73 units equal to a value of 21.38 units equal to a value of 81.15%.

On average, the export value of medium and high technology products for the countries considered is predicted to grow from an amount of 81.82 units up to a value of 82.60 units or equal to a variation of 0.78 units equal to an amount of 0.95%.

Conclusions. The export value of medium and high technology products increased between 2014 and 2021 by an amount equal to a value of 19.10%. The export of medium and high technology products is a significant indicator of the ability of European companies to make significant investments both in human capital and in research and development. However, European policy makers need to create the conditions for a further leading role of European companies in terms of exporting medium and high-tech products, also in the light of Sino-American techwar.

Reference:

Laureti L., Costantiello A., Leogrande A., *The Finance-Innovation Nexus in Europe*, IJISET - International Journal of Innovative Science, Engineering & Technology, 2020/12, 7, 12, 11-55.

Costantiello A., Leogrande A., *The Innovation-Employment Nexus in Europe*, American Research Journal of Humanities and Social Sciences, 2020, 166-187.

Leogrande, A., Costantiello, A., *Human Resources in Europe. Estimation, Clusterization, Machine Learning and Prediction*, American Journal of Humanities and Social Sciences Research (AJHSSR) e-ISSN :2378-703X, Volume-5, Issue-9, pp-240-259.

Leogrande, A., Costantiello, A., Laureti, L., *The Impact of Venture Capital Expenditures on Innovation in Europe*, American Journal of Humanities and Social Sciences Research (AJHSSR) e-ISSN :2378-703X, Volume-5, Issue-10, pp-85-102.

Leogrande, A., Costantiello, A., Laureti, L., The Broadband Penetration in Europe, *Journal of Applied Economic Sciences* 3(73):324–349.

Leogrande A, Costantiello, A, Laureti, L., Leogrande, D. *The Determinants of Design Application in Europe* (November, 05, 2021)

Laureti, L., Costantiello, A., Matarrese, M., Leogrande, A., *The Employment in Innovative Enterprises in Europe* (January 1, 2022). Available at SSRN: <u>https://ssrn.com/abstract=</u>

Laureti, Lucio and Costantiello, Alberto and Matarrese, Marco and Leogrande, Angelo, *Enterprises Providing ICT Training in Europe* (January 29, 2022). Available at SSRN: <u>https://ssrn.com/abstract=</u>

Laureti, Lucio and Costantiello, Alberto and Matarrese, Marco and Leogrande, Angelo, *Foreign Doctorate Students in Europe* (February 11, 2022). Available at SSRN: <u>https://ssrn.com/abstract=</u>

Export di prodotti di media e alta tecnologia-Variazione Percentual 2014-2021									
Rank	Country	Var Ass	Var Perc	Rank	Country	Var Ass	Var Perc		
1	Greece	30,58	1243,09	19	Croatia	8,2	14,61		
2	Bosnia and Herzegovine	15,63	272,77	20	Serbia	9,34	14,21		
3	Bulgaria	24,43	92,26	21	Slovenia	13,86	13,51		
4	North Macedonia	52,72	67,56	22	Czechia	14,93	12		
5	Lithuania	25,08	65,3	23	Slovakia	14,81	11,63		
6	Turkey	30,6	57,02	24	Sweden	9,65	9,98		
7	Switzerland	33,77	50,96	25	Hungary	8,72	6,47		
8	Cyprus	33,82	47,31	26	Austria	4,52	4,18		
9	Ireland	35,1	41,35	27	Germany	3,52	2,62		
10	Portugal	20,26	40,84	28	Italy	2,25	2,46		
11	Finland	21,55	36,45	29	Poland	2,02	2,34		
12	Netherlands	24,22	35,38	30	Spain	0,66	0,83		
13	Denmark	22,41	30,95	31	France	-0,05	-0,05		
14	Israel	27,87	28,91	32	Luxembourg	-3,3	-3,73		
15	Latvia	9,15	25,29	33	Malta	-5,05	-4,82		
16	Romania	18,34	19,91	34	Estonia	-3,84	-5,46		
17	United Kingdom	15,33	18,2	35	Ukraine	-23,37	-47		
18	Belgium	13,13	16,64						

Export di prodotti di media e alta tecnologia								
Rank	Countries	2021	Rank	Countries	2021			
1	Hungary	143,53	20	Belgium	92,05			
2	Slovakia	142,19	21	Poland	88,49			
3	Czechia	139,35	22	Luxembourg	85,28			
4	Germany	138,01	23	Turkey	84,27			
5	North Macedonia	130,76	24	Finland	80,67			
6	Israel	124,26	25	Spain	79,72			
7	Ireland	119,99	26	Serbia	75,06			
8	Slovenia	116,46	27	Portugal	69,87			
9	Austria	112,69	28	Estonia	66,44			
10	Romania	110,44	29	Croatia	64,34			
11	France	109,65	30	Lithuania	63,49			
12	Sweden	106,37	31	Bulgaria	50,91			
13	Cyprus	105,3	32	Latvia	45,33			
14	Switzerland	100,04	33	Greece	33,04			
15	Malta	99,7	34	Ukraine	26,35			
16	United Kingdom	99,55	35	Bosnia and Herzegovina	21,36			
17	Denmark	94,81	36	Montenegro	3,99			
18	Italy	93,54	37	Iceland	0			
19	Netherlands	92,68	38	Norway	0			

Graph-level indices	Node-level indices	
✓ Number of nodes		38
Number of edges		151
Average degree		7.947
Density		0.2148
Diameter		30.79
Radius		15.91
Average shortest p	oath length	9.053

			RPro	op MLP Learner			
	Normalizer	Column Filter		_ <u>0.0</u> _	Normaliz	er	
xcel Reader		- 111 -	Partitioning	- 388 -		-	
-				MultiLave	erPerceptron	Numeric !	Scorer
	0.00	0.00		Node 6 Pr	edictor / 💷	. 01.	
0.00	Node 8	Node 2	0.00		Node	5	
Node 142			Node 3		340		2
					9.0.0	Node	e 4
			PNN Learn	er (DDA)	Node 7		
			8				
Excel Reader	Column Fi	ilter	/ * *				
×-	11	Partiti	ioning / 💷	PNN Predictor	Normalizer N	Numeric Scorer	
	- -		m 🕨 Node	13		31	
0.00	0.0		••		- 4		
Node 143	Node 1	10	0.00	0.00	0.00		
		Noc	ie 11	Node 14	Node 15	Node 16	
			Simple Reg	ression			
Excel Reader			Tree Le	arner			
	Column Fi	ilter		Simple Regressio	n		
	→ ± ±	Partiti	ioning	Tree Predictor			
000					Normalizer N	Numeric Scorer	
Node 144	000		Node	÷21 ▶ 2		31	
	Node 1	8		000			
		Nod	le 20 Gradie	nt Boosted Trees			
			Learn	er (Regression)	Node 23	Node 24	
Excel Read	ег	Column Filter					
83 H			artitioning	Gradient E	Boosted Trees		Numeric Scorer
***		4		Node 132 Predictor	(Regression)	Normalizer	● ³¹ 23 ►
Node day		Node 07			□ ▲ ►		
NODE 14	0	Node 27	Node Of				Node 20
			NOUE 20		81.02		Node 32

			Rando	m Forest L	Learner					
Excel Reader	Colum	n Filter	1	Regressio	on) Random	Forest Pred	ictor			
×		1 ¹	Partitioning	-> z i	(R	egression)	Norr	nalizer	Numeric Sc	orer
		· · ·	→ <mark>⊞</mark> ≻			10 M		* * *	31	
000									least_	
Node 145	NOC	1e 37	Nucleo 20	Node 39	9					2
			Node 38			Node 40	INO	de 41	Node 4	2
				Tree	Ensemble Lea	arner				
				IICC I	(Regression)					
Excel R	leader	Column Filte	F							
			Partitio	oning	· · · ·		mhle Dre	dictor		
		── <mark>```↓</mark>			000	(Re	gression) N	ormalizer	Numeric Scorer
11		0.00			Node 47	1	(Inclusion)			24
Node	e 147	Node 45	0.0						 init 	12
			Node	e 43			01.00		01010	
						1	Vode 48		Node 49	Node 50
				Lin	ear Regressi	on				
					Learner			Normaliz	er Num	eric Scorer
Excel R	leader	Column Filte	er 🛛		- L# -	\			-	31
x	-	N 111 N	Partitio	oning /		Regre	ssion	1 - +-+	•	-
					0100	Pred	ictor /			
0.0		0.00	-		Node 55			Node 5	57	Node 58
Node	e 148	Node 53	00	100						
			Node	9 54		01				
						Nod	e 56			
					Polynomial					
				Reg	ression Lear	ner				
Excel R	leader	Column Filte	F		041	Reare	ssion			
			Partitio	oning /		Pred	ictor	Normaliz	er Num	eric Scorer
		transis and a second s	 _		0.00		4		• .	31
CI.		01010	-	•	Node 63	•		P Hole	-	42
Node	e 149	Node 61	0.0			0		000	1	
			Node	e 62		Nod	e 64	Node 6	5 1	Node 66

	2021	Country	Cluster	Silhouette
1	112.69	Austria	C1	0.701623
3	92.05	Belgium	C1	0.657083
6	105.30	Cyprus	C1	0.681342
7	139.35	Czechia	C1	0.68558
9	94.81	Denmark	C1	0.651306
13	80.67	Finland	C1	0.523248
14	109.65	France	C1	0.700753
8	138.01	Germany	C1	0.678752
16	143.53	Hungary	C1	0.676352
17	119.99	Ireland	C1	0.695197
18	124.26	Israel	C1	0.701032
20	93.54	Italy	C1	0.690723
22	85.28	Luxembourg	C1	0.651954
26	99.70	Malta	C1	0.688111
27	92.68	Netherlands	C1	0.651453
25	130.76	North Macedonia	C1	0.693096
29	88.49	Poland	C1	0.66835
31	110.44	Romania	C1	0.700139
35	142.19	Slovakia	C1	0.681906
34	116.46	Slovenia	C1	0.702435
12	79.72	Spain	C1	0.629982
33	106.37	Sweden	C1	0.701
5	100.04	Switzerland	C1	0.670341
38	99.55	United Kingdom	C1	0.697075
2	21.36	Bosnia and Her	C2	0.682069
4	50.91	Bulgaria	C2	0.670585
15	64.34	Croatia	C2	0.608865
10	66.44	Estonia	C2	0.502826
11	33.04	Greece	C2	0.681924
19	0.00	lceland	C2	0.676373
23	45.33	Latvia	C2	0.662838
21	63.49	Lithuania	C2	0.651909
24	3.99	Montenegro	C2	0.677634
28	0.00	Norway	C2	0.676373
30	69.87	Portugal	C2	0.615947
32	75.06	Serbia	C2	0.528365
36	84.27	Turkey	C2	0.550189
37	26.35	Ukraine	C2	0.671718

